1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "SIMachineFunctionInfo.h"
20 #include "SIRegisterInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/IR/IntrinsicsAMDGPU.h"
25 
26 #define DEBUG_TYPE "amdgpu-call-lowering"
27 
28 using namespace llvm;
29 
30 namespace {
31 
32 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register.
33 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler,
34                                     Register ValVReg, CCValAssign &VA) {
35   if (VA.getLocVT().getSizeInBits() < 32) {
36     // 16-bit types are reported as legal for 32-bit registers. We need to
37     // extend and do a 32-bit copy to avoid the verifier complaining about it.
38     return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
39   }
40 
41   return Handler.extendRegister(ValVReg, VA);
42 }
43 
44 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler {
45   AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
46                              MachineInstrBuilder MIB, CCAssignFn *AssignFn)
47       : OutgoingValueHandler(B, MRI, AssignFn), MIB(MIB) {}
48 
49   MachineInstrBuilder MIB;
50 
51   Register getStackAddress(uint64_t Size, int64_t Offset,
52                            MachinePointerInfo &MPO,
53                            ISD::ArgFlagsTy Flags) override {
54     llvm_unreachable("not implemented");
55   }
56 
57   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
58                             MachinePointerInfo &MPO, CCValAssign &VA) override {
59     llvm_unreachable("not implemented");
60   }
61 
62   void assignValueToReg(Register ValVReg, Register PhysReg,
63                         CCValAssign &VA) override {
64     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
65 
66     // If this is a scalar return, insert a readfirstlane just in case the value
67     // ends up in a VGPR.
68     // FIXME: Assert this is a shader return.
69     const SIRegisterInfo *TRI
70       = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
71     if (TRI->isSGPRReg(MRI, PhysReg)) {
72       auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
73                                               {MRI.getType(ExtReg)}, false)
74         .addReg(ExtReg);
75       ExtReg = ToSGPR.getReg(0);
76     }
77 
78     MIRBuilder.buildCopy(PhysReg, ExtReg);
79     MIB.addUse(PhysReg, RegState::Implicit);
80   }
81 
82   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
83                  CCValAssign::LocInfo LocInfo,
84                  const CallLowering::ArgInfo &Info,
85                  ISD::ArgFlagsTy Flags,
86                  CCState &State) override {
87     return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
88   }
89 };
90 
91 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler {
92   uint64_t StackUsed = 0;
93 
94   AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
95                            CCAssignFn *AssignFn)
96       : IncomingValueHandler(B, MRI, AssignFn) {}
97 
98   Register getStackAddress(uint64_t Size, int64_t Offset,
99                            MachinePointerInfo &MPO,
100                            ISD::ArgFlagsTy Flags) override {
101     auto &MFI = MIRBuilder.getMF().getFrameInfo();
102 
103     // Byval is assumed to be writable memory, but other stack passed arguments
104     // are not.
105     const bool IsImmutable = !Flags.isByVal();
106     int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
107     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
108     auto AddrReg = MIRBuilder.buildFrameIndex(
109         LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
110     StackUsed = std::max(StackUsed, Size + Offset);
111     return AddrReg.getReg(0);
112   }
113 
114   void assignValueToReg(Register ValVReg, Register PhysReg,
115                         CCValAssign &VA) override {
116     markPhysRegUsed(PhysReg);
117 
118     if (VA.getLocVT().getSizeInBits() < 32) {
119       // 16-bit types are reported as legal for 32-bit registers. We need to do
120       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
121       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
122 
123       // If we have signext/zeroext, it applies to the whole 32-bit register
124       // before truncation.
125       auto Extended =
126           buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT()));
127       MIRBuilder.buildTrunc(ValVReg, Extended);
128       return;
129     }
130 
131     IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
132   }
133 
134   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
135                             MachinePointerInfo &MPO, CCValAssign &VA) override {
136     MachineFunction &MF = MIRBuilder.getMF();
137 
138     // The reported memory location may be wider than the value.
