1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPULegalizerInfo.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "SIRegisterInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 26 #define DEBUG_TYPE "amdgpu-call-lowering" 27 28 using namespace llvm; 29 30 namespace { 31 32 struct AMDGPUValueHandler : public CallLowering::ValueHandler { 33 AMDGPUValueHandler(bool IsIncoming, MachineIRBuilder &B, 34 MachineRegisterInfo &MRI, CCAssignFn *AssignFn) 35 : ValueHandler(IsIncoming, B, MRI, AssignFn) {} 36 37 /// Wrapper around extendRegister to ensure we extend to a full 32-bit 38 /// register. 39 Register extendRegisterMin32(Register ValVReg, CCValAssign &VA) { 40 if (VA.getLocVT().getSizeInBits() < 32) { 41 // 16-bit types are reported as legal for 32-bit registers. We need to 42 // extend and do a 32-bit copy to avoid the verifier complaining about it. 43 return MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0); 44 } 45 46 return extendRegister(ValVReg, VA); 47 } 48 }; 49 50 struct AMDGPUOutgoingValueHandler : public AMDGPUValueHandler { 51 AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 52 MachineInstrBuilder MIB, CCAssignFn *AssignFn) 53 : AMDGPUValueHandler(false, B, MRI, AssignFn), MIB(MIB) {} 54 55 MachineInstrBuilder MIB; 56 57 Register getStackAddress(uint64_t Size, int64_t Offset, 58 MachinePointerInfo &MPO) override { 59 llvm_unreachable("not implemented"); 60 } 61 62 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 63 MachinePointerInfo &MPO, CCValAssign &VA) override { 64 llvm_unreachable("not implemented"); 65 } 66 67 void assignValueToReg(Register ValVReg, Register PhysReg, 68 CCValAssign &VA) override { 69 Register ExtReg = extendRegisterMin32(ValVReg, VA); 70 71 // If this is a scalar return, insert a readfirstlane just in case the value 72 // ends up in a VGPR. 73 // FIXME: Assert this is a shader return. 74 const SIRegisterInfo *TRI 75 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 76 if (TRI->isSGPRReg(MRI, PhysReg)) { 77 auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane, 78 {MRI.getType(ExtReg)}, false) 79 .addReg(ExtReg); 80 ExtReg = ToSGPR.getReg(0); 81 } 82 83 MIRBuilder.buildCopy(PhysReg, ExtReg); 84 MIB.addUse(PhysReg, RegState::Implicit); 85 } 86 87 bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT, 88 CCValAssign::LocInfo LocInfo, 89 const CallLowering::ArgInfo &Info, 90 ISD::ArgFlagsTy Flags, 91 CCState &State) override { 92 return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State); 93 } 94 }; 95 96 struct AMDGPUIncomingArgHandler : public AMDGPUValueHandler { 97 uint64_t StackUsed = 0; 98 99 AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 100 CCAssignFn *AssignFn) 101 : AMDGPUValueHandler(true, B, MRI, AssignFn) {} 102 103 Register getStackAddress(uint64_t Size, int64_t Offset, 104 MachinePointerInfo &MPO) override { 105 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 106 int FI = MFI.CreateFixedObject(Size, Offset, true); 107 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 108 auto AddrReg = MIRBuilder.buildFrameIndex( 109 LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI); 110 StackUsed = std::max(StackUsed, Size + Offset); 111 return AddrReg.getReg(0); 112 } 113 114 void assignValueToReg(Register ValVReg, Register PhysReg, 115 CCValAssign &VA) override { 116 markPhysRegUsed(PhysReg); 117 118 if (VA.getLocVT().getSizeInBits() < 32) { 119 // 16-bit types are reported as legal for 32-bit registers. We need to do 120 // a 32-bit copy, and truncate to avoid the verifier complaining about it. 121 auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg); 122 MIRBuilder.buildTrunc(ValVReg, Copy); 123 return; 124 } 125 126 switch (VA.getLocInfo()) { 127 case CCValAssign::LocInfo::SExt: 128 case CCValAssign::LocInfo::ZExt: 129 case CCValAssign::LocInfo::AExt: { 130 auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg); 131 MIRBuilder.buildTrunc(ValVReg, Copy); 132 break; 133 } 134 default: 135 MIRBuilder.buildCopy(ValVReg, PhysReg); 136 break; 137 } 138 } 139 140 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize, 141 MachinePointerInfo &MPO, CCValAssign &VA) override { 142 MachineFunction &MF = MIRBuilder.getMF(); 143 144 // The reported memory location may be wider than the value. 145 const LLT RegTy = MRI.getType(ValVReg); 146 MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize); 147 148 // FIXME: Get alignment 149 auto MMO = MF.getMachineMemOperand( 150 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize, 151 inferAlignFromPtrInfo(MF, MPO)); 152 MIRBuilder.buildLoad(ValVReg, Addr, *MMO); 153 } 154 155 /// How the physical register gets marked varies between formal 156 /// parameters (it's a basic-block live-in), and a call instruction 157 /// (it's an implicit-def of the BL). 158 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 159 }; 160 161 struct FormalArgHandler : public AMDGPUIncomingArgHandler { 162 FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 163 CCAssignFn *AssignFn) 164 : AMDGPUIncomingArgHandler(B, MRI, AssignFn) {} 165 166 void markPhysRegUsed(unsigned PhysReg) override { 167 MIRBuilder.getMBB().addLiveIn(PhysReg); 168 } 169 }; 170 171 struct CallReturnHandler : public AMDGPUIncomingArgHandler { 172 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 173 MachineInstrBuilder MIB, CCAssignFn *AssignFn) 174 : AMDGPUIncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {} 175 176 void markPhysRegUsed(unsigned PhysReg) override { 177 MIB.addDef(PhysReg, RegState::Implicit); 178 } 179 180 MachineInstrBuilder MIB; 181 }; 182 183 struct AMDGPUOutgoingArgHandler : public AMDGPUValueHandler { 184 MachineInstrBuilder MIB; 185 CCAssignFn *AssignFnVarArg; 186 187 /// For tail calls, the byte offset of the call's argument area from the 188 /// callee's. Unused elsewhere. 