1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/IR/IntrinsicsAMDGPU.h"
25 
26 #define DEBUG_TYPE "amdgpu-call-lowering"
27 
28 using namespace llvm;
29 
30 namespace {
31 
32 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register.
33 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler,
34                                     Register ValVReg, CCValAssign &VA) {
35   if (VA.getLocVT().getSizeInBits() < 32) {
36     // 16-bit types are reported as legal for 32-bit registers. We need to
37     // extend and do a 32-bit copy to avoid the verifier complaining about it.
38     return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
39   }
40 
41   return Handler.extendRegister(ValVReg, VA);
42 }
43 
44 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler {
45   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
46                              MachineInstrBuilder MIB, CCAssignFn *AssignFn)
47       : OutgoingValueHandler(B, MRI, AssignFn), MIB(MIB) {}
48 
49   MachineInstrBuilder MIB;
50 
51   Register getStackAddress(uint64_t Size, int64_t Offset,
52                            MachinePointerInfo &MPO) override {
53     llvm_unreachable("not implemented");
54   }
55 
56   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
57                             MachinePointerInfo &MPO, CCValAssign &VA) override {
58     llvm_unreachable("not implemented");
59   }
60 
61   void assignValueToReg(Register ValVReg, Register PhysReg,
62                         CCValAssign &VA) override {
63     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
64 
65     // If this is a scalar return, insert a readfirstlane just in case the value
66     // ends up in a VGPR.
67     // FIXME: Assert this is a shader return.
68     const SIRegisterInfo *TRI
69       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
70     if (TRI->isSGPRReg(MRI, PhysReg)) {
71       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
72                                               {MRI.getType(ExtReg)}, false)
73         .addReg(ExtReg);
74       ExtReg = ToSGPR.getReg(0);
75     }
76 
77     MIRBuilder.buildCopy(PhysReg, ExtReg);
78     MIB.addUse(PhysReg, RegState::Implicit);
79   }
80 
81   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
82                  CCValAssign::LocInfo LocInfo,
83                  const CallLowering::ArgInfo &Info,
84                  ISD::ArgFlagsTy Flags,
85                  CCState &State) override {
86     return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
87   }
88 };
89 
90 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler {
91   uint64_t StackUsed = 0;
92 
93   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
94                            CCAssignFn *AssignFn)
95       : IncomingValueHandler(B, MRI, AssignFn) {}
96 
97   Register getStackAddress(uint64_t Size, int64_t Offset,
98                            MachinePointerInfo &MPO) override {
99     auto &MFI = MIRBuilder.getMF().getFrameInfo();
100     int FI = MFI.CreateFixedObject(Size, Offset, true);
101     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
102     auto AddrReg = MIRBuilder.buildFrameIndex(
103         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
104     StackUsed = std::max(StackUsed, Size + Offset);
105     return AddrReg.getReg(0);
106   }
107 
108   void assignValueToReg(Register ValVReg, Register PhysReg,
109                         CCValAssign &VA) override {
110     markPhysRegUsed(PhysReg);
111 
112     if (VA.getLocVT().getSizeInBits() < 32) {
113       // 16-bit types are reported as legal for 32-bit registers. We need to do
114       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
115       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
116 
117       // If we have signext/zeroext, it applies to the whole 32-bit register
118       // before truncation.
119       auto Extended =
120           buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT()));
121       MIRBuilder.buildTrunc(ValVReg, Extended);
122       return;
123     }
124 
125     IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
126   }
127 
128   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
129                             MachinePointerInfo &MPO, CCValAssign &VA) override {
130     MachineFunction &MF = MIRBuilder.getMF();
131 
132     // The reported memory location may be wider than the value.
133     const LLT RegTy = MRI.getType(ValVReg);
134     MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize);
135 
136     // FIXME: Get alignment
137     auto MMO = MF.getMachineMemOperand(
138         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
139         inferAlignFromPtrInfo(MF, MPO));
140     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
141   }
142 
143   /// How the physical register gets marked varies between formal
144   /// parameters (it's a basic-block live-in), and a call instruction
145   /// (it's an implicit-def of the BL).
