1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/IR/IntrinsicsAMDGPU.h"
25 
26 #define DEBUG_TYPE "amdgpu-call-lowering"
27 
28 using namespace llvm;
29 
30 namespace {
31 
32 struct AMDGPUValueHandler : public CallLowering::ValueHandler {
33   AMDGPUValueHandler(bool IsIncoming, MachineIRBuilder &B,
34                      MachineRegisterInfo &MRI, CCAssignFn *AssignFn)
35       : ValueHandler(IsIncoming, B, MRI, AssignFn) {}
36 
37   /// Wrapper around extendRegister to ensure we extend to a full 32-bit
38   /// register.
39   Register extendRegisterMin32(Register ValVReg, CCValAssign &VA) {
40     if (VA.getLocVT().getSizeInBits() < 32) {
41       // 16-bit types are reported as legal for 32-bit registers. We need to
42       // extend and do a 32-bit copy to avoid the verifier complaining about it.
43       return MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
44     }
45 
46     return extendRegister(ValVReg, VA);
47   }
48 };
49 
50 struct AMDGPUOutgoingValueHandler : public AMDGPUValueHandler {
51   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
52                              MachineInstrBuilder MIB, CCAssignFn *AssignFn)
53       : AMDGPUValueHandler(false, B, MRI, AssignFn), MIB(MIB) {}
54 
55   MachineInstrBuilder MIB;
56 
57   Register getStackAddress(uint64_t Size, int64_t Offset,
58                            MachinePointerInfo &MPO) override {
59     llvm_unreachable("not implemented");
60   }
61 
62   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
63                             MachinePointerInfo &MPO, CCValAssign &VA) override {
64     llvm_unreachable("not implemented");
65   }
66 
67   void assignValueToReg(Register ValVReg, Register PhysReg,
68                         CCValAssign &VA) override {
69     Register ExtReg = extendRegisterMin32(ValVReg, VA);
70 
71     // If this is a scalar return, insert a readfirstlane just in case the value
72     // ends up in a VGPR.
73     // FIXME: Assert this is a shader return.
74     const SIRegisterInfo *TRI
75       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
76     if (TRI->isSGPRReg(MRI, PhysReg)) {
77       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
78                                               {MRI.getType(ExtReg)}, false)
79         .addReg(ExtReg);
80       ExtReg = ToSGPR.getReg(0);
81     }
82 
83     MIRBuilder.buildCopy(PhysReg, ExtReg);
84     MIB.addUse(PhysReg, RegState::Implicit);
85   }
86 
87   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
88                  CCValAssign::LocInfo LocInfo,
89                  const CallLowering::ArgInfo &Info,
90                  ISD::ArgFlagsTy Flags,
91                  CCState &State) override {
92     return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
93   }
94 };
95 
96 struct AMDGPUIncomingArgHandler : public AMDGPUValueHandler {
97   uint64_t StackUsed = 0;
98 
99   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
100                            CCAssignFn *AssignFn)
101       : AMDGPUValueHandler(true, B, MRI, AssignFn) {}
102 
103   Register getStackAddress(uint64_t Size, int64_t Offset,
104                            MachinePointerInfo &MPO) override {
105     auto &MFI = MIRBuilder.getMF().getFrameInfo();
106     int FI = MFI.CreateFixedObject(Size, Offset, true);
107     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
108     auto AddrReg = MIRBuilder.buildFrameIndex(
109         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
110     StackUsed = std::max(StackUsed, Size + Offset);
111     return AddrReg.getReg(0);
112   }
113 
114   void assignValueToReg(Register ValVReg, Register PhysReg,
115                         CCValAssign &VA) override {
116     markPhysRegUsed(PhysReg);
117 
118     if (VA.getLocVT().getSizeInBits() < 32) {
119       // 16-bit types are reported as legal for 32-bit registers. We need to do
120       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
121       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
122       MIRBuilder.buildTrunc(ValVReg, Copy);
123       return;
124     }
125 
126     switch (VA.getLocInfo()) {
127     case CCValAssign::LocInfo::SExt:
128     case CCValAssign::LocInfo::ZExt:
129     case CCValAssign::LocInfo::AExt: {
130       auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
131       MIRBuilder.buildTrunc(ValVReg, Copy);
132       break;
133     }
134     default:
135       MIRBuilder.buildCopy(ValVReg, PhysReg);
136       break;
137     }
138   }
139 
140   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
141                             MachinePointerInfo &MPO, CCValAssign &VA) override {
142     MachineFunction &MF = MIRBuilder.getMF();
143 
144     // The reported memory location may be wider than the value.
145     const LLT RegTy = MRI.getType(ValVReg);
146     MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize);
147 
148     // FIXME: Get alignment
149     auto MMO = MF.getMachineMemOperand(
150         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
151         inferAlignFromPtrInfo(MF, MPO));
152     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
153   }
154 
155   /// How the physical register gets marked varies between formal
156   /// parameters (it's a basic-block live-in), and a call instruction
157   /// (it's an implicit-def of the BL).
158   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
159 };
160 
161 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
162   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
163                    CCAssignFn *AssignFn)
164       : AMDGPUIncomingArgHandler(B, MRI, AssignFn) {}
165 
166   void markPhysRegUsed(unsigned PhysReg) override {
167     MIRBuilder.getMBB().addLiveIn(PhysReg);
168   }
169 };
170 
171 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
172   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
173                     MachineInstrBuilder MIB, CCAssignFn *AssignFn)
174       : AMDGPUIncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
175 
176   void markPhysRegUsed(unsigned PhysReg) override {
177     MIB.addDef(PhysReg, RegState::Implicit);
178   }
179 
180   MachineInstrBuilder MIB;
181 };
182 
183 struct AMDGPUOutgoingArgHandler : public AMDGPUValueHandler {
184   MachineInstrBuilder MIB;
185   CCAssignFn *AssignFnVarArg;
186 
187   /// For tail calls, the byte offset of the call's argument area from the
188   /// callee's. Unused elsewhere.
