1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUISelLowering.h" 18 #include "AMDGPUSubtarget.h" 19 #include "SIISelLowering.h" 20 #include "SIMachineFunctionInfo.h" 21 #include "SIRegisterInfo.h" 22 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/CallingConvLower.h" 25 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/Support/LowLevelTypeImpl.h" 28 29 using namespace llvm; 30 31 namespace { 32 33 struct OutgoingValueHandler : public CallLowering::ValueHandler { 34 OutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 35 MachineInstrBuilder MIB, CCAssignFn *AssignFn) 36 : ValueHandler(B, MRI, AssignFn), MIB(MIB) {} 37 38 MachineInstrBuilder MIB; 39 40 bool isIncomingArgumentHandler() const override { return false; } 41 42 Register getStackAddress(uint64_t Size, int64_t Offset, 43 MachinePointerInfo &MPO) override { 44 llvm_unreachable("not implemented"); 45 } 46 47 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 48 MachinePointerInfo &MPO, CCValAssign &VA) override { 49 llvm_unreachable("not implemented"); 50 } 51 52 void assignValueToReg(Register ValVReg, Register PhysReg, 53 CCValAssign &VA) override { 54 Register ExtReg; 55 if (VA.getLocVT().getSizeInBits() < 32) { 56 // 16-bit types are reported as legal for 32-bit registers. We need to 57 // extend and do a 32-bit copy to avoid the verifier complaining about it. 58 ExtReg = MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0); 59 } else 60 ExtReg = extendRegister(ValVReg, VA); 61 62 MIRBuilder.buildCopy(PhysReg, ExtReg); 63 MIB.addUse(PhysReg, RegState::Implicit); 64 } 65 66 bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT, 67 CCValAssign::LocInfo LocInfo, 68 const CallLowering::ArgInfo &Info, 69 ISD::ArgFlagsTy Flags, 70 CCState &State) override { 71 return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State); 72 } 73 }; 74 75 struct IncomingArgHandler : public CallLowering::ValueHandler { 76 uint64_t StackUsed = 0; 77 78 IncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 79 CCAssignFn *AssignFn) 80 : ValueHandler(B, MRI, AssignFn) {} 81 82 Register getStackAddress(uint64_t Size, int64_t Offset, 83 MachinePointerInfo &MPO) override { 84 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 85 int FI = MFI.CreateFixedObject(Size, Offset, true); 86 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 87 auto AddrReg = MIRBuilder.buildFrameIndex( 88 LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI); 89 StackUsed = std::max(StackUsed, Size + Offset); 90 return AddrReg.getReg(0); 91 } 92 93 void assignValueToReg(Register ValVReg, Register PhysReg, 94 CCValAssign &VA) override { 95 markPhysRegUsed(PhysReg); 96 97 if (VA.getLocVT().getSizeInBits() < 32) { 98 // 16-bit types are reported as legal for 32-bit registers. We need to do 99 // a 32-bit copy, and truncate to avoid the verifier complaining about it. 100 auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg); 101 MIRBuilder.buildTrunc(ValVReg, Copy); 102 return; 103 } 104 105 switch (VA.getLocInfo()) { 106 case CCValAssign::LocInfo::SExt: 107 case CCValAssign::LocInfo::ZExt: 108 case CCValAssign::LocInfo::AExt: { 109 auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg); 110 MIRBuilder.buildTrunc(ValVReg, Copy); 111 break; 112 } 113 default: 114 MIRBuilder.buildCopy(ValVReg, PhysReg); 115 break; 116 } 117 } 118 119 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 120 MachinePointerInfo &MPO, CCValAssign &VA) override { 121 MachineFunction &MF = MIRBuilder.getMF(); 122 unsigned Align = inferAlignmentFromPtrInfo(MF, MPO); 123 124 // FIXME: Get alignment 125 auto MMO = MF.getMachineMemOperand( 126 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size, 127 Align); 128 MIRBuilder.buildLoad(ValVReg, Addr, *MMO); 129 } 130 131 /// How the physical register gets marked varies between formal 132 /// parameters (it's a basic-block live-in), and a call instruction 133 /// (it's an implicit-def of the BL). 134 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 135 136 // FIXME: What is the point of this being a callback? 