1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUISelLowering.h"
18 #include "AMDGPUSubtarget.h"
19 #include "SIISelLowering.h"
20 #include "SIMachineFunctionInfo.h"
21 #include "SIRegisterInfo.h"
22 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/Support/LowLevelTypeImpl.h"
28 
29 using namespace llvm;
30 
31 namespace {
32 
33 struct OutgoingValueHandler : public CallLowering::ValueHandler {
34   OutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
35                        MachineInstrBuilder MIB, CCAssignFn *AssignFn)
36       : ValueHandler(B, MRI, AssignFn), MIB(MIB) {}
37 
38   MachineInstrBuilder MIB;
39 
40   bool isIncomingArgumentHandler() const override { return false; }
41 
42   Register getStackAddress(uint64_t Size, int64_t Offset,
43                            MachinePointerInfo &MPO) override {
44     llvm_unreachable("not implemented");
45   }
46 
47   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
48                             MachinePointerInfo &MPO, CCValAssign &VA) override {
49     llvm_unreachable("not implemented");
50   }
51 
52   void assignValueToReg(Register ValVReg, Register PhysReg,
53                         CCValAssign &VA) override {
54     Register ExtReg;
55     if (VA.getLocVT().getSizeInBits() < 32) {
56       // 16-bit types are reported as legal for 32-bit registers. We need to
57       // extend and do a 32-bit copy to avoid the verifier complaining about it.
58       ExtReg = MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
59     } else
60       ExtReg = extendRegister(ValVReg, VA);
61 
62     MIRBuilder.buildCopy(PhysReg, ExtReg);
63     MIB.addUse(PhysReg, RegState::Implicit);
64   }
65 
66   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
67                  CCValAssign::LocInfo LocInfo,
68                  const CallLowering::ArgInfo &Info,
69                  ISD::ArgFlagsTy Flags,
70                  CCState &State) override {
71     return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
72   }
73 };
74 
75 struct IncomingArgHandler : public CallLowering::ValueHandler {
76   uint64_t StackUsed = 0;
77 
78   IncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
79                      CCAssignFn *AssignFn)
80     : ValueHandler(B, MRI, AssignFn) {}
81 
82   Register getStackAddress(uint64_t Size, int64_t Offset,
83                            MachinePointerInfo &MPO) override {
84     auto &MFI = MIRBuilder.getMF().getFrameInfo();
85     int FI = MFI.CreateFixedObject(Size, Offset, true);
86     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
87     auto AddrReg = MIRBuilder.buildFrameIndex(
88         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
89     StackUsed = std::max(StackUsed, Size + Offset);
90     return AddrReg.getReg(0);
91   }
92 
93   void assignValueToReg(Register ValVReg, Register PhysReg,
94                         CCValAssign &VA) override {
95     markPhysRegUsed(PhysReg);
96 
97     if (VA.getLocVT().getSizeInBits() < 32) {
98       // 16-bit types are reported as legal for 32-bit registers. We need to do
99       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
100       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
101       MIRBuilder.buildTrunc(ValVReg, Copy);
102       return;
103     }
104 
105     switch (VA.getLocInfo()) {
106     case CCValAssign::LocInfo::SExt:
107     case CCValAssign::LocInfo::ZExt:
108     case CCValAssign::LocInfo::AExt: {
109       auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
110       MIRBuilder.buildTrunc(ValVReg, Copy);
111       break;
112     }
113     default:
114       MIRBuilder.buildCopy(ValVReg, PhysReg);
115       break;
116     }
117   }
118 
119   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
120                             MachinePointerInfo &MPO, CCValAssign &VA) override {
121     MachineFunction &MF = MIRBuilder.getMF();
122     unsigned Align = inferAlignmentFromPtrInfo(MF, MPO);
123 
124     // FIXME: Get alignment
125     auto MMO = MF.getMachineMemOperand(
126         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size,
127         Align);
128     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
129   }
130 
131   /// How the physical register gets marked varies between formal
132   /// parameters (it's a basic-block live-in), and a call instruction
133   /// (it's an implicit-def of the BL).
134   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
135 
136   // FIXME: What is the point of this being a callback?