139     const LLT RegTy = MRI.getType(ValVReg);
140     MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize);
141 
142     // FIXME: Get alignment
143     auto MMO = MF.getMachineMemOperand(
144         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
145         inferAlignFromPtrInfo(MF, MPO));
146     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
147   }
148 
149   /// How the physical register gets marked varies between formal
150   /// parameters (it's a basic-block live-in), and a call instruction
151   /// (it's an implicit-def of the BL).
152   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
153 };
154 
155 struct FormalArgHandler : public AMDGPUIncomingArgHandler {
156   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
157                    CCAssignFn *AssignFn)
158       : AMDGPUIncomingArgHandler(B, MRI, AssignFn) {}
159 
160   void markPhysRegUsed(unsigned PhysReg) override {
161     MIRBuilder.getMBB().addLiveIn(PhysReg);
162   }
163 };
164 
165 struct CallReturnHandler : public AMDGPUIncomingArgHandler {
166   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
167                     MachineInstrBuilder MIB, CCAssignFn *AssignFn)
168       : AMDGPUIncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
169 
170   void markPhysRegUsed(unsigned PhysReg) override {
171     MIB.addDef(PhysReg, RegState::Implicit);
172   }
173 
174   MachineInstrBuilder MIB;
175 };
176 
177 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler {
178   CCAssignFn *AssignFnVarArg;
179 
180   /// For tail calls, the byte offset of the call's argument area from the
181   /// callee's. Unused elsewhere.
182   int FPDiff;
183 
184   // Cache the SP register vreg if we need it more than once in this call site.
185   Register SPReg;
186 
187   bool IsTailCall;
188 
189   AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
190                            MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
191                            CCAssignFn *AssignFn, CCAssignFn *AssignFnVarArg,
192                            bool IsTailCall = false, int FPDiff = 0)
193       : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB, AssignFn),
194         AssignFnVarArg(AssignFnVarArg), FPDiff(FPDiff), IsTailCall(IsTailCall) {
195   }
196 
197   Register getStackAddress(uint64_t Size, int64_t Offset,
198                            MachinePointerInfo &MPO,
199                            ISD::ArgFlagsTy Flags) override {
200     MachineFunction &MF = MIRBuilder.getMF();
201     const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
202     const LLT S32 = LLT::scalar(32);
203 
204     if (IsTailCall) {
205       llvm_unreachable("implement me");
206     }
207 
208     const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
209 
210     if (!SPReg)
211       SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0);
212 
213     auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
214 
215     auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
216     MPO = MachinePointerInfo::getStack(MF, Offset);
217     return AddrReg.getReg(0);
218   }
219 
220   void assignValueToReg(Register ValVReg, Register PhysReg,
221                         CCValAssign &VA) override {
222     MIB.addUse(PhysReg, RegState::Implicit);
223     Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
224     MIRBuilder.buildCopy(PhysReg, ExtReg);
225   }
226 
227   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
228                             MachinePointerInfo &MPO, CCValAssign &VA) override {
229     MachineFunction &MF = MIRBuilder.getMF();
230     uint64_t LocMemOffset = VA.getLocMemOffset();
231     const auto &ST = MF.getSubtarget<GCNSubtarget>();
232 
233     auto MMO = MF.getMachineMemOperand(
234       MPO, MachineMemOperand::MOStore, Size,
235       commonAlignment(ST.getStackAlignment(), LocMemOffset));
236     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
237   }
238 
239   void assignValueToAddress(const CallLowering::ArgInfo &Arg,
240                             unsigned ValRegIndex, Register Addr,
241                             uint64_t MemSize, MachinePointerInfo &MPO,
242                             CCValAssign &VA) override {
243     Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
244                            ? extendRegister(Arg.Regs[ValRegIndex], VA)
245                            : Arg.Regs[ValRegIndex];
246 
247     // If we extended the value type we might need to adjust the MMO's
248     // Size. This happens if ComputeValueVTs widened a small type value to a
249     // legal register type (e.g. s8->s16)
250     const LLT RegTy = MRI.getType(ValVReg);
251     MemSize = std::min(MemSize, (uint64_t)RegTy.getSizeInBytes());
252     assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA);
253   }
254 };
255 }
256 
257 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
258   : CallLowering(&TLI) {
259 }
260 
261 // FIXME: Compatability shim
262 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
263   switch (MIOpc) {
264   case TargetOpcode::G_SEXT:
265     return ISD::SIGN_EXTEND;
266   case TargetOpcode::G_ZEXT:
267     return ISD::ZERO_EXTEND;
268   case TargetOpcode::G_ANYEXT:
269     return ISD::ANY_EXTEND;
270   default:
271     llvm_unreachable("not an extend opcode");
272   }
273 }
274 
275 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
276                                         CallingConv::ID CallConv,
277                                         SmallVectorImpl<BaseArgInfo> &Outs,
278                                         bool IsVarArg) const {
279   // For shaders. Vector types should be explicitly handled by CC.
