1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPULegalizerInfo.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "SIRegisterInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 26 #define DEBUG_TYPE "amdgpu-call-lowering" 27 28 using namespace llvm; 29 30 namespace { 31 32 struct AMDGPUValueHandler : public CallLowering::ValueHandler { 33 AMDGPUValueHandler(bool IsIncoming, MachineIRBuilder &B, 34 MachineRegisterInfo &MRI, CCAssignFn *AssignFn) 35 : ValueHandler(IsIncoming, B, MRI, AssignFn) {} 36 37 /// Wrapper around extendRegister to ensure we extend to a full 32-bit 38 /// register. 39 Register extendRegisterMin32(Register ValVReg, CCValAssign &VA) { 40 if (VA.getLocVT().getSizeInBits() < 32) { 41 // 16-bit types are reported as legal for 32-bit registers. We need to 42 // extend and do a 32-bit copy to avoid the verifier complaining about it. 43 return MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0); 44 } 45 46 return extendRegister(ValVReg, VA); 47 } 48 }; 49 50 struct AMDGPUOutgoingValueHandler : public AMDGPUValueHandler { 51 AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 52 MachineInstrBuilder MIB, CCAssignFn *AssignFn) 53 : AMDGPUValueHandler(false, B, MRI, AssignFn), MIB(MIB) {} 54 55 MachineInstrBuilder MIB; 56 57 Register getStackAddress(uint64_t Size, int64_t Offset, 58 MachinePointerInfo &MPO) override { 59 llvm_unreachable("not implemented"); 60 } 61 62 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 63 MachinePointerInfo &MPO, CCValAssign &VA) override { 64 llvm_unreachable("not implemented"); 65 } 66 67 void assignValueToReg(Register ValVReg, Register PhysReg, 68 CCValAssign &VA) override { 69 Register ExtReg = extendRegisterMin32(ValVReg, VA); 70 71 // If this is a scalar return, insert a readfirstlane just in case the value 72 // ends up in a VGPR. 73 // FIXME: Assert this is a shader return. 74 const SIRegisterInfo *TRI 75 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 76 if (TRI->isSGPRReg(MRI, PhysReg)) { 77 auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane, 78 {MRI.getType(ExtReg)}, false) 79 .addReg(ExtReg); 80 ExtReg = ToSGPR.getReg(0); 81 } 82 83 MIRBuilder.buildCopy(PhysReg, ExtReg); 84 MIB.addUse(PhysReg, RegState::Implicit); 85 } 86 87 bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT, 88 CCValAssign::LocInfo LocInfo, 89 const CallLowering::ArgInfo &Info, 90 ISD::ArgFlagsTy Flags, 91 CCState &State) override { 92 return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State); 93 } 94 }; 95 96 struct AMDGPUIncomingArgHandler : public AMDGPUValueHandler { 97 uint64_t StackUsed = 0; 98 99 AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 100 CCAssignFn *AssignFn) 101 : AMDGPUValueHandler(true, B, MRI, AssignFn) {} 102 103 Register getStackAddress(uint64_t Size, int64_t Offset, 104 MachinePointerInfo &MPO) override { 105 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 106 int FI = MFI.CreateFixedObject(Size, Offset, true); 107 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 108 auto AddrReg = MIRBuilder.buildFrameIndex( 109 LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI); 110 StackUsed = std::max(StackUsed, Size + Offset); 111 return AddrReg.getReg(0); 112 } 113 114 void assignValueToReg(Register ValVReg, Register PhysReg, 115 CCValAssign &VA) override { 116 markPhysRegUsed(PhysReg); 117 118 if (VA.getLocVT().getSizeInBits() < 32) { 119 // 16-bit types are reported as legal for 32-bit registers. We need to do 120 // a 32-bit copy, and truncate to avoid the verifier complaining about it. 121 auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg); 122 MIRBuilder.buildTrunc(ValVReg, Copy); 123 return; 124 } 125 126 switch (VA.getLocInfo()) { 127 case CCValAssign::LocInfo::SExt: 128 case CCValAssign::LocInfo::ZExt: 129 case CCValAssign::LocInfo::AExt: { 130 auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg); 131 MIRBuilder.buildTrunc(ValVReg, Copy); 132 break; 133 } 134 default: 135 MIRBuilder.buildCopy(ValVReg, PhysReg); 136 break; 137 } 138 } 139 140 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize, 141 MachinePointerInfo &MPO, CCValAssign &VA) override { 142 MachineFunction &MF = MIRBuilder.getMF(); 143 144 // The reported memory location may be wider than the value. 145 const LLT RegTy = MRI.getType(ValVReg); 146 MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize); 147 148 // FIXME: Get alignment 149 auto MMO = MF.getMachineMemOperand( 150 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize, 151 inferAlignFromPtrInfo(MF, MPO)); 152 MIRBuilder.buildLoad(ValVReg, Addr, *MMO); 153 } 154 155 /// How the physical register gets marked varies between formal 156 /// parameters (it's a basic-block live-in), and a call instruction 157 /// (it's an implicit-def of the BL). 158 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 159 }; 160 161 struct FormalArgHandler : public AMDGPUIncomingArgHandler { 162 FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 163 CCAssignFn *AssignFn) 164 : AMDGPUIncomingArgHandler(B, MRI, AssignFn) {} 165 166 void markPhysRegUsed(unsigned PhysReg) override { 167 MIRBuilder.getMBB().addLiveIn(PhysReg); 168 } 169 }; 170 171 struct CallReturnHandler : public AMDGPUIncomingArgHandler { 172 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 173 MachineInstrBuilder MIB, CCAssignFn *AssignFn) 174 : AMDGPUIncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {} 175 176 void markPhysRegUsed(unsigned PhysReg) override { 177 MIB.addDef(PhysReg, RegState::Implicit); 178 } 179 180 MachineInstrBuilder MIB; 181 }; 182 183 struct AMDGPUOutgoingArgHandler : public AMDGPUValueHandler { 184 MachineInstrBuilder MIB; 185 CCAssignFn *AssignFnVarArg; 186 187 /// For tail calls, the byte offset of the call's argument area from the 188 /// callee's. Unused elsewhere. 