1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/IR/IntrinsicsAMDGPU.h"
25 
26 #define DEBUG_TYPE "amdgpu-call-lowering"
27 
28 using namespace llvm;
29 
30 namespace {
31 
32 struct AMDGPUValueHandler : public CallLowering::ValueHandler {
33   AMDGPUValueHandler(bool IsIncoming, MachineIRBuilder &B,
34                      MachineRegisterInfo &MRI, CCAssignFn *AssignFn)
35       : ValueHandler(IsIncoming, B, MRI, AssignFn) {}
36 
37   /// Wrapper around extendRegister to ensure we extend to a full 32-bit
38   /// register.
39   Register extendRegisterMin32(Register ValVReg, CCValAssign &VA) {
40     if (VA.getLocVT().getSizeInBits() < 32) {
41       // 16-bit types are reported as legal for 32-bit registers. We need to
42       // extend and do a 32-bit copy to avoid the verifier complaining about it.
43       return MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
44     }
45 
46     return extendRegister(ValVReg, VA);
47   }
48 };
49 
50 struct AMDGPUOutgoingValueHandler : public AMDGPUValueHandler {
51   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
52                              MachineInstrBuilder MIB, CCAssignFn *AssignFn)
53       : AMDGPUValueHandler(false, B, MRI, AssignFn), MIB(MIB) {}
54 
55   MachineInstrBuilder MIB;
56 
57   Register getStackAddress(uint64_t Size, int64_t Offset,
58                            MachinePointerInfo &MPO) override {
59     llvm_unreachable("not implemented");
60   }
61 
62   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
63                             MachinePointerInfo &MPO, CCValAssign &VA) override {
64     llvm_unreachable("not implemented");
65   }
66 
67   void assignValueToReg(Register ValVReg, Register PhysReg,
68                         CCValAssign &VA) override {
69     Register ExtReg = extendRegisterMin32(ValVReg, VA);
70 
71     // If this is a scalar return, insert a readfirstlane just in case the value
72     // ends up in a VGPR.
73     // FIXME: Assert this is a shader return.
74     const SIRegisterInfo *TRI
75       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
76     if (TRI->isSGPRReg(MRI, PhysReg)) {
77       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
78                                               {MRI.getType(ExtReg)}, false)
79         .addReg(ExtReg);
80       ExtReg = ToSGPR.getReg(0);
81     }
82 
83     MIRBuilder.buildCopy(PhysReg, ExtReg);
84     MIB.addUse(PhysReg, RegState::Implicit);
85   }
86 
87   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
88                  CCValAssign::LocInfo LocInfo,
89                  const CallLowering::ArgInfo &Info,
90                  ISD::ArgFlagsTy Flags,
91                  CCState &State) override {
92     return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
93   }
94 };
95 
96 struct AMDGPUIncomingArgHandler : public AMDGPUValueHandler {
97   uint64_t StackUsed = 0;
98 
99   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
100                            CCAssignFn *AssignFn)
101       : AMDGPUValueHandler(true, B, MRI, AssignFn) {}
102 
103   Register getStackAddress(uint64_t Size, int64_t Offset,
104                            MachinePointerInfo &MPO) override {
105     auto &MFI = MIRBuilder.getMF().getFrameInfo();
106     int FI = MFI.CreateFixedObject(Size, Offset, true);
107     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
108     auto AddrReg = MIRBuilder.buildFrameIndex(
109         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
110     StackUsed = std::max(StackUsed, Size + Offset);
111     return AddrReg.getReg(0);
112   }
113 
114   void assignValueToReg(Register ValVReg, Register PhysReg,
115                         CCValAssign &VA) override {
116     markPhysRegUsed(PhysReg);
117 
118     if (VA.getLocVT().getSizeInBits() < 32) {
119       // 16-bit types are reported as legal for 32-bit registers. We need to do
120       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
121       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
122       MIRBuilder.buildTrunc(ValVReg, Copy);
123       return;
124     }
125 
126     switch (VA.getLocInfo()) {
127     case CCValAssign::LocInfo::SExt:
128     case CCValAssign::LocInfo::ZExt:
129     case CCValAssign::LocInfo::AExt: {
130       auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
131       MIRBuilder.buildTrunc(ValVReg, Copy);
132       break;
133     }
134     default:
135       MIRBuilder.buildCopy(ValVReg, PhysReg);
136       break;
137     }
138   }
139 
140   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
141                             MachinePointerInfo &MPO, CCValAssign &VA) override {
142     MachineFunction &MF = MIRBuilder.getMF();
143 
144     // The reported memory location may be wider than the value.