137 bool isIncomingArgumentHandler() const override { return true; } 138 }; 139 140 struct FormalArgHandler : public IncomingArgHandler { 141 FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 142 CCAssignFn *AssignFn) 143 : IncomingArgHandler(B, MRI, AssignFn) {} 144 145 void markPhysRegUsed(unsigned PhysReg) override { 146 MIRBuilder.getMBB().addLiveIn(PhysReg); 147 } 148 }; 149 150 } 151 152 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI) 153 : CallLowering(&TLI) { 154 } 155 156 void AMDGPUCallLowering::splitToValueTypes( 157 const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs, 158 const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv, 159 SplitArgTy PerformArgSplit) const { 160 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 161 LLVMContext &Ctx = OrigArg.Ty->getContext(); 162 163 if (OrigArg.Ty->isVoidTy()) 164 return; 165 166 SmallVector<EVT, 4> SplitVTs; 167 ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs); 168 169 assert(OrigArg.Regs.size() == SplitVTs.size()); 170 171 int SplitIdx = 0; 172 for (EVT VT : SplitVTs) { 173 unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT); 174 Type *Ty = VT.getTypeForEVT(Ctx); 175 176 177 178 if (NumParts == 1) { 179 // No splitting to do, but we want to replace the original type (e.g. [1 x 180 // double] -> double). 181 SplitArgs.emplace_back(OrigArg.Regs[SplitIdx], Ty, 182 OrigArg.Flags, OrigArg.IsFixed); 183 184 ++SplitIdx; 185 continue; 186 } 187 188 LLT LLTy = getLLTForType(*Ty, DL); 189 190 SmallVector<Register, 8> SplitRegs; 191 192 EVT PartVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT); 193 Type *PartTy = PartVT.getTypeForEVT(Ctx); 194 LLT PartLLT = getLLTForType(*PartTy, DL); 195 196 // FIXME: Should we be reporting all of the part registers for a single 197 // argument, and let handleAssignments take care of the repacking? 198 for (unsigned i = 0; i < NumParts; ++i) { 199 Register PartReg = MRI.createGenericVirtualRegister(PartLLT); 200 SplitRegs.push_back(PartReg); 201 SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags); 202 } 203 204 PerformArgSplit(SplitRegs, LLTy, PartLLT, SplitIdx); 205 206 ++SplitIdx; 207 } 208 } 209 210 // Get the appropriate type to make \p OrigTy \p Factor times bigger. 211 static LLT getMultipleType(LLT OrigTy, int Factor) { 212 if (OrigTy.isVector()) { 213 return LLT::vector(OrigTy.getNumElements() * Factor, 214 OrigTy.getElementType()); 215 } 216 217 return LLT::scalar(OrigTy.getSizeInBits() * Factor); 218 } 219 220 // TODO: Move to generic code 221 static void unpackRegsToOrigType(MachineIRBuilder &B, 222 ArrayRef<Register> DstRegs, 223 Register SrcReg, 224 LLT SrcTy, 225 LLT PartTy) { 226 assert(DstRegs.size() > 1 && "Nothing to unpack"); 227 228 const unsigned SrcSize = SrcTy.getSizeInBits(); 229 const unsigned PartSize = PartTy.getSizeInBits(); 230 231 if (SrcTy.isVector() && !PartTy.isVector() && 232 PartSize > SrcTy.getElementType().getSizeInBits()) { 233 // Vector was scalarized, and the elements extended. 234 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), 235 SrcReg); 236 for (int i = 0, e = DstRegs.size(); i != e; ++i) 237 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 238 return; 239 } 240 241 if (SrcSize % PartSize == 0) { 242 B.buildUnmerge(DstRegs, SrcReg); 243 return; 244 } 245 246 const int NumRoundedParts = (SrcSize + PartSize - 1) / PartSize; 247 248 LLT BigTy = getMultipleType(PartTy, NumRoundedParts); 249 auto ImpDef = B.buildUndef(BigTy); 250 251 auto Big = B.buildInsert(BigTy, ImpDef.getReg(0), SrcReg, 0).getReg(0); 252 253 int64_t Offset = 0; 254 for (unsigned i = 0, e = DstRegs.size(); i != e; ++i, Offset += PartSize) 255 B.buildExtract(DstRegs[i], Big, Offset); 256 } 257 258 /// Lower the return value for the already existing \p Ret. This assumes that 259 /// \p B's insertion point is correct. 