1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPULegalizerInfo.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "SIRegisterInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 26 #define DEBUG_TYPE "amdgpu-call-lowering" 27 28 using namespace llvm; 29 30 namespace { 31 32 struct AMDGPUValueHandler : public CallLowering::ValueHandler { 33 AMDGPUValueHandler(bool IsIncoming, MachineIRBuilder &B, 34 MachineRegisterInfo &MRI, CCAssignFn *AssignFn) 35 : ValueHandler(IsIncoming, B, MRI, AssignFn) {} 36 37 /// Wrapper around extendRegister to ensure we extend to a full 32-bit 38 /// register. 39 Register extendRegisterMin32(Register ValVReg, CCValAssign &VA) { 40 if (VA.getLocVT().getSizeInBits() < 32) { 41 // 16-bit types are reported as legal for 32-bit registers. We need to 42 // extend and do a 32-bit copy to avoid the verifier complaining about it. 43 return MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0); 44 } 45 46 return extendRegister(ValVReg, VA); 47 } 48 }; 49 50 struct AMDGPUOutgoingValueHandler : public AMDGPUValueHandler { 51 AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 52 MachineInstrBuilder MIB, CCAssignFn *AssignFn) 53 : AMDGPUValueHandler(false, B, MRI, AssignFn), MIB(MIB) {} 54 55 MachineInstrBuilder MIB; 56 57 Register getStackAddress(uint64_t Size, int64_t Offset, 58 MachinePointerInfo &MPO) override { 59 llvm_unreachable("not implemented"); 60 } 61 62 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 63 MachinePointerInfo &MPO, CCValAssign &VA) override { 64 llvm_unreachable("not implemented"); 65 } 66 67 void assignValueToReg(Register ValVReg, Register PhysReg, 68 CCValAssign &VA) override { 69 Register ExtReg = extendRegisterMin32(ValVReg, VA); 70 71 // If this is a scalar return, insert a readfirstlane just in case the value 72 // ends up in a VGPR. 73 // FIXME: Assert this is a shader return. 74 const SIRegisterInfo *TRI 75 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 76 if (TRI->isSGPRReg(MRI, PhysReg)) { 77 auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane, 78 {MRI.getType(ExtReg)}, false) 79 .addReg(ExtReg); 80 ExtReg = ToSGPR.getReg(0); 81 } 82 83 MIRBuilder.buildCopy(PhysReg, ExtReg); 84 MIB.addUse(PhysReg, RegState::Implicit); 85 } 86 87 bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT, 88 CCValAssign::LocInfo LocInfo, 89 const CallLowering::ArgInfo &Info, 90 ISD::ArgFlagsTy Flags, 91 CCState &State) override { 92 return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State); 93 } 94 }; 95 96 struct AMDGPUIncomingArgHandler : public AMDGPUValueHandler { 97 uint64_t StackUsed = 0; 98 99 AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 100 CCAssignFn *AssignFn) 101 : AMDGPUValueHandler(true, B, MRI, AssignFn) {} 102 103 Register getStackAddress(uint64_t Size, int64_t Offset, 104 MachinePointerInfo &MPO) override { 105 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 106 int FI = MFI.CreateFixedObject(Size, Offset, true); 107 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 108 auto AddrReg = MIRBuilder.buildFrameIndex( 109 LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI); 110 StackUsed = std::max(StackUsed, Size + Offset); 111 return AddrReg.getReg(0); 112 } 113 114 void assignValueToReg(Register ValVReg, Register PhysReg, 115 CCValAssign &VA) override { 116 markPhysRegUsed(PhysReg); 117 118 if (VA.getLocVT().getSizeInBits() < 32) { 119 // 16-bit types are reported as legal for 32-bit registers. We need to do 120 // a 32-bit copy, and truncate to avoid the verifier complaining about it. 121 auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg); 122 MIRBuilder.buildTrunc(ValVReg, Copy); 123 return; 124 } 125 126 switch (VA.getLocInfo()) { 127 case CCValAssign::LocInfo::SExt: 128 case CCValAssign::LocInfo::ZExt: 129 case CCValAssign::LocInfo::AExt: { 130 auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg); 131 MIRBuilder.buildTrunc(ValVReg, Copy); 132 break; 133 } 134 default: 135 MIRBuilder.buildCopy(ValVReg, PhysReg); 136 break; 137 } 138 } 139 140 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize, 141 MachinePointerInfo &MPO, CCValAssign &VA) override { 142 MachineFunction &MF = MIRBuilder.getMF(); 143 144 // The reported memory location may be wider than the value. 145 const LLT RegTy = MRI.getType(ValVReg); 146 MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize); 147 148 // FIXME: Get alignment 149 auto MMO = MF.getMachineMemOperand( 150 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize, 151 inferAlignFromPtrInfo(MF, MPO)); 152 MIRBuilder.buildLoad(ValVReg, Addr, *MMO); 153 } 154 155 /// How the physical register gets marked varies between formal 156 /// parameters (it's a basic-block live-in), and a call instruction 157 /// (it's an implicit-def of the BL). 