145     const LLT RegTy = MRI.getType(ValVReg);
146     MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize);
147 
148     // FIXME: Get alignment
149     auto MMO = MF.getMachineMemOperand(
150         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
151         inferAlignFromPtrInfo(MF, MPO));
152     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
153   }
154 
155   /// How the physical register gets marked varies between formal
156   /// parameters (it's a basic-block live-in), and a call instruction
157   /// (it's an implicit-def of the BL).
158   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
159 };
160 
161 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
162   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
163                    CCAssignFn *AssignFn)
164       : AMDGPUIncomingArgHandler(B, MRI, AssignFn) {}
165 
166   void markPhysRegUsed(unsigned PhysReg) override {
167     MIRBuilder.getMBB().addLiveIn(PhysReg);
168   }
169 };
170 
171 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
172   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
173                     MachineInstrBuilder MIB, CCAssignFn *AssignFn)
174       : AMDGPUIncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
175 
176   void markPhysRegUsed(unsigned PhysReg) override {
177     MIB.addDef(PhysReg, RegState::Implicit);
178   }
179 
180   MachineInstrBuilder MIB;
181 };
182 
183 struct AMDGPUOutgoingArgHandler : public AMDGPUValueHandler {
184   MachineInstrBuilder MIB;
185   CCAssignFn *AssignFnVarArg;
186 
187   /// For tail calls, the byte offset of the call's argument area from the
188   /// callee's. Unused elsewhere.
189   int FPDiff;
190 
191   // Cache the SP register vreg if we need it more than once in this call site.
192   Register SPReg;
193 
194   bool IsTailCall;
195 
196   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
197                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
198                            CCAssignFn *AssignFn, CCAssignFn *AssignFnVarArg,
199                            bool IsTailCall = false, int FPDiff = 0)
200       : AMDGPUValueHandler(false, MIRBuilder, MRI, AssignFn), MIB(MIB),
201         AssignFnVarArg(AssignFnVarArg), FPDiff(FPDiff), IsTailCall(IsTailCall) {
202   }
203 
204   Register getStackAddress(uint64_t Size, int64_t Offset,
205                            MachinePointerInfo &MPO) override {
206     MachineFunction &MF = MIRBuilder.getMF();
207     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
208     const LLT S32 = LLT::scalar(32);
209 
210     if (IsTailCall) {
211       llvm_unreachable("implement me");
212     }
213 
214     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
215 
216     if (!SPReg)
217       SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0);
218 
219     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
220 
221     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
222     MPO = MachinePointerInfo::getStack(MF, Offset);
223     return AddrReg.getReg(0);
224   }
225 
226   void assignValueToReg(Register ValVReg, Register PhysReg,
227                         CCValAssign &VA) override {
228     MIB.addUse(PhysReg, RegState::Implicit);
229     Register ExtReg = extendRegisterMin32(ValVReg, VA);
230     MIRBuilder.buildCopy(PhysReg, ExtReg);
231   }
232 
233   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
234                             MachinePointerInfo &MPO, CCValAssign &VA) override {
235     MachineFunction &MF = MIRBuilder.getMF();
236     uint64_t LocMemOffset = VA.getLocMemOffset();
237     const auto &ST = MF.getSubtarget<GCNSubtarget>();
238 
239     auto MMO = MF.getMachineMemOperand(
240       MPO, MachineMemOperand::MOStore, Size,
241       commonAlignment(ST.getStackAlignment(), LocMemOffset));
242     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
243   }
244 
245   void assignValueToAddress(const CallLowering::ArgInfo &Arg,
246                             unsigned ValRegIndex, Register Addr,
247                             uint64_t MemSize, MachinePointerInfo &MPO,
248                             CCValAssign &VA) override {
249     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
250                            ? extendRegister(Arg.Regs[ValRegIndex], VA)
251                            : Arg.Regs[ValRegIndex];
252 
253     // If we extended the value type we might need to adjust the MMO's
254     // Size. This happens if ComputeValueVTs widened a small type value to a
255     // legal register type (e.g. s8->s16)
256     const LLT RegTy = MRI.getType(ValVReg);
257     MemSize = std::min(MemSize, (uint64_t)RegTy.getSizeInBytes());
258     assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA);
259   }
260 };
261 }
262 
263 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
264   : CallLowering(&TLI) {
265 }
266 
267 // FIXME: Compatability shim
268 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
269   switch (MIOpc) {
270   case TargetOpcode::G_SEXT:
271     return ISD::SIGN_EXTEND;
272   case TargetOpcode::G_ZEXT:
273     return ISD::ZERO_EXTEND;
274   case TargetOpcode::G_ANYEXT:
275     return ISD::ANY_EXTEND;
276   default:
277     llvm_unreachable("not an extend opcode");
278   }
279 }
280 
281 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
282                                         CallingConv::ID CallConv,
283                                         SmallVectorImpl<BaseArgInfo> &Outs,
284                                         bool IsVarArg) const {
285   // For shaders. Vector types should be explicitly handled by CC.