146   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
147 };
148 
149 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
150   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
151                    CCAssignFn *AssignFn)
152       : AMDGPUIncomingArgHandler(B, MRI, AssignFn) {}
153 
154   void markPhysRegUsed(unsigned PhysReg) override {
155     MIRBuilder.getMBB().addLiveIn(PhysReg);
156   }
157 };
158 
159 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
160   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
161                     MachineInstrBuilder MIB, CCAssignFn *AssignFn)
162       : AMDGPUIncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
163 
164   void markPhysRegUsed(unsigned PhysReg) override {
165     MIB.addDef(PhysReg, RegState::Implicit);
166   }
167 
168   MachineInstrBuilder MIB;
169 };
170 
171 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler {
172   CCAssignFn *AssignFnVarArg;
173 
174   /// For tail calls, the byte offset of the call's argument area from the
175   /// callee's. Unused elsewhere.
176   int FPDiff;
177 
178   // Cache the SP register vreg if we need it more than once in this call site.
179   Register SPReg;
180 
181   bool IsTailCall;
182 
183   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
184                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
185                            CCAssignFn *AssignFn, CCAssignFn *AssignFnVarArg,
186                            bool IsTailCall = false, int FPDiff = 0)
187       : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB, AssignFn),
188         AssignFnVarArg(AssignFnVarArg), FPDiff(FPDiff), IsTailCall(IsTailCall) {
189   }
190 
191   Register getStackAddress(uint64_t Size, int64_t Offset,
192                            MachinePointerInfo &MPO) override {
193     MachineFunction &MF = MIRBuilder.getMF();
194     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
195     const LLT S32 = LLT::scalar(32);
196 
197     if (IsTailCall) {
198       llvm_unreachable("implement me");
199     }
200 
201     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
202 
203     if (!SPReg)
204       SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0);
205 
206     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
207 
208     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
209     MPO = MachinePointerInfo::getStack(MF, Offset);
210     return AddrReg.getReg(0);
211   }
212 
213   void assignValueToReg(Register ValVReg, Register PhysReg,
214                         CCValAssign &VA) override {
215     MIB.addUse(PhysReg, RegState::Implicit);
216     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
217     MIRBuilder.buildCopy(PhysReg, ExtReg);
218   }
219 
220   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
221                             MachinePointerInfo &MPO, CCValAssign &VA) override {
222     MachineFunction &MF = MIRBuilder.getMF();
223     uint64_t LocMemOffset = VA.getLocMemOffset();
224     const auto &ST = MF.getSubtarget<GCNSubtarget>();
225 
226     auto MMO = MF.getMachineMemOperand(
227       MPO, MachineMemOperand::MOStore, Size,
228       commonAlignment(ST.getStackAlignment(), LocMemOffset));
229     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
230   }
231 
232   void assignValueToAddress(const CallLowering::ArgInfo &Arg,
233                             unsigned ValRegIndex, Register Addr,
234                             uint64_t MemSize, MachinePointerInfo &MPO,
235                             CCValAssign &VA) override {
236     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
237                            ? extendRegister(Arg.Regs[ValRegIndex], VA)
238                            : Arg.Regs[ValRegIndex];
239 
240     // If we extended the value type we might need to adjust the MMO's
241     // Size. This happens if ComputeValueVTs widened a small type value to a
242     // legal register type (e.g. s8->s16)
243     const LLT RegTy = MRI.getType(ValVReg);
244     MemSize = std::min(MemSize, (uint64_t)RegTy.getSizeInBytes());
245     assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA);
246   }
247 };
248 }
249 
250 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
251   : CallLowering(&TLI) {
252 }
253 
254 // FIXME: Compatability shim
255 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
256   switch (MIOpc) {
257   case TargetOpcode::G_SEXT:
258     return ISD::SIGN_EXTEND;
259   case TargetOpcode::G_ZEXT:
260     return ISD::ZERO_EXTEND;
261   case TargetOpcode::G_ANYEXT:
262     return ISD::ANY_EXTEND;
263   default:
264     llvm_unreachable("not an extend opcode");
265   }
266 }
267 
268 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
269                                         CallingConv::ID CallConv,
270                                         SmallVectorImpl<BaseArgInfo> &Outs,
271                                         bool IsVarArg) const {
272   // For shaders. Vector types should be explicitly handled by CC.