189   int FPDiff;
190 
191   // Cache the SP register vreg if we need it more than once in this call site.
192   Register SPReg;
193 
194   bool IsTailCall;
195 
196   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
197                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
198                            CCAssignFn *AssignFn, CCAssignFn *AssignFnVarArg,
199                            bool IsTailCall = false, int FPDiff = 0)
200       : AMDGPUValueHandler(false, MIRBuilder, MRI, AssignFn), MIB(MIB),
201         AssignFnVarArg(AssignFnVarArg), FPDiff(FPDiff), IsTailCall(IsTailCall) {
202   }
203 
204   Register getStackAddress(uint64_t Size, int64_t Offset,
205                            MachinePointerInfo &MPO) override {
206     MachineFunction &MF = MIRBuilder.getMF();
207     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
208     const LLT S32 = LLT::scalar(32);
209 
210     if (IsTailCall) {
211       llvm_unreachable("implement me");
212     }
213 
214     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
215 
216     if (!SPReg)
217       SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0);
218 
219     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
220 
221     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
222     MPO = MachinePointerInfo::getStack(MF, Offset);
223     return AddrReg.getReg(0);
224   }
225 
226   void assignValueToReg(Register ValVReg, Register PhysReg,
227                         CCValAssign &VA) override {
228     MIB.addUse(PhysReg, RegState::Implicit);
229     Register ExtReg = extendRegisterMin32(ValVReg, VA);
230     MIRBuilder.buildCopy(PhysReg, ExtReg);
231   }
232 
233   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
234                             MachinePointerInfo &MPO, CCValAssign &VA) override {
235     MachineFunction &MF = MIRBuilder.getMF();
236     uint64_t LocMemOffset = VA.getLocMemOffset();
237     const auto &ST = MF.getSubtarget<GCNSubtarget>();
238 
239     auto MMO = MF.getMachineMemOperand(
240       MPO, MachineMemOperand::MOStore, Size,
241       commonAlignment(ST.getStackAlignment(), LocMemOffset));
242     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
243   }
244 
245   void assignValueToAddress(const CallLowering::ArgInfo &Arg,
246                             unsigned ValRegIndex, Register Addr,
247                             uint64_t MemSize, MachinePointerInfo &MPO,
248                             CCValAssign &VA) override {
249     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
250                            ? extendRegister(Arg.Regs[ValRegIndex], VA)
251                            : Arg.Regs[ValRegIndex];
252 
253     // If we extended the value type we might need to adjust the MMO's
254     // Size. This happens if ComputeValueVTs widened a small type value to a
255     // legal register type (e.g. s8->s16)
256     const LLT RegTy = MRI.getType(ValVReg);
257     MemSize = std::min(MemSize, (uint64_t)RegTy.getSizeInBytes());
258     assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA);
259   }
260 };
261 }
262 
263 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
264   : CallLowering(&TLI) {
265 }
266 
267 // FIXME: Compatability shim
268 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
269   switch (MIOpc) {
270   case TargetOpcode::G_SEXT:
271     return ISD::SIGN_EXTEND;
272   case TargetOpcode::G_ZEXT:
273     return ISD::ZERO_EXTEND;
274   case TargetOpcode::G_ANYEXT:
275     return ISD::ANY_EXTEND;
276   default:
277     llvm_unreachable("not an extend opcode");
278   }
279 }
280 
281 // FIXME: This should move to generic code.
282 void AMDGPUCallLowering::splitToValueTypes(MachineIRBuilder &B,
283                                            const ArgInfo &OrigArg,
284                                            SmallVectorImpl<ArgInfo> &SplitArgs,
285                                            const DataLayout &DL,
286                                            CallingConv::ID CallConv) const {
287   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
288   LLVMContext &Ctx = OrigArg.Ty->getContext();
289 
290   SmallVector<EVT, 4> SplitVTs;
291   ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);
292 
293   assert(OrigArg.Regs.size() == SplitVTs.size());
294 
295   if (SplitVTs.size() == 0)
296     return;
297 
298   if (SplitVTs.size() == 1) {
299     // No splitting to do, but we want to replace the original type (e.g. [1 x
300     // double] -> double).
301     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
302                            OrigArg.Flags[0], OrigArg.IsFixed);
303     return;
304   }
305 
306   // Create one ArgInfo for each virtual register in the original ArgInfo.
307   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
308 
309   bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
310       OrigArg.Ty, CallConv, false);
311   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
312     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
313     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0],
314                            OrigArg.IsFixed);
315     if (NeedsRegBlock)
316       SplitArgs.back().Flags[0].setInConsecutiveRegs();
317   }
318 
319   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
320 }
321 
322 void AMDGPUCallLowering::processSplitArgs(
323     MachineIRBuilder &B, const ArgInfo &OrigArg,
324     const SmallVectorImpl<ArgInfo> &SplitArg,
325     SmallVectorImpl<ArgInfo> &SplitArgs, const DataLayout &DL,
326     CallingConv::ID CallConv, bool IsOutgoing,
327     SplitArgTy PerformArgSplit) const {
328   LLVMContext &Ctx = OrigArg.Ty->getContext();
329   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
330 
331   // FIXME: This is mostly nasty pre-processing before handleAssignments. Most
332   // of this should be performed by handleAssignments.
333 
334   for (int SplitIdx = 0, e = SplitArg.size(); SplitIdx != e; ++SplitIdx) {
335     const ArgInfo &CurSplitArg = SplitArg[SplitIdx];
336     Register Reg = OrigArg.Regs[SplitIdx];
337     EVT VT = EVT::getEVT(CurSplitArg.Ty);
338     LLT LLTy = getLLTForType(*CurSplitArg.Ty, DL);
339 
340     unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
341     MVT RegVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
342 
343     if (NumParts == 1) {
344       // No splitting to do, but we want to replace the original type (e.g. [1 x
345       // double] -> double).