260 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B, 261 const Value *Val, ArrayRef<Register> VRegs, 262 MachineInstrBuilder &Ret) const { 263 if (!Val) 264 return true; 265 266 auto &MF = B.getMF(); 267 const auto &F = MF.getFunction(); 268 const DataLayout &DL = MF.getDataLayout(); 269 270 CallingConv::ID CC = F.getCallingConv(); 271 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 272 MachineRegisterInfo &MRI = MF.getRegInfo(); 273 274 ArgInfo OrigRetInfo(VRegs, Val->getType()); 275 setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F); 276 SmallVector<ArgInfo, 4> SplitRetInfos; 277 278 splitToValueTypes( 279 OrigRetInfo, SplitRetInfos, DL, MRI, CC, 280 [&](ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, int VTSplitIdx) { 281 unpackRegsToOrigType(B, Regs, VRegs[VTSplitIdx], LLTy, PartLLT); 282 }); 283 284 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg()); 285 286 OutgoingValueHandler RetHandler(B, MF.getRegInfo(), Ret, AssignFn); 287 return handleAssignments(B, SplitRetInfos, RetHandler); 288 } 289 290 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, 291 const Value *Val, 292 ArrayRef<Register> VRegs) const { 293 294 MachineFunction &MF = B.getMF(); 295 MachineRegisterInfo &MRI = MF.getRegInfo(); 296 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 297 MFI->setIfReturnsVoid(!Val); 298 299 assert(!Val == VRegs.empty() && "Return value without a vreg"); 300 301 CallingConv::ID CC = B.getMF().getFunction().getCallingConv(); 302 const bool IsShader = AMDGPU::isShader(CC); 303 const bool IsWaveEnd = (IsShader && MFI->returnsVoid()) || 304 AMDGPU::isKernel(CC); 305 if (IsWaveEnd) { 306 B.buildInstr(AMDGPU::S_ENDPGM) 307 .addImm(0); 308 return true; 309 } 310 311 auto const &ST = B.getMF().getSubtarget<GCNSubtarget>(); 312 313 unsigned ReturnOpc = 314 IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return; 315 316 auto Ret = B.buildInstrNoInsert(ReturnOpc); 317 Register ReturnAddrVReg; 318 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 319 ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass); 320 Ret.addUse(ReturnAddrVReg); 321 } 322 323 if (!lowerReturnVal(B, Val, VRegs, Ret)) 324 return false; 325 326 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 327 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 328 Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF), 329 &AMDGPU::SGPR_64RegClass); 330 B.buildCopy(ReturnAddrVReg, LiveInReturn); 331 } 332 333 // TODO: Handle CalleeSavedRegsViaCopy. 334 335 B.insertInstr(Ret); 336 return true; 337 } 338 339 Register AMDGPUCallLowering::lowerParameterPtr(MachineIRBuilder &B, 340 Type *ParamTy, 341 uint64_t Offset) const { 342 343 MachineFunction &MF = B.getMF(); 344 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 345 MachineRegisterInfo &MRI = MF.getRegInfo(); 346 const Function &F = MF.getFunction(); 347 const DataLayout &DL = F.getParent()->getDataLayout(); 348 PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS); 349 LLT PtrType = getLLTForType(*PtrTy, DL); 350 Register KernArgSegmentPtr = 351 MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 352 Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr); 353 354 auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset); 355 356 return B.buildPtrAdd(PtrType, KernArgSegmentVReg, OffsetReg).getReg(0); 357 } 358 359 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, 360 Type *ParamTy, uint64_t Offset, 361 unsigned Align, 362 Register DstReg) const { 363 MachineFunction &MF = B.getMF(); 364 const Function &F = MF.getFunction(); 365 const DataLayout &DL = F.getParent()->getDataLayout(); 366 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 367 unsigned TypeSize = DL.getTypeStoreSize(ParamTy); 368 Register PtrReg = lowerParameterPtr(B, ParamTy, Offset); 369 370 MachineMemOperand *MMO = 371 MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad | 372 MachineMemOperand::MODereferenceable | 373 MachineMemOperand::MOInvariant, 374 TypeSize, Align); 375 376 B.buildLoad(DstReg, PtrReg, *MMO); 377 } 378 379 // Allocate special inputs passed in user SGPRs. 