189 int FPDiff; 190 191 // Cache the SP register vreg if we need it more than once in this call site. 192 Register SPReg; 193 194 bool IsTailCall; 195 196 AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder, 197 MachineRegisterInfo &MRI, MachineInstrBuilder MIB, 198 CCAssignFn *AssignFn, CCAssignFn *AssignFnVarArg, 199 bool IsTailCall = false, int FPDiff = 0) 200 : AMDGPUValueHandler(false, MIRBuilder, MRI, AssignFn), MIB(MIB), 201 AssignFnVarArg(AssignFnVarArg), FPDiff(FPDiff), IsTailCall(IsTailCall) { 202 } 203 204 Register getStackAddress(uint64_t Size, int64_t Offset, 205 MachinePointerInfo &MPO) override { 206 MachineFunction &MF = MIRBuilder.getMF(); 207 const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32); 208 const LLT S32 = LLT::scalar(32); 209 210 if (IsTailCall) { 211 llvm_unreachable("implement me"); 212 } 213 214 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 215 216 if (!SPReg) 217 SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0); 218 219 auto OffsetReg = MIRBuilder.buildConstant(S32, Offset); 220 221 auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg); 222 MPO = MachinePointerInfo::getStack(MF, Offset); 223 return AddrReg.getReg(0); 224 } 225 226 void assignValueToReg(Register ValVReg, Register PhysReg, 227 CCValAssign &VA) override { 228 MIB.addUse(PhysReg, RegState::Implicit); 229 Register ExtReg = extendRegisterMin32(ValVReg, VA); 230 MIRBuilder.buildCopy(PhysReg, ExtReg); 231 } 232 233 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 234 MachinePointerInfo &MPO, CCValAssign &VA) override { 235 MachineFunction &MF = MIRBuilder.getMF(); 236 uint64_t LocMemOffset = VA.getLocMemOffset(); 237 const auto &ST = MF.getSubtarget<GCNSubtarget>(); 238 239 auto MMO = MF.getMachineMemOperand( 240 MPO, MachineMemOperand::MOStore, Size, 241 commonAlignment(ST.getStackAlignment(), LocMemOffset)); 242 MIRBuilder.buildStore(ValVReg, Addr, *MMO); 243 } 244 245 void assignValueToAddress(const CallLowering::ArgInfo &Arg, 246 unsigned ValRegIndex, Register Addr, 247 uint64_t MemSize, MachinePointerInfo &MPO, 248 CCValAssign &VA) override { 249 Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt 250 ? extendRegister(Arg.Regs[ValRegIndex], VA) 251 : Arg.Regs[ValRegIndex]; 252 253 // If we extended the value type we might need to adjust the MMO's 254 // Size. This happens if ComputeValueVTs widened a small type value to a 255 // legal register type (e.g. s8->s16) 256 const LLT RegTy = MRI.getType(ValVReg); 257 MemSize = std::min(MemSize, (uint64_t)RegTy.getSizeInBytes()); 258 assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA); 259 } 260 }; 261 } 262 263 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI) 264 : CallLowering(&TLI) { 265 } 266 267 // FIXME: Compatability shim 268 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) { 269 switch (MIOpc) { 270 case TargetOpcode::G_SEXT: 271 return ISD::SIGN_EXTEND; 272 case TargetOpcode::G_ZEXT: 273 return ISD::ZERO_EXTEND; 274 case TargetOpcode::G_ANYEXT: 275 return ISD::ANY_EXTEND; 276 default: 277 llvm_unreachable("not an extend opcode"); 278 } 279 } 280 281 // FIXME: This should move to generic code. 282 void AMDGPUCallLowering::splitToValueTypes(MachineIRBuilder &B, 283 const ArgInfo &OrigArg, 284 SmallVectorImpl<ArgInfo> &SplitArgs, 285 const DataLayout &DL, 286 CallingConv::ID CallConv) const { 287 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 288 LLVMContext &Ctx = OrigArg.Ty->getContext(); 289 290 SmallVector<EVT, 4> SplitVTs; 291 ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs); 292 293 assert(OrigArg.Regs.size() == SplitVTs.size()); 294 295 if (SplitVTs.size() == 0) 296 return; 297 298 if (SplitVTs.size() == 1) { 299 // No splitting to do, but we want to replace the original type (e.g. [1 x 300 // double] -> double). 301 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 302 OrigArg.Flags[0], OrigArg.IsFixed); 303 return; 304 } 305 306 // Create one ArgInfo for each virtual register in the original ArgInfo. 307 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 308 309 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 310 OrigArg.Ty, CallConv, false); 311 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 312 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 313 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0], 314 OrigArg.IsFixed); 315 if (NeedsRegBlock) 316 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 317 } 318 319 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 320 } 321 322 void AMDGPUCallLowering::processSplitArgs( 323 MachineIRBuilder &B, const ArgInfo &OrigArg, 324 const SmallVectorImpl<ArgInfo> &SplitArg, 325 SmallVectorImpl<ArgInfo> &SplitArgs, const DataLayout &DL, 326 CallingConv::ID CallConv, bool IsOutgoing, 327 SplitArgTy PerformArgSplit) const { 328 LLVMContext &Ctx = OrigArg.Ty->getContext(); 329 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 330 331 // FIXME: This is mostly nasty pre-processing before handleAssignments. Most 332 // of this should be performed by handleAssignments. 