346       SplitArgs.emplace_back(Reg, CurSplitArg.Ty, OrigArg.Flags,
347                              OrigArg.IsFixed);
348       continue;
349     }
350 
351     SmallVector<Register, 8> SplitRegs;
352     Type *PartTy = EVT(RegVT).getTypeForEVT(Ctx);
353     LLT PartLLT = getLLTForType(*PartTy, DL);
354     MachineRegisterInfo &MRI = *B.getMRI();
355 
356     // FIXME: Should we be reporting all of the part registers for a single
357     // argument, and let handleAssignments take care of the repacking?
358     for (unsigned i = 0; i < NumParts; ++i) {
359       Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
360       SplitRegs.push_back(PartReg);
361       SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
362     }
363 
364     PerformArgSplit(SplitRegs, Reg, LLTy, PartLLT, SplitIdx);
365   }
366 }
367 
368 // TODO: Move to generic code
369 static void unpackRegsToOrigType(MachineIRBuilder &B,
370                                  ArrayRef<Register> DstRegs,
371                                  Register SrcReg,
372                                  const CallLowering::ArgInfo &Info,
373                                  LLT SrcTy,
374                                  LLT PartTy) {
375   assert(DstRegs.size() > 1 && "Nothing to unpack");
376 
377   const unsigned PartSize = PartTy.getSizeInBits();
378 
379   if (SrcTy.isVector() && !PartTy.isVector() &&
380       PartSize > SrcTy.getElementType().getSizeInBits()) {
381     // Vector was scalarized, and the elements extended.
382     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
383     for (int i = 0, e = DstRegs.size(); i != e; ++i)
384       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
385     return;
386   }
387 
388   LLT GCDTy = getGCDType(SrcTy, PartTy);
389   if (GCDTy == PartTy) {
390     // If this already evenly divisible, we can create a simple unmerge.
391     B.buildUnmerge(DstRegs, SrcReg);
392     return;
393   }
394 
395   MachineRegisterInfo &MRI = *B.getMRI();
396   LLT DstTy = MRI.getType(DstRegs[0]);
397   LLT LCMTy = getLCMType(SrcTy, PartTy);
398 
399   const unsigned LCMSize = LCMTy.getSizeInBits();
400   const unsigned DstSize = DstTy.getSizeInBits();
401   const unsigned SrcSize = SrcTy.getSizeInBits();
402 
403   Register UnmergeSrc = SrcReg;
404   if (LCMSize != SrcSize) {
405     // Widen to the common type.
406     Register Undef = B.buildUndef(SrcTy).getReg(0);
407     SmallVector<Register, 8> MergeParts(1, SrcReg);
408     for (unsigned Size = SrcSize; Size != LCMSize; Size += SrcSize)
409       MergeParts.push_back(Undef);
410 
411     UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
412   }
413 
414   // Unmerge to the original registers and pad with dead defs.
415   SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end());
416   for (unsigned Size = DstSize * DstRegs.size(); Size != LCMSize;
417        Size += DstSize) {
418     UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy));
419   }
420 
421   B.buildUnmerge(UnmergeResults, UnmergeSrc);
422 }
423 
424 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
425                                         CallingConv::ID CallConv,
426                                         SmallVectorImpl<BaseArgInfo> &Outs,
427                                         bool IsVarArg) const {
428   // For shaders. Vector types should be explicitly handled by CC.
429   if (AMDGPU::isEntryFunctionCC(CallConv))
430     return true;
431 
432   SmallVector<CCValAssign, 16> ArgLocs;
433   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
434   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
435                  MF.getFunction().getContext());
436 
437   return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
438 }
439 
440 /// Lower the return value for the already existing \p Ret. This assumes that
441 /// \p B's insertion point is correct.
442 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
443                                         const Value *Val, ArrayRef<Register> VRegs,
444                                         MachineInstrBuilder &Ret) const {
445   if (!Val)
446     return true;
447 
448   auto &MF = B.getMF();
449   const auto &F = MF.getFunction();
450   const DataLayout &DL = MF.getDataLayout();
451   MachineRegisterInfo *MRI = B.getMRI();
452   LLVMContext &Ctx = F.getContext();
453 
454   CallingConv::ID CC = F.getCallingConv();
455   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
456 
457   SmallVector<EVT, 8> SplitEVTs;
458   ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
459   assert(VRegs.size() == SplitEVTs.size() &&
460          "For each split Type there should be exactly one VReg.");
461 
462   // We pre-process the return value decomposed into EVTs.
463   SmallVector<ArgInfo, 8> PreSplitRetInfos;
464 
465   // Further processing is applied to split the arguments from PreSplitRetInfos
466   // into 32-bit pieces in SplitRetInfos before passing off to
467   // handleAssignments.
468   SmallVector<ArgInfo, 8> SplitRetInfos;
469 
470   for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
471     EVT VT = SplitEVTs[i];
472     Register Reg = VRegs[i];
473     ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx));
474     setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
475 
476     if (VT.isScalarInteger()) {
477       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
478       if (RetInfo.Flags[0].isSExt()) {
479         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
480         ExtendOp = TargetOpcode::G_SEXT;
481       } else if (RetInfo.Flags[0].isZExt()) {
482         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
483         ExtendOp = TargetOpcode::G_ZEXT;
484       }
485 
486       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
487                                           extOpcodeToISDExtOpcode(ExtendOp));
488       if (ExtVT != VT) {
489         RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
490         LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
491         Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
492       }
493     }
494 
495     if (Reg != RetInfo.Regs[0]) {
496       RetInfo.Regs[0] = Reg;
497       // Reset the arg flags after modifying Reg.