158 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 159 }; 160 161 struct FormalArgHandler : public AMDGPUIncomingArgHandler { 162 FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 163 CCAssignFn *AssignFn) 164 : AMDGPUIncomingArgHandler(B, MRI, AssignFn) {} 165 166 void markPhysRegUsed(unsigned PhysReg) override { 167 MIRBuilder.getMBB().addLiveIn(PhysReg); 168 } 169 }; 170 171 struct CallReturnHandler : public AMDGPUIncomingArgHandler { 172 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 173 MachineInstrBuilder MIB, CCAssignFn *AssignFn) 174 : AMDGPUIncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {} 175 176 void markPhysRegUsed(unsigned PhysReg) override { 177 MIB.addDef(PhysReg, RegState::Implicit); 178 } 179 180 MachineInstrBuilder MIB; 181 }; 182 183 struct AMDGPUOutgoingArgHandler : public AMDGPUValueHandler { 184 MachineInstrBuilder MIB; 185 CCAssignFn *AssignFnVarArg; 186 187 /// For tail calls, the byte offset of the call's argument area from the 188 /// callee's. Unused elsewhere. 189 int FPDiff; 190 191 // Cache the SP register vreg if we need it more than once in this call site. 192 Register SPReg; 193 194 bool IsTailCall; 195 196 AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder, 197 MachineRegisterInfo &MRI, MachineInstrBuilder MIB, 198 CCAssignFn *AssignFn, CCAssignFn *AssignFnVarArg, 199 bool IsTailCall = false, int FPDiff = 0) 200 : AMDGPUValueHandler(false, MIRBuilder, MRI, AssignFn), MIB(MIB), 201 AssignFnVarArg(AssignFnVarArg), FPDiff(FPDiff), IsTailCall(IsTailCall) { 202 } 203 204 Register getStackAddress(uint64_t Size, int64_t Offset, 205 MachinePointerInfo &MPO) override { 206 MachineFunction &MF = MIRBuilder.getMF(); 207 const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32); 208 const LLT S32 = LLT::scalar(32); 209 210 if (IsTailCall) { 211 llvm_unreachable("implement me"); 212 } 213 214 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 215 216 if (!SPReg) 217 SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0); 218 219 auto OffsetReg = MIRBuilder.buildConstant(S32, Offset); 220 221 auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg); 222 MPO = MachinePointerInfo::getStack(MF, Offset); 223 return AddrReg.getReg(0); 224 } 225 226 void assignValueToReg(Register ValVReg, Register PhysReg, 227 CCValAssign &VA) override { 228 MIB.addUse(PhysReg, RegState::Implicit); 229 Register ExtReg = extendRegisterMin32(ValVReg, VA); 230 MIRBuilder.buildCopy(PhysReg, ExtReg); 231 } 232 233 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 234 MachinePointerInfo &MPO, CCValAssign &VA) override { 235 MachineFunction &MF = MIRBuilder.getMF(); 236 uint64_t LocMemOffset = VA.getLocMemOffset(); 237 const auto &ST = MF.getSubtarget<GCNSubtarget>(); 238 239 auto MMO = MF.getMachineMemOperand( 240 MPO, MachineMemOperand::MOStore, Size, 241 commonAlignment(ST.getStackAlignment(), LocMemOffset)); 242 MIRBuilder.buildStore(ValVReg, Addr, *MMO); 243 } 244 245 void assignValueToAddress(const CallLowering::ArgInfo &Arg, 246 unsigned ValRegIndex, Register Addr, 247 uint64_t MemSize, MachinePointerInfo &MPO, 248 CCValAssign &VA) override { 249 Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt 250 ? extendRegister(Arg.Regs[ValRegIndex], VA) 251 : Arg.Regs[ValRegIndex]; 252 253 // If we extended the value type we might need to adjust the MMO's 254 // Size. This happens if ComputeValueVTs widened a small type value to a 255 // legal register type (e.g. s8->s16) 256 const LLT RegTy = MRI.getType(ValVReg); 257 MemSize = std::min(MemSize, (uint64_t)RegTy.getSizeInBytes()); 258 assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA); 259 } 260 }; 261 } 262 263 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI) 264 : CallLowering(&TLI) { 265 } 266 267 // FIXME: Compatability shim 268 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) { 269 switch (MIOpc) { 270 case TargetOpcode::G_SEXT: 271 return ISD::SIGN_EXTEND; 272 case TargetOpcode::G_ZEXT: 273 return ISD::ZERO_EXTEND; 274 case TargetOpcode::G_ANYEXT: 275 return ISD::ANY_EXTEND; 276 default: 277 llvm_unreachable("not an extend opcode"); 278 } 279 } 280 281 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF, 282 CallingConv::ID CallConv, 283 SmallVectorImpl<BaseArgInfo> &Outs, 284 bool IsVarArg) const { 285 // For shaders. Vector types should be explicitly handled by CC. 286 if (AMDGPU::isEntryFunctionCC(CallConv)) 287 return true; 288 289 SmallVector<CCValAssign, 16> ArgLocs; 290 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 291 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, 292 MF.getFunction().getContext()); 293 294 return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg)); 295 } 296 297 /// Lower the return value for the already existing \p Ret. This assumes that 298 /// \p B's insertion point is correct. 