333 334 for (int SplitIdx = 0, e = SplitArg.size(); SplitIdx != e; ++SplitIdx) { 335 const ArgInfo &CurSplitArg = SplitArg[SplitIdx]; 336 Register Reg = OrigArg.Regs[SplitIdx]; 337 EVT VT = EVT::getEVT(CurSplitArg.Ty); 338 LLT LLTy = getLLTForType(*CurSplitArg.Ty, DL); 339 340 unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT); 341 MVT RegVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT); 342 343 if (NumParts == 1) { 344 // No splitting to do, but we want to replace the original type (e.g. [1 x 345 // double] -> double). 346 SplitArgs.emplace_back(Reg, CurSplitArg.Ty, OrigArg.Flags, 347 OrigArg.IsFixed); 348 continue; 349 } 350 351 SmallVector<Register, 8> SplitRegs; 352 Type *PartTy = EVT(RegVT).getTypeForEVT(Ctx); 353 LLT PartLLT = getLLTForType(*PartTy, DL); 354 MachineRegisterInfo &MRI = *B.getMRI(); 355 356 // FIXME: Should we be reporting all of the part registers for a single 357 // argument, and let handleAssignments take care of the repacking? 358 for (unsigned i = 0; i < NumParts; ++i) { 359 Register PartReg = MRI.createGenericVirtualRegister(PartLLT); 360 SplitRegs.push_back(PartReg); 361 SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags); 362 } 363 364 PerformArgSplit(SplitRegs, Reg, LLTy, PartLLT, SplitIdx); 365 } 366 } 367 368 // TODO: Move to generic code 369 static void unpackRegsToOrigType(MachineIRBuilder &B, 370 ArrayRef<Register> DstRegs, 371 Register SrcReg, 372 const CallLowering::ArgInfo &Info, 373 LLT SrcTy, 374 LLT PartTy) { 375 assert(DstRegs.size() > 1 && "Nothing to unpack"); 376 377 const unsigned PartSize = PartTy.getSizeInBits(); 378 379 if (SrcTy.isVector() && !PartTy.isVector() && 380 PartSize > SrcTy.getElementType().getSizeInBits()) { 381 // Vector was scalarized, and the elements extended. 382 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 383 for (int i = 0, e = DstRegs.size(); i != e; ++i) 384 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 385 return; 386 } 387 388 LLT GCDTy = getGCDType(SrcTy, PartTy); 389 if (GCDTy == PartTy) { 390 // If this already evenly divisible, we can create a simple unmerge. 391 B.buildUnmerge(DstRegs, SrcReg); 392 return; 393 } 394 395 MachineRegisterInfo &MRI = *B.getMRI(); 396 LLT DstTy = MRI.getType(DstRegs[0]); 397 LLT LCMTy = getLCMType(SrcTy, PartTy); 398 399 const unsigned LCMSize = LCMTy.getSizeInBits(); 400 const unsigned DstSize = DstTy.getSizeInBits(); 401 const unsigned SrcSize = SrcTy.getSizeInBits(); 402 403 Register UnmergeSrc = SrcReg; 404 if (LCMSize != SrcSize) { 405 // Widen to the common type. 406 Register Undef = B.buildUndef(SrcTy).getReg(0); 407 SmallVector<Register, 8> MergeParts(1, SrcReg); 408 for (unsigned Size = SrcSize; Size != LCMSize; Size += SrcSize) 409 MergeParts.push_back(Undef); 410 411 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 412 } 413 414 // Unmerge to the original registers and pad with dead defs. 415 SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end()); 416 for (unsigned Size = DstSize * DstRegs.size(); Size != LCMSize; 417 Size += DstSize) { 418 UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy)); 419 } 420 421 B.buildUnmerge(UnmergeResults, UnmergeSrc); 422 } 423 424 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF, 425 CallingConv::ID CallConv, 426 SmallVectorImpl<BaseArgInfo> &Outs, 427 bool IsVarArg) const { 428 // For shaders. Vector types should be explicitly handled by CC. 429 if (AMDGPU::isEntryFunctionCC(CallConv)) 430 return true; 431 432 SmallVector<CCValAssign, 16> ArgLocs; 433 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 434 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, 435 MF.getFunction().getContext()); 436 437 return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg)); 438 } 439 440 /// Lower the return value for the already existing \p Ret. This assumes that 441 /// \p B's insertion point is correct. 442 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B, 443 const Value *Val, ArrayRef<Register> VRegs, 444 MachineInstrBuilder &Ret) const { 445 if (!Val) 446 return true; 447 448 auto &MF = B.getMF(); 449 const auto &F = MF.getFunction(); 450 const DataLayout &DL = MF.getDataLayout(); 451 MachineRegisterInfo *MRI = B.getMRI(); 452 LLVMContext &Ctx = F.getContext(); 453 454 CallingConv::ID CC = F.getCallingConv(); 455 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 456 457 SmallVector<EVT, 8> SplitEVTs; 458 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); 459 assert(VRegs.size() == SplitEVTs.size() && 460 "For each split Type there should be exactly one VReg."); 461 462 // We pre-process the return value decomposed into EVTs. 463 SmallVector<ArgInfo, 8> PreSplitRetInfos; 464 465 // Further processing is applied to split the arguments from PreSplitRetInfos 466 // into 32-bit pieces in SplitRetInfos before passing off to 467 // handleAssignments. 