273   if (AMDGPU::isEntryFunctionCC(CallConv))
274     return true;
275 
276   SmallVector<CCValAssign, 16> ArgLocs;
277   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
278   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
279                  MF.getFunction().getContext());
280 
281   return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
282 }
283 
284 /// Lower the return value for the already existing \p Ret. This assumes that
285 /// \p B's insertion point is correct.
286 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
287                                         const Value *Val, ArrayRef<Register> VRegs,
288                                         MachineInstrBuilder &Ret) const {
289   if (!Val)
290     return true;
291 
292   auto &MF = B.getMF();
293   const auto &F = MF.getFunction();
294   const DataLayout &DL = MF.getDataLayout();
295   MachineRegisterInfo *MRI = B.getMRI();
296   LLVMContext &Ctx = F.getContext();
297 
298   CallingConv::ID CC = F.getCallingConv();
299   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
300 
301   SmallVector<EVT, 8> SplitEVTs;
302   ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
303   assert(VRegs.size() == SplitEVTs.size() &&
304          "For each split Type there should be exactly one VReg.");
305 
306   SmallVector<ArgInfo, 8> SplitRetInfos;
307 
308   for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
309     EVT VT = SplitEVTs[i];
310     Register Reg = VRegs[i];
311     ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx));
312     setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
313 
314     if (VT.isScalarInteger()) {
315       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
316       if (RetInfo.Flags[0].isSExt()) {
317         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
318         ExtendOp = TargetOpcode::G_SEXT;
319       } else if (RetInfo.Flags[0].isZExt()) {
320         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
321         ExtendOp = TargetOpcode::G_ZEXT;
322       }
323 
324       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
325                                           extOpcodeToISDExtOpcode(ExtendOp));
326       if (ExtVT != VT) {
327         RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
328         LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
329         Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
330       }
331     }
332 
333     if (Reg != RetInfo.Regs[0]) {
334       RetInfo.Regs[0] = Reg;
335       // Reset the arg flags after modifying Reg.
336       setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
337     }
338 
339     splitToValueTypes(RetInfo, SplitRetInfos, DL, CC);
340   }
341 
342   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
343   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn);
344   return handleAssignments(B, SplitRetInfos, RetHandler, CC, F.isVarArg());
345 }
346 
347 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
348                                      ArrayRef<Register> VRegs,
349                                      FunctionLoweringInfo &FLI) const {
350 
351   MachineFunction &MF = B.getMF();
352   MachineRegisterInfo &MRI = MF.getRegInfo();
353   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
354   MFI->setIfReturnsVoid(!Val);
355 
356   assert(!Val == VRegs.empty() && "Return value without a vreg");
357 
358   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
359   const bool IsShader = AMDGPU::isShader(CC);
360   const bool IsWaveEnd =
361       (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
362   if (IsWaveEnd) {
363     B.buildInstr(AMDGPU::S_ENDPGM)
364       .addImm(0);
365     return true;
366   }
367 
368   auto const &ST = MF.getSubtarget<GCNSubtarget>();
369 
370   unsigned ReturnOpc =
371       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
372 
373   auto Ret = B.buildInstrNoInsert(ReturnOpc);
374   Register ReturnAddrVReg;
375   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
376     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
377     Ret.addUse(ReturnAddrVReg);
378   }
379 
380   if (!FLI.CanLowerReturn)
381     insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
382   else if (!lowerReturnVal(B, Val, VRegs, Ret))
383     return false;
384 
385   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
386     const SIRegisterInfo *TRI = ST.getRegisterInfo();
387     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
388                                          &AMDGPU::SGPR_64RegClass);
389     B.buildCopy(ReturnAddrVReg, LiveInReturn);
390   }
391 
392   // TODO: Handle CalleeSavedRegsViaCopy.