189 int FPDiff; 190 191 // Cache the SP register vreg if we need it more than once in this call site. 192 Register SPReg; 193 194 bool IsTailCall; 195 196 AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder, 197 MachineRegisterInfo &MRI, MachineInstrBuilder MIB, 198 CCAssignFn *AssignFn, CCAssignFn *AssignFnVarArg, 199 bool IsTailCall = false, int FPDiff = 0) 200 : AMDGPUValueHandler(false, MIRBuilder, MRI, AssignFn), MIB(MIB), 201 AssignFnVarArg(AssignFnVarArg), FPDiff(FPDiff), IsTailCall(IsTailCall) { 202 } 203 204 Register getStackAddress(uint64_t Size, int64_t Offset, 205 MachinePointerInfo &MPO) override { 206 MachineFunction &MF = MIRBuilder.getMF(); 207 const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32); 208 const LLT S32 = LLT::scalar(32); 209 210 if (IsTailCall) { 211 llvm_unreachable("implement me"); 212 } 213 214 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 215 216 if (!SPReg) 217 SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0); 218 219 auto OffsetReg = MIRBuilder.buildConstant(S32, Offset); 220 221 auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg); 222 MPO = MachinePointerInfo::getStack(MF, Offset); 223 return AddrReg.getReg(0); 224 } 225 226 void assignValueToReg(Register ValVReg, Register PhysReg, 227 CCValAssign &VA) override { 228 MIB.addUse(PhysReg, RegState::Implicit); 229 Register ExtReg = extendRegisterMin32(ValVReg, VA); 230 MIRBuilder.buildCopy(PhysReg, ExtReg); 231 } 232 233 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 234 MachinePointerInfo &MPO, CCValAssign &VA) override { 235 MachineFunction &MF = MIRBuilder.getMF(); 236 uint64_t LocMemOffset = VA.getLocMemOffset(); 237 const auto &ST = MF.getSubtarget<GCNSubtarget>(); 238 239 auto MMO = MF.getMachineMemOperand( 240 MPO, MachineMemOperand::MOStore, Size, 241 commonAlignment(ST.getStackAlignment(), LocMemOffset)); 242 MIRBuilder.buildStore(ValVReg, Addr, *MMO); 243 } 244 245 void assignValueToAddress(const CallLowering::ArgInfo &Arg, 246 unsigned ValRegIndex, Register Addr, 247 uint64_t MemSize, MachinePointerInfo &MPO, 248 CCValAssign &VA) override { 249 Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt 250 ? extendRegister(Arg.Regs[ValRegIndex], VA) 251 : Arg.Regs[ValRegIndex]; 252 253 // If we extended the value type we might need to adjust the MMO's 254 // Size. This happens if ComputeValueVTs widened a small type value to a 255 // legal register type (e.g. s8->s16) 256 const LLT RegTy = MRI.getType(ValVReg); 257 MemSize = std::min(MemSize, (uint64_t)RegTy.getSizeInBytes()); 258 assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA); 259 } 260 }; 261 } 262 263 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI) 264 : CallLowering(&TLI) { 265 } 266 267 // FIXME: Compatability shim 268 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) { 269 switch (MIOpc) { 270 case TargetOpcode::G_SEXT: 271 return ISD::SIGN_EXTEND; 272 case TargetOpcode::G_ZEXT: 273 return ISD::ZERO_EXTEND; 274 case TargetOpcode::G_ANYEXT: 275 return ISD::ANY_EXTEND; 276 default: 277 llvm_unreachable("not an extend opcode"); 278 } 279 } 280 281 // FIXME: This should move to generic code. 282 void AMDGPUCallLowering::splitToValueTypes(MachineIRBuilder &B, 283 const ArgInfo &OrigArg, 284 SmallVectorImpl<ArgInfo> &SplitArgs, 285 const DataLayout &DL, 286 CallingConv::ID CallConv) const { 287 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 288 LLVMContext &Ctx = OrigArg.Ty->getContext(); 289 290 SmallVector<EVT, 4> SplitVTs; 291 ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs); 292 293 assert(OrigArg.Regs.size() == SplitVTs.size()); 294 295 if (SplitVTs.size() == 0) 296 return; 297 298 if (SplitVTs.size() == 1) { 299 // No splitting to do, but we want to replace the original type (e.g. [1 x 300 // double] -> double). 301 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 302 OrigArg.Flags[0], OrigArg.IsFixed); 303 return; 304 } 305 306 // Create one ArgInfo for each virtual register in the original ArgInfo. 307 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 308 309 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 310 OrigArg.Ty, CallConv, false); 311 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 312 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 313 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0], 314 OrigArg.IsFixed); 315 if (NeedsRegBlock) 316 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 317 } 318 319 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 320 } 321 322 void AMDGPUCallLowering::processSplitArgs( 323 MachineIRBuilder &B, const ArgInfo &OrigArg, 324 const SmallVectorImpl<ArgInfo> &SplitArg, 325 SmallVectorImpl<ArgInfo> &SplitArgs, const DataLayout &DL, 326 CallingConv::ID CallConv, bool IsOutgoing, 327 SplitArgTy PerformArgSplit) const { 328 LLVMContext &Ctx = OrigArg.Ty->getContext(); 329 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 330 331 // FIXME: This is mostly nasty pre-processing before handleAssignments. Most 332 // of this should be performed by handleAssignments. 333 334 for (int SplitIdx = 0, e = SplitArg.size(); SplitIdx != e; ++SplitIdx) { 335 const ArgInfo &CurSplitArg = SplitArg[SplitIdx]; 336 Register Reg = OrigArg.Regs[SplitIdx]; 337 EVT VT = EVT::getEVT(CurSplitArg.Ty); 338 LLT LLTy = getLLTForType(*CurSplitArg.Ty, DL); 339 340 unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT); 341 MVT RegVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT); 342 343 if (NumParts == 1) { 344 // No splitting to do, but we want to replace the original type (e.g. [1 x 345 // double] -> double). 346 SplitArgs.emplace_back(Reg, CurSplitArg.Ty, OrigArg.Flags, 347 OrigArg.IsFixed); 348 continue; 349 } 350 351 SmallVector<Register, 8> SplitRegs; 352 Type *PartTy = EVT(RegVT).getTypeForEVT(Ctx); 353 LLT PartLLT = getLLTForType(*PartTy, DL); 354 MachineRegisterInfo &MRI = *B.getMRI(); 355 356 // FIXME: Should we be reporting all of the part registers for a single 357 // argument, and let handleAssignments take care of the repacking? 