468 SmallVector<ArgInfo, 8> SplitRetInfos; 469 470 for (unsigned i = 0; i < SplitEVTs.size(); ++i) { 471 EVT VT = SplitEVTs[i]; 472 Register Reg = VRegs[i]; 473 ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx)); 474 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 475 476 if (VT.isScalarInteger()) { 477 unsigned ExtendOp = TargetOpcode::G_ANYEXT; 478 if (RetInfo.Flags[0].isSExt()) { 479 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 480 ExtendOp = TargetOpcode::G_SEXT; 481 } else if (RetInfo.Flags[0].isZExt()) { 482 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 483 ExtendOp = TargetOpcode::G_ZEXT; 484 } 485 486 EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT, 487 extOpcodeToISDExtOpcode(ExtendOp)); 488 if (ExtVT != VT) { 489 RetInfo.Ty = ExtVT.getTypeForEVT(Ctx); 490 LLT ExtTy = getLLTForType(*RetInfo.Ty, DL); 491 Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0); 492 } 493 } 494 495 if (Reg != RetInfo.Regs[0]) { 496 RetInfo.Regs[0] = Reg; 497 // Reset the arg flags after modifying Reg. 498 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 499 } 500 501 splitToValueTypes(B, RetInfo, PreSplitRetInfos, DL, CC); 502 503 // FIXME: This splitting should mostly be done by handleAssignments 504 processSplitArgs(B, RetInfo, 505 PreSplitRetInfos, SplitRetInfos, DL, CC, true, 506 [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, 507 LLT PartLLT, int VTSplitIdx) { 508 unpackRegsToOrigType(B, Regs, SrcReg, 509 PreSplitRetInfos[VTSplitIdx], LLTy, 510 PartLLT); 511 }); 512 PreSplitRetInfos.clear(); 513 } 514 515 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg()); 516 AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn); 517 return handleAssignments(B, SplitRetInfos, RetHandler, CC, F.isVarArg()); 518 } 519 520 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val, 521 ArrayRef<Register> VRegs, 522 FunctionLoweringInfo &FLI) const { 523 524 MachineFunction &MF = B.getMF(); 525 MachineRegisterInfo &MRI = MF.getRegInfo(); 526 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 527 MFI->setIfReturnsVoid(!Val); 528 529 assert(!Val == VRegs.empty() && "Return value without a vreg"); 530 531 CallingConv::ID CC = B.getMF().getFunction().getCallingConv(); 532 const bool IsShader = AMDGPU::isShader(CC); 533 const bool IsWaveEnd = 534 (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC); 535 if (IsWaveEnd) { 536 B.buildInstr(AMDGPU::S_ENDPGM) 537 .addImm(0); 538 return true; 539 } 540 541 auto const &ST = MF.getSubtarget<GCNSubtarget>(); 542 543 unsigned ReturnOpc = 544 IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return; 545 546 auto Ret = B.buildInstrNoInsert(ReturnOpc); 547 Register ReturnAddrVReg; 548 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 549 ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass); 550 Ret.addUse(ReturnAddrVReg); 551 } 552 553 if (!FLI.CanLowerReturn) 554 insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister); 555 else if (!lowerReturnVal(B, Val, VRegs, Ret)) 556 return false; 557 558 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 559 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 560 Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF), 561 &AMDGPU::SGPR_64RegClass); 562 B.buildCopy(ReturnAddrVReg, LiveInReturn); 563 } 564 565 // TODO: Handle CalleeSavedRegsViaCopy. 566 567 B.insertInstr(Ret); 568 return true; 569 } 570 571 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B, 572 Type *ParamTy, 573 uint64_t Offset) const { 574 MachineFunction &MF = B.getMF(); 575 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 576 MachineRegisterInfo &MRI = MF.getRegInfo(); 577 Register KernArgSegmentPtr = 578 MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 579 Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr); 580 581 auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset); 582 583 B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg); 584 } 585 586 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy, 587 uint64_t Offset, Align Alignment, 588 Register DstReg) const { 589 MachineFunction &MF = B.getMF(); 590 const Function &F = MF.getFunction(); 591 const DataLayout &DL = F.getParent()->getDataLayout(); 592 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 593 unsigned TypeSize = DL.getTypeStoreSize(ParamTy); 594 595 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 596 Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy); 597 lowerParameterPtr(PtrReg, B, ParamTy, Offset); 598 599 MachineMemOperand *MMO = MF.getMachineMemOperand( 600 PtrInfo, 601 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 602 MachineMemOperand::MOInvariant, 603 TypeSize, Alignment); 604 605 B.buildLoad(DstReg, PtrReg, *MMO); 606 } 607 608 // Allocate special inputs passed in user SGPRs. 609 static void allocateHSAUserSGPRs(CCState &CCInfo, 610 MachineIRBuilder &B, 611 MachineFunction &MF, 612 const SIRegisterInfo &TRI, 613 SIMachineFunctionInfo &Info) { 614 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 615 if (Info.hasPrivateSegmentBuffer()) { 616 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 617 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 618 CCInfo.AllocateReg(PrivateSegmentBufferReg); 619 } 620 621 if (Info.hasDispatchPtr()) { 622 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 623 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 624 CCInfo.AllocateReg(DispatchPtrReg); 625 } 626 627 if (Info.hasQueuePtr()) { 628 Register QueuePtrReg = Info.addQueuePtr(TRI); 629 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 630 CCInfo.AllocateReg(QueuePtrReg); 631 } 632 633 if (Info.hasKernargSegmentPtr()) { 634 MachineRegisterInfo &MRI = MF.getRegInfo(); 635 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 636 const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 637 Register VReg = MRI.createGenericVirtualRegister(P4); 638 MRI.addLiveIn(InputPtrReg, VReg); 639 B.getMBB().addLiveIn(InputPtrReg); 640 B.buildCopy(VReg, InputPtrReg); 641 CCInfo.AllocateReg(InputPtrReg); 642 } 643 644 if (Info.hasDispatchID()) { 645 Register DispatchIDReg = Info.addDispatchID(TRI); 646 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 647 CCInfo.AllocateReg(DispatchIDReg); 648 } 649 650 if (Info.hasFlatScratchInit()) { 651 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 652 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 653 CCInfo.AllocateReg(FlatScratchInitReg); 654 } 655 656 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 657 // these from the dispatch pointer. 