498       setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
499     }
500 
501     splitToValueTypes(B, RetInfo, PreSplitRetInfos, DL, CC);
502 
503     // FIXME: This splitting should mostly be done by handleAssignments
504     processSplitArgs(B, RetInfo,
505                      PreSplitRetInfos, SplitRetInfos, DL, CC, true,
506                      [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy,
507                          LLT PartLLT, int VTSplitIdx) {
508                        unpackRegsToOrigType(B, Regs, SrcReg,
509                                             PreSplitRetInfos[VTSplitIdx], LLTy,
510                                             PartLLT);
511                      });
512     PreSplitRetInfos.clear();
513   }
514 
515   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
516   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn);
517   return handleAssignments(B, SplitRetInfos, RetHandler, CC, F.isVarArg());
518 }
519 
520 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
521                                      ArrayRef<Register> VRegs,
522                                      FunctionLoweringInfo &FLI) const {
523 
524   MachineFunction &MF = B.getMF();
525   MachineRegisterInfo &MRI = MF.getRegInfo();
526   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
527   MFI->setIfReturnsVoid(!Val);
528 
529   assert(!Val == VRegs.empty() && "Return value without a vreg");
530 
531   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
532   const bool IsShader = AMDGPU::isShader(CC);
533   const bool IsWaveEnd =
534       (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
535   if (IsWaveEnd) {
536     B.buildInstr(AMDGPU::S_ENDPGM)
537       .addImm(0);
538     return true;
539   }
540 
541   auto const &ST = MF.getSubtarget<GCNSubtarget>();
542 
543   unsigned ReturnOpc =
544       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
545 
546   auto Ret = B.buildInstrNoInsert(ReturnOpc);
547   Register ReturnAddrVReg;
548   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
549     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
550     Ret.addUse(ReturnAddrVReg);
551   }
552 
553   if (!FLI.CanLowerReturn)
554     insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
555   else if (!lowerReturnVal(B, Val, VRegs, Ret))
556     return false;
557 
558   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
559     const SIRegisterInfo *TRI = ST.getRegisterInfo();
560     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
561                                          &AMDGPU::SGPR_64RegClass);
562     B.buildCopy(ReturnAddrVReg, LiveInReturn);
563   }
564 
565   // TODO: Handle CalleeSavedRegsViaCopy.
566 
567   B.insertInstr(Ret);
568   return true;
569 }
570 
571 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
572                                            Type *ParamTy,
573                                            uint64_t Offset) const {
574   MachineFunction &MF = B.getMF();
575   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
576   MachineRegisterInfo &MRI = MF.getRegInfo();
577   Register KernArgSegmentPtr =
578     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
579   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
580 
581   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
582 
583   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
584 }
585 
586 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy,
587                                         uint64_t Offset, Align Alignment,
588                                         Register DstReg) const {
589   MachineFunction &MF = B.getMF();
590   const Function &F = MF.getFunction();
591   const DataLayout &DL = F.getParent()->getDataLayout();
592   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
593   unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
594 
595   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
596   Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
597   lowerParameterPtr(PtrReg, B, ParamTy, Offset);
598 
599   MachineMemOperand *MMO = MF.getMachineMemOperand(
600       PtrInfo,
601       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
602           MachineMemOperand::MOInvariant,
603       TypeSize, Alignment);
604 
605   B.buildLoad(DstReg, PtrReg, *MMO);
606 }
607 
608 // Allocate special inputs passed in user SGPRs.
609 static void allocateHSAUserSGPRs(CCState &CCInfo,
610                                  MachineIRBuilder &B,
611                                  MachineFunction &MF,
612                                  const SIRegisterInfo &TRI,
613                                  SIMachineFunctionInfo &Info) {
614   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
615   if (Info.hasPrivateSegmentBuffer()) {
616     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
617     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
618     CCInfo.AllocateReg(PrivateSegmentBufferReg);
619   }
620 
621   if (Info.hasDispatchPtr()) {
622     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
623     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
624     CCInfo.AllocateReg(DispatchPtrReg);
625   }
626 
627   if (Info.hasQueuePtr()) {
628     Register QueuePtrReg = Info.addQueuePtr(TRI);
629     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
630     CCInfo.AllocateReg(QueuePtrReg);
631   }
632 
633   if (Info.hasKernargSegmentPtr()) {
634     MachineRegisterInfo &MRI = MF.getRegInfo();
635     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
636     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
637     Register VReg = MRI.createGenericVirtualRegister(P4);
638     MRI.addLiveIn(InputPtrReg, VReg);
639     B.getMBB().addLiveIn(InputPtrReg);
640     B.buildCopy(VReg, InputPtrReg);
641     CCInfo.AllocateReg(InputPtrReg);
642   }
643 
644   if (Info.hasDispatchID()) {
645     Register DispatchIDReg = Info.addDispatchID(TRI);
646     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
647     CCInfo.AllocateReg(DispatchIDReg);
648   }
649 
650   if (Info.hasFlatScratchInit()) {
651     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
652     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
653     CCInfo.AllocateReg(FlatScratchInitReg);
654   }
655 
656   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
657   // these from the dispatch pointer.
658 }
659 
660 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
661     MachineIRBuilder &B, const Function &F,
662     ArrayRef<ArrayRef<Register>> VRegs) const {
663   MachineFunction &MF = B.getMF();
664   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
665   MachineRegisterInfo &MRI = MF.getRegInfo();
666   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
667   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
668   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
669 
670   const DataLayout &DL = F.getParent()->getDataLayout();
671 
672   SmallVector<CCValAssign, 16> ArgLocs;
673   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
674 
675   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
676 
677   unsigned i = 0;
678   const Align KernArgBaseAlign(16);
679   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
680   uint64_t ExplicitArgOffset = 0;
681 
682   // TODO: Align down to dword alignment and extract bits for extending loads.