358 for (unsigned i = 0; i < NumParts; ++i) { 359 Register PartReg = MRI.createGenericVirtualRegister(PartLLT); 360 SplitRegs.push_back(PartReg); 361 SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags); 362 } 363 364 PerformArgSplit(SplitRegs, Reg, LLTy, PartLLT, SplitIdx); 365 } 366 } 367 368 // TODO: Move to generic code 369 static void unpackRegsToOrigType(MachineIRBuilder &B, 370 ArrayRef<Register> DstRegs, 371 Register SrcReg, 372 const CallLowering::ArgInfo &Info, 373 LLT SrcTy, 374 LLT PartTy) { 375 assert(DstRegs.size() > 1 && "Nothing to unpack"); 376 377 const unsigned PartSize = PartTy.getSizeInBits(); 378 379 if (SrcTy.isVector() && !PartTy.isVector() && 380 PartSize > SrcTy.getElementType().getSizeInBits()) { 381 // Vector was scalarized, and the elements extended. 382 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 383 for (int i = 0, e = DstRegs.size(); i != e; ++i) 384 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 385 return; 386 } 387 388 LLT GCDTy = getGCDType(SrcTy, PartTy); 389 if (GCDTy == PartTy) { 390 // If this already evenly divisible, we can create a simple unmerge. 391 B.buildUnmerge(DstRegs, SrcReg); 392 return; 393 } 394 395 MachineRegisterInfo &MRI = *B.getMRI(); 396 LLT DstTy = MRI.getType(DstRegs[0]); 397 LLT LCMTy = getLCMType(SrcTy, PartTy); 398 399 const unsigned LCMSize = LCMTy.getSizeInBits(); 400 const unsigned DstSize = DstTy.getSizeInBits(); 401 const unsigned SrcSize = SrcTy.getSizeInBits(); 402 403 Register UnmergeSrc = SrcReg; 404 if (LCMSize != SrcSize) { 405 // Widen to the common type. 406 Register Undef = B.buildUndef(SrcTy).getReg(0); 407 SmallVector<Register, 8> MergeParts(1, SrcReg); 408 for (unsigned Size = SrcSize; Size != LCMSize; Size += SrcSize) 409 MergeParts.push_back(Undef); 410 411 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 412 } 413 414 // Unmerge to the original registers and pad with dead defs. 415 SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end()); 416 for (unsigned Size = DstSize * DstRegs.size(); Size != LCMSize; 417 Size += DstSize) { 418 UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy)); 419 } 420 421 B.buildUnmerge(UnmergeResults, UnmergeSrc); 422 } 423 424 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF, 425 CallingConv::ID CallConv, 426 SmallVectorImpl<BaseArgInfo> &Outs, 427 bool IsVarArg) const { 428 // For shaders. Vector types should be explicitly handled by CC. 429 if (AMDGPU::isEntryFunctionCC(CallConv)) 430 return true; 431 432 SmallVector<CCValAssign, 16> ArgLocs; 433 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 434 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, 435 MF.getFunction().getContext()); 436 437 return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg)); 438 } 439 440 /// Lower the return value for the already existing \p Ret. This assumes that 441 /// \p B's insertion point is correct. 442 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B, 443 const Value *Val, ArrayRef<Register> VRegs, 444 MachineInstrBuilder &Ret) const { 445 if (!Val) 446 return true; 447 448 auto &MF = B.getMF(); 449 const auto &F = MF.getFunction(); 450 const DataLayout &DL = MF.getDataLayout(); 451 MachineRegisterInfo *MRI = B.getMRI(); 452 LLVMContext &Ctx = F.getContext(); 453 454 CallingConv::ID CC = F.getCallingConv(); 455 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 456 457 SmallVector<EVT, 8> SplitEVTs; 458 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); 459 assert(VRegs.size() == SplitEVTs.size() && 460 "For each split Type there should be exactly one VReg."); 461 462 // We pre-process the return value decomposed into EVTs. 463 SmallVector<ArgInfo, 8> PreSplitRetInfos; 464 465 // Further processing is applied to split the arguments from PreSplitRetInfos 466 // into 32-bit pieces in SplitRetInfos before passing off to 467 // handleAssignments. 468 SmallVector<ArgInfo, 8> SplitRetInfos; 469 470 for (unsigned i = 0; i < SplitEVTs.size(); ++i) { 471 EVT VT = SplitEVTs[i]; 472 Register Reg = VRegs[i]; 473 ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx)); 474 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 475 476 if (VT.isScalarInteger()) { 477 unsigned ExtendOp = TargetOpcode::G_ANYEXT; 478 if (RetInfo.Flags[0].isSExt()) { 479 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 480 ExtendOp = TargetOpcode::G_SEXT; 481 } else if (RetInfo.Flags[0].isZExt()) { 482 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 483 ExtendOp = TargetOpcode::G_ZEXT; 484 } 485 486 EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT, 487 extOpcodeToISDExtOpcode(ExtendOp)); 488 if (ExtVT != VT) { 489 RetInfo.Ty = ExtVT.getTypeForEVT(Ctx); 490 LLT ExtTy = getLLTForType(*RetInfo.Ty, DL); 491 Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0); 492 } 493 } 494 495 if (Reg != RetInfo.Regs[0]) { 496 RetInfo.Regs[0] = Reg; 497 // Reset the arg flags after modifying Reg. 498 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 499 } 500 501 splitToValueTypes(B, RetInfo, PreSplitRetInfos, DL, CC); 502 503 // FIXME: This splitting should mostly be done by handleAssignments 504 processSplitArgs(B, RetInfo, 505 PreSplitRetInfos, SplitRetInfos, DL, CC, true, 506 [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, 507 LLT PartLLT, int VTSplitIdx) { 508 unpackRegsToOrigType(B, Regs, SrcReg, 509 PreSplitRetInfos[VTSplitIdx], LLTy, 510 PartLLT); 511 }); 512 PreSplitRetInfos.clear(); 513 } 514 515 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg()); 516 AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn); 517 return handleAssignments(B, SplitRetInfos, RetHandler, CC, F.isVarArg()); 518 } 519 520 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val, 521 ArrayRef<Register> VRegs, 522 FunctionLoweringInfo &FLI) const { 523 524 MachineFunction &MF = B.getMF(); 525 MachineRegisterInfo &MRI = MF.getRegInfo(); 526 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 527 MFI->setIfReturnsVoid(!Val); 528 529 assert(!Val == VRegs.empty() && "Return value without a vreg"); 530 531 CallingConv::ID CC = B.getMF().getFunction().getCallingConv(); 532 const bool IsShader = AMDGPU::isShader(CC); 533 const bool IsWaveEnd = 534 (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC); 535 if (IsWaveEnd) { 536 B.buildInstr(AMDGPU::S_ENDPGM) 537 .addImm(0); 538 return true; 539 } 540 541 auto const &ST = MF.getSubtarget<GCNSubtarget>(); 542 543 unsigned ReturnOpc = 544 IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return; 545 546 auto Ret = B.buildInstrNoInsert(ReturnOpc); 547 Register ReturnAddrVReg; 548 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 549 ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass); 550 Ret.addUse(ReturnAddrVReg); 551 } 552 553 if (!FLI.CanLowerReturn) 554 insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister); 555 else if (!lowerReturnVal(B, Val, VRegs, Ret)) 556 return false; 557 558 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 559 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 560 Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF), 561 &AMDGPU::SGPR_64RegClass); 562 B.buildCopy(ReturnAddrVReg, LiveInReturn); 563 } 564 565 // TODO: Handle CalleeSavedRegsViaCopy. 