286   if (AMDGPU::isEntryFunctionCC(CallConv))
287     return true;
288 
289   SmallVector<CCValAssign, 16> ArgLocs;
290   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
291   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
292                  MF.getFunction().getContext());
293 
294   return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
295 }
296 
297 /// Lower the return value for the already existing \p Ret. This assumes that
298 /// \p B's insertion point is correct.
299 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
300                                         const Value *Val, ArrayRef<Register> VRegs,
301                                         MachineInstrBuilder &Ret) const {
302   if (!Val)
303     return true;
304 
305   auto &MF = B.getMF();
306   const auto &F = MF.getFunction();
307   const DataLayout &DL = MF.getDataLayout();
308   MachineRegisterInfo *MRI = B.getMRI();
309   LLVMContext &Ctx = F.getContext();
310 
311   CallingConv::ID CC = F.getCallingConv();
312   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
313 
314   SmallVector<EVT, 8> SplitEVTs;
315   ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
316   assert(VRegs.size() == SplitEVTs.size() &&
317          "For each split Type there should be exactly one VReg.");
318 
319   SmallVector<ArgInfo, 8> SplitRetInfos;
320 
321   for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
322     EVT VT = SplitEVTs[i];
323     Register Reg = VRegs[i];
324     ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx));
325     setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
326 
327     if (VT.isScalarInteger()) {
328       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
329       if (RetInfo.Flags[0].isSExt()) {
330         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
331         ExtendOp = TargetOpcode::G_SEXT;
332       } else if (RetInfo.Flags[0].isZExt()) {
333         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
334         ExtendOp = TargetOpcode::G_ZEXT;
335       }
336 
337       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
338                                           extOpcodeToISDExtOpcode(ExtendOp));
339       if (ExtVT != VT) {
340         RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
341         LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
342         Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
343       }
344     }
345 
346     if (Reg != RetInfo.Regs[0]) {
347       RetInfo.Regs[0] = Reg;
348       // Reset the arg flags after modifying Reg.
349       setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
350     }
351 
352     splitToValueTypes(RetInfo, SplitRetInfos, DL, CC);
353   }
354 
355   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
356   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn);
357   return handleAssignments(B, SplitRetInfos, RetHandler, CC, F.isVarArg());
358 }
359 
360 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
361                                      ArrayRef<Register> VRegs,
362                                      FunctionLoweringInfo &FLI) const {
363 
364   MachineFunction &MF = B.getMF();
365   MachineRegisterInfo &MRI = MF.getRegInfo();
366   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
367   MFI->setIfReturnsVoid(!Val);
368 
369   assert(!Val == VRegs.empty() && "Return value without a vreg");
370 
371   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
372   const bool IsShader = AMDGPU::isShader(CC);
373   const bool IsWaveEnd =
374       (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
375   if (IsWaveEnd) {
376     B.buildInstr(AMDGPU::S_ENDPGM)
377       .addImm(0);
378     return true;
379   }
380 
381   auto const &ST = MF.getSubtarget<GCNSubtarget>();
382 
383   unsigned ReturnOpc =
384       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
385 
386   auto Ret = B.buildInstrNoInsert(ReturnOpc);
387   Register ReturnAddrVReg;
388   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
389     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
390     Ret.addUse(ReturnAddrVReg);
391   }
392 
393   if (!FLI.CanLowerReturn)
394     insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
395   else if (!lowerReturnVal(B, Val, VRegs, Ret))
396     return false;
397 
398   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
399     const SIRegisterInfo *TRI = ST.getRegisterInfo();
400     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
401                                          &AMDGPU::SGPR_64RegClass);
402     B.buildCopy(ReturnAddrVReg, LiveInReturn);
403   }
404 
405   // TODO: Handle CalleeSavedRegsViaCopy.