299 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B, 300 const Value *Val, ArrayRef<Register> VRegs, 301 MachineInstrBuilder &Ret) const { 302 if (!Val) 303 return true; 304 305 auto &MF = B.getMF(); 306 const auto &F = MF.getFunction(); 307 const DataLayout &DL = MF.getDataLayout(); 308 MachineRegisterInfo *MRI = B.getMRI(); 309 LLVMContext &Ctx = F.getContext(); 310 311 CallingConv::ID CC = F.getCallingConv(); 312 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 313 314 SmallVector<EVT, 8> SplitEVTs; 315 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); 316 assert(VRegs.size() == SplitEVTs.size() && 317 "For each split Type there should be exactly one VReg."); 318 319 SmallVector<ArgInfo, 8> SplitRetInfos; 320 321 for (unsigned i = 0; i < SplitEVTs.size(); ++i) { 322 EVT VT = SplitEVTs[i]; 323 Register Reg = VRegs[i]; 324 ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx)); 325 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 326 327 if (VT.isScalarInteger()) { 328 unsigned ExtendOp = TargetOpcode::G_ANYEXT; 329 if (RetInfo.Flags[0].isSExt()) { 330 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 331 ExtendOp = TargetOpcode::G_SEXT; 332 } else if (RetInfo.Flags[0].isZExt()) { 333 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 334 ExtendOp = TargetOpcode::G_ZEXT; 335 } 336 337 EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT, 338 extOpcodeToISDExtOpcode(ExtendOp)); 339 if (ExtVT != VT) { 340 RetInfo.Ty = ExtVT.getTypeForEVT(Ctx); 341 LLT ExtTy = getLLTForType(*RetInfo.Ty, DL); 342 Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0); 343 } 344 } 345 346 if (Reg != RetInfo.Regs[0]) { 347 RetInfo.Regs[0] = Reg; 348 // Reset the arg flags after modifying Reg. 349 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 350 } 351 352 splitToValueTypes(RetInfo, SplitRetInfos, DL, CC); 353 } 354 355 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg()); 356 AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn); 357 return handleAssignments(B, SplitRetInfos, RetHandler, CC, F.isVarArg()); 358 } 359 360 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val, 361 ArrayRef<Register> VRegs, 362 FunctionLoweringInfo &FLI) const { 363 364 MachineFunction &MF = B.getMF(); 365 MachineRegisterInfo &MRI = MF.getRegInfo(); 366 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 367 MFI->setIfReturnsVoid(!Val); 368 369 assert(!Val == VRegs.empty() && "Return value without a vreg"); 370 371 CallingConv::ID CC = B.getMF().getFunction().getCallingConv(); 372 const bool IsShader = AMDGPU::isShader(CC); 373 const bool IsWaveEnd = 374 (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC); 375 if (IsWaveEnd) { 376 B.buildInstr(AMDGPU::S_ENDPGM) 377 .addImm(0); 378 return true; 379 } 380 381 auto const &ST = MF.getSubtarget<GCNSubtarget>(); 382 383 unsigned ReturnOpc = 384 IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return; 385 386 auto Ret = B.buildInstrNoInsert(ReturnOpc); 387 Register ReturnAddrVReg; 388 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 389 ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass); 390 Ret.addUse(ReturnAddrVReg); 391 } 392 393 if (!FLI.CanLowerReturn) 394 insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister); 395 else if (!lowerReturnVal(B, Val, VRegs, Ret)) 396 return false; 397 398 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 399 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 400 Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF), 401 &AMDGPU::SGPR_64RegClass); 402 B.buildCopy(ReturnAddrVReg, LiveInReturn); 403 } 404 405 // TODO: Handle CalleeSavedRegsViaCopy. 406 407 B.insertInstr(Ret); 408 return true; 409 } 410 411 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B, 412 Type *ParamTy, 413 uint64_t Offset) const { 414 MachineFunction &MF = B.getMF(); 415 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 416 MachineRegisterInfo &MRI = MF.getRegInfo(); 417 Register KernArgSegmentPtr = 418 MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 419 Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr); 420 421 auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset); 422 423 B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg); 424 } 425 426 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy, 427 uint64_t Offset, Align Alignment, 428 Register DstReg) const { 429 MachineFunction &MF = B.getMF(); 430 const Function &F = MF.getFunction(); 431 const DataLayout &DL = F.getParent()->getDataLayout(); 432 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 433 unsigned TypeSize = DL.getTypeStoreSize(ParamTy); 434 435 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 436 Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy); 437 lowerParameterPtr(PtrReg, B, ParamTy, Offset); 438 439 MachineMemOperand *MMO = MF.getMachineMemOperand( 440 PtrInfo, 441 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 442 MachineMemOperand::MOInvariant, 443 TypeSize, Alignment); 444 445 B.buildLoad(DstReg, PtrReg, *MMO); 446 } 447 448 // Allocate special inputs passed in user SGPRs. 