566 567 B.insertInstr(Ret); 568 return true; 569 } 570 571 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B, 572 Type *ParamTy, 573 uint64_t Offset) const { 574 MachineFunction &MF = B.getMF(); 575 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 576 MachineRegisterInfo &MRI = MF.getRegInfo(); 577 Register KernArgSegmentPtr = 578 MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 579 Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr); 580 581 auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset); 582 583 B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg); 584 } 585 586 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy, 587 uint64_t Offset, Align Alignment, 588 Register DstReg) const { 589 MachineFunction &MF = B.getMF(); 590 const Function &F = MF.getFunction(); 591 const DataLayout &DL = F.getParent()->getDataLayout(); 592 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 593 unsigned TypeSize = DL.getTypeStoreSize(ParamTy); 594 595 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 596 Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy); 597 lowerParameterPtr(PtrReg, B, ParamTy, Offset); 598 599 MachineMemOperand *MMO = MF.getMachineMemOperand( 600 PtrInfo, 601 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 602 MachineMemOperand::MOInvariant, 603 TypeSize, Alignment); 604 605 B.buildLoad(DstReg, PtrReg, *MMO); 606 } 607 608 // Allocate special inputs passed in user SGPRs. 609 static void allocateHSAUserSGPRs(CCState &CCInfo, 610 MachineIRBuilder &B, 611 MachineFunction &MF, 612 const SIRegisterInfo &TRI, 613 SIMachineFunctionInfo &Info) { 614 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 615 if (Info.hasPrivateSegmentBuffer()) { 616 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 617 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 618 CCInfo.AllocateReg(PrivateSegmentBufferReg); 619 } 620 621 if (Info.hasDispatchPtr()) { 622 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 623 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 624 CCInfo.AllocateReg(DispatchPtrReg); 625 } 626 627 if (Info.hasQueuePtr()) { 628 Register QueuePtrReg = Info.addQueuePtr(TRI); 629 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 630 CCInfo.AllocateReg(QueuePtrReg); 631 } 632 633 if (Info.hasKernargSegmentPtr()) { 634 MachineRegisterInfo &MRI = MF.getRegInfo(); 635 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 636 const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 637 Register VReg = MRI.createGenericVirtualRegister(P4); 638 MRI.addLiveIn(InputPtrReg, VReg); 639 B.getMBB().addLiveIn(InputPtrReg); 640 B.buildCopy(VReg, InputPtrReg); 641 CCInfo.AllocateReg(InputPtrReg); 642 } 643 644 if (Info.hasDispatchID()) { 645 Register DispatchIDReg = Info.addDispatchID(TRI); 646 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 647 CCInfo.AllocateReg(DispatchIDReg); 648 } 649 650 if (Info.hasFlatScratchInit()) { 651 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 652 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 653 CCInfo.AllocateReg(FlatScratchInitReg); 654 } 655 656 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 657 // these from the dispatch pointer. 658 } 659 660 bool AMDGPUCallLowering::lowerFormalArgumentsKernel( 661 MachineIRBuilder &B, const Function &F, 662 ArrayRef<ArrayRef<Register>> VRegs) const { 663 MachineFunction &MF = B.getMF(); 664 const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>(); 665 MachineRegisterInfo &MRI = MF.getRegInfo(); 666 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 667 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 668 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 669 670 const DataLayout &DL = F.getParent()->getDataLayout(); 671 672 SmallVector<CCValAssign, 16> ArgLocs; 673 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); 674 675 allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info); 676 677 unsigned i = 0; 678 const Align KernArgBaseAlign(16); 679 const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F); 680 uint64_t ExplicitArgOffset = 0; 681 682 // TODO: Align down to dword alignment and extract bits for extending loads. 683 for (auto &Arg : F.args()) { 684 const bool IsByRef = Arg.hasByRefAttr(); 685 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 686 unsigned AllocSize = DL.getTypeAllocSize(ArgTy); 687 if (AllocSize == 0) 688 continue; 689 690 MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None; 691 if (!ABIAlign) 692 ABIAlign = DL.getABITypeAlign(ArgTy); 693 694 uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset; 695 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize; 696 697 if (Arg.use_empty()) { 698 ++i; 699 continue; 700 } 701 702 Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset); 703 704 if (IsByRef) { 705 unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace(); 706 707 assert(VRegs[i].size() == 1 && 708 "expected only one register for byval pointers"); 709 if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) { 710 lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset); 711 } else { 712 const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 713 Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy); 714 lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset); 715 716 B.buildAddrSpaceCast(VRegs[i][0], PtrReg); 717 } 718 } else { 719 ArrayRef<Register> OrigArgRegs = VRegs[i]; 