393 
394   B.insertInstr(Ret);
395   return true;
396 }
397 
398 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
399                                            Type *ParamTy,
400                                            uint64_t Offset) const {
401   MachineFunction &MF = B.getMF();
402   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
403   MachineRegisterInfo &MRI = MF.getRegInfo();
404   Register KernArgSegmentPtr =
405     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
406   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
407 
408   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
409 
410   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
411 }
412 
413 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy,
414                                         uint64_t Offset, Align Alignment,
415                                         Register DstReg) const {
416   MachineFunction &MF = B.getMF();
417   const Function &F = MF.getFunction();
418   const DataLayout &DL = F.getParent()->getDataLayout();
419   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
420   unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
421 
422   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
423   Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
424   lowerParameterPtr(PtrReg, B, ParamTy, Offset);
425 
426   MachineMemOperand *MMO = MF.getMachineMemOperand(
427       PtrInfo,
428       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
429           MachineMemOperand::MOInvariant,
430       TypeSize, Alignment);
431 
432   B.buildLoad(DstReg, PtrReg, *MMO);
433 }
434 
435 // Allocate special inputs passed in user SGPRs.
436 static void allocateHSAUserSGPRs(CCState &CCInfo,
437                                  MachineIRBuilder &B,
438                                  MachineFunction &MF,
439                                  const SIRegisterInfo &TRI,
440                                  SIMachineFunctionInfo &Info) {
441   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
442   if (Info.hasPrivateSegmentBuffer()) {
443     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
444     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
445     CCInfo.AllocateReg(PrivateSegmentBufferReg);
446   }
447 
448   if (Info.hasDispatchPtr()) {
449     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
450     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
451     CCInfo.AllocateReg(DispatchPtrReg);
452   }
453 
454   if (Info.hasQueuePtr()) {
455     Register QueuePtrReg = Info.addQueuePtr(TRI);
456     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
457     CCInfo.AllocateReg(QueuePtrReg);
458   }
459 
460   if (Info.hasKernargSegmentPtr()) {
461     MachineRegisterInfo &MRI = MF.getRegInfo();
462     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
463     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
464     Register VReg = MRI.createGenericVirtualRegister(P4);
465     MRI.addLiveIn(InputPtrReg, VReg);
466     B.getMBB().addLiveIn(InputPtrReg);
467     B.buildCopy(VReg, InputPtrReg);
468     CCInfo.AllocateReg(InputPtrReg);
469   }
470 
471   if (Info.hasDispatchID()) {
472     Register DispatchIDReg = Info.addDispatchID(TRI);
473     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
474     CCInfo.AllocateReg(DispatchIDReg);
475   }
476 
477   if (Info.hasFlatScratchInit()) {
478     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
479     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
480     CCInfo.AllocateReg(FlatScratchInitReg);
481   }
482 
483   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
484   // these from the dispatch pointer.
485 }
486 
487 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
488     MachineIRBuilder &B, const Function &F,
489     ArrayRef<ArrayRef<Register>> VRegs) const {
490   MachineFunction &MF = B.getMF();
491   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
492   MachineRegisterInfo &MRI = MF.getRegInfo();
493   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
494   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
495   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
496 
497   const DataLayout &DL = F.getParent()->getDataLayout();
498 
499   SmallVector<CCValAssign, 16> ArgLocs;
500   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
501 
502   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
503 
504   unsigned i = 0;
505   const Align KernArgBaseAlign(16);
506   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
507   uint64_t ExplicitArgOffset = 0;
508 
509   // TODO: Align down to dword alignment and extract bits for extending loads.