449 static void allocateHSAUserSGPRs(CCState &CCInfo, 450 MachineIRBuilder &B, 451 MachineFunction &MF, 452 const SIRegisterInfo &TRI, 453 SIMachineFunctionInfo &Info) { 454 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 455 if (Info.hasPrivateSegmentBuffer()) { 456 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 457 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 458 CCInfo.AllocateReg(PrivateSegmentBufferReg); 459 } 460 461 if (Info.hasDispatchPtr()) { 462 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 463 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 464 CCInfo.AllocateReg(DispatchPtrReg); 465 } 466 467 if (Info.hasQueuePtr()) { 468 Register QueuePtrReg = Info.addQueuePtr(TRI); 469 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 470 CCInfo.AllocateReg(QueuePtrReg); 471 } 472 473 if (Info.hasKernargSegmentPtr()) { 474 MachineRegisterInfo &MRI = MF.getRegInfo(); 475 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 476 const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 477 Register VReg = MRI.createGenericVirtualRegister(P4); 478 MRI.addLiveIn(InputPtrReg, VReg); 479 B.getMBB().addLiveIn(InputPtrReg); 480 B.buildCopy(VReg, InputPtrReg); 481 CCInfo.AllocateReg(InputPtrReg); 482 } 483 484 if (Info.hasDispatchID()) { 485 Register DispatchIDReg = Info.addDispatchID(TRI); 486 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 487 CCInfo.AllocateReg(DispatchIDReg); 488 } 489 490 if (Info.hasFlatScratchInit()) { 491 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 492 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 493 CCInfo.AllocateReg(FlatScratchInitReg); 494 } 495 496 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 497 // these from the dispatch pointer. 498 } 499 500 bool AMDGPUCallLowering::lowerFormalArgumentsKernel( 501 MachineIRBuilder &B, const Function &F, 502 ArrayRef<ArrayRef<Register>> VRegs) const { 503 MachineFunction &MF = B.getMF(); 504 const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>(); 505 MachineRegisterInfo &MRI = MF.getRegInfo(); 506 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 507 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 508 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 509 510 const DataLayout &DL = F.getParent()->getDataLayout(); 511 512 SmallVector<CCValAssign, 16> ArgLocs; 513 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); 514 515 allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info); 516 517 unsigned i = 0; 518 const Align KernArgBaseAlign(16); 519 const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F); 520 uint64_t ExplicitArgOffset = 0; 521 522 // TODO: Align down to dword alignment and extract bits for extending loads. 523 for (auto &Arg : F.args()) { 524 const bool IsByRef = Arg.hasByRefAttr(); 525 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 526 unsigned AllocSize = DL.getTypeAllocSize(ArgTy); 527 if (AllocSize == 0) 528 continue; 529 530 MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None; 531 if (!ABIAlign) 532 ABIAlign = DL.getABITypeAlign(ArgTy); 533 534 uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset; 535 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize; 536 537 if (Arg.use_empty()) { 538 ++i; 539 continue; 540 } 541 542 Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset); 543 544 if (IsByRef) { 545 unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace(); 546 547 assert(VRegs[i].size() == 1 && 548 "expected only one register for byval pointers"); 549 if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) { 550 lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset); 551 } else { 552 const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 553 Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy); 554 lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset); 555 556 B.buildAddrSpaceCast(VRegs[i][0], PtrReg); 557 } 558 } else { 559 ArrayRef<Register> OrigArgRegs = VRegs[i]; 560 Register ArgReg = 561 OrigArgRegs.size() == 1 562 ? OrigArgRegs[0] 563 : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL)); 564 565 lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg); 566 if (OrigArgRegs.size() > 1) 567 unpackRegs(OrigArgRegs, ArgReg, ArgTy, B); 568 } 569 570 ++i; 571 } 572 573 TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 574 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false); 575 return true; 576 } 577 578 bool AMDGPUCallLowering::lowerFormalArguments( 579 MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs, 580 FunctionLoweringInfo &FLI) const { 581 CallingConv::ID CC = F.getCallingConv(); 582 583 // The infrastructure for normal calling convention lowering is essentially 584 // useless for kernels. We want to avoid any kind of legalization or argument 585 // splitting. 