683   for (auto &Arg : F.args()) {
684     const bool IsByRef = Arg.hasByRefAttr();
685     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
686     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
687     if (AllocSize == 0)
688       continue;
689 
690     MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None;
691     if (!ABIAlign)
692       ABIAlign = DL.getABITypeAlign(ArgTy);
693 
694     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
695     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
696 
697     if (Arg.use_empty()) {
698       ++i;
699       continue;
700     }
701 
702     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
703 
704     if (IsByRef) {
705       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
706 
707       assert(VRegs[i].size() == 1 &&
708              "expected only one register for byval pointers");
709       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
710         lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset);
711       } else {
712         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
713         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
714         lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset);
715 
716         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
717       }
718     } else {
719       ArrayRef<Register> OrigArgRegs = VRegs[i];
720       Register ArgReg =
721         OrigArgRegs.size() == 1
722         ? OrigArgRegs[0]
723         : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
724 
725       lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg);
726       if (OrigArgRegs.size() > 1)
727         unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
728     }
729 
730     ++i;
731   }
732 
733   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
734   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
735   return true;
736 }
737 
738 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
739 static MachineInstrBuilder mergeVectorRegsToResultRegs(
740   MachineIRBuilder &B, ArrayRef<Register> DstRegs, ArrayRef<Register> SrcRegs) {
741   MachineRegisterInfo &MRI = *B.getMRI();
742   LLT LLTy = MRI.getType(DstRegs[0]);
743   LLT PartLLT = MRI.getType(SrcRegs[0]);
744 
745   // Deal with v3s16 split into v2s16
746   LLT LCMTy = getLCMType(LLTy, PartLLT);
747   if (LCMTy == LLTy) {
748     // Common case where no padding is needed.
749     assert(DstRegs.size() == 1);
750     return B.buildConcatVectors(DstRegs[0], SrcRegs);
751   }
752 
753   const int NumWide =  LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
754   Register Undef = B.buildUndef(PartLLT).getReg(0);
755 
756   // Build vector of undefs.
757   SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
758 
759   // Replace the first sources with the real registers.
760   std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
761 
762   auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs);
763   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
764 
765   SmallVector<Register, 8> PadDstRegs(NumDst);
766   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
767 
768   // Create the excess dead defs for the unmerge.
769   for (int I = DstRegs.size(); I != NumDst; ++I)
770     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
771 
772   return B.buildUnmerge(PadDstRegs, Widened);
773 }
774 
775 // TODO: Move this to generic code
776 static void packSplitRegsToOrigType(MachineIRBuilder &B,
777                                     ArrayRef<Register> OrigRegs,
778                                     ArrayRef<Register> Regs,
779                                     LLT LLTy,
780                                     LLT PartLLT) {
781   MachineRegisterInfo &MRI = *B.getMRI();
782 
783   if (!LLTy.isVector() && !PartLLT.isVector()) {
784     assert(OrigRegs.size() == 1);
785     LLT OrigTy = MRI.getType(OrigRegs[0]);
786 
787     unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
788     if (SrcSize == OrigTy.getSizeInBits())
789       B.buildMerge(OrigRegs[0], Regs);
790     else {
791       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
792       B.buildTrunc(OrigRegs[0], Widened);
793     }
794 
795     return;
796   }
797 
798   if (LLTy.isVector() && PartLLT.isVector()) {
799     assert(OrigRegs.size() == 1);
800     assert(LLTy.getElementType() == PartLLT.getElementType());
801     mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
802     return;
803   }
804 
805   assert(LLTy.isVector() && !PartLLT.isVector());
806 
807   LLT DstEltTy = LLTy.getElementType();
808 
809   // Pointer information was discarded. We'll need to coerce some register types
810   // to avoid violating type constraints.
811   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
812 
813   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
814 
815   if (DstEltTy == PartLLT) {
816     // Vector was trivially scalarized.
817 
818     if (RealDstEltTy.isPointer()) {
819       for (Register Reg : Regs)
820         MRI.setType(Reg, RealDstEltTy);
821     }
822 
823     B.buildBuildVector(OrigRegs[0], Regs);
824   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
825     // Deal with vector with 64-bit elements decomposed to 32-bit
826     // registers. Need to create intermediate 64-bit elements.
827     SmallVector<Register, 8> EltMerges;
828     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
829 
830     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
831 
832     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I)  {
833       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
834       // Fix the type in case this is really a vector of pointers.
835       MRI.setType(Merge.getReg(0), RealDstEltTy);
836       EltMerges.push_back(Merge.getReg(0));
837       Regs = Regs.drop_front(PartsPerElt);
838     }
839 
840     B.buildBuildVector(OrigRegs[0], EltMerges);
841   } else {
842     // Vector was split, and elements promoted to a wider type.
843     LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
844     auto BV = B.buildBuildVector(BVType, Regs);
845     B.buildTrunc(OrigRegs[0], BV);
846   }
847 }
848 
849 bool AMDGPUCallLowering::lowerFormalArguments(
850     MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
851     FunctionLoweringInfo &FLI) const {
852   CallingConv::ID CC = F.getCallingConv();
853 
854   // The infrastructure for normal calling convention lowering is essentially
855   // useless for kernels. We want to avoid any kind of legalization or argument
856   // splitting.