406 
407   B.insertInstr(Ret);
408   return true;
409 }
410 
411 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
412                                            Type *ParamTy,
413                                            uint64_t Offset) const {
414   MachineFunction &MF = B.getMF();
415   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
416   MachineRegisterInfo &MRI = MF.getRegInfo();
417   Register KernArgSegmentPtr =
418     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
419   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
420 
421   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
422 
423   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
424 }
425 
426 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy,
427                                         uint64_t Offset, Align Alignment,
428                                         Register DstReg) const {
429   MachineFunction &MF = B.getMF();
430   const Function &F = MF.getFunction();
431   const DataLayout &DL = F.getParent()->getDataLayout();
432   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
433   unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
434 
435   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
436   Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
437   lowerParameterPtr(PtrReg, B, ParamTy, Offset);
438 
439   MachineMemOperand *MMO = MF.getMachineMemOperand(
440       PtrInfo,
441       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
442           MachineMemOperand::MOInvariant,
443       TypeSize, Alignment);
444 
445   B.buildLoad(DstReg, PtrReg, *MMO);
446 }
447 
448 // Allocate special inputs passed in user SGPRs.
449 static void allocateHSAUserSGPRs(CCState &CCInfo,
450                                  MachineIRBuilder &B,
451                                  MachineFunction &MF,
452                                  const SIRegisterInfo &TRI,
453                                  SIMachineFunctionInfo &Info) {
454   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
455   if (Info.hasPrivateSegmentBuffer()) {
456     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
457     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
458     CCInfo.AllocateReg(PrivateSegmentBufferReg);
459   }
460 
461   if (Info.hasDispatchPtr()) {
462     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
463     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
464     CCInfo.AllocateReg(DispatchPtrReg);
465   }
466 
467   if (Info.hasQueuePtr()) {
468     Register QueuePtrReg = Info.addQueuePtr(TRI);
469     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
470     CCInfo.AllocateReg(QueuePtrReg);
471   }
472 
473   if (Info.hasKernargSegmentPtr()) {
474     MachineRegisterInfo &MRI = MF.getRegInfo();
475     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
476     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
477     Register VReg = MRI.createGenericVirtualRegister(P4);
478     MRI.addLiveIn(InputPtrReg, VReg);
479     B.getMBB().addLiveIn(InputPtrReg);
480     B.buildCopy(VReg, InputPtrReg);
481     CCInfo.AllocateReg(InputPtrReg);
482   }
483 
484   if (Info.hasDispatchID()) {
485     Register DispatchIDReg = Info.addDispatchID(TRI);
486     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
487     CCInfo.AllocateReg(DispatchIDReg);
488   }
489 
490   if (Info.hasFlatScratchInit()) {
491     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
492     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
493     CCInfo.AllocateReg(FlatScratchInitReg);
494   }
495 
496   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
497   // these from the dispatch pointer.
498 }
499 
500 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
501     MachineIRBuilder &B, const Function &F,
502     ArrayRef<ArrayRef<Register>> VRegs) const {
503   MachineFunction &MF = B.getMF();
504   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
505   MachineRegisterInfo &MRI = MF.getRegInfo();
506   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
507   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
508   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
509 
510   const DataLayout &DL = F.getParent()->getDataLayout();
511 
512   SmallVector<CCValAssign, 16> ArgLocs;
513   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
514 
515   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
516 
517   unsigned i = 0;
518   const Align KernArgBaseAlign(16);
519   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
520   uint64_t ExplicitArgOffset = 0;
521 
522   // TODO: Align down to dword alignment and extract bits for extending loads.