586 if (CC == CallingConv::AMDGPU_KERNEL) 587 return lowerFormalArgumentsKernel(B, F, VRegs); 588 589 const bool IsGraphics = AMDGPU::isGraphics(CC); 590 const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC); 591 592 MachineFunction &MF = B.getMF(); 593 MachineBasicBlock &MBB = B.getMBB(); 594 MachineRegisterInfo &MRI = MF.getRegInfo(); 595 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 596 const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>(); 597 const SIRegisterInfo *TRI = Subtarget.getRegisterInfo(); 598 const DataLayout &DL = F.getParent()->getDataLayout(); 599 600 601 SmallVector<CCValAssign, 16> ArgLocs; 602 CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext()); 603 604 if (!IsEntryFunc) { 605 Register ReturnAddrReg = TRI->getReturnAddressReg(MF); 606 Register LiveInReturn = MF.addLiveIn(ReturnAddrReg, 607 &AMDGPU::SGPR_64RegClass); 608 MBB.addLiveIn(ReturnAddrReg); 609 B.buildCopy(LiveInReturn, ReturnAddrReg); 610 } 611 612 if (Info->hasImplicitBufferPtr()) { 613 Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI); 614 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 615 CCInfo.AllocateReg(ImplicitBufferPtrReg); 616 } 617 618 SmallVector<ArgInfo, 32> SplitArgs; 619 unsigned Idx = 0; 620 unsigned PSInputNum = 0; 621 622 // Insert the hidden sret parameter if the return value won't fit in the 623 // return registers. 624 if (!FLI.CanLowerReturn) 625 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL); 626 627 for (auto &Arg : F.args()) { 628 if (DL.getTypeStoreSize(Arg.getType()) == 0) 629 continue; 630 631 const bool InReg = Arg.hasAttribute(Attribute::InReg); 632 633 // SGPR arguments to functions not implemented. 634 if (!IsGraphics && InReg) 635 return false; 636 637 if (Arg.hasAttribute(Attribute::SwiftSelf) || 638 Arg.hasAttribute(Attribute::SwiftError) || 639 Arg.hasAttribute(Attribute::Nest)) 640 return false; 641 642 if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) { 643 const bool ArgUsed = !Arg.use_empty(); 644 bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum); 645 646 if (!SkipArg) { 647 Info->markPSInputAllocated(PSInputNum); 648 if (ArgUsed) 649 Info->markPSInputEnabled(PSInputNum); 650 } 651 652 ++PSInputNum; 653 654 if (SkipArg) { 655 for (int I = 0, E = VRegs[Idx].size(); I != E; ++I) 656 B.buildUndef(VRegs[Idx][I]); 657 658 ++Idx; 659 continue; 660 } 661 } 662 663 ArgInfo OrigArg(VRegs[Idx], Arg.getType()); 664 const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex; 665 setArgFlags(OrigArg, OrigArgIdx, DL, F); 666 667 splitToValueTypes(OrigArg, SplitArgs, DL, CC); 668 ++Idx; 669 } 670 671 // At least one interpolation mode must be enabled or else the GPU will 672 // hang. 673 // 674 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 675 // set PSInputAddr, the user wants to enable some bits after the compilation 676 // based on run-time states. Since we can't know what the final PSInputEna 677 // will look like, so we shouldn't do anything here and the user should take 678 // responsibility for the correct programming. 679 // 680 // Otherwise, the following restrictions apply: 681 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 682 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 683 // enabled too. 684 if (CC == CallingConv::AMDGPU_PS) { 685 if ((Info->getPSInputAddr() & 0x7F) == 0 || 686 ((Info->getPSInputAddr() & 0xF) == 0 && 687 Info->isPSInputAllocated(11))) { 688 CCInfo.AllocateReg(AMDGPU::VGPR0); 689 CCInfo.AllocateReg(AMDGPU::VGPR1); 690 Info->markPSInputAllocated(0); 691 Info->markPSInputEnabled(0); 692 } 693 694 if (Subtarget.isAmdPalOS()) { 695 // For isAmdPalOS, the user does not enable some bits after compilation 696 // based on run-time states; the register values being generated here are 697 // the final ones set in hardware. Therefore we need to apply the 698 // workaround to PSInputAddr and PSInputEnable together. (The case where 699 // a bit is set in PSInputAddr but not PSInputEnable is where the frontend 700 // set up an input arg for a particular interpolation mode, but nothing 701 // uses that input arg. Really we should have an earlier pass that removes 702 // such an arg.) 703 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 704 if ((PsInputBits & 0x7F) == 0 || 705 ((PsInputBits & 0xF) == 0 && 706 (PsInputBits >> 11 & 1))) 707 Info->markPSInputEnabled( 708 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 709 } 710 } 711 712 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 713 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg()); 714 715 if (!MBB.empty()) 716 B.setInstr(*MBB.begin()); 717 718 if (!IsEntryFunc) { 719 // For the fixed ABI, pass workitem IDs in the last argument register. 