137   bool isIncomingArgumentHandler() const override { return true; }
138 };
139 
140 struct FormalArgHandler : public IncomingArgHandler {
141   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
142                    CCAssignFn *AssignFn)
143     : IncomingArgHandler(B, MRI, AssignFn) {}
144 
145   void markPhysRegUsed(unsigned PhysReg) override {
146     MIRBuilder.getMBB().addLiveIn(PhysReg);
147   }
148 };
149 
150 }
151 
152 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
153   : CallLowering(&TLI) {
154 }
155 
156 void AMDGPUCallLowering::splitToValueTypes(
157     const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
158     const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv,
159     SplitArgTy PerformArgSplit) const {
160   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
161   LLVMContext &Ctx = OrigArg.Ty->getContext();
162 
163   if (OrigArg.Ty->isVoidTy())
164     return;
165 
166   SmallVector<EVT, 4> SplitVTs;
167   ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);
168 
169   assert(OrigArg.Regs.size() == SplitVTs.size());
170 
171   int SplitIdx = 0;
172   for (EVT VT : SplitVTs) {
173     unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
174     Type *Ty = VT.getTypeForEVT(Ctx);
175 
176 
177 
178     if (NumParts == 1) {
179       // No splitting to do, but we want to replace the original type (e.g. [1 x
180       // double] -> double).
181       SplitArgs.emplace_back(OrigArg.Regs[SplitIdx], Ty,
182                              OrigArg.Flags, OrigArg.IsFixed);
183 
184       ++SplitIdx;
185       continue;
186     }
187 
188     LLT LLTy = getLLTForType(*Ty, DL);
189 
190     SmallVector<Register, 8> SplitRegs;
191 
192     EVT PartVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
193     Type *PartTy = PartVT.getTypeForEVT(Ctx);
194     LLT PartLLT = getLLTForType(*PartTy, DL);
195 
196     // FIXME: Should we be reporting all of the part registers for a single
197     // argument, and let handleAssignments take care of the repacking?
198     for (unsigned i = 0; i < NumParts; ++i) {
199       Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
200       SplitRegs.push_back(PartReg);
201       SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
202     }
203 
204     PerformArgSplit(SplitRegs, LLTy, PartLLT, SplitIdx);
205 
206     ++SplitIdx;
207   }
208 }
209 
210 // Get the appropriate type to make \p OrigTy \p Factor times bigger.
211 static LLT getMultipleType(LLT OrigTy, int Factor) {
212   if (OrigTy.isVector()) {
213     return LLT::vector(OrigTy.getNumElements() * Factor,
214                        OrigTy.getElementType());
215   }
216 
217   return LLT::scalar(OrigTy.getSizeInBits() * Factor);
218 }
219 
220 // TODO: Move to generic code
221 static void unpackRegsToOrigType(MachineIRBuilder &B,
222                                  ArrayRef<Register> DstRegs,
223                                  Register SrcReg,
224                                  LLT SrcTy,
225                                  LLT PartTy) {
226   assert(DstRegs.size() > 1 && "Nothing to unpack");
227 
228   const unsigned SrcSize = SrcTy.getSizeInBits();
229   const unsigned PartSize = PartTy.getSizeInBits();
230 
231   if (SrcTy.isVector() && !PartTy.isVector() &&
232       PartSize > SrcTy.getElementType().getSizeInBits()) {
233     // Vector was scalarized, and the elements extended.
234     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(),
235                                                   SrcReg);
236     for (int i = 0, e = DstRegs.size(); i != e; ++i)
237       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
238     return;
239   }
240 
241   if (SrcSize % PartSize == 0) {
242     B.buildUnmerge(DstRegs, SrcReg);
243     return;
244   }
245 
246   const int NumRoundedParts = (SrcSize + PartSize - 1) / PartSize;
247 
248   LLT BigTy = getMultipleType(PartTy, NumRoundedParts);
249   auto ImpDef = B.buildUndef(BigTy);
250 
251   auto Big = B.buildInsert(BigTy, ImpDef.getReg(0), SrcReg, 0).getReg(0);
252 
253   int64_t Offset = 0;
254   for (unsigned i = 0, e = DstRegs.size(); i != e; ++i, Offset += PartSize)
255     B.buildExtract(DstRegs[i], Big, Offset);
256 }
257 
258 /// Lower the return value for the already existing \p Ret. This assumes that
259 /// \p B's insertion point is correct.