523   for (auto &Arg : F.args()) {
524     const bool IsByRef = Arg.hasByRefAttr();
525     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
526     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
527     if (AllocSize == 0)
528       continue;
529 
530     MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None;
531     if (!ABIAlign)
532       ABIAlign = DL.getABITypeAlign(ArgTy);
533 
534     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
535     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
536 
537     if (Arg.use_empty()) {
538       ++i;
539       continue;
540     }
541 
542     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
543 
544     if (IsByRef) {
545       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
546 
547       assert(VRegs[i].size() == 1 &&
548              "expected only one register for byval pointers");
549       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
550         lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset);
551       } else {
552         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
553         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
554         lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset);
555 
556         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
557       }
558     } else {
559       ArrayRef<Register> OrigArgRegs = VRegs[i];
560       Register ArgReg =
561         OrigArgRegs.size() == 1
562         ? OrigArgRegs[0]
563         : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
564 
565       lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg);
566       if (OrigArgRegs.size() > 1)
567         unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
568     }
569 
570     ++i;
571   }
572 
573   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
574   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
575   return true;
576 }
577 
578 bool AMDGPUCallLowering::lowerFormalArguments(
579     MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
580     FunctionLoweringInfo &FLI) const {
581   CallingConv::ID CC = F.getCallingConv();
582 
583   // The infrastructure for normal calling convention lowering is essentially
584   // useless for kernels. We want to avoid any kind of legalization or argument
585   // splitting.
586   if (CC == CallingConv::AMDGPU_KERNEL)
587     return lowerFormalArgumentsKernel(B, F, VRegs);
588 
589   const bool IsGraphics = AMDGPU::isGraphics(CC);
590   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
591 
592   MachineFunction &MF = B.getMF();
593   MachineBasicBlock &MBB = B.getMBB();
594   MachineRegisterInfo &MRI = MF.getRegInfo();
595   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
596   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
597   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
598   const DataLayout &DL = F.getParent()->getDataLayout();
599 
600 
601   SmallVector<CCValAssign, 16> ArgLocs;
602   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
603 
604   if (!IsEntryFunc) {
605     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
606     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
607                                          &AMDGPU::SGPR_64RegClass);
608     MBB.addLiveIn(ReturnAddrReg);
609     B.buildCopy(LiveInReturn, ReturnAddrReg);
610   }
611 
612   if (Info->hasImplicitBufferPtr()) {
613     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
614     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
615     CCInfo.AllocateReg(ImplicitBufferPtrReg);
616   }
617 
618   SmallVector<ArgInfo, 32> SplitArgs;
619   unsigned Idx = 0;
620   unsigned PSInputNum = 0;
621 
622   // Insert the hidden sret parameter if the return value won't fit in the
623   // return registers.
624   if (!FLI.CanLowerReturn)
625     insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
626 
627   for (auto &Arg : F.args()) {
628     if (DL.getTypeStoreSize(Arg.getType()) == 0)
629       continue;
630 
631     const bool InReg = Arg.hasAttribute(Attribute::InReg);
632 
633     // SGPR arguments to functions not implemented.
634     if (!IsGraphics && InReg)
635       return false;
636 
637     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
638         Arg.hasAttribute(Attribute::SwiftError) ||
639         Arg.hasAttribute(Attribute::Nest))
640       return false;
641 
642     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
643       const bool ArgUsed = !Arg.use_empty();
644       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
645 
646       if (!SkipArg) {
647         Info->markPSInputAllocated(PSInputNum);
648         if (ArgUsed)
649           Info->markPSInputEnabled(PSInputNum);
650       }
651 
652       ++PSInputNum;
653 
654       if (SkipArg) {
655         for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
656           B.buildUndef(VRegs[Idx][I]);
657 
658         ++Idx;
659         continue;
660       }
661     }
662 
663     ArgInfo OrigArg(VRegs[Idx], Arg.getType());
664     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
665     setArgFlags(OrigArg, OrigArgIdx, DL, F);
666 
667     splitToValueTypes(OrigArg, SplitArgs, DL, CC);
668     ++Idx;
669   }
670 
671   // At least one interpolation mode must be enabled or else the GPU will
672   // hang.