510   for (auto &Arg : F.args()) {
511     const bool IsByRef = Arg.hasByRefAttr();
512     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
513     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
514     if (AllocSize == 0)
515       continue;
516 
517     MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None;
518     if (!ABIAlign)
519       ABIAlign = DL.getABITypeAlign(ArgTy);
520 
521     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
522     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
523 
524     if (Arg.use_empty()) {
525       ++i;
526       continue;
527     }
528 
529     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
530 
531     if (IsByRef) {
532       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
533 
534       assert(VRegs[i].size() == 1 &&
535              "expected only one register for byval pointers");
536       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
537         lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset);
538       } else {
539         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
540         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
541         lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset);
542 
543         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
544       }
545     } else {
546       ArrayRef<Register> OrigArgRegs = VRegs[i];
547       Register ArgReg =
548         OrigArgRegs.size() == 1
549         ? OrigArgRegs[0]
550         : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
551 
552       lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg);
553       if (OrigArgRegs.size() > 1)
554         unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
555     }
556 
557     ++i;
558   }
559 
560   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
561   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
562   return true;
563 }
564 
565 bool AMDGPUCallLowering::lowerFormalArguments(
566     MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
567     FunctionLoweringInfo &FLI) const {
568   CallingConv::ID CC = F.getCallingConv();
569 
570   // The infrastructure for normal calling convention lowering is essentially
571   // useless for kernels. We want to avoid any kind of legalization or argument
572   // splitting.
573   if (CC == CallingConv::AMDGPU_KERNEL)
574     return lowerFormalArgumentsKernel(B, F, VRegs);
575 
576   const bool IsGraphics = AMDGPU::isGraphics(CC);
577   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
578 
579   MachineFunction &MF = B.getMF();
580   MachineBasicBlock &MBB = B.getMBB();
581   MachineRegisterInfo &MRI = MF.getRegInfo();
582   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
583   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
584   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
585   const DataLayout &DL = F.getParent()->getDataLayout();
586 
587 
588   SmallVector<CCValAssign, 16> ArgLocs;
589   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
590 
591   if (!IsEntryFunc) {
592     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
593     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
594                                          &AMDGPU::SGPR_64RegClass);
595     MBB.addLiveIn(ReturnAddrReg);
596     B.buildCopy(LiveInReturn, ReturnAddrReg);
597   }
598 
599   if (Info->hasImplicitBufferPtr()) {
600     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
601     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
602     CCInfo.AllocateReg(ImplicitBufferPtrReg);
603   }
604 
605   SmallVector<ArgInfo, 32> SplitArgs;
606   unsigned Idx = 0;
607   unsigned PSInputNum = 0;
608 
609   // Insert the hidden sret parameter if the return value won't fit in the
610   // return registers.
611   if (!FLI.CanLowerReturn)
612     insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
613 
614   for (auto &Arg : F.args()) {
615     if (DL.getTypeStoreSize(Arg.getType()) == 0)
616       continue;
617 
618     const bool InReg = Arg.hasAttribute(Attribute::InReg);
619 
620     // SGPR arguments to functions not implemented.
621     if (!IsGraphics && InReg)
622       return false;
623 
624     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
625         Arg.hasAttribute(Attribute::SwiftError) ||
626         Arg.hasAttribute(Attribute::Nest))
627       return false;
628 
629     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
630       const bool ArgUsed = !Arg.use_empty();
631       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
632 
633       if (!SkipArg) {
634         Info->markPSInputAllocated(PSInputNum);
635         if (ArgUsed)
636           Info->markPSInputEnabled(PSInputNum);
637       }
638 
639       ++PSInputNum;
640 
641       if (SkipArg) {
642         for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
643           B.buildUndef(VRegs[Idx][I]);
644 
645         ++Idx;
646         continue;
647       }
648     }
649 
650     ArgInfo OrigArg(VRegs[Idx], Arg.getType());
651     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
652     setArgFlags(OrigArg, OrigArgIdx, DL, F);
653 
654     splitToValueTypes(OrigArg, SplitArgs, DL, CC);
655     ++Idx;
656   }
657 
658   // At least one interpolation mode must be enabled or else the GPU will
659   // hang.
660   //
661   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
662   // set PSInputAddr, the user wants to enable some bits after the compilation
663   // based on run-time states. Since we can't know what the final PSInputEna
664   // will look like, so we shouldn't do anything here and the user should take
665   // responsibility for the correct programming.