720 Register ArgReg = 721 OrigArgRegs.size() == 1 722 ? OrigArgRegs[0] 723 : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL)); 724 725 lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg); 726 if (OrigArgRegs.size() > 1) 727 unpackRegs(OrigArgRegs, ArgReg, ArgTy, B); 728 } 729 730 ++i; 731 } 732 733 TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 734 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false); 735 return true; 736 } 737 738 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 739 static MachineInstrBuilder mergeVectorRegsToResultRegs( 740 MachineIRBuilder &B, ArrayRef<Register> DstRegs, ArrayRef<Register> SrcRegs) { 741 MachineRegisterInfo &MRI = *B.getMRI(); 742 LLT LLTy = MRI.getType(DstRegs[0]); 743 LLT PartLLT = MRI.getType(SrcRegs[0]); 744 745 // Deal with v3s16 split into v2s16 746 LLT LCMTy = getLCMType(LLTy, PartLLT); 747 if (LCMTy == LLTy) { 748 // Common case where no padding is needed. 749 assert(DstRegs.size() == 1); 750 return B.buildConcatVectors(DstRegs[0], SrcRegs); 751 } 752 753 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits(); 754 Register Undef = B.buildUndef(PartLLT).getReg(0); 755 756 // Build vector of undefs. 757 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef); 758 759 // Replace the first sources with the real registers. 760 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin()); 761 762 auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs); 763 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 764 765 SmallVector<Register, 8> PadDstRegs(NumDst); 766 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 767 768 // Create the excess dead defs for the unmerge. 769 for (int I = DstRegs.size(); I != NumDst; ++I) 770 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 771 772 return B.buildUnmerge(PadDstRegs, Widened); 773 } 774 775 // TODO: Move this to generic code 776 static void packSplitRegsToOrigType(MachineIRBuilder &B, 777 ArrayRef<Register> OrigRegs, 778 ArrayRef<Register> Regs, 779 LLT LLTy, 780 LLT PartLLT) { 781 MachineRegisterInfo &MRI = *B.getMRI(); 782 783 if (!LLTy.isVector() && !PartLLT.isVector()) { 784 assert(OrigRegs.size() == 1); 785 LLT OrigTy = MRI.getType(OrigRegs[0]); 786 787 unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size(); 788 if (SrcSize == OrigTy.getSizeInBits()) 789 B.buildMerge(OrigRegs[0], Regs); 790 else { 791 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 792 B.buildTrunc(OrigRegs[0], Widened); 793 } 794 795 return; 796 } 797 798 if (LLTy.isVector() && PartLLT.isVector()) { 799 assert(OrigRegs.size() == 1); 800 assert(LLTy.getElementType() == PartLLT.getElementType()); 801 mergeVectorRegsToResultRegs(B, OrigRegs, Regs); 802 return; 803 } 804 805 assert(LLTy.isVector() && !PartLLT.isVector()); 806 807 LLT DstEltTy = LLTy.getElementType(); 808 809 // Pointer information was discarded. We'll need to coerce some register types 810 // to avoid violating type constraints. 811 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 812 813 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 814 815 if (DstEltTy == PartLLT) { 816 // Vector was trivially scalarized. 817 818 if (RealDstEltTy.isPointer()) { 819 for (Register Reg : Regs) 820 MRI.setType(Reg, RealDstEltTy); 821 } 822 823 B.buildBuildVector(OrigRegs[0], Regs); 824 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 825 // Deal with vector with 64-bit elements decomposed to 32-bit 826 // registers. Need to create intermediate 64-bit elements. 827 SmallVector<Register, 8> EltMerges; 828 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 829 830 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 831 832 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 833 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 834 // Fix the type in case this is really a vector of pointers. 835 MRI.setType(Merge.getReg(0), RealDstEltTy); 836 EltMerges.push_back(Merge.getReg(0)); 837 Regs = Regs.drop_front(PartsPerElt); 838 } 839 840 B.buildBuildVector(OrigRegs[0], EltMerges); 841 } else { 842 // Vector was split, and elements promoted to a wider type. 843 LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT); 844 auto BV = B.buildBuildVector(BVType, Regs); 845 B.buildTrunc(OrigRegs[0], BV); 846 } 847 } 848 849 bool AMDGPUCallLowering::lowerFormalArguments( 850 MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs, 851 FunctionLoweringInfo &FLI) const { 852 CallingConv::ID CC = F.getCallingConv(); 853 854 // The infrastructure for normal calling convention lowering is essentially 855 // useless for kernels. We want to avoid any kind of legalization or argument 856 // splitting. 857 if (CC == CallingConv::AMDGPU_KERNEL) 858 return lowerFormalArgumentsKernel(B, F, VRegs); 859 860 const bool IsGraphics = AMDGPU::isGraphics(CC); 861 const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC); 862 863 MachineFunction &MF = B.getMF(); 864 MachineBasicBlock &MBB = B.getMBB(); 865 MachineRegisterInfo &MRI = MF.getRegInfo(); 866 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 867 const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>(); 868 const SIRegisterInfo *TRI = Subtarget.getRegisterInfo(); 869 const DataLayout &DL = F.getParent()->getDataLayout(); 870 871 872 SmallVector<CCValAssign, 16> ArgLocs; 873 CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext()); 874 875 if (!IsEntryFunc) { 876 Register ReturnAddrReg = TRI->getReturnAddressReg(MF); 877 Register LiveInReturn = MF.addLiveIn(ReturnAddrReg, 878 &AMDGPU::SGPR_64RegClass); 879 MBB.addLiveIn(ReturnAddrReg); 880 B.buildCopy(LiveInReturn, ReturnAddrReg); 881 } 882 883 if (Info->hasImplicitBufferPtr()) { 884 Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI); 885 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 886 CCInfo.AllocateReg(ImplicitBufferPtrReg); 887 } 888 889 SmallVector<ArgInfo, 8> SplitArg; 890 SmallVector<ArgInfo, 32> SplitArgs; 891 unsigned Idx = 0; 892 unsigned PSInputNum = 0; 893 894 // Insert the hidden sret parameter if the return value won't fit in the 895 // return registers. 