658 } 659 660 bool AMDGPUCallLowering::lowerFormalArgumentsKernel( 661 MachineIRBuilder &B, const Function &F, 662 ArrayRef<ArrayRef<Register>> VRegs) const { 663 MachineFunction &MF = B.getMF(); 664 const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>(); 665 MachineRegisterInfo &MRI = MF.getRegInfo(); 666 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 667 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 668 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 669 670 const DataLayout &DL = F.getParent()->getDataLayout(); 671 672 SmallVector<CCValAssign, 16> ArgLocs; 673 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); 674 675 allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info); 676 677 unsigned i = 0; 678 const Align KernArgBaseAlign(16); 679 const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F); 680 uint64_t ExplicitArgOffset = 0; 681 682 // TODO: Align down to dword alignment and extract bits for extending loads. 683 for (auto &Arg : F.args()) { 684 const bool IsByRef = Arg.hasByRefAttr(); 685 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 686 unsigned AllocSize = DL.getTypeAllocSize(ArgTy); 687 if (AllocSize == 0) 688 continue; 689 690 MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None; 691 if (!ABIAlign) 692 ABIAlign = DL.getABITypeAlign(ArgTy); 693 694 uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset; 695 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize; 696 697 if (Arg.use_empty()) { 698 ++i; 699 continue; 700 } 701 702 Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset); 703 704 if (IsByRef) { 705 unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace(); 706 707 assert(VRegs[i].size() == 1 && 708 "expected only one register for byval pointers"); 709 if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) { 710 lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset); 711 } else { 712 const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 713 Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy); 714 lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset); 715 716 B.buildAddrSpaceCast(VRegs[i][0], PtrReg); 717 } 718 } else { 719 ArrayRef<Register> OrigArgRegs = VRegs[i]; 720 Register ArgReg = 721 OrigArgRegs.size() == 1 722 ? OrigArgRegs[0] 723 : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL)); 724 725 lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg); 726 if (OrigArgRegs.size() > 1) 727 unpackRegs(OrigArgRegs, ArgReg, ArgTy, B); 728 } 729 730 ++i; 731 } 732 733 TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 734 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false); 735 return true; 736 } 737 738 bool AMDGPUCallLowering::lowerFormalArguments( 739 MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs, 740 FunctionLoweringInfo &FLI) const { 741 CallingConv::ID CC = F.getCallingConv(); 742 743 // The infrastructure for normal calling convention lowering is essentially 744 // useless for kernels. We want to avoid any kind of legalization or argument 745 // splitting. 746 if (CC == CallingConv::AMDGPU_KERNEL) 747 return lowerFormalArgumentsKernel(B, F, VRegs); 748 749 const bool IsGraphics = AMDGPU::isGraphics(CC); 750 const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC); 751 752 MachineFunction &MF = B.getMF(); 753 MachineBasicBlock &MBB = B.getMBB(); 754 MachineRegisterInfo &MRI = MF.getRegInfo(); 755 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 756 const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>(); 757 const SIRegisterInfo *TRI = Subtarget.getRegisterInfo(); 758 const DataLayout &DL = F.getParent()->getDataLayout(); 759 760 761 SmallVector<CCValAssign, 16> ArgLocs; 762 CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext()); 763 764 if (!IsEntryFunc) { 765 Register ReturnAddrReg = TRI->getReturnAddressReg(MF); 766 Register LiveInReturn = MF.addLiveIn(ReturnAddrReg, 767 &AMDGPU::SGPR_64RegClass); 768 MBB.addLiveIn(ReturnAddrReg); 769 B.buildCopy(LiveInReturn, ReturnAddrReg); 770 } 771 772 if (Info->hasImplicitBufferPtr()) { 773 Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI); 774 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 775 CCInfo.AllocateReg(ImplicitBufferPtrReg); 776 } 777 778 SmallVector<ArgInfo, 32> SplitArgs; 779 unsigned Idx = 0; 780 unsigned PSInputNum = 0; 781 782 // Insert the hidden sret parameter if the return value won't fit in the 783 // return registers. 784 if (!FLI.CanLowerReturn) 785 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL); 786 787 for (auto &Arg : F.args()) { 788 if (DL.getTypeStoreSize(Arg.getType()) == 0) 789 continue; 790 791 const bool InReg = Arg.hasAttribute(Attribute::InReg); 792 793 // SGPR arguments to functions not implemented. 