280   if (AMDGPU::isEntryFunctionCC(CallConv))
281     return true;
282 
283   SmallVector<CCValAssign, 16> ArgLocs;
284   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
285   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
286                  MF.getFunction().getContext());
287 
288   return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
289 }
290 
291 /// Lower the return value for the already existing \p Ret. This assumes that
292 /// \p B's insertion point is correct.
293 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
294                                         const Value *Val, ArrayRef<Register> VRegs,
295                                         MachineInstrBuilder &Ret) const {
296   if (!Val)
297     return true;
298 
299   auto &MF = B.getMF();
300   const auto &F = MF.getFunction();
301   const DataLayout &DL = MF.getDataLayout();
302   MachineRegisterInfo *MRI = B.getMRI();
303   LLVMContext &Ctx = F.getContext();
304 
305   CallingConv::ID CC = F.getCallingConv();
306   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
307 
308   SmallVector<EVT, 8> SplitEVTs;
309   ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
310   assert(VRegs.size() == SplitEVTs.size() &&
311          "For each split Type there should be exactly one VReg.");
312 
313   SmallVector<ArgInfo, 8> SplitRetInfos;
314 
315   for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
316     EVT VT = SplitEVTs[i];
317     Register Reg = VRegs[i];
318     ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx));
319     setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
320 
321     if (VT.isScalarInteger()) {
322       unsigned ExtendOp = TargetOpcode::G_ANYEXT;
323       if (RetInfo.Flags[0].isSExt()) {
324         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
325         ExtendOp = TargetOpcode::G_SEXT;
326       } else if (RetInfo.Flags[0].isZExt()) {
327         assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
328         ExtendOp = TargetOpcode::G_ZEXT;
329       }
330 
331       EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
332                                           extOpcodeToISDExtOpcode(ExtendOp));
333       if (ExtVT != VT) {
334         RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
335         LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
336         Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
337       }
338     }
339 
340     if (Reg != RetInfo.Regs[0]) {
341       RetInfo.Regs[0] = Reg;
342       // Reset the arg flags after modifying Reg.