857   if (CC == CallingConv::AMDGPU_KERNEL)
858     return lowerFormalArgumentsKernel(B, F, VRegs);
859 
860   const bool IsGraphics = AMDGPU::isGraphics(CC);
861   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
862 
863   MachineFunction &MF = B.getMF();
864   MachineBasicBlock &MBB = B.getMBB();
865   MachineRegisterInfo &MRI = MF.getRegInfo();
866   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
867   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
868   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
869   const DataLayout &DL = F.getParent()->getDataLayout();
870 
871 
872   SmallVector<CCValAssign, 16> ArgLocs;
873   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
874 
875   if (!IsEntryFunc) {
876     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
877     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
878                                          &AMDGPU::SGPR_64RegClass);
879     MBB.addLiveIn(ReturnAddrReg);
880     B.buildCopy(LiveInReturn, ReturnAddrReg);
881   }
882 
883   if (Info->hasImplicitBufferPtr()) {
884     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
885     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
886     CCInfo.AllocateReg(ImplicitBufferPtrReg);
887   }
888 
889   SmallVector<ArgInfo, 8> SplitArg;
890   SmallVector<ArgInfo, 32> SplitArgs;
891   unsigned Idx = 0;
892   unsigned PSInputNum = 0;
893 
894   // Insert the hidden sret parameter if the return value won't fit in the
895   // return registers.
896   if (!FLI.CanLowerReturn)
897     insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
898 
899   for (auto &Arg : F.args()) {
900     if (DL.getTypeStoreSize(Arg.getType()) == 0)
901       continue;
902 
903     const bool InReg = Arg.hasAttribute(Attribute::InReg);
904 
905     // SGPR arguments to functions not implemented.
906     if (!IsGraphics && InReg)
907       return false;
908 
909     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
910         Arg.hasAttribute(Attribute::SwiftError) ||
911         Arg.hasAttribute(Attribute::Nest))
912       return false;
913 
914     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
915       const bool ArgUsed = !Arg.use_empty();
916       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
917 
918       if (!SkipArg) {
919         Info->markPSInputAllocated(PSInputNum);
920         if (ArgUsed)
921           Info->markPSInputEnabled(PSInputNum);
922       }
923 
924       ++PSInputNum;
925 
926       if (SkipArg) {
927         for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
928           B.buildUndef(VRegs[Idx][I]);
929 
930         ++Idx;
931         continue;
932       }
933     }
934 
935     ArgInfo OrigArg(VRegs[Idx], Arg.getType());
936     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
937     setArgFlags(OrigArg, OrigArgIdx, DL, F);
938 
939     SplitArg.clear();
940     splitToValueTypes(B, OrigArg, SplitArg, DL, CC);
941 
942     processSplitArgs(B, OrigArg, SplitArg, SplitArgs, DL, CC, false,
943                      // FIXME: We should probably be passing multiple registers
944                      // to handleAssignments to do this
945                      [&](ArrayRef<Register> Regs, Register DstReg, LLT LLTy,
946                          LLT PartLLT, int VTSplitIdx) {
947                        assert(DstReg == VRegs[Idx][VTSplitIdx]);
948                        packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs,
949                                                LLTy, PartLLT);
950                      });
951 
952     ++Idx;
953   }
954 
955   // At least one interpolation mode must be enabled or else the GPU will
956   // hang.
957   //
958   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
959   // set PSInputAddr, the user wants to enable some bits after the compilation
960   // based on run-time states. Since we can't know what the final PSInputEna
961   // will look like, so we shouldn't do anything here and the user should take
962   // responsibility for the correct programming.
963   //
964   // Otherwise, the following restrictions apply:
965   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
966   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
967   //   enabled too.
968   if (CC == CallingConv::AMDGPU_PS) {
969     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
970         ((Info->getPSInputAddr() & 0xF) == 0 &&
971          Info->isPSInputAllocated(11))) {
972       CCInfo.AllocateReg(AMDGPU::VGPR0);
973       CCInfo.AllocateReg(AMDGPU::VGPR1);
974       Info->markPSInputAllocated(0);
975       Info->markPSInputEnabled(0);
976     }
977 
978     if (Subtarget.isAmdPalOS()) {
979       // For isAmdPalOS, the user does not enable some bits after compilation
980       // based on run-time states; the register values being generated here are
981       // the final ones set in hardware. Therefore we need to apply the
982       // workaround to PSInputAddr and PSInputEnable together.  (The case where
983       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
984       // set up an input arg for a particular interpolation mode, but nothing
985       // uses that input arg. Really we should have an earlier pass that removes
986       // such an arg.)
987       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
988       if ((PsInputBits & 0x7F) == 0 ||
989           ((PsInputBits & 0xF) == 0 &&
990            (PsInputBits >> 11 & 1)))
991         Info->markPSInputEnabled(
992           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
993     }
994   }
995 
996   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
997   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
998 
999   if (!MBB.empty())
1000     B.setInstr(*MBB.begin());
1001 
1002   if (!IsEntryFunc) {
1003     // For the fixed ABI, pass workitem IDs in the last argument register.
1004     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
1005       TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
1006   }
1007 
1008   FormalArgHandler Handler(B, MRI, AssignFn);
1009   if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
1010     return false;
1011 
1012   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
1013     // Special inputs come after user arguments.
1014     TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
1015   }
1016 
1017   // Start adding system SGPRs.
1018   if (IsEntryFunc) {
1019     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
1020   } else {
1021     if (!Subtarget.enableFlatScratch())
1022       CCInfo.AllocateReg(Info->getScratchRSrcReg());
1023     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
1024   }
1025 
1026   // Move back to the end of the basic block.
1027   B.setMBB(MBB);
1028 
1029   return true;
1030 }
1031 
1032 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
1033                                            CCState &CCInfo,
1034                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
1035                                            CallLoweringInfo &Info) const {
1036   MachineFunction &MF = MIRBuilder.getMF();
1037 
1038   const AMDGPUFunctionArgInfo *CalleeArgInfo
1039     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
1040 
1041   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1042   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
1043 
1044 
1045   // TODO: Unify with private memory register handling. This is complicated by
1046   // the fact that at least in kernels, the input argument is not necessarily
1047   // in the same location as the input.