260 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
261                                         const Value *Val, ArrayRef<Register> VRegs,
262                                         MachineInstrBuilder &Ret) const {
263   if (!Val)
264     return true;
265 
266   auto &MF = B.getMF();
267   const auto &F = MF.getFunction();
268   const DataLayout &DL = MF.getDataLayout();
269 
270   CallingConv::ID CC = F.getCallingConv();
271   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
272   MachineRegisterInfo &MRI = MF.getRegInfo();
273 
274   ArgInfo OrigRetInfo(VRegs, Val->getType());
275   setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F);
276   SmallVector<ArgInfo, 4> SplitRetInfos;
277 
278   splitToValueTypes(
279     OrigRetInfo, SplitRetInfos, DL, MRI, CC,
280     [&](ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, int VTSplitIdx) {
281       unpackRegsToOrigType(B, Regs, VRegs[VTSplitIdx], LLTy, PartLLT);
282     });
283 
284   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
285 
286   OutgoingValueHandler RetHandler(B, MF.getRegInfo(), Ret, AssignFn);
287   return handleAssignments(B, SplitRetInfos, RetHandler);
288 }
289 
290 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B,
291                                      const Value *Val,
292                                      ArrayRef<Register> VRegs) const {
293 
294   MachineFunction &MF = B.getMF();
295   MachineRegisterInfo &MRI = MF.getRegInfo();
296   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
297   MFI->setIfReturnsVoid(!Val);
298 
299   assert(!Val == VRegs.empty() && "Return value without a vreg");
300 
301   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
302   const bool IsShader = AMDGPU::isShader(CC);
303   const bool IsWaveEnd = (IsShader && MFI->returnsVoid()) ||
304                          AMDGPU::isKernel(CC);
305   if (IsWaveEnd) {
306     B.buildInstr(AMDGPU::S_ENDPGM)
307       .addImm(0);
308     return true;
309   }
310 
311   auto const &ST = B.getMF().getSubtarget<GCNSubtarget>();
312 
313   unsigned ReturnOpc =
314       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
315 
316   auto Ret = B.buildInstrNoInsert(ReturnOpc);
317   Register ReturnAddrVReg;
318   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
319     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
320     Ret.addUse(ReturnAddrVReg);
321   }
322 
323   if (!lowerReturnVal(B, Val, VRegs, Ret))
324     return false;
325 
326   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
327     const SIRegisterInfo *TRI = ST.getRegisterInfo();
328     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
329                                          &AMDGPU::SGPR_64RegClass);
330     B.buildCopy(ReturnAddrVReg, LiveInReturn);
331   }
332 
333   // TODO: Handle CalleeSavedRegsViaCopy.
334 
335   B.insertInstr(Ret);
336   return true;
337 }
338 
339 Register AMDGPUCallLowering::lowerParameterPtr(MachineIRBuilder &B,
340                                                Type *ParamTy,
341                                                uint64_t Offset) const {
342 
343   MachineFunction &MF = B.getMF();
344   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
345   MachineRegisterInfo &MRI = MF.getRegInfo();
346   const Function &F = MF.getFunction();
347   const DataLayout &DL = F.getParent()->getDataLayout();
348   PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
349   LLT PtrType = getLLTForType(*PtrTy, DL);
350   Register KernArgSegmentPtr =
351     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
352   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
353 
354   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
355 
356   return B.buildPtrAdd(PtrType, KernArgSegmentVReg, OffsetReg).getReg(0);
357 }
358 
359 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B,
360                                         Type *ParamTy, uint64_t Offset,
361                                         unsigned Align,
362                                         Register DstReg) const {
363   MachineFunction &MF = B.getMF();
364   const Function &F = MF.getFunction();
365   const DataLayout &DL = F.getParent()->getDataLayout();
366   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
367   unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
368   Register PtrReg = lowerParameterPtr(B, ParamTy, Offset);
369 
370   MachineMemOperand *MMO =
371       MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad |
372                                        MachineMemOperand::MODereferenceable |
373                                        MachineMemOperand::MOInvariant,
374                                        TypeSize, Align);
375 
376   B.buildLoad(DstReg, PtrReg, *MMO);
377 }
378 
379 // Allocate special inputs passed in user SGPRs.