343       setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
344     }
345 
346     splitToValueTypes(RetInfo, SplitRetInfos, DL, CC);
347   }
348 
349   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
350   AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn);
351   return handleAssignments(B, SplitRetInfos, RetHandler, CC, F.isVarArg());
352 }
353 
354 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
355                                      ArrayRef<Register> VRegs,
356                                      FunctionLoweringInfo &FLI) const {
357 
358   MachineFunction &MF = B.getMF();
359   MachineRegisterInfo &MRI = MF.getRegInfo();
360   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
361   MFI->setIfReturnsVoid(!Val);
362 
363   assert(!Val == VRegs.empty() && "Return value without a vreg");
364 
365   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
366   const bool IsShader = AMDGPU::isShader(CC);
367   const bool IsWaveEnd =
368       (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
369   if (IsWaveEnd) {
370     B.buildInstr(AMDGPU::S_ENDPGM)
371       .addImm(0);
372     return true;
373   }
374 
375   auto const &ST = MF.getSubtarget<GCNSubtarget>();
376 
377   unsigned ReturnOpc =
378       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
379 
380   auto Ret = B.buildInstrNoInsert(ReturnOpc);
381   Register ReturnAddrVReg;
382   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
383     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
384     Ret.addUse(ReturnAddrVReg);
385   }
386 
387   if (!FLI.CanLowerReturn)
388     insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
389   else if (!lowerReturnVal(B, Val, VRegs, Ret))
390     return false;
391 
392   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
393     const SIRegisterInfo *TRI = ST.getRegisterInfo();
394     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
395                                          &AMDGPU::SGPR_64RegClass);
396     B.buildCopy(ReturnAddrVReg, LiveInReturn);
397   }
398 
399   // TODO: Handle CalleeSavedRegsViaCopy.
400 
401   B.insertInstr(Ret);
402   return true;
403 }
404 
405 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
406                                            Type *ParamTy,
407                                            uint64_t Offset) const {
408   MachineFunction &MF = B.getMF();
409   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
410   MachineRegisterInfo &MRI = MF.getRegInfo();
411   Register KernArgSegmentPtr =
412     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
413   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
414 
415   auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
416 
417   B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
418 }
419 
420 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy,
421                                         uint64_t Offset, Align Alignment,
422                                         Register DstReg) const {
423   MachineFunction &MF = B.getMF();
424   const Function &F = MF.getFunction();
425   const DataLayout &DL = F.getParent()->getDataLayout();
426   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
427   unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
428 
429   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
430   Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
431   lowerParameterPtr(PtrReg, B, ParamTy, Offset);
432 
433   MachineMemOperand *MMO = MF.getMachineMemOperand(
434       PtrInfo,
435       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
436           MachineMemOperand::MOInvariant,
437       TypeSize, Alignment);
438 
439   B.buildLoad(DstReg, PtrReg, *MMO);
440 }
441 
442 // Allocate special inputs passed in user SGPRs.
443 static void allocateHSAUserSGPRs(CCState &CCInfo,
444                                  MachineIRBuilder &B,
445                                  MachineFunction &MF,
446                                  const SIRegisterInfo &TRI,
447                                  SIMachineFunctionInfo &Info) {
448   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
449   if (Info.hasPrivateSegmentBuffer()) {
450     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
451     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
452     CCInfo.AllocateReg(PrivateSegmentBufferReg);
453   }
454 
455   if (Info.hasDispatchPtr()) {
456     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
457     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
458     CCInfo.AllocateReg(DispatchPtrReg);
459   }
460 
461   if (Info.hasQueuePtr()) {
462     Register QueuePtrReg = Info.addQueuePtr(TRI);
463     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
464     CCInfo.AllocateReg(QueuePtrReg);
465   }
466 
467   if (Info.hasKernargSegmentPtr()) {
468     MachineRegisterInfo &MRI = MF.getRegInfo();
469     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
470     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
471     Register VReg = MRI.createGenericVirtualRegister(P4);
472     MRI.addLiveIn(InputPtrReg, VReg);
473     B.getMBB().addLiveIn(InputPtrReg);
474     B.buildCopy(VReg, InputPtrReg);
475     CCInfo.AllocateReg(InputPtrReg);
476   }
477 
478   if (Info.hasDispatchID()) {
479     Register DispatchIDReg = Info.addDispatchID(TRI);
480     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
481     CCInfo.AllocateReg(DispatchIDReg);
482   }
483 
484   if (Info.hasFlatScratchInit()) {
485     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
486     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
487     CCInfo.AllocateReg(FlatScratchInitReg);
488   }
489 
490   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
491   // these from the dispatch pointer.