794 if (!IsGraphics && InReg) 795 return false; 796 797 if (Arg.hasAttribute(Attribute::SwiftSelf) || 798 Arg.hasAttribute(Attribute::SwiftError) || 799 Arg.hasAttribute(Attribute::Nest)) 800 return false; 801 802 if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) { 803 const bool ArgUsed = !Arg.use_empty(); 804 bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum); 805 806 if (!SkipArg) { 807 Info->markPSInputAllocated(PSInputNum); 808 if (ArgUsed) 809 Info->markPSInputEnabled(PSInputNum); 810 } 811 812 ++PSInputNum; 813 814 if (SkipArg) { 815 for (int I = 0, E = VRegs[Idx].size(); I != E; ++I) 816 B.buildUndef(VRegs[Idx][I]); 817 818 ++Idx; 819 continue; 820 } 821 } 822 823 ArgInfo OrigArg(VRegs[Idx], Arg.getType()); 824 const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex; 825 setArgFlags(OrigArg, OrigArgIdx, DL, F); 826 827 splitToValueTypes(B, OrigArg, SplitArgs, DL, CC); 828 ++Idx; 829 } 830 831 // At least one interpolation mode must be enabled or else the GPU will 832 // hang. 833 // 834 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 835 // set PSInputAddr, the user wants to enable some bits after the compilation 836 // based on run-time states. Since we can't know what the final PSInputEna 837 // will look like, so we shouldn't do anything here and the user should take 838 // responsibility for the correct programming. 839 // 840 // Otherwise, the following restrictions apply: 841 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 842 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 843 // enabled too. 844 if (CC == CallingConv::AMDGPU_PS) { 845 if ((Info->getPSInputAddr() & 0x7F) == 0 || 846 ((Info->getPSInputAddr() & 0xF) == 0 && 847 Info->isPSInputAllocated(11))) { 848 CCInfo.AllocateReg(AMDGPU::VGPR0); 849 CCInfo.AllocateReg(AMDGPU::VGPR1); 850 Info->markPSInputAllocated(0); 851 Info->markPSInputEnabled(0); 852 } 853 854 if (Subtarget.isAmdPalOS()) { 855 // For isAmdPalOS, the user does not enable some bits after compilation 856 // based on run-time states; the register values being generated here are 857 // the final ones set in hardware. Therefore we need to apply the 858 // workaround to PSInputAddr and PSInputEnable together. (The case where 859 // a bit is set in PSInputAddr but not PSInputEnable is where the frontend 860 // set up an input arg for a particular interpolation mode, but nothing 861 // uses that input arg. Really we should have an earlier pass that removes 862 // such an arg.) 863 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 864 if ((PsInputBits & 0x7F) == 0 || 865 ((PsInputBits & 0xF) == 0 && 866 (PsInputBits >> 11 & 1))) 867 Info->markPSInputEnabled( 868 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 869 } 870 } 871 872 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 873 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg()); 874 875 if (!MBB.empty()) 876 B.setInstr(*MBB.begin()); 877 878 if (!IsEntryFunc) { 879 // For the fixed ABI, pass workitem IDs in the last argument register. 880 if (AMDGPUTargetMachine::EnableFixedFunctionABI) 881 TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 882 } 883 884 FormalArgHandler Handler(B, MRI, AssignFn); 885 if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler)) 886 return false; 887 888 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) { 889 // Special inputs come after user arguments. 890 TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); 891 } 892 893 // Start adding system SGPRs. 894 if (IsEntryFunc) { 895 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics); 896 } else { 897 if (!Subtarget.enableFlatScratch()) 898 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 899 TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 900 } 901 902 // Move back to the end of the basic block. 903 B.setMBB(MBB); 904 905 return true; 906 } 907 908 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder, 909 CCState &CCInfo, 910 SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs, 911 CallLoweringInfo &Info) const { 912 MachineFunction &MF = MIRBuilder.getMF(); 913 914 const AMDGPUFunctionArgInfo *CalleeArgInfo 915 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 916 917 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 918 const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo(); 919 920 921 // TODO: Unify with private memory register handling. This is complicated by 922 // the fact that at least in kernels, the input argument is not necessarily 923 // in the same location as the input. 924 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 925 AMDGPUFunctionArgInfo::DISPATCH_PTR, 926 AMDGPUFunctionArgInfo::QUEUE_PTR, 927 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, 928 AMDGPUFunctionArgInfo::DISPATCH_ID, 929 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 930 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 931 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z 932 }; 933 934 MachineRegisterInfo &MRI = MF.getRegInfo(); 935 936 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 937 const AMDGPULegalizerInfo *LI 938 = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo()); 939 940 for (auto InputID : InputRegs) { 941 const ArgDescriptor *OutgoingArg; 942 const TargetRegisterClass *ArgRC; 943 LLT ArgTy; 944 945 std::tie(OutgoingArg, ArgRC, ArgTy) = 946 CalleeArgInfo->getPreloadedValue(InputID); 947 if (!OutgoingArg) 948 continue; 949 950 const ArgDescriptor *IncomingArg; 951 const TargetRegisterClass *IncomingArgRC; 952 std::tie(IncomingArg, IncomingArgRC, ArgTy) = 953 CallerArgInfo.getPreloadedValue(InputID); 954 assert(IncomingArgRC == ArgRC); 955 956 Register InputReg = MRI.createGenericVirtualRegister(ArgTy); 957 958 if (IncomingArg) { 959 LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy); 960 } else { 961 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 962 LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder); 963 } 964 965 if (OutgoingArg->isRegister()) { 966 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 967 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 968 report_fatal_error("failed to allocate implicit input argument"); 969 } else { 970 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 971 return false; 972 } 973 } 974 975 // Pack workitem IDs into a single register or pass it as is if already 976 // packed. 