1048   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
1049     AMDGPUFunctionArgInfo::DISPATCH_PTR,
1050     AMDGPUFunctionArgInfo::QUEUE_PTR,
1051     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
1052     AMDGPUFunctionArgInfo::DISPATCH_ID,
1053     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
1054     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
1055     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
1056   };
1057 
1058   MachineRegisterInfo &MRI = MF.getRegInfo();
1059 
1060   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1061   const AMDGPULegalizerInfo *LI
1062     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
1063 
1064   for (auto InputID : InputRegs) {
1065     const ArgDescriptor *OutgoingArg;
1066     const TargetRegisterClass *ArgRC;
1067     LLT ArgTy;
1068 
1069     std::tie(OutgoingArg, ArgRC, ArgTy) =
1070         CalleeArgInfo->getPreloadedValue(InputID);
1071     if (!OutgoingArg)
1072       continue;
1073 
1074     const ArgDescriptor *IncomingArg;
1075     const TargetRegisterClass *IncomingArgRC;
1076     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
1077         CallerArgInfo.getPreloadedValue(InputID);
1078     assert(IncomingArgRC == ArgRC);
1079 
1080     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
1081 
1082     if (IncomingArg) {
1083       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
1084     } else {
1085       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
1086       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
1087     }
1088 
1089     if (OutgoingArg->isRegister()) {
1090       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
1091       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
1092         report_fatal_error("failed to allocate implicit input argument");
1093     } else {
1094       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
1095       return false;
1096     }
1097   }
1098 
1099   // Pack workitem IDs into a single register or pass it as is if already
1100   // packed.
1101   const ArgDescriptor *OutgoingArg;
1102   const TargetRegisterClass *ArgRC;
1103   LLT ArgTy;
1104 
1105   std::tie(OutgoingArg, ArgRC, ArgTy) =
1106       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
1107   if (!OutgoingArg)
1108     std::tie(OutgoingArg, ArgRC, ArgTy) =
1109         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
1110   if (!OutgoingArg)
1111     std::tie(OutgoingArg, ArgRC, ArgTy) =
1112         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
1113   if (!OutgoingArg)
1114     return false;
1115 
1116   auto WorkitemIDX =
1117       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
1118   auto WorkitemIDY =
1119       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
1120   auto WorkitemIDZ =
1121       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
1122 
1123   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
1124   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
1125   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
1126   const LLT S32 = LLT::scalar(32);
1127 
1128   // If incoming ids are not packed we need to pack them.
1129   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
1130   Register InputReg;
1131   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) {
1132     InputReg = MRI.createGenericVirtualRegister(S32);
1133     LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
1134                        std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
1135   }
1136 
1137   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
1138     Register Y = MRI.createGenericVirtualRegister(S32);
1139     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
1140                        std::get<2>(WorkitemIDY));
1141 
1142     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
1143     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
1144   }
1145 
1146   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
1147     Register Z = MRI.createGenericVirtualRegister(S32);
1148     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
1149                        std::get<2>(WorkitemIDZ));
1150 
1151     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
1152     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
1153   }
1154 
1155   if (!InputReg) {
1156     InputReg = MRI.createGenericVirtualRegister(S32);
1157 
1158     // Workitem ids are already packed, any of present incoming arguments will
1159     // carry all required fields.
1160     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
1161       IncomingArgX ? *IncomingArgX :
1162         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
1163     LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
1164                        &AMDGPU::VGPR_32RegClass, S32);
1165   }
1166 
1167   if (OutgoingArg->isRegister()) {
1168     ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
1169     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
1170       report_fatal_error("failed to allocate implicit input argument");
1171   } else {
1172     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
1173     return false;
1174   }
1175 
1176   return true;
1177 }
1178 
1179 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
1180 /// CC.
1181 static std::pair<CCAssignFn *, CCAssignFn *>
1182 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
1183   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
1184 }
1185 
1186 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
1187                               bool IsTailCall) {
1188   return AMDGPU::SI_CALL;
1189 }
1190 
1191 // Add operands to call instruction to track the callee.
1192 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
1193                                   MachineIRBuilder &MIRBuilder,
1194                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
1195   if (Info.Callee.isReg()) {
1196     CallInst.addReg(Info.Callee.getReg());
1197     CallInst.addImm(0);
1198   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
1199     // The call lowering lightly assumed we can directly encode a call target in
1200     // the instruction, which is not the case. Materialize the address here.
1201     const GlobalValue *GV = Info.Callee.getGlobal();
1202     auto Ptr = MIRBuilder.buildGlobalValue(
1203       LLT::pointer(GV->getAddressSpace(), 64), GV);
1204     CallInst.addReg(Ptr.getReg(0));
1205     CallInst.add(Info.Callee);
1206   } else
1207     return false;
1208 
1209   return true;
1210 }
1211 
1212 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
1213                                    CallLoweringInfo &Info) const {
1214   if (Info.IsVarArg) {
1215     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
1216     return false;
1217   }
1218 
1219   MachineFunction &MF = MIRBuilder.getMF();
1220   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1221   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1222 
1223   const Function &F = MF.getFunction();
1224   MachineRegisterInfo &MRI = MF.getRegInfo();
1225   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1226   const DataLayout &DL = F.getParent()->getDataLayout();
1227   CallingConv::ID CallConv = F.getCallingConv();
1228 
1229   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
1230       CallConv != CallingConv::AMDGPU_Gfx) {
1231     LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n");
1232     return false;
1233   }
1234 
1235   if (AMDGPU::isShader(CallConv)) {
1236     LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n");
1237     return false;
1238   }
1239 
1240   SmallVector<ArgInfo, 8> OutArgs;
1241 
1242   SmallVector<ArgInfo, 8> SplitArg;
1243   for (auto &OrigArg : Info.OrigArgs) {
1244     splitToValueTypes(MIRBuilder, OrigArg, SplitArg, DL, Info.CallConv);
1245 
1246     processSplitArgs(
1247       MIRBuilder, OrigArg, SplitArg, OutArgs, DL, Info.CallConv, true,
1248       // FIXME: We should probably be passing multiple registers to
1249       // handleAssignments to do this
1250       [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT,
1251           int VTSplitIdx) {
1252         unpackRegsToOrigType(MIRBuilder, Regs, SrcReg, OrigArg, LLTy, PartLLT);
1253       });
1254 
1255     SplitArg.clear();
1256   }
1257 
1258   // If we can lower as a tail call, do that instead.