492 }
493 
494 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
495     MachineIRBuilder &B, const Function &F,
496     ArrayRef<ArrayRef<Register>> VRegs) const {
497   MachineFunction &MF = B.getMF();
498   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
499   MachineRegisterInfo &MRI = MF.getRegInfo();
500   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
501   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
502   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
503   const DataLayout &DL = F.getParent()->getDataLayout();
504 
505   Info->allocateModuleLDSGlobal(F.getParent());
506 
507   SmallVector<CCValAssign, 16> ArgLocs;
508   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
509 
510   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
511 
512   unsigned i = 0;
513   const Align KernArgBaseAlign(16);
514   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
515   uint64_t ExplicitArgOffset = 0;
516 
517   // TODO: Align down to dword alignment and extract bits for extending loads.
518   for (auto &Arg : F.args()) {
519     const bool IsByRef = Arg.hasByRefAttr();
520     Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
521     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
522     if (AllocSize == 0)
523       continue;
524 
525     MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None;
526     if (!ABIAlign)
527       ABIAlign = DL.getABITypeAlign(ArgTy);
528 
529     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
530     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
531 
532     if (Arg.use_empty()) {
533       ++i;
534       continue;
535     }
536 
537     Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
538 
539     if (IsByRef) {
540       unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
541 
542       assert(VRegs[i].size() == 1 &&
543              "expected only one register for byval pointers");
544       if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
545         lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset);
546       } else {
547         const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
548         Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
549         lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset);
550 
551         B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
552       }
553     } else {
554       ArrayRef<Register> OrigArgRegs = VRegs[i];
555       Register ArgReg =
556         OrigArgRegs.size() == 1
557         ? OrigArgRegs[0]
558         : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
559 
560       lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg);
561       if (OrigArgRegs.size() > 1)
562         unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
563     }
564 
565     ++i;
566   }
567 
568   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
569   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
570   return true;
571 }
572 
573 bool AMDGPUCallLowering::lowerFormalArguments(
574     MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
575     FunctionLoweringInfo &FLI) const {
576   CallingConv::ID CC = F.getCallingConv();
577 
578   // The infrastructure for normal calling convention lowering is essentially
579   // useless for kernels. We want to avoid any kind of legalization or argument
580   // splitting.
581   if (CC == CallingConv::AMDGPU_KERNEL)
582     return lowerFormalArgumentsKernel(B, F, VRegs);
583 
584   const bool IsGraphics = AMDGPU::isGraphics(CC);
585   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
586 
587   MachineFunction &MF = B.getMF();
588   MachineBasicBlock &MBB = B.getMBB();
589   MachineRegisterInfo &MRI = MF.getRegInfo();
590   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
591   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
592   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
593   const DataLayout &DL = F.getParent()->getDataLayout();
594 
595   Info->allocateModuleLDSGlobal(F.getParent());
596 
597   SmallVector<CCValAssign, 16> ArgLocs;
598   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
599 
600   if (!IsEntryFunc) {
601     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
602     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
603                                          &AMDGPU::SGPR_64RegClass);
604     MBB.addLiveIn(ReturnAddrReg);
605     B.buildCopy(LiveInReturn, ReturnAddrReg);
606   }
607 
608   if (Info->hasImplicitBufferPtr()) {
609     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
610     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
611     CCInfo.AllocateReg(ImplicitBufferPtrReg);
612   }
613 
614   SmallVector<ArgInfo, 32> SplitArgs;
615   unsigned Idx = 0;
616   unsigned PSInputNum = 0;
617 
618   // Insert the hidden sret parameter if the return value won't fit in the
619   // return registers.
620   if (!FLI.CanLowerReturn)
621     insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
622 
623   for (auto &Arg : F.args()) {
624     if (DL.getTypeStoreSize(Arg.getType()) == 0)
625       continue;
626 
627     const bool InReg = Arg.hasAttribute(Attribute::InReg);
628 
629     // SGPR arguments to functions not implemented.