380 static void allocateHSAUserSGPRs(CCState &CCInfo, 381 MachineIRBuilder &B, 382 MachineFunction &MF, 383 const SIRegisterInfo &TRI, 384 SIMachineFunctionInfo &Info) { 385 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 386 if (Info.hasPrivateSegmentBuffer()) { 387 unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 388 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 389 CCInfo.AllocateReg(PrivateSegmentBufferReg); 390 } 391 392 if (Info.hasDispatchPtr()) { 393 unsigned DispatchPtrReg = Info.addDispatchPtr(TRI); 394 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 395 CCInfo.AllocateReg(DispatchPtrReg); 396 } 397 398 if (Info.hasQueuePtr()) { 399 unsigned QueuePtrReg = Info.addQueuePtr(TRI); 400 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 401 CCInfo.AllocateReg(QueuePtrReg); 402 } 403 404 if (Info.hasKernargSegmentPtr()) { 405 MachineRegisterInfo &MRI = MF.getRegInfo(); 406 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 407 const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 408 Register VReg = MRI.createGenericVirtualRegister(P4); 409 MRI.addLiveIn(InputPtrReg, VReg); 410 B.getMBB().addLiveIn(InputPtrReg); 411 B.buildCopy(VReg, InputPtrReg); 412 CCInfo.AllocateReg(InputPtrReg); 413 } 414 415 if (Info.hasDispatchID()) { 416 unsigned DispatchIDReg = Info.addDispatchID(TRI); 417 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 418 CCInfo.AllocateReg(DispatchIDReg); 419 } 420 421 if (Info.hasFlatScratchInit()) { 422 unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI); 423 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 424 CCInfo.AllocateReg(FlatScratchInitReg); 425 } 426 427 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 428 // these from the dispatch pointer. 429 } 430 431 bool AMDGPUCallLowering::lowerFormalArgumentsKernel( 432 MachineIRBuilder &B, const Function &F, 433 ArrayRef<ArrayRef<Register>> VRegs) const { 434 MachineFunction &MF = B.getMF(); 435 const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>(); 436 MachineRegisterInfo &MRI = MF.getRegInfo(); 437 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 438 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 439 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 440 441 const DataLayout &DL = F.getParent()->getDataLayout(); 442 443 SmallVector<CCValAssign, 16> ArgLocs; 444 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); 445 446 allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info); 447 448 unsigned i = 0; 449 const unsigned KernArgBaseAlign = 16; 450 const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F); 451 uint64_t ExplicitArgOffset = 0; 452 453 // TODO: Align down to dword alignment and extract bits for extending loads. 454 for (auto &Arg : F.args()) { 455 Type *ArgTy = Arg.getType(); 456 unsigned AllocSize = DL.getTypeAllocSize(ArgTy); 457 if (AllocSize == 0) 458 continue; 459 460 unsigned ABIAlign = DL.getABITypeAlignment(ArgTy); 461 462 uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset; 463 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize; 464 465 ArrayRef<Register> OrigArgRegs = VRegs[i]; 466 Register ArgReg = 467 OrigArgRegs.size() == 1 468 ? OrigArgRegs[0] 469 : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL)); 470 unsigned Align = MinAlign(KernArgBaseAlign, ArgOffset); 471 ArgOffset = alignTo(ArgOffset, DL.getABITypeAlignment(ArgTy)); 472 lowerParameter(B, ArgTy, ArgOffset, Align, ArgReg); 473 if (OrigArgRegs.size() > 1) 474 unpackRegs(OrigArgRegs, ArgReg, ArgTy, B); 475 ++i; 476 } 477 478 TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 479 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false); 480 return true; 481 } 482 483 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 484 static MachineInstrBuilder mergeVectorRegsToResultRegs( 485 MachineIRBuilder &B, ArrayRef<Register> DstRegs, ArrayRef<Register> SrcRegs) { 486 MachineRegisterInfo &MRI = *B.getMRI(); 487 LLT LLTy = MRI.getType(DstRegs[0]); 488 LLT PartLLT = MRI.getType(SrcRegs[0]); 489 490 // Deal with v3s16 split into v2s16 491 LLT LCMTy = getLCMType(LLTy, PartLLT); 492 if (LCMTy == LLTy) { 493 // Common case where no padding is needed. 494 assert(DstRegs.size() == 1); 495 return B.buildConcatVectors(DstRegs[0], SrcRegs); 496 } 497 498 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits(); 499 Register Undef = B.buildUndef(PartLLT).getReg(0); 500 501 // Build vector of undefs. 502 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef); 503 504 // Replace the first sources with the real registers. 