673   //
674   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
675   // set PSInputAddr, the user wants to enable some bits after the compilation
676   // based on run-time states. Since we can't know what the final PSInputEna
677   // will look like, so we shouldn't do anything here and the user should take
678   // responsibility for the correct programming.
679   //
680   // Otherwise, the following restrictions apply:
681   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
682   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
683   //   enabled too.
684   if (CC == CallingConv::AMDGPU_PS) {
685     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
686         ((Info->getPSInputAddr() & 0xF) == 0 &&
687          Info->isPSInputAllocated(11))) {
688       CCInfo.AllocateReg(AMDGPU::VGPR0);
689       CCInfo.AllocateReg(AMDGPU::VGPR1);
690       Info->markPSInputAllocated(0);
691       Info->markPSInputEnabled(0);
692     }
693 
694     if (Subtarget.isAmdPalOS()) {
695       // For isAmdPalOS, the user does not enable some bits after compilation
696       // based on run-time states; the register values being generated here are
697       // the final ones set in hardware. Therefore we need to apply the
698       // workaround to PSInputAddr and PSInputEnable together.  (The case where
699       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
700       // set up an input arg for a particular interpolation mode, but nothing
701       // uses that input arg. Really we should have an earlier pass that removes
702       // such an arg.)
703       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
704       if ((PsInputBits & 0x7F) == 0 ||
705           ((PsInputBits & 0xF) == 0 &&
706            (PsInputBits >> 11 & 1)))
707         Info->markPSInputEnabled(
708           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
709     }
710   }
711 
712   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
713   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
714 
715   if (!MBB.empty())
716     B.setInstr(*MBB.begin());
717 
718   if (!IsEntryFunc) {
719     // For the fixed ABI, pass workitem IDs in the last argument register.
720     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
721       TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
722   }
723 
724   FormalArgHandler Handler(B, MRI, AssignFn);
725   if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
726     return false;
727 
728   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
729     // Special inputs come after user arguments.
730     TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
731   }
732 
733   // Start adding system SGPRs.
734   if (IsEntryFunc) {
735     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
736   } else {
737     if (!Subtarget.enableFlatScratch())
738       CCInfo.AllocateReg(Info->getScratchRSrcReg());
739     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
740   }
741 
742   // Move back to the end of the basic block.
743   B.setMBB(MBB);
744 
745   return true;
746 }
747 
748 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
749                                            CCState &CCInfo,
750                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
751                                            CallLoweringInfo &Info) const {
752   MachineFunction &MF = MIRBuilder.getMF();
753 
754   const AMDGPUFunctionArgInfo *CalleeArgInfo
755     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
756 
757   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
758   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
759 
760 
761   // TODO: Unify with private memory register handling. This is complicated by
762   // the fact that at least in kernels, the input argument is not necessarily
763   // in the same location as the input.
764   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
765     AMDGPUFunctionArgInfo::DISPATCH_PTR,
766     AMDGPUFunctionArgInfo::QUEUE_PTR,
767     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
768     AMDGPUFunctionArgInfo::DISPATCH_ID,
769     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
770     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
771     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
772   };
773 
774   MachineRegisterInfo &MRI = MF.getRegInfo();
775 
776   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
777   const AMDGPULegalizerInfo *LI
778     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
779 
780   for (auto InputID : InputRegs) {
781     const ArgDescriptor *OutgoingArg;
782     const TargetRegisterClass *ArgRC;
783     LLT ArgTy;
784 
785     std::tie(OutgoingArg, ArgRC, ArgTy) =
786         CalleeArgInfo->getPreloadedValue(InputID);
787     if (!OutgoingArg)
788       continue;
789 
790     const ArgDescriptor *IncomingArg;
791     const TargetRegisterClass *IncomingArgRC;
792     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
793         CallerArgInfo.getPreloadedValue(InputID);
794     assert(IncomingArgRC == ArgRC);
795 
796     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
797 
798     if (IncomingArg) {
799       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
800     } else {
801       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
802       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
803     }
804 
805     if (OutgoingArg->isRegister()) {
806       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
807       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
808         report_fatal_error("failed to allocate implicit input argument");
809     } else {
810       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
811       return false;
812     }
813   }
814 
815   // Pack workitem IDs into a single register or pass it as is if already
816   // packed.