666   //
667   // Otherwise, the following restrictions apply:
668   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
669   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
670   //   enabled too.
671   if (CC == CallingConv::AMDGPU_PS) {
672     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
673         ((Info->getPSInputAddr() & 0xF) == 0 &&
674          Info->isPSInputAllocated(11))) {
675       CCInfo.AllocateReg(AMDGPU::VGPR0);
676       CCInfo.AllocateReg(AMDGPU::VGPR1);
677       Info->markPSInputAllocated(0);
678       Info->markPSInputEnabled(0);
679     }
680 
681     if (Subtarget.isAmdPalOS()) {
682       // For isAmdPalOS, the user does not enable some bits after compilation
683       // based on run-time states; the register values being generated here are
684       // the final ones set in hardware. Therefore we need to apply the
685       // workaround to PSInputAddr and PSInputEnable together.  (The case where
686       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
687       // set up an input arg for a particular interpolation mode, but nothing
688       // uses that input arg. Really we should have an earlier pass that removes
689       // such an arg.)
690       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
691       if ((PsInputBits & 0x7F) == 0 ||
692           ((PsInputBits & 0xF) == 0 &&
693            (PsInputBits >> 11 & 1)))
694         Info->markPSInputEnabled(
695           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
696     }
697   }
698 
699   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
700   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
701 
702   if (!MBB.empty())
703     B.setInstr(*MBB.begin());
704 
705   if (!IsEntryFunc) {
706     // For the fixed ABI, pass workitem IDs in the last argument register.
707     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
708       TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
709   }
710 
711   FormalArgHandler Handler(B, MRI, AssignFn);
712   if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
713     return false;
714 
715   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
716     // Special inputs come after user arguments.
717     TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
718   }
719 
720   // Start adding system SGPRs.
721   if (IsEntryFunc) {
722     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
723   } else {
724     if (!Subtarget.enableFlatScratch())
725       CCInfo.AllocateReg(Info->getScratchRSrcReg());
726     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
727   }
728 
729   // Move back to the end of the basic block.
730   B.setMBB(MBB);
731 
732   return true;
733 }
734 
735 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
736                                            CCState &CCInfo,
737                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
738                                            CallLoweringInfo &Info) const {
739   MachineFunction &MF = MIRBuilder.getMF();
740 
741   const AMDGPUFunctionArgInfo *CalleeArgInfo
742     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
743 
744   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
745   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
746 
747 
748   // TODO: Unify with private memory register handling. This is complicated by
749   // the fact that at least in kernels, the input argument is not necessarily
750   // in the same location as the input.
751   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
752     AMDGPUFunctionArgInfo::DISPATCH_PTR,
753     AMDGPUFunctionArgInfo::QUEUE_PTR,
754     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
755     AMDGPUFunctionArgInfo::DISPATCH_ID,
756     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
757     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
758     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
759   };
760 
761   MachineRegisterInfo &MRI = MF.getRegInfo();
762 
763   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
764   const AMDGPULegalizerInfo *LI
765     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
766 
767   for (auto InputID : InputRegs) {
768     const ArgDescriptor *OutgoingArg;
769     const TargetRegisterClass *ArgRC;
770     LLT ArgTy;
771 
772     std::tie(OutgoingArg, ArgRC, ArgTy) =
773         CalleeArgInfo->getPreloadedValue(InputID);
774     if (!OutgoingArg)
775       continue;
776 
777     const ArgDescriptor *IncomingArg;
778     const TargetRegisterClass *IncomingArgRC;
779     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
780         CallerArgInfo.getPreloadedValue(InputID);
781     assert(IncomingArgRC == ArgRC);
782 
783     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
784 
785     if (IncomingArg) {
786       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
787     } else {
788       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
789       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
790     }
791 
792     if (OutgoingArg->isRegister()) {
793       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
794       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
795         report_fatal_error("failed to allocate implicit input argument");
796     } else {
797       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
798       return false;
799     }
800   }
801 
802   // Pack workitem IDs into a single register or pass it as is if already
803   // packed.