720 if (AMDGPUTargetMachine::EnableFixedFunctionABI) 721 TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 722 } 723 724 FormalArgHandler Handler(B, MRI, AssignFn); 725 if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler)) 726 return false; 727 728 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) { 729 // Special inputs come after user arguments. 730 TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); 731 } 732 733 // Start adding system SGPRs. 734 if (IsEntryFunc) { 735 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics); 736 } else { 737 if (!Subtarget.enableFlatScratch()) 738 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 739 TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 740 } 741 742 // Move back to the end of the basic block. 743 B.setMBB(MBB); 744 745 return true; 746 } 747 748 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder, 749 CCState &CCInfo, 750 SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs, 751 CallLoweringInfo &Info) const { 752 MachineFunction &MF = MIRBuilder.getMF(); 753 754 const AMDGPUFunctionArgInfo *CalleeArgInfo 755 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 756 757 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 758 const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo(); 759 760 761 // TODO: Unify with private memory register handling. This is complicated by 762 // the fact that at least in kernels, the input argument is not necessarily 763 // in the same location as the input. 764 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 765 AMDGPUFunctionArgInfo::DISPATCH_PTR, 766 AMDGPUFunctionArgInfo::QUEUE_PTR, 767 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, 768 AMDGPUFunctionArgInfo::DISPATCH_ID, 769 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 770 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 771 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z 772 }; 773 774 MachineRegisterInfo &MRI = MF.getRegInfo(); 775 776 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 777 const AMDGPULegalizerInfo *LI 778 = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo()); 779 780 for (auto InputID : InputRegs) { 781 const ArgDescriptor *OutgoingArg; 782 const TargetRegisterClass *ArgRC; 783 LLT ArgTy; 784 785 std::tie(OutgoingArg, ArgRC, ArgTy) = 786 CalleeArgInfo->getPreloadedValue(InputID); 787 if (!OutgoingArg) 788 continue; 789 790 const ArgDescriptor *IncomingArg; 791 const TargetRegisterClass *IncomingArgRC; 792 std::tie(IncomingArg, IncomingArgRC, ArgTy) = 793 CallerArgInfo.getPreloadedValue(InputID); 794 assert(IncomingArgRC == ArgRC); 795 796 Register InputReg = MRI.createGenericVirtualRegister(ArgTy); 797 798 if (IncomingArg) { 799 LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy); 800 } else { 801 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 802 LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder); 803 } 804 805 if (OutgoingArg->isRegister()) { 806 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 807 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 808 report_fatal_error("failed to allocate implicit input argument"); 809 } else { 810 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 811 return false; 812 } 813 } 814 815 // Pack workitem IDs into a single register or pass it as is if already 816 // packed. 817 const ArgDescriptor *OutgoingArg; 818 const TargetRegisterClass *ArgRC; 819 LLT ArgTy; 820 821 std::tie(OutgoingArg, ArgRC, ArgTy) = 822 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 823 if (!OutgoingArg) 824 std::tie(OutgoingArg, ArgRC, ArgTy) = 825 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 826 if (!OutgoingArg) 827 std::tie(OutgoingArg, ArgRC, ArgTy) = 828 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 829 if (!OutgoingArg) 830 return false; 831 832 auto WorkitemIDX = 833 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 834 auto WorkitemIDY = 835 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 836 auto WorkitemIDZ = 837 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 838 839 const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX); 840 const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY); 841 const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ); 842 const LLT S32 = LLT::scalar(32); 843 844 // If incoming ids are not packed we need to pack them. 845 // FIXME: Should consider known workgroup size to eliminate known 0 cases. 