977 const ArgDescriptor *OutgoingArg; 978 const TargetRegisterClass *ArgRC; 979 LLT ArgTy; 980 981 std::tie(OutgoingArg, ArgRC, ArgTy) = 982 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 983 if (!OutgoingArg) 984 std::tie(OutgoingArg, ArgRC, ArgTy) = 985 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 986 if (!OutgoingArg) 987 std::tie(OutgoingArg, ArgRC, ArgTy) = 988 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 989 if (!OutgoingArg) 990 return false; 991 992 auto WorkitemIDX = 993 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 994 auto WorkitemIDY = 995 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 996 auto WorkitemIDZ = 997 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 998 999 const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX); 1000 const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY); 1001 const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ); 1002 const LLT S32 = LLT::scalar(32); 1003 1004 // If incoming ids are not packed we need to pack them. 1005 // FIXME: Should consider known workgroup size to eliminate known 0 cases. 1006 Register InputReg; 1007 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) { 1008 InputReg = MRI.createGenericVirtualRegister(S32); 1009 LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX, 1010 std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX)); 1011 } 1012 1013 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) { 1014 Register Y = MRI.createGenericVirtualRegister(S32); 1015 LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY), 1016 std::get<2>(WorkitemIDY)); 1017 1018 Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0); 1019 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y; 1020 } 1021 1022 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) { 1023 Register Z = MRI.createGenericVirtualRegister(S32); 1024 LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ), 1025 std::get<2>(WorkitemIDZ)); 1026 1027 Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0); 1028 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z; 1029 } 1030 1031 if (!InputReg) { 1032 InputReg = MRI.createGenericVirtualRegister(S32); 1033 1034 // Workitem ids are already packed, any of present incoming arguments will 1035 // carry all required fields. 1036 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 1037 IncomingArgX ? *IncomingArgX : 1038 IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u); 1039 LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg, 1040 &AMDGPU::VGPR_32RegClass, S32); 1041 } 1042 1043 if (OutgoingArg->isRegister()) { 1044 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 1045 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 1046 report_fatal_error("failed to allocate implicit input argument"); 1047 } else { 1048 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 1049 return false; 1050 } 1051 1052 return true; 1053 } 1054 1055 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for 1056 /// CC. 1057 static std::pair<CCAssignFn *, CCAssignFn *> 1058 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) { 1059 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; 1060 } 1061 1062 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, 1063 bool IsTailCall) { 1064 return AMDGPU::SI_CALL; 1065 } 1066 1067 // Add operands to call instruction to track the callee. 1068 static bool addCallTargetOperands(MachineInstrBuilder &CallInst, 1069 MachineIRBuilder &MIRBuilder, 1070 AMDGPUCallLowering::CallLoweringInfo &Info) { 1071 if (Info.Callee.isReg()) { 1072 CallInst.addReg(Info.Callee.getReg()); 1073 CallInst.addImm(0); 1074 } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) { 1075 // The call lowering lightly assumed we can directly encode a call target in 1076 // the instruction, which is not the case. Materialize the address here. 1077 const GlobalValue *GV = Info.Callee.getGlobal(); 1078 auto Ptr = MIRBuilder.buildGlobalValue( 1079 LLT::pointer(GV->getAddressSpace(), 64), GV); 1080 CallInst.addReg(Ptr.getReg(0)); 1081 CallInst.add(Info.Callee); 1082 } else 1083 return false; 1084 1085 return true; 1086 } 1087 1088 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 1089 CallLoweringInfo &Info) const { 1090 if (Info.IsVarArg) { 1091 LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n"); 1092 return false; 1093 } 1094 1095 MachineFunction &MF = MIRBuilder.getMF(); 1096 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1097 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1098 1099 const Function &F = MF.getFunction(); 1100 MachineRegisterInfo &MRI = MF.getRegInfo(); 1101 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1102 const DataLayout &DL = F.getParent()->getDataLayout(); 1103 CallingConv::ID CallConv = F.getCallingConv(); 1104 1105 if (!AMDGPUTargetMachine::EnableFixedFunctionABI && 1106 CallConv != CallingConv::AMDGPU_Gfx) { 1107 LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n"); 1108 return false; 1109 } 1110 1111 if (AMDGPU::isShader(CallConv)) { 1112 LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n"); 1113 return false; 1114 } 1115 1116 SmallVector<ArgInfo, 8> OutArgs; 1117 1118 SmallVector<ArgInfo, 8> SplitArg; 1119 for (auto &OrigArg : Info.OrigArgs) { 1120 splitToValueTypes(MIRBuilder, OrigArg, SplitArg, DL, Info.CallConv); 1121 1122 processSplitArgs( 1123 MIRBuilder, OrigArg, SplitArg, OutArgs, DL, Info.CallConv, true, 1124 // FIXME: We should probably be passing multiple registers to 1125 // handleAssignments to do this 1126 [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT, 1127 int VTSplitIdx) { 1128 unpackRegsToOrigType(MIRBuilder, Regs, SrcReg, OrigArg, LLTy, PartLLT); 1129 }); 1130 1131 SplitArg.clear(); 1132 } 1133 1134 // If we can lower as a tail call, do that instead. 