630     if (!IsGraphics && InReg)
631       return false;
632 
633     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
634         Arg.hasAttribute(Attribute::SwiftError) ||
635         Arg.hasAttribute(Attribute::Nest))
636       return false;
637 
638     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
639       const bool ArgUsed = !Arg.use_empty();
640       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
641 
642       if (!SkipArg) {
643         Info->markPSInputAllocated(PSInputNum);
644         if (ArgUsed)
645           Info->markPSInputEnabled(PSInputNum);
646       }
647 
648       ++PSInputNum;
649 
650       if (SkipArg) {
651         for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
652           B.buildUndef(VRegs[Idx][I]);
653 
654         ++Idx;
655         continue;
656       }
657     }
658 
659     ArgInfo OrigArg(VRegs[Idx], Arg);
660     const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
661     setArgFlags(OrigArg, OrigArgIdx, DL, F);
662 
663     splitToValueTypes(OrigArg, SplitArgs, DL, CC);
664     ++Idx;
665   }
666 
667   // At least one interpolation mode must be enabled or else the GPU will
668   // hang.
669   //
670   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
671   // set PSInputAddr, the user wants to enable some bits after the compilation
672   // based on run-time states. Since we can't know what the final PSInputEna
673   // will look like, so we shouldn't do anything here and the user should take
674   // responsibility for the correct programming.
675   //
676   // Otherwise, the following restrictions apply:
677   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
678   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
679   //   enabled too.
680   if (CC == CallingConv::AMDGPU_PS) {
681     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
682         ((Info->getPSInputAddr() & 0xF) == 0 &&
683          Info->isPSInputAllocated(11))) {
684       CCInfo.AllocateReg(AMDGPU::VGPR0);
685       CCInfo.AllocateReg(AMDGPU::VGPR1);
686       Info->markPSInputAllocated(0);
687       Info->markPSInputEnabled(0);
688     }
689 
690     if (Subtarget.isAmdPalOS()) {
691       // For isAmdPalOS, the user does not enable some bits after compilation
692       // based on run-time states; the register values being generated here are
693       // the final ones set in hardware. Therefore we need to apply the
694       // workaround to PSInputAddr and PSInputEnable together.  (The case where
695       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
696       // set up an input arg for a particular interpolation mode, but nothing
697       // uses that input arg. Really we should have an earlier pass that removes
698       // such an arg.)
699       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
700       if ((PsInputBits & 0x7F) == 0 ||
701           ((PsInputBits & 0xF) == 0 &&
702            (PsInputBits >> 11 & 1)))
703         Info->markPSInputEnabled(
704           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
705     }
706   }
707 
708   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
709   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
710 
711   if (!MBB.empty())
712     B.setInstr(*MBB.begin());
713 
714   if (!IsEntryFunc) {
715     // For the fixed ABI, pass workitem IDs in the last argument register.
716     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
717       TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
718   }
719 
720   FormalArgHandler Handler(B, MRI, AssignFn);
721   if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
722     return false;
723 
724   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
725     // Special inputs come after user arguments.
726     TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
727   }
728 
729   // Start adding system SGPRs.
730   if (IsEntryFunc) {
731     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
732   } else {
733     if (!Subtarget.enableFlatScratch())
734       CCInfo.AllocateReg(Info->getScratchRSrcReg());
735     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
736   }
737 
738   // Move back to the end of the basic block.
739   B.setMBB(MBB);
740 
741   return true;
742 }
743 
744 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
745                                            CCState &CCInfo,
746                                            SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
747                                            CallLoweringInfo &Info) const {
748   MachineFunction &MF = MIRBuilder.getMF();
749 
750   const AMDGPUFunctionArgInfo *CalleeArgInfo
751     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
752 
753   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
754   const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
755 
756 
757   // TODO: Unify with private memory register handling. This is complicated by
758   // the fact that at least in kernels, the input argument is not necessarily
759   // in the same location as the input.