846 Register InputReg; 847 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) { 848 InputReg = MRI.createGenericVirtualRegister(S32); 849 LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX, 850 std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX)); 851 } 852 853 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) { 854 Register Y = MRI.createGenericVirtualRegister(S32); 855 LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY), 856 std::get<2>(WorkitemIDY)); 857 858 Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0); 859 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y; 860 } 861 862 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) { 863 Register Z = MRI.createGenericVirtualRegister(S32); 864 LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ), 865 std::get<2>(WorkitemIDZ)); 866 867 Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0); 868 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z; 869 } 870 871 if (!InputReg) { 872 InputReg = MRI.createGenericVirtualRegister(S32); 873 874 // Workitem ids are already packed, any of present incoming arguments will 875 // carry all required fields. 876 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 877 IncomingArgX ? *IncomingArgX : 878 IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u); 879 LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg, 880 &AMDGPU::VGPR_32RegClass, S32); 881 } 882 883 if (OutgoingArg->isRegister()) { 884 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 885 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 886 report_fatal_error("failed to allocate implicit input argument"); 887 } else { 888 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 889 return false; 890 } 891 892 return true; 893 } 894 895 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for 896 /// CC. 897 static std::pair<CCAssignFn *, CCAssignFn *> 898 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) { 899 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; 900 } 901 902 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, 903 bool IsTailCall) { 904 return AMDGPU::SI_CALL; 905 } 906 907 // Add operands to call instruction to track the callee. 908 static bool addCallTargetOperands(MachineInstrBuilder &CallInst, 909 MachineIRBuilder &MIRBuilder, 910 AMDGPUCallLowering::CallLoweringInfo &Info) { 911 if (Info.Callee.isReg()) { 912 CallInst.addReg(Info.Callee.getReg()); 913 CallInst.addImm(0); 914 } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) { 915 // The call lowering lightly assumed we can directly encode a call target in 916 // the instruction, which is not the case. Materialize the address here. 917 const GlobalValue *GV = Info.Callee.getGlobal(); 918 auto Ptr = MIRBuilder.buildGlobalValue( 919 LLT::pointer(GV->getAddressSpace(), 64), GV); 920 CallInst.addReg(Ptr.getReg(0)); 921 CallInst.add(Info.Callee); 922 } else 923 return false; 924 925 return true; 926 } 927 928 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 929 CallLoweringInfo &Info) const { 930 if (Info.IsVarArg) { 931 LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n"); 932 return false; 933 } 934 935 MachineFunction &MF = MIRBuilder.getMF(); 936 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 937 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 938 939 const Function &F = MF.getFunction(); 940 MachineRegisterInfo &MRI = MF.getRegInfo(); 941 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 942 const DataLayout &DL = F.getParent()->getDataLayout(); 943 CallingConv::ID CallConv = F.getCallingConv(); 944 945 if (!AMDGPUTargetMachine::EnableFixedFunctionABI && 946 CallConv != CallingConv::AMDGPU_Gfx) { 947 LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n"); 948 return false; 949 } 950 951 if (AMDGPU::isShader(CallConv)) { 952 LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n"); 953 return false; 954 } 955 956 SmallVector<ArgInfo, 8> OutArgs; 957 for (auto &OrigArg : Info.OrigArgs) 958 splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv); 959 960 // If we can lower as a tail call, do that instead. 961 bool CanTailCallOpt = false; 962 963 // We must emit a tail call if we have musttail. 