1135 bool CanTailCallOpt = false; 1136 1137 // We must emit a tail call if we have musttail. 1138 if (Info.IsMustTailCall && !CanTailCallOpt) { 1139 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); 1140 return false; 1141 } 1142 1143 // Find out which ABI gets to decide where things go. 1144 CCAssignFn *AssignFnFixed; 1145 CCAssignFn *AssignFnVarArg; 1146 std::tie(AssignFnFixed, AssignFnVarArg) = 1147 getAssignFnsForCC(Info.CallConv, TLI); 1148 1149 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP) 1150 .addImm(0) 1151 .addImm(0); 1152 1153 // Create a temporarily-floating call instruction so we can add the implicit 1154 // uses of arg registers. 1155 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false); 1156 1157 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1158 MIB.addDef(TRI->getReturnAddressReg(MF)); 1159 1160 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1161 return false; 1162 1163 // Tell the call which registers are clobbered. 1164 const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv); 1165 MIB.addRegMask(Mask); 1166 1167 SmallVector<CCValAssign, 16> ArgLocs; 1168 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1169 1170 // We could pass MIB and directly add the implicit uses to the call 1171 // now. However, as an aesthetic choice, place implicit argument operands 1172 // after the ordinary user argument registers. 1173 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1174 1175 if (AMDGPUTargetMachine::EnableFixedFunctionABI && 1176 Info.CallConv != CallingConv::AMDGPU_Gfx) { 1177 // With a fixed ABI, allocate fixed registers before user arguments. 1178 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1179 return false; 1180 } 1181 1182 // Do the actual argument marshalling. 1183 SmallVector<Register, 8> PhysRegs; 1184 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed, 1185 AssignFnVarArg, false); 1186 if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, OutArgs, Handler)) 1187 return false; 1188 1189 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1190 1191 if (!ST.enableFlatScratch()) { 1192 // Insert copies for the SRD. In the HSA case, this should be an identity 1193 // copy. 1194 auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::vector(4, 32), 1195 MFI->getScratchRSrcReg()); 1196 MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 1197 MIB.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit); 1198 } 1199 1200 for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) { 1201 MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second); 1202 MIB.addReg(ArgReg.first, RegState::Implicit); 1203 } 1204 1205 // Get a count of how many bytes are to be pushed on the stack. 1206 unsigned NumBytes = CCInfo.getNextStackOffset(); 1207 1208 // If Callee is a reg, since it is used by a target specific 1209 // instruction, it must have a register class matching the 1210 // constraint of that instruction. 1211 1212 // FIXME: We should define regbankselectable call instructions to handle 1213 // divergent call targets. 1214 if (MIB->getOperand(1).isReg()) { 1215 MIB->getOperand(1).setReg(constrainOperandRegClass( 1216 MF, *TRI, MRI, *ST.getInstrInfo(), 1217 *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1), 1218 1)); 1219 } 1220 1221 auto OrigInsertPt = MIRBuilder.getInsertPt(); 1222 1223 // Now we can add the actual call instruction to the correct position. 1224 MIRBuilder.insertInstr(MIB); 1225 1226 // Insert this now to give us an anchor point for managing the insert point. 1227 MachineInstrBuilder CallSeqEnd = 1228 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN); 1229 1230 SmallVector<ArgInfo, 8> InArgs; 1231 if (!Info.CanLowerReturn) { 1232 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs, 1233 Info.DemoteRegister, Info.DemoteStackIndex); 1234 } else if (!Info.OrigRet.Ty->isVoidTy()) { 1235 splitToValueTypes(MIRBuilder, Info.OrigRet, InArgs, DL, Info.CallConv); 1236 } 1237 1238 // Make sure the raw argument copies are inserted before the marshalling to 1239 // the original types. 1240 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), CallSeqEnd); 1241 1242 // Finally we can copy the returned value back into its virtual-register. In 1243 // symmetry with the arguments, the physical register must be an 1244 // implicit-define of the call instruction. 1245 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { 1246 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, 1247 Info.IsVarArg); 1248 CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn); 1249 if (!handleAssignments(MIRBuilder, InArgs, Handler, Info.CallConv, 1250 Info.IsVarArg)) 1251 return false; 1252 } 1253 1254 uint64_t CalleePopBytes = NumBytes; 1255 CallSeqEnd.addImm(0) 1256 .addImm(CalleePopBytes); 1257 1258 // Restore the insert point to after the call sequence. 1259 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), OrigInsertPt); 1260 return true; 1261 } 1262