505 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin()); 506 507 auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs); 508 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 509 510 SmallVector<Register, 8> PadDstRegs(NumDst); 511 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 512 513 // Create the excess dead defs for the unmerge. 514 for (int I = DstRegs.size(); I != NumDst; ++I) 515 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 516 517 return B.buildUnmerge(PadDstRegs, Widened); 518 } 519 520 // TODO: Move this to generic code 521 static void packSplitRegsToOrigType(MachineIRBuilder &B, 522 ArrayRef<Register> OrigRegs, 523 ArrayRef<Register> Regs, 524 LLT LLTy, 525 LLT PartLLT) { 526 if (!LLTy.isVector() && !PartLLT.isVector()) { 527 B.buildMerge(OrigRegs[0], Regs); 528 return; 529 } 530 531 if (LLTy.isVector() && PartLLT.isVector()) { 532 assert(OrigRegs.size() == 1); 533 assert(LLTy.getElementType() == PartLLT.getElementType()); 534 mergeVectorRegsToResultRegs(B, OrigRegs, Regs); 535 return; 536 } 537 538 MachineRegisterInfo &MRI = *B.getMRI(); 539 540 assert(LLTy.isVector() && !PartLLT.isVector()); 541 542 LLT DstEltTy = LLTy.getElementType(); 543 544 // Pointer information was discarded. We'll need to coerce some register types 545 // to avoid violating type constraints. 546 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 547 548 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 549 550 if (DstEltTy == PartLLT) { 551 // Vector was trivially scalarized. 552 553 if (RealDstEltTy.isPointer()) { 554 for (Register Reg : Regs) 555 MRI.setType(Reg, RealDstEltTy); 556 } 557 558 B.buildBuildVector(OrigRegs[0], Regs); 559 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 560 // Deal with vector with 64-bit elements decomposed to 32-bit 561 // registers. Need to create intermediate 64-bit elements. 562 SmallVector<Register, 8> EltMerges; 563 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 564 565 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 566 567 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 568 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 569 // Fix the type in case this is really a vector of pointers. 570 MRI.setType(Merge.getReg(0), RealDstEltTy); 571 EltMerges.push_back(Merge.getReg(0)); 572 Regs = Regs.drop_front(PartsPerElt); 573 } 574 575 B.buildBuildVector(OrigRegs[0], EltMerges); 576 } else { 577 // Vector was split, and elements promoted to a wider type. 578 LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT); 579 auto BV = B.buildBuildVector(BVType, Regs); 580 B.buildTrunc(OrigRegs[0], BV); 581 } 582 } 583 584 bool AMDGPUCallLowering::lowerFormalArguments( 585 MachineIRBuilder &B, const Function &F, 586 ArrayRef<ArrayRef<Register>> VRegs) const { 587 CallingConv::ID CC = F.getCallingConv(); 588 589 // The infrastructure for normal calling convention lowering is essentially 590 // useless for kernels. We want to avoid any kind of legalization or argument 591 // splitting. 592 if (CC == CallingConv::AMDGPU_KERNEL) 593 return lowerFormalArgumentsKernel(B, F, VRegs); 594 595 const bool IsShader = AMDGPU::isShader(CC); 596 const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC); 597 598 MachineFunction &MF = B.getMF(); 599 MachineBasicBlock &MBB = B.getMBB(); 600 MachineRegisterInfo &MRI = MF.getRegInfo(); 601 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 602 const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>(); 603 const SIRegisterInfo *TRI = Subtarget.getRegisterInfo(); 604 const DataLayout &DL = F.getParent()->getDataLayout(); 605 606 607 SmallVector<CCValAssign, 16> ArgLocs; 608 CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext()); 609 610 if (!IsEntryFunc) { 611 Register ReturnAddrReg = TRI->getReturnAddressReg(MF); 612 Register LiveInReturn = MF.addLiveIn(ReturnAddrReg, 613 &AMDGPU::SGPR_64RegClass); 614 MBB.addLiveIn(ReturnAddrReg); 615 B.buildCopy(LiveInReturn, ReturnAddrReg); 616 } 617 618 if (Info->hasImplicitBufferPtr()) { 619 Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI); 620 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 621 CCInfo.AllocateReg(ImplicitBufferPtrReg); 622 } 623 624 625 SmallVector<ArgInfo, 32> SplitArgs; 626 unsigned Idx = 0; 627 unsigned PSInputNum = 0; 628 629 for (auto &Arg : F.args()) { 630 if (DL.getTypeStoreSize(Arg.getType()) == 0) 631 continue; 632 633 const bool InReg = Arg.hasAttribute(Attribute::InReg); 634 635 // SGPR arguments to functions not implemented. 