964 if (Info.IsMustTailCall && !CanTailCallOpt) { 965 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); 966 return false; 967 } 968 969 // Find out which ABI gets to decide where things go. 970 CCAssignFn *AssignFnFixed; 971 CCAssignFn *AssignFnVarArg; 972 std::tie(AssignFnFixed, AssignFnVarArg) = 973 getAssignFnsForCC(Info.CallConv, TLI); 974 975 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP) 976 .addImm(0) 977 .addImm(0); 978 979 // Create a temporarily-floating call instruction so we can add the implicit 980 // uses of arg registers. 981 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false); 982 983 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 984 MIB.addDef(TRI->getReturnAddressReg(MF)); 985 986 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 987 return false; 988 989 // Tell the call which registers are clobbered. 990 const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv); 991 MIB.addRegMask(Mask); 992 993 SmallVector<CCValAssign, 16> ArgLocs; 994 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 995 996 // We could pass MIB and directly add the implicit uses to the call 997 // now. However, as an aesthetic choice, place implicit argument operands 998 // after the ordinary user argument registers. 999 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1000 1001 if (AMDGPUTargetMachine::EnableFixedFunctionABI && 1002 Info.CallConv != CallingConv::AMDGPU_Gfx) { 1003 // With a fixed ABI, allocate fixed registers before user arguments. 1004 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1005 return false; 1006 } 1007 1008 // Do the actual argument marshalling. 1009 SmallVector<Register, 8> PhysRegs; 1010 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed, 1011 AssignFnVarArg, false); 1012 if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, OutArgs, Handler)) 1013 return false; 1014 1015 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1016 1017 if (!ST.enableFlatScratch()) { 1018 // Insert copies for the SRD. In the HSA case, this should be an identity 1019 // copy. 1020 auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::vector(4, 32), 1021 MFI->getScratchRSrcReg()); 1022 MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 1023 MIB.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit); 1024 } 1025 1026 for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) { 1027 MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second); 1028 MIB.addReg(ArgReg.first, RegState::Implicit); 1029 } 1030 1031 // Get a count of how many bytes are to be pushed on the stack. 1032 unsigned NumBytes = CCInfo.getNextStackOffset(); 1033 1034 // If Callee is a reg, since it is used by a target specific 1035 // instruction, it must have a register class matching the 1036 // constraint of that instruction. 1037 1038 // FIXME: We should define regbankselectable call instructions to handle 1039 // divergent call targets. 1040 if (MIB->getOperand(1).isReg()) { 1041 MIB->getOperand(1).setReg(constrainOperandRegClass( 1042 MF, *TRI, MRI, *ST.getInstrInfo(), 1043 *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1), 1044 1)); 1045 } 1046 1047 auto OrigInsertPt = MIRBuilder.getInsertPt(); 1048 1049 // Now we can add the actual call instruction to the correct position. 1050 MIRBuilder.insertInstr(MIB); 1051 1052 // Insert this now to give us an anchor point for managing the insert point. 1053 MachineInstrBuilder CallSeqEnd = 1054 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN); 1055 1056 SmallVector<ArgInfo, 8> InArgs; 1057 if (!Info.CanLowerReturn) { 1058 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs, 1059 Info.DemoteRegister, Info.DemoteStackIndex); 1060 } else if (!Info.OrigRet.Ty->isVoidTy()) { 1061 splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv); 1062 } 1063 1064 // Make sure the raw argument copies are inserted before the marshalling to 1065 // the original types. 1066 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), CallSeqEnd); 1067 1068 // Finally we can copy the returned value back into its virtual-register. In 1069 // symmetry with the arguments, the physical register must be an 1070 // implicit-define of the call instruction. 1071 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { 1072 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, 1073 Info.IsVarArg); 1074 CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn); 1075 if (!handleAssignments(MIRBuilder, InArgs, Handler, Info.CallConv, 1076 Info.IsVarArg)) 1077 return false; 1078 } 1079 1080 uint64_t CalleePopBytes = NumBytes; 1081 CallSeqEnd.addImm(0) 1082 .addImm(CalleePopBytes); 1083 1084 // Restore the insert point to after the call sequence. 1085 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), OrigInsertPt); 1086 return true; 1087 } 1088