896 if (!FLI.CanLowerReturn) 897 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL); 898 899 for (auto &Arg : F.args()) { 900 if (DL.getTypeStoreSize(Arg.getType()) == 0) 901 continue; 902 903 const bool InReg = Arg.hasAttribute(Attribute::InReg); 904 905 // SGPR arguments to functions not implemented. 906 if (!IsGraphics && InReg) 907 return false; 908 909 if (Arg.hasAttribute(Attribute::SwiftSelf) || 910 Arg.hasAttribute(Attribute::SwiftError) || 911 Arg.hasAttribute(Attribute::Nest)) 912 return false; 913 914 if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) { 915 const bool ArgUsed = !Arg.use_empty(); 916 bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum); 917 918 if (!SkipArg) { 919 Info->markPSInputAllocated(PSInputNum); 920 if (ArgUsed) 921 Info->markPSInputEnabled(PSInputNum); 922 } 923 924 ++PSInputNum; 925 926 if (SkipArg) { 927 for (int I = 0, E = VRegs[Idx].size(); I != E; ++I) 928 B.buildUndef(VRegs[Idx][I]); 929 930 ++Idx; 931 continue; 932 } 933 } 934 935 ArgInfo OrigArg(VRegs[Idx], Arg.getType()); 936 const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex; 937 setArgFlags(OrigArg, OrigArgIdx, DL, F); 938 939 SplitArg.clear(); 940 splitToValueTypes(B, OrigArg, SplitArg, DL, CC); 941 942 processSplitArgs(B, OrigArg, SplitArg, SplitArgs, DL, CC, false, 943 // FIXME: We should probably be passing multiple registers 944 // to handleAssignments to do this 945 [&](ArrayRef<Register> Regs, Register DstReg, LLT LLTy, 946 LLT PartLLT, int VTSplitIdx) { 947 assert(DstReg == VRegs[Idx][VTSplitIdx]); 948 packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs, 949 LLTy, PartLLT); 950 }); 951 952 ++Idx; 953 } 954 955 // At least one interpolation mode must be enabled or else the GPU will 956 // hang. 957 // 958 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 959 // set PSInputAddr, the user wants to enable some bits after the compilation 960 // based on run-time states. Since we can't know what the final PSInputEna 961 // will look like, so we shouldn't do anything here and the user should take 962 // responsibility for the correct programming. 963 // 964 // Otherwise, the following restrictions apply: 965 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 966 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 967 // enabled too. 968 if (CC == CallingConv::AMDGPU_PS) { 969 if ((Info->getPSInputAddr() & 0x7F) == 0 || 970 ((Info->getPSInputAddr() & 0xF) == 0 && 971 Info->isPSInputAllocated(11))) { 972 CCInfo.AllocateReg(AMDGPU::VGPR0); 973 CCInfo.AllocateReg(AMDGPU::VGPR1); 974 Info->markPSInputAllocated(0); 975 Info->markPSInputEnabled(0); 976 } 977 978 if (Subtarget.isAmdPalOS()) { 979 // For isAmdPalOS, the user does not enable some bits after compilation 980 // based on run-time states; the register values being generated here are 981 // the final ones set in hardware. Therefore we need to apply the 982 // workaround to PSInputAddr and PSInputEnable together. (The case where 983 // a bit is set in PSInputAddr but not PSInputEnable is where the frontend 984 // set up an input arg for a particular interpolation mode, but nothing 985 // uses that input arg. Really we should have an earlier pass that removes 986 // such an arg.) 987 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 988 if ((PsInputBits & 0x7F) == 0 || 989 ((PsInputBits & 0xF) == 0 && 990 (PsInputBits >> 11 & 1))) 991 Info->markPSInputEnabled( 992 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 993 } 994 } 995 996 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 997 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg()); 998 999 if (!MBB.empty()) 1000 B.setInstr(*MBB.begin()); 1001 1002 if (!IsEntryFunc) { 1003 // For the fixed ABI, pass workitem IDs in the last argument register. 1004 if (AMDGPUTargetMachine::EnableFixedFunctionABI) 1005 TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 1006 } 1007 1008 FormalArgHandler Handler(B, MRI, AssignFn); 1009 if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler)) 1010 return false; 1011 1012 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) { 1013 // Special inputs come after user arguments. 1014 TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); 1015 } 1016 1017 // Start adding system SGPRs. 1018 if (IsEntryFunc) { 1019 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics); 1020 } else { 1021 if (!Subtarget.enableFlatScratch()) 1022 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 1023 TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 1024 } 1025 1026 // Move back to the end of the basic block. 1027 B.setMBB(MBB); 1028 1029 return true; 1030 } 1031 1032 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder, 1033 CCState &CCInfo, 1034 SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs, 1035 CallLoweringInfo &Info) const { 1036 MachineFunction &MF = MIRBuilder.getMF(); 1037 1038 const AMDGPUFunctionArgInfo *CalleeArgInfo 1039 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 1040 1041 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1042 const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo(); 1043 1044 1045 // TODO: Unify with private memory register handling. This is complicated by 1046 // the fact that at least in kernels, the input argument is not necessarily 1047 // in the same location as the input. 