804   const ArgDescriptor *OutgoingArg;
805   const TargetRegisterClass *ArgRC;
806   LLT ArgTy;
807 
808   std::tie(OutgoingArg, ArgRC, ArgTy) =
809       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
810   if (!OutgoingArg)
811     std::tie(OutgoingArg, ArgRC, ArgTy) =
812         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
813   if (!OutgoingArg)
814     std::tie(OutgoingArg, ArgRC, ArgTy) =
815         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
816   if (!OutgoingArg)
817     return false;
818 
819   auto WorkitemIDX =
820       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
821   auto WorkitemIDY =
822       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
823   auto WorkitemIDZ =
824       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
825 
826   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
827   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
828   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
829   const LLT S32 = LLT::scalar(32);
830 
831   // If incoming ids are not packed we need to pack them.
832   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
833   Register InputReg;
834   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) {
835     InputReg = MRI.createGenericVirtualRegister(S32);
836     LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
837                        std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
838   }
839 
840   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
841     Register Y = MRI.createGenericVirtualRegister(S32);
842     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
843                        std::get<2>(WorkitemIDY));
844 
845     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
846     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
847   }
848 
849   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
850     Register Z = MRI.createGenericVirtualRegister(S32);
851     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
852                        std::get<2>(WorkitemIDZ));
853 
854     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
855     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
856   }
857 
858   if (!InputReg) {
859     InputReg = MRI.createGenericVirtualRegister(S32);
860 
861     // Workitem ids are already packed, any of present incoming arguments will
862     // carry all required fields.
863     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
864       IncomingArgX ? *IncomingArgX :
865         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
866     LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
867                        &AMDGPU::VGPR_32RegClass, S32);
868   }
869 
870   if (OutgoingArg->isRegister()) {
871     ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
872     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
873       report_fatal_error("failed to allocate implicit input argument");
874   } else {
875     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
876     return false;
877   }
878 
879   return true;
880 }
881 
882 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
883 /// CC.
884 static std::pair<CCAssignFn *, CCAssignFn *>
885 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
886   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
887 }
888 
889 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
890                               bool IsTailCall) {
891   return AMDGPU::SI_CALL;
892 }
893 
894 // Add operands to call instruction to track the callee.
895 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
896                                   MachineIRBuilder &MIRBuilder,
897                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
898   if (Info.Callee.isReg()) {
899     CallInst.addReg(Info.Callee.getReg());
900     CallInst.addImm(0);
901   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
902     // The call lowering lightly assumed we can directly encode a call target in
903     // the instruction, which is not the case. Materialize the address here.
904     const GlobalValue *GV = Info.Callee.getGlobal();
905     auto Ptr = MIRBuilder.buildGlobalValue(
906       LLT::pointer(GV->getAddressSpace(), 64), GV);
907     CallInst.addReg(Ptr.getReg(0));
908     CallInst.add(Info.Callee);
909   } else
910     return false;
911 
912   return true;
913 }
914 
915 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
916                                    CallLoweringInfo &Info) const {
917   if (Info.IsVarArg) {
918     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
919     return false;
920   }
921 
922   MachineFunction &MF = MIRBuilder.getMF();
923   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
924   const SIRegisterInfo *TRI = ST.getRegisterInfo();
925 
926   const Function &F = MF.getFunction();
927   MachineRegisterInfo &MRI = MF.getRegInfo();
928   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
929   const DataLayout &DL = F.getParent()->getDataLayout();
930   CallingConv::ID CallConv = F.getCallingConv();
931 
932   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
933       CallConv != CallingConv::AMDGPU_Gfx) {
934     LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n");
935     return false;
936   }
937 
938   if (AMDGPU::isShader(CallConv)) {
939     LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n");
940     return false;
941   }
942 
943   SmallVector<ArgInfo, 8> OutArgs;
944   for (auto &OrigArg : Info.OrigArgs)
945     splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
946 
947   // If we can lower as a tail call, do that instead.
948   bool CanTailCallOpt = false;
949 
950   // We must emit a tail call if we have musttail.