817   const ArgDescriptor *OutgoingArg;
818   const TargetRegisterClass *ArgRC;
819   LLT ArgTy;
820 
821   std::tie(OutgoingArg, ArgRC, ArgTy) =
822       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
823   if (!OutgoingArg)
824     std::tie(OutgoingArg, ArgRC, ArgTy) =
825         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
826   if (!OutgoingArg)
827     std::tie(OutgoingArg, ArgRC, ArgTy) =
828         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
829   if (!OutgoingArg)
830     return false;
831 
832   auto WorkitemIDX =
833       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
834   auto WorkitemIDY =
835       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
836   auto WorkitemIDZ =
837       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
838 
839   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
840   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
841   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
842   const LLT S32 = LLT::scalar(32);
843 
844   // If incoming ids are not packed we need to pack them.
845   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
846   Register InputReg;
847   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) {
848     InputReg = MRI.createGenericVirtualRegister(S32);
849     LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
850                        std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
851   }
852 
853   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
854     Register Y = MRI.createGenericVirtualRegister(S32);
855     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
856                        std::get<2>(WorkitemIDY));
857 
858     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
859     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
860   }
861 
862   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
863     Register Z = MRI.createGenericVirtualRegister(S32);
864     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
865                        std::get<2>(WorkitemIDZ));
866 
867     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
868     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
869   }
870 
871   if (!InputReg) {
872     InputReg = MRI.createGenericVirtualRegister(S32);
873 
874     // Workitem ids are already packed, any of present incoming arguments will
875     // carry all required fields.
876     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
877       IncomingArgX ? *IncomingArgX :
878         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
879     LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
880                        &AMDGPU::VGPR_32RegClass, S32);
881   }
882 
883   if (OutgoingArg->isRegister()) {
884     ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
885     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
886       report_fatal_error("failed to allocate implicit input argument");
887   } else {
888     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
889     return false;
890   }
891 
892   return true;
893 }
894 
895 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
896 /// CC.
897 static std::pair<CCAssignFn *, CCAssignFn *>
898 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
899   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
900 }
901 
902 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
903                               bool IsTailCall) {
904   return AMDGPU::SI_CALL;
905 }
906 
907 // Add operands to call instruction to track the callee.
908 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
909                                   MachineIRBuilder &MIRBuilder,
910                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
911   if (Info.Callee.isReg()) {
912     CallInst.addReg(Info.Callee.getReg());
913     CallInst.addImm(0);
914   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
915     // The call lowering lightly assumed we can directly encode a call target in
916     // the instruction, which is not the case. Materialize the address here.
917     const GlobalValue *GV = Info.Callee.getGlobal();
918     auto Ptr = MIRBuilder.buildGlobalValue(
919       LLT::pointer(GV->getAddressSpace(), 64), GV);
920     CallInst.addReg(Ptr.getReg(0));
921     CallInst.add(Info.Callee);
922   } else
923     return false;
924 
925   return true;
926 }
927 
928 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
929                                    CallLoweringInfo &Info) const {
930   if (Info.IsVarArg) {
931     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
932     return false;
933   }
934 
935   MachineFunction &MF = MIRBuilder.getMF();
936   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
937   const SIRegisterInfo *TRI = ST.getRegisterInfo();
938 
939   const Function &F = MF.getFunction();
940   MachineRegisterInfo &MRI = MF.getRegInfo();
941   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
942   const DataLayout &DL = F.getParent()->getDataLayout();
943   CallingConv::ID CallConv = F.getCallingConv();
944 
945   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
946       CallConv != CallingConv::AMDGPU_Gfx) {
947     LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n");
948     return false;
949   }
950 
951   if (AMDGPU::isShader(CallConv)) {
952     LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n");
953     return false;
954   }
955 
956   SmallVector<ArgInfo, 8> OutArgs;
957   for (auto &OrigArg : Info.OrigArgs)
958     splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
959 
960   // If we can lower as a tail call, do that instead.
961   bool CanTailCallOpt = false;
962 
963   // We must emit a tail call if we have musttail.