380 static void allocateHSAUserSGPRs(CCState &CCInfo,
381                                  MachineIRBuilder &B,
382                                  MachineFunction &MF,
383                                  const SIRegisterInfo &TRI,
384                                  SIMachineFunctionInfo &Info) {
385   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
386   if (Info.hasPrivateSegmentBuffer()) {
387     unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
388     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
389     CCInfo.AllocateReg(PrivateSegmentBufferReg);
390   }
391 
392   if (Info.hasDispatchPtr()) {
393     unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
394     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
395     CCInfo.AllocateReg(DispatchPtrReg);
396   }
397 
398   if (Info.hasQueuePtr()) {
399     unsigned QueuePtrReg = Info.addQueuePtr(TRI);
400     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
401     CCInfo.AllocateReg(QueuePtrReg);
402   }
403 
404   if (Info.hasKernargSegmentPtr()) {
405     MachineRegisterInfo &MRI = MF.getRegInfo();
406     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
407     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
408     Register VReg = MRI.createGenericVirtualRegister(P4);
409     MRI.addLiveIn(InputPtrReg, VReg);
410     B.getMBB().addLiveIn(InputPtrReg);
411     B.buildCopy(VReg, InputPtrReg);
412     CCInfo.AllocateReg(InputPtrReg);
413   }
414 
415   if (Info.hasDispatchID()) {
416     unsigned DispatchIDReg = Info.addDispatchID(TRI);
417     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
418     CCInfo.AllocateReg(DispatchIDReg);
419   }
420 
421   if (Info.hasFlatScratchInit()) {
422     unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
423     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
424     CCInfo.AllocateReg(FlatScratchInitReg);
425   }
426 
427   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
428   // these from the dispatch pointer.
429 }
430 
431 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
432     MachineIRBuilder &B, const Function &F,
433     ArrayRef<ArrayRef<Register>> VRegs) const {
434   MachineFunction &MF = B.getMF();
435   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
436   MachineRegisterInfo &MRI = MF.getRegInfo();
437   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
438   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
439   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
440 
441   const DataLayout &DL = F.getParent()->getDataLayout();
442 
443   SmallVector<CCValAssign, 16> ArgLocs;
444   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
445 
446   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
447 
448   unsigned i = 0;
449   const unsigned KernArgBaseAlign = 16;
450   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
451   uint64_t ExplicitArgOffset = 0;
452 
453   // TODO: Align down to dword alignment and extract bits for extending loads.
454   for (auto &Arg : F.args()) {
455     Type *ArgTy = Arg.getType();
456     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
457     if (AllocSize == 0)
458       continue;
459 
460     unsigned ABIAlign = DL.getABITypeAlignment(ArgTy);
461 
462     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
463     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
464 
465     ArrayRef<Register> OrigArgRegs = VRegs[i];
466     Register ArgReg =
467       OrigArgRegs.size() == 1
468       ? OrigArgRegs[0]
469       : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
470     unsigned Align = MinAlign(KernArgBaseAlign, ArgOffset);
471     ArgOffset = alignTo(ArgOffset, DL.getABITypeAlignment(ArgTy));
472     lowerParameter(B, ArgTy, ArgOffset, Align, ArgReg);
473     if (OrigArgRegs.size() > 1)
474       unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
475     ++i;
476   }
477 
478   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
479   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
480   return true;
481 }
482 
483 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
484 static MachineInstrBuilder mergeVectorRegsToResultRegs(
485   MachineIRBuilder &B, ArrayRef<Register> DstRegs, ArrayRef<Register> SrcRegs) {
486   MachineRegisterInfo &MRI = *B.getMRI();
487   LLT LLTy = MRI.getType(DstRegs[0]);
488   LLT PartLLT = MRI.getType(SrcRegs[0]);
489 
490   // Deal with v3s16 split into v2s16
491   LLT LCMTy = getLCMType(LLTy, PartLLT);
492   if (LCMTy == LLTy) {
493     // Common case where no padding is needed.