1048 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 1049 AMDGPUFunctionArgInfo::DISPATCH_PTR, 1050 AMDGPUFunctionArgInfo::QUEUE_PTR, 1051 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, 1052 AMDGPUFunctionArgInfo::DISPATCH_ID, 1053 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 1054 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 1055 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z 1056 }; 1057 1058 MachineRegisterInfo &MRI = MF.getRegInfo(); 1059 1060 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1061 const AMDGPULegalizerInfo *LI 1062 = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo()); 1063 1064 for (auto InputID : InputRegs) { 1065 const ArgDescriptor *OutgoingArg; 1066 const TargetRegisterClass *ArgRC; 1067 LLT ArgTy; 1068 1069 std::tie(OutgoingArg, ArgRC, ArgTy) = 1070 CalleeArgInfo->getPreloadedValue(InputID); 1071 if (!OutgoingArg) 1072 continue; 1073 1074 const ArgDescriptor *IncomingArg; 1075 const TargetRegisterClass *IncomingArgRC; 1076 std::tie(IncomingArg, IncomingArgRC, ArgTy) = 1077 CallerArgInfo.getPreloadedValue(InputID); 1078 assert(IncomingArgRC == ArgRC); 1079 1080 Register InputReg = MRI.createGenericVirtualRegister(ArgTy); 1081 1082 if (IncomingArg) { 1083 LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy); 1084 } else { 1085 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 1086 LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder); 1087 } 1088 1089 if (OutgoingArg->isRegister()) { 1090 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 1091 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 1092 report_fatal_error("failed to allocate implicit input argument"); 1093 } else { 1094 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 1095 return false; 1096 } 1097 } 1098 1099 // Pack workitem IDs into a single register or pass it as is if already 1100 // packed. 1101 const ArgDescriptor *OutgoingArg; 1102 const TargetRegisterClass *ArgRC; 1103 LLT ArgTy; 1104 1105 std::tie(OutgoingArg, ArgRC, ArgTy) = 1106 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 1107 if (!OutgoingArg) 1108 std::tie(OutgoingArg, ArgRC, ArgTy) = 1109 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 1110 if (!OutgoingArg) 1111 std::tie(OutgoingArg, ArgRC, ArgTy) = 1112 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 1113 if (!OutgoingArg) 1114 return false; 1115 1116 auto WorkitemIDX = 1117 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 1118 auto WorkitemIDY = 1119 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 1120 auto WorkitemIDZ = 1121 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 1122 1123 const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX); 1124 const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY); 1125 const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ); 1126 const LLT S32 = LLT::scalar(32); 1127 1128 // If incoming ids are not packed we need to pack them. 1129 // FIXME: Should consider known workgroup size to eliminate known 0 cases. 1130 Register InputReg; 1131 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) { 1132 InputReg = MRI.createGenericVirtualRegister(S32); 1133 LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX, 1134 std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX)); 1135 } 1136 1137 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) { 1138 Register Y = MRI.createGenericVirtualRegister(S32); 1139 LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY), 1140 std::get<2>(WorkitemIDY)); 1141 1142 Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0); 1143 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y; 1144 } 1145 1146 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) { 1147 Register Z = MRI.createGenericVirtualRegister(S32); 1148 LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ), 1149 std::get<2>(WorkitemIDZ)); 1150 1151 Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0); 1152 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z; 1153 } 1154 1155 if (!InputReg) { 1156 InputReg = MRI.createGenericVirtualRegister(S32); 1157 1158 // Workitem ids are already packed, any of present incoming arguments will 1159 // carry all required fields. 1160 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 1161 IncomingArgX ? *IncomingArgX : 1162 IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u); 1163 LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg, 1164 &AMDGPU::VGPR_32RegClass, S32); 1165 } 1166 1167 if (OutgoingArg->isRegister()) { 1168 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 1169 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 1170 report_fatal_error("failed to allocate implicit input argument"); 1171 } else { 1172 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 1173 return false; 1174 } 1175 1176 return true; 1177 } 1178 1179 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for 1180 /// CC. 1181 static std::pair<CCAssignFn *, CCAssignFn *> 1182 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) { 1183 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; 1184 } 1185 1186 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, 1187 bool IsTailCall) { 1188 return AMDGPU::SI_CALL; 1189 } 1190 1191 // Add operands to call instruction to track the callee. 1192 static bool addCallTargetOperands(MachineInstrBuilder &CallInst, 1193 MachineIRBuilder &MIRBuilder, 1194 AMDGPUCallLowering::CallLoweringInfo &Info) { 1195 if (Info.Callee.isReg()) { 1196 CallInst.addReg(Info.Callee.getReg()); 1197 CallInst.addImm(0); 1198 } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) { 1199 // The call lowering lightly assumed we can directly encode a call target in 1200 // the instruction, which is not the case. Materialize the address here. 1201 const GlobalValue *GV = Info.Callee.getGlobal(); 1202 auto Ptr = MIRBuilder.buildGlobalValue( 1203 LLT::pointer(GV->getAddressSpace(), 64), GV); 1204 CallInst.addReg(Ptr.getReg(0)); 1205 CallInst.add(Info.Callee); 1206 } else 1207 return false; 1208 1209 return true; 1210 } 1211 1212 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 1213 CallLoweringInfo &Info) const { 1214 if (Info.IsVarArg) { 1215 LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n"); 1216 return false; 1217 } 1218 1219 MachineFunction &MF = MIRBuilder.getMF(); 1220 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1221 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1222 1223 const Function &F = MF.getFunction(); 1224 MachineRegisterInfo &MRI = MF.getRegInfo(); 1225 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1226 const DataLayout &DL = F.getParent()->getDataLayout(); 1227 CallingConv::ID CallConv = F.getCallingConv(); 1228 1229 if (!AMDGPUTargetMachine::EnableFixedFunctionABI && 1230 CallConv != CallingConv::AMDGPU_Gfx) { 1231 LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n"); 1232 return false; 1233 } 1234 1235 if (AMDGPU::isShader(CallConv)) { 1236 LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n"); 1237 return false; 1238 } 1239 1240 SmallVector<ArgInfo, 8> OutArgs; 1241 1242 SmallVector<ArgInfo, 8> SplitArg; 1243 for (auto &OrigArg : Info.OrigArgs) { 1244 splitToValueTypes(MIRBuilder, OrigArg, SplitArg, DL, Info.CallConv); 1245 1246 processSplitArgs( 1247 MIRBuilder, OrigArg, SplitArg, OutArgs, DL, Info.CallConv, true, 1248 // FIXME: We should probably be passing multiple registers to 1249 // handleAssignments to do this 1250 [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT, 1251 int VTSplitIdx) { 1252 unpackRegsToOrigType(MIRBuilder, Regs, SrcReg, OrigArg, LLTy, PartLLT); 1253 }); 1254 1255 SplitArg.clear(); 1256 } 1257 1258 // If we can lower as a tail call, do that instead. 