1259   bool CanTailCallOpt = false;
1260 
1261   // We must emit a tail call if we have musttail.
1262   if (Info.IsMustTailCall && !CanTailCallOpt) {
1263     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
1264     return false;
1265   }
1266 
1267   // Find out which ABI gets to decide where things go.
1268   CCAssignFn *AssignFnFixed;
1269   CCAssignFn *AssignFnVarArg;
1270   std::tie(AssignFnFixed, AssignFnVarArg) =
1271       getAssignFnsForCC(Info.CallConv, TLI);
1272 
1273   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
1274     .addImm(0)
1275     .addImm(0);
1276 
1277   // Create a temporarily-floating call instruction so we can add the implicit
1278   // uses of arg registers.
1279   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
1280 
1281   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1282   MIB.addDef(TRI->getReturnAddressReg(MF));
1283 
1284   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1285     return false;
1286 
1287   // Tell the call which registers are clobbered.
1288   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
1289   MIB.addRegMask(Mask);
1290 
1291   SmallVector<CCValAssign, 16> ArgLocs;
1292   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1293 
1294   // We could pass MIB and directly add the implicit uses to the call
1295   // now. However, as an aesthetic choice, place implicit argument operands
1296   // after the ordinary user argument registers.
1297   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1298 
1299   if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
1300       Info.CallConv != CallingConv::AMDGPU_Gfx) {
1301     // With a fixed ABI, allocate fixed registers before user arguments.
1302     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1303       return false;
1304   }
1305 
1306   // Do the actual argument marshalling.
1307   SmallVector<Register, 8> PhysRegs;
1308   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
1309                                    AssignFnVarArg, false);
1310   if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, OutArgs, Handler))
1311     return false;
1312 
1313   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1314 
1315   if (!ST.enableFlatScratch()) {
1316     // Insert copies for the SRD. In the HSA case, this should be an identity
1317     // copy.
1318     auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::vector(4, 32),
1319                                                MFI->getScratchRSrcReg());
1320     MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
1321     MIB.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
1322   }
1323 
1324   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1325     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1326     MIB.addReg(ArgReg.first, RegState::Implicit);
1327   }
1328 
1329   // Get a count of how many bytes are to be pushed on the stack.
1330   unsigned NumBytes = CCInfo.getNextStackOffset();
1331 
1332   // If Callee is a reg, since it is used by a target specific
1333   // instruction, it must have a register class matching the
1334   // constraint of that instruction.
1335 
1336   // FIXME: We should define regbankselectable call instructions to handle
1337   // divergent call targets.
1338   if (MIB->getOperand(1).isReg()) {
1339     MIB->getOperand(1).setReg(constrainOperandRegClass(
1340         MF, *TRI, MRI, *ST.getInstrInfo(),
1341         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1342         1));
1343   }
1344 
1345   auto OrigInsertPt = MIRBuilder.getInsertPt();
1346 
1347   // Now we can add the actual call instruction to the correct position.
1348   MIRBuilder.insertInstr(MIB);
1349 
1350   // Insert this now to give us an anchor point for managing the insert point.
1351   MachineInstrBuilder CallSeqEnd =
1352     MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN);
1353 
1354   SmallVector<ArgInfo, 8> InArgs;
1355   if (!Info.CanLowerReturn) {
1356     insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1357                     Info.DemoteRegister, Info.DemoteStackIndex);
1358   } else if (!Info.OrigRet.Ty->isVoidTy()) {
1359     SmallVector<ArgInfo, 8> PreSplitRetInfos;
1360 
1361     splitToValueTypes(
1362       MIRBuilder, Info.OrigRet, PreSplitRetInfos/*InArgs*/, DL, Info.CallConv);
1363 
1364     processSplitArgs(MIRBuilder, Info.OrigRet,
1365                      PreSplitRetInfos, InArgs/*SplitRetInfos*/, DL, Info.CallConv, false,
1366                      [&](ArrayRef<Register> Regs, Register DstReg,
1367                          LLT LLTy, LLT PartLLT, int VTSplitIdx) {
1368                        assert(DstReg == Info.OrigRet.Regs[VTSplitIdx]);
1369                        packSplitRegsToOrigType(MIRBuilder, Info.OrigRet.Regs[VTSplitIdx],
1370                                                Regs, LLTy, PartLLT);
1371                      });
1372   }
1373 
1374   // Make sure the raw argument copies are inserted before the marshalling to
1375   // the original types.
1376   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), CallSeqEnd);
1377 
1378   // Finally we can copy the returned value back into its virtual-register. In
1379   // symmetry with the arguments, the physical register must be an
1380   // implicit-define of the call instruction.
1381   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1382     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1383                                                       Info.IsVarArg);
1384     CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
1385     if (!handleAssignments(MIRBuilder, InArgs, Handler, Info.CallConv,
1386                            Info.IsVarArg))
1387       return false;
1388   }
1389 
1390   uint64_t CalleePopBytes = NumBytes;
1391   CallSeqEnd.addImm(0)
1392             .addImm(CalleePopBytes);
1393 
1394   // Restore the insert point to after the call sequence.
1395   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), OrigInsertPt);
1396   return true;
1397 }
1398