494     assert(DstRegs.size() == 1);
495     return B.buildConcatVectors(DstRegs[0], SrcRegs);
496   }
497 
498   const int NumWide =  LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
499   Register Undef = B.buildUndef(PartLLT).getReg(0);
500 
501   // Build vector of undefs.
502   SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
503 
504   // Replace the first sources with the real registers.
505   std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
506 
507   auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs);
508   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
509 
510   SmallVector<Register, 8> PadDstRegs(NumDst);
511   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
512 
513   // Create the excess dead defs for the unmerge.
514   for (int I = DstRegs.size(); I != NumDst; ++I)
515     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
516 
517   return B.buildUnmerge(PadDstRegs, Widened);
518 }
519 
520 // TODO: Move this to generic code
521 static void packSplitRegsToOrigType(MachineIRBuilder &B,
522                                     ArrayRef<Register> OrigRegs,
523                                     ArrayRef<Register> Regs,
524                                     LLT LLTy,
525                                     LLT PartLLT) {
526   if (!LLTy.isVector() && !PartLLT.isVector()) {
527     B.buildMerge(OrigRegs[0], Regs);
528     return;
529   }
530 
531   if (LLTy.isVector() && PartLLT.isVector()) {
532     assert(OrigRegs.size() == 1);
533     assert(LLTy.getElementType() == PartLLT.getElementType());
534     mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
535     return;
536   }
537 
538   MachineRegisterInfo &MRI = *B.getMRI();
539 
540   assert(LLTy.isVector() && !PartLLT.isVector());
541 
542   LLT DstEltTy = LLTy.getElementType();
543 
544   // Pointer information was discarded. We'll need to coerce some register types
545   // to avoid violating type constraints.
546   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
547 
548   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
549 
550   if (DstEltTy == PartLLT) {
551     // Vector was trivially scalarized.
552 
553     if (RealDstEltTy.isPointer()) {
554       for (Register Reg : Regs)
555         MRI.setType(Reg, RealDstEltTy);
556     }
557 
558     B.buildBuildVector(OrigRegs[0], Regs);
559   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
560     // Deal with vector with 64-bit elements decomposed to 32-bit
561     // registers. Need to create intermediate 64-bit elements.
562     SmallVector<Register, 8> EltMerges;
563     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
564 
565     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
566 
567     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I)  {
568       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
569       // Fix the type in case this is really a vector of pointers.
570       MRI.setType(Merge.getReg(0), RealDstEltTy);
571       EltMerges.push_back(Merge.getReg(0));
572       Regs = Regs.drop_front(PartsPerElt);
573     }
574 
575     B.buildBuildVector(OrigRegs[0], EltMerges);
576   } else {
577     // Vector was split, and elements promoted to a wider type.
578     LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
579     auto BV = B.buildBuildVector(BVType, Regs);
580     B.buildTrunc(OrigRegs[0], BV);
581   }
582 }
583 
584 bool AMDGPUCallLowering::lowerFormalArguments(
585     MachineIRBuilder &B, const Function &F,
586     ArrayRef<ArrayRef<Register>> VRegs) const {
587   CallingConv::ID CC = F.getCallingConv();
588 
589   // The infrastructure for normal calling convention lowering is essentially
590   // useless for kernels. We want to avoid any kind of legalization or argument
591   // splitting.
592   if (CC == CallingConv::AMDGPU_KERNEL)
593     return lowerFormalArgumentsKernel(B, F, VRegs);
594 
595   const bool IsShader = AMDGPU::isShader(CC);
596   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
597 
598   MachineFunction &MF = B.getMF();
599   MachineBasicBlock &MBB = B.getMBB();
600   MachineRegisterInfo &MRI = MF.getRegInfo();
601   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
602   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
603   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
604   const DataLayout &DL = F.getParent()->getDataLayout();
605 
606 
607   SmallVector<CCValAssign, 16> ArgLocs;
608   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
609 
610   if (!IsEntryFunc) {
611     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
612     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
613                                          &AMDGPU::SGPR_64RegClass);
614     MBB.addLiveIn(ReturnAddrReg);
615     B.buildCopy(LiveInReturn, ReturnAddrReg);
616   }
617 
618   if (Info->hasImplicitBufferPtr()) {
619     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
620     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
621     CCInfo.AllocateReg(ImplicitBufferPtrReg);
622   }
623 
624 
625   SmallVector<ArgInfo, 32> SplitArgs;
626   unsigned Idx = 0;
627   unsigned PSInputNum = 0;
628 
629   for (auto &Arg : F.args()) {
630     if (DL.getTypeStoreSize(Arg.getType()) == 0)
631       continue;
632 
633     const bool InReg = Arg.hasAttribute(Attribute::InReg);
634 
635     // SGPR arguments to functions not implemented.