964   if (Info.IsMustTailCall && !CanTailCallOpt) {
965     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
966     return false;
967   }
968 
969   // Find out which ABI gets to decide where things go.
970   CCAssignFn *AssignFnFixed;
971   CCAssignFn *AssignFnVarArg;
972   std::tie(AssignFnFixed, AssignFnVarArg) =
973       getAssignFnsForCC(Info.CallConv, TLI);
974 
975   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
976     .addImm(0)
977     .addImm(0);
978 
979   // Create a temporarily-floating call instruction so we can add the implicit
980   // uses of arg registers.
981   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
982 
983   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
984   MIB.addDef(TRI->getReturnAddressReg(MF));
985 
986   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
987     return false;
988 
989   // Tell the call which registers are clobbered.
990   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
991   MIB.addRegMask(Mask);
992 
993   SmallVector<CCValAssign, 16> ArgLocs;
994   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
995 
996   // We could pass MIB and directly add the implicit uses to the call
997   // now. However, as an aesthetic choice, place implicit argument operands
998   // after the ordinary user argument registers.
999   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1000 
1001   if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
1002       Info.CallConv != CallingConv::AMDGPU_Gfx) {
1003     // With a fixed ABI, allocate fixed registers before user arguments.
1004     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1005       return false;
1006   }
1007 
1008   // Do the actual argument marshalling.
1009   SmallVector<Register, 8> PhysRegs;
1010   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
1011                                    AssignFnVarArg, false);
1012   if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, OutArgs, Handler))
1013     return false;
1014 
1015   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1016 
1017   if (!ST.enableFlatScratch()) {
1018     // Insert copies for the SRD. In the HSA case, this should be an identity
1019     // copy.
1020     auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::vector(4, 32),
1021                                                MFI->getScratchRSrcReg());
1022     MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
1023     MIB.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
1024   }
1025 
1026   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1027     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1028     MIB.addReg(ArgReg.first, RegState::Implicit);
1029   }
1030 
1031   // Get a count of how many bytes are to be pushed on the stack.
1032   unsigned NumBytes = CCInfo.getNextStackOffset();
1033 
1034   // If Callee is a reg, since it is used by a target specific
1035   // instruction, it must have a register class matching the
1036   // constraint of that instruction.
1037 
1038   // FIXME: We should define regbankselectable call instructions to handle
1039   // divergent call targets.
1040   if (MIB->getOperand(1).isReg()) {
1041     MIB->getOperand(1).setReg(constrainOperandRegClass(
1042         MF, *TRI, MRI, *ST.getInstrInfo(),
1043         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1044         1));
1045   }
1046 
1047   auto OrigInsertPt = MIRBuilder.getInsertPt();
1048 
1049   // Now we can add the actual call instruction to the correct position.
1050   MIRBuilder.insertInstr(MIB);
1051 
1052   // Insert this now to give us an anchor point for managing the insert point.
1053   MachineInstrBuilder CallSeqEnd =
1054     MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN);
1055 
1056   SmallVector<ArgInfo, 8> InArgs;
1057   if (!Info.CanLowerReturn) {
1058     insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1059                     Info.DemoteRegister, Info.DemoteStackIndex);
1060   } else if (!Info.OrigRet.Ty->isVoidTy()) {
1061     splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
1062   }
1063 
1064   // Make sure the raw argument copies are inserted before the marshalling to
1065   // the original types.
1066   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), CallSeqEnd);
1067 
1068   // Finally we can copy the returned value back into its virtual-register. In
1069   // symmetry with the arguments, the physical register must be an
1070   // implicit-define of the call instruction.
1071   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1072     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1073                                                       Info.IsVarArg);
1074     CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
1075     if (!handleAssignments(MIRBuilder, InArgs, Handler, Info.CallConv,
1076                            Info.IsVarArg))
1077       return false;
1078   }
1079 
1080   uint64_t CalleePopBytes = NumBytes;
1081   CallSeqEnd.addImm(0)
1082             .addImm(CalleePopBytes);
1083 
1084   // Restore the insert point to after the call sequence.
1085   MIRBuilder.setInsertPt(MIRBuilder.getMBB(), OrigInsertPt);
1086   return true;
1087 }
1088