636 if (!IsShader && InReg) 637 return false; 638 639 if (Arg.hasAttribute(Attribute::SwiftSelf) || 640 Arg.hasAttribute(Attribute::SwiftError) || 641 Arg.hasAttribute(Attribute::Nest)) 642 return false; 643 644 if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) { 645 const bool ArgUsed = !Arg.use_empty(); 646 bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum); 647 648 if (!SkipArg) { 649 Info->markPSInputAllocated(PSInputNum); 650 if (ArgUsed) 651 Info->markPSInputEnabled(PSInputNum); 652 } 653 654 ++PSInputNum; 655 656 if (SkipArg) { 657 for (int I = 0, E = VRegs[Idx].size(); I != E; ++I) 658 B.buildUndef(VRegs[Idx][I]); 659 660 ++Idx; 661 continue; 662 } 663 } 664 665 ArgInfo OrigArg(VRegs[Idx], Arg.getType()); 666 setArgFlags(OrigArg, Idx + AttributeList::FirstArgIndex, DL, F); 667 668 splitToValueTypes( 669 OrigArg, SplitArgs, DL, MRI, CC, 670 // FIXME: We should probably be passing multiple registers to 671 // handleAssignments to do this 672 [&](ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, int VTSplitIdx) { 673 packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs, 674 LLTy, PartLLT); 675 }); 676 677 ++Idx; 678 } 679 680 // At least one interpolation mode must be enabled or else the GPU will 681 // hang. 682 // 683 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 684 // set PSInputAddr, the user wants to enable some bits after the compilation 685 // based on run-time states. Since we can't know what the final PSInputEna 686 // will look like, so we shouldn't do anything here and the user should take 687 // responsibility for the correct programming. 688 // 689 // Otherwise, the following restrictions apply: 690 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 691 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 692 // enabled too. 693 if (CC == CallingConv::AMDGPU_PS) { 694 if ((Info->getPSInputAddr() & 0x7F) == 0 || 695 ((Info->getPSInputAddr() & 0xF) == 0 && 696 Info->isPSInputAllocated(11))) { 697 CCInfo.AllocateReg(AMDGPU::VGPR0); 698 CCInfo.AllocateReg(AMDGPU::VGPR1); 699 Info->markPSInputAllocated(0); 700 Info->markPSInputEnabled(0); 701 } 702 703 if (Subtarget.isAmdPalOS()) { 704 // For isAmdPalOS, the user does not enable some bits after compilation 705 // based on run-time states; the register values being generated here are 706 // the final ones set in hardware. Therefore we need to apply the 707 // workaround to PSInputAddr and PSInputEnable together. (The case where 708 // a bit is set in PSInputAddr but not PSInputEnable is where the frontend 709 // set up an input arg for a particular interpolation mode, but nothing 710 // uses that input arg. Really we should have an earlier pass that removes 711 // such an arg.) 712 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 713 if ((PsInputBits & 0x7F) == 0 || 714 ((PsInputBits & 0xF) == 0 && 715 (PsInputBits >> 11 & 1))) 716 Info->markPSInputEnabled( 717 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 718 } 719 } 720 721 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 722 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg()); 723 724 if (!MBB.empty()) 725 B.setInstr(*MBB.begin()); 726 727 FormalArgHandler Handler(B, MRI, AssignFn); 728 if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler)) 729 return false; 730 731 if (!IsEntryFunc) { 732 // Special inputs come after user arguments. 733 TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); 734 } 735 736 // Start adding system SGPRs. 737 if (IsEntryFunc) { 738 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsShader); 739 } else { 740 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 741 CCInfo.AllocateReg(Info->getScratchWaveOffsetReg()); 742 CCInfo.AllocateReg(Info->getFrameOffsetReg()); 743 TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 744 } 745 746 // Move back to the end of the basic block. 747 B.setMBB(MBB); 748 749 return true; 750 } 751