636     if (!IsShader && InReg)
637       return false;
638 
639     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
640         Arg.hasAttribute(Attribute::SwiftError) ||
641         Arg.hasAttribute(Attribute::Nest))
642       return false;
643 
644     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
645       const bool ArgUsed = !Arg.use_empty();
646       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
647 
648       if (!SkipArg) {
649         Info->markPSInputAllocated(PSInputNum);
650         if (ArgUsed)
651           Info->markPSInputEnabled(PSInputNum);
652       }
653 
654       ++PSInputNum;
655 
656       if (SkipArg) {
657         for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
658           B.buildUndef(VRegs[Idx][I]);
659 
660         ++Idx;
661         continue;
662       }
663     }
664 
665     ArgInfo OrigArg(VRegs[Idx], Arg.getType());
666     setArgFlags(OrigArg, Idx + AttributeList::FirstArgIndex, DL, F);
667 
668     splitToValueTypes(
669       OrigArg, SplitArgs, DL, MRI, CC,
670       // FIXME: We should probably be passing multiple registers to
671       // handleAssignments to do this
672       [&](ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, int VTSplitIdx) {
673         packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs,
674                                 LLTy, PartLLT);
675       });
676 
677     ++Idx;
678   }
679 
680   // At least one interpolation mode must be enabled or else the GPU will
681   // hang.
682   //
683   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
684   // set PSInputAddr, the user wants to enable some bits after the compilation
685   // based on run-time states. Since we can't know what the final PSInputEna
686   // will look like, so we shouldn't do anything here and the user should take
687   // responsibility for the correct programming.
688   //
689   // Otherwise, the following restrictions apply:
690   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
691   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
692   //   enabled too.
693   if (CC == CallingConv::AMDGPU_PS) {
694     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
695         ((Info->getPSInputAddr() & 0xF) == 0 &&
696          Info->isPSInputAllocated(11))) {
697       CCInfo.AllocateReg(AMDGPU::VGPR0);
698       CCInfo.AllocateReg(AMDGPU::VGPR1);
699       Info->markPSInputAllocated(0);
700       Info->markPSInputEnabled(0);
701     }
702 
703     if (Subtarget.isAmdPalOS()) {
704       // For isAmdPalOS, the user does not enable some bits after compilation
705       // based on run-time states; the register values being generated here are
706       // the final ones set in hardware. Therefore we need to apply the
707       // workaround to PSInputAddr and PSInputEnable together.  (The case where
708       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
709       // set up an input arg for a particular interpolation mode, but nothing
710       // uses that input arg. Really we should have an earlier pass that removes
711       // such an arg.)
712       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
713       if ((PsInputBits & 0x7F) == 0 ||
714           ((PsInputBits & 0xF) == 0 &&
715            (PsInputBits >> 11 & 1)))
716         Info->markPSInputEnabled(
717           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
718     }
719   }
720 
721   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
722   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
723 
724   if (!MBB.empty())
725     B.setInstr(*MBB.begin());
726 
727   FormalArgHandler Handler(B, MRI, AssignFn);
728   if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
729     return false;
730 
731   if (!IsEntryFunc) {
732     // Special inputs come after user arguments.
733     TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
734   }
735 
736   // Start adding system SGPRs.
737   if (IsEntryFunc) {
738     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsShader);
739   } else {
740     CCInfo.AllocateReg(Info->getScratchRSrcReg());
741     CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
742     CCInfo.AllocateReg(Info->getFrameOffsetReg());
743     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
744   }
745 
746   // Move back to the end of the basic block.
747   B.setMBB(MBB);
748 
749   return true;
750 }
751