1259 bool CanTailCallOpt = false; 1260 1261 // We must emit a tail call if we have musttail. 1262 if (Info.IsMustTailCall && !CanTailCallOpt) { 1263 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); 1264 return false; 1265 } 1266 1267 // Find out which ABI gets to decide where things go. 1268 CCAssignFn *AssignFnFixed; 1269 CCAssignFn *AssignFnVarArg; 1270 std::tie(AssignFnFixed, AssignFnVarArg) = 1271 getAssignFnsForCC(Info.CallConv, TLI); 1272 1273 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP) 1274 .addImm(0) 1275 .addImm(0); 1276 1277 // Create a temporarily-floating call instruction so we can add the implicit 1278 // uses of arg registers. 1279 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false); 1280 1281 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1282 MIB.addDef(TRI->getReturnAddressReg(MF)); 1283 1284 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1285 return false; 1286 1287 // Tell the call which registers are clobbered. 1288 const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv); 1289 MIB.addRegMask(Mask); 1290 1291 SmallVector<CCValAssign, 16> ArgLocs; 1292 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1293 1294 // We could pass MIB and directly add the implicit uses to the call 1295 // now. However, as an aesthetic choice, place implicit argument operands 1296 // after the ordinary user argument registers. 1297 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1298 1299 if (AMDGPUTargetMachine::EnableFixedFunctionABI && 1300 Info.CallConv != CallingConv::AMDGPU_Gfx) { 1301 // With a fixed ABI, allocate fixed registers before user arguments. 1302 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1303 return false; 1304 } 1305 1306 // Do the actual argument marshalling. 1307 SmallVector<Register, 8> PhysRegs; 1308 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed, 1309 AssignFnVarArg, false); 1310 if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, OutArgs, Handler)) 1311 return false; 1312 1313 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1314 1315 if (!ST.enableFlatScratch()) { 1316 // Insert copies for the SRD. In the HSA case, this should be an identity 1317 // copy. 1318 auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::vector(4, 32), 1319 MFI->getScratchRSrcReg()); 1320 MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 1321 MIB.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit); 1322 } 1323 1324 for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) { 1325 MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second); 1326 MIB.addReg(ArgReg.first, RegState::Implicit); 1327 } 1328 1329 // Get a count of how many bytes are to be pushed on the stack. 1330 unsigned NumBytes = CCInfo.getNextStackOffset(); 1331 1332 // If Callee is a reg, since it is used by a target specific 1333 // instruction, it must have a register class matching the 1334 // constraint of that instruction. 1335 1336 // FIXME: We should define regbankselectable call instructions to handle 1337 // divergent call targets. 1338 if (MIB->getOperand(1).isReg()) { 1339 MIB->getOperand(1).setReg(constrainOperandRegClass( 1340 MF, *TRI, MRI, *ST.getInstrInfo(), 1341 *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1), 1342 1)); 1343 } 1344 1345 auto OrigInsertPt = MIRBuilder.getInsertPt(); 1346 1347 // Now we can add the actual call instruction to the correct position. 1348 MIRBuilder.insertInstr(MIB); 1349 1350 // Insert this now to give us an anchor point for managing the insert point. 1351 MachineInstrBuilder CallSeqEnd = 1352 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN); 1353 1354 SmallVector<ArgInfo, 8> InArgs; 1355 if (!Info.CanLowerReturn) { 1356 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs, 1357 Info.DemoteRegister, Info.DemoteStackIndex); 1358 } else if (!Info.OrigRet.Ty->isVoidTy()) { 1359 SmallVector<ArgInfo, 8> PreSplitRetInfos; 1360 1361 splitToValueTypes( 1362 MIRBuilder, Info.OrigRet, PreSplitRetInfos/*InArgs*/, DL, Info.CallConv); 1363 1364 processSplitArgs(MIRBuilder, Info.OrigRet, 1365 PreSplitRetInfos, InArgs/*SplitRetInfos*/, DL, Info.CallConv, false, 1366 [&](ArrayRef<Register> Regs, Register DstReg, 1367 LLT LLTy, LLT PartLLT, int VTSplitIdx) { 1368 assert(DstReg == Info.OrigRet.Regs[VTSplitIdx]); 1369 packSplitRegsToOrigType(MIRBuilder, Info.OrigRet.Regs[VTSplitIdx], 1370 Regs, LLTy, PartLLT); 1371 }); 1372 } 1373 1374 // Make sure the raw argument copies are inserted before the marshalling to 1375 // the original types. 1376 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), CallSeqEnd); 1377 1378 // Finally we can copy the returned value back into its virtual-register. In 1379 // symmetry with the arguments, the physical register must be an 1380 // implicit-define of the call instruction. 1381 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { 1382 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, 1383 Info.IsVarArg); 1384 CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn); 1385 if (!handleAssignments(MIRBuilder, InArgs, Handler, Info.CallConv, 1386 Info.IsVarArg)) 1387 return false; 1388 } 1389 1390 uint64_t CalleePopBytes = NumBytes; 1391 CallSeqEnd.addImm(0) 1392 .addImm(CalleePopBytes); 1393 1394 // Restore the insert point to after the call sequence. 1395 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), OrigInsertPt); 1396 return true; 1397 } 1398