951   if (Info.IsMustTailCall && !CanTailCallOpt) {
952     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
953     return false;
954   }
955 
956   // Find out which ABI gets to decide where things go.
957   CCAssignFn *AssignFnFixed;
958   CCAssignFn *AssignFnVarArg;
959   std::tie(AssignFnFixed, AssignFnVarArg) =
960       getAssignFnsForCC(Info.CallConv, TLI);
961 
962   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
963     .addImm(0)
964     .addImm(0);
965 
966   // Create a temporarily-floating call instruction so we can add the implicit
967   // uses of arg registers.
968   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
969 
970   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
971   MIB.addDef(TRI->getReturnAddressReg(MF));
972 
973   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
974     return false;
975 
976   // Tell the call which registers are clobbered.
977   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
978   MIB.addRegMask(Mask);
979 
980   SmallVector<CCValAssign, 16> ArgLocs;
981   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
982 
983   // We could pass MIB and directly add the implicit uses to the call
984   // now. However, as an aesthetic choice, place implicit argument operands
985   // after the ordinary user argument registers.
986   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
987 
988   if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
989       Info.CallConv != CallingConv::AMDGPU_Gfx) {
990     // With a fixed ABI, allocate fixed registers before user arguments.
991     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
992       return false;
993   }
994 
995   // Do the actual argument marshalling.
996   SmallVector<Register, 8> PhysRegs;
997   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
998                                    AssignFnVarArg, false);
999   if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, OutArgs, Handler))
1000     return false;
1001 
1002   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1003 
1004   if (!ST.enableFlatScratch()) {
1005     // Insert copies for the SRD. In the HSA case, this should be an identity
1006     // copy.
1007     auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::vector(4, 32),
1008                                                MFI->getScratchRSrcReg());
1009     MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
1010     MIB.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
1011   }
1012 
1013   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1014     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1015     MIB.addReg(ArgReg.first, RegState::Implicit);
1016   }
1017 
1018   // Get a count of how many bytes are to be pushed on the stack.
1019   unsigned NumBytes = CCInfo.getNextStackOffset();
1020 
1021   // If Callee is a reg, since it is used by a target specific
1022   // instruction, it must have a register class matching the
1023   // constraint of that instruction.
1024 
1025   // FIXME: We should define regbankselectable call instructions to handle
1026   // divergent call targets.
1027   if (MIB->getOperand(1).isReg()) {
1028     MIB->getOperand(1).setReg(constrainOperandRegClass(
1029         MF, *TRI, MRI, *ST.getInstrInfo(),
1030         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1031         1));
1032   }
1033 
1034   auto OrigInsertPt = MIRBuilder.getInsertPt();
1035 
1036   // Now we can add the actual call instruction to the correct position.
1037   MIRBuilder.insertInstr(MIB);
1038 
1039   // Insert this now to give us an anchor point for managing the insert point.
1040   MachineInstrBuilder CallSeqEnd =
1041     MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN);
1042 
1043   SmallVector<ArgInfo, 8> InArgs;
1044   if (!Info.CanLowerReturn) {
1045     insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1046                     Info.DemoteRegister, Info.DemoteStackIndex);
1047   } else if (!Info.OrigRet.Ty->isVoidTy()) {
1048     splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
1049   }
1050 
1051   // Make sure the raw argument copies are inserted before the marshalling to
1052   // the original types.
1053   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), CallSeqEnd);
1054 
1055   // Finally we can copy the returned value back into its virtual-register. In
1056   // symmetry with the arguments, the physical register must be an
1057   // implicit-define of the call instruction.
1058   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1059     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1060                                                       Info.IsVarArg);
1061     CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
1062     if (!handleAssignments(MIRBuilder, InArgs, Handler, Info.CallConv,
1063                            Info.IsVarArg))
1064       return false;
1065   }
1066 
1067   uint64_t CalleePopBytes = NumBytes;
1068   CallSeqEnd.addImm(0)
1069             .addImm(CalleePopBytes);
1070 
1071   // Restore the insert point to after the call sequence.
1072   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), OrigInsertPt);
1073   return true;
1074 }
1075