760   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
761     AMDGPUFunctionArgInfo::DISPATCH_PTR,
762     AMDGPUFunctionArgInfo::QUEUE_PTR,
763     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
764     AMDGPUFunctionArgInfo::DISPATCH_ID,
765     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
766     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
767     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
768   };
769 
770   MachineRegisterInfo &MRI = MF.getRegInfo();
771 
772   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
773   const AMDGPULegalizerInfo *LI
774     = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
775 
776   for (auto InputID : InputRegs) {
777     const ArgDescriptor *OutgoingArg;
778     const TargetRegisterClass *ArgRC;
779     LLT ArgTy;
780 
781     std::tie(OutgoingArg, ArgRC, ArgTy) =
782         CalleeArgInfo->getPreloadedValue(InputID);
783     if (!OutgoingArg)
784       continue;
785 
786     const ArgDescriptor *IncomingArg;
787     const TargetRegisterClass *IncomingArgRC;
788     std::tie(IncomingArg, IncomingArgRC, ArgTy) =
789         CallerArgInfo.getPreloadedValue(InputID);
790     assert(IncomingArgRC == ArgRC);
791 
792     Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
793 
794     if (IncomingArg) {
795       LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
796     } else {
797       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
798       LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
799     }
800 
801     if (OutgoingArg->isRegister()) {
802       ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
803       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
804         report_fatal_error("failed to allocate implicit input argument");
805     } else {
806       LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
807       return false;
808     }
809   }
810 
811   // Pack workitem IDs into a single register or pass it as is if already
812   // packed.
813   const ArgDescriptor *OutgoingArg;
814   const TargetRegisterClass *ArgRC;
815   LLT ArgTy;
816 
817   std::tie(OutgoingArg, ArgRC, ArgTy) =
818       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
819   if (!OutgoingArg)
820     std::tie(OutgoingArg, ArgRC, ArgTy) =
821         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
822   if (!OutgoingArg)
823     std::tie(OutgoingArg, ArgRC, ArgTy) =
824         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
825   if (!OutgoingArg)
826     return false;
827 
828   auto WorkitemIDX =
829       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
830   auto WorkitemIDY =
831       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
832   auto WorkitemIDZ =
833       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
834 
835   const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
836   const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
837   const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
838   const LLT S32 = LLT::scalar(32);
839 
840   // If incoming ids are not packed we need to pack them.
841   // FIXME: Should consider known workgroup size to eliminate known 0 cases.
842   Register InputReg;
843   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) {
844     InputReg = MRI.createGenericVirtualRegister(S32);
845     LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
846                        std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
847   }
848 
849   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
850     Register Y = MRI.createGenericVirtualRegister(S32);
851     LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
852                        std::get<2>(WorkitemIDY));
853 
854     Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
855     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
856   }
857 
858   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
859     Register Z = MRI.createGenericVirtualRegister(S32);
860     LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
861                        std::get<2>(WorkitemIDZ));
862 
863     Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
864     InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
865   }
866 
867   if (!InputReg) {
868     InputReg = MRI.createGenericVirtualRegister(S32);
869 
870     // Workitem ids are already packed, any of present incoming arguments will
871     // carry all required fields.
872     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
873       IncomingArgX ? *IncomingArgX :
874         IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
875     LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
876                        &AMDGPU::VGPR_32RegClass, S32);
877   }
878 
879   if (OutgoingArg->isRegister()) {
880     ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
881     if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
882       report_fatal_error("failed to allocate implicit input argument");
883   } else {
884     LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
885     return false;
886   }
887 
888   return true;
889 }
890 
891 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
892 /// CC.
893 static std::pair<CCAssignFn *, CCAssignFn *>
894 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
895   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
896 }
897 
898 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
899                               bool IsTailCall) {
900   return AMDGPU::SI_CALL;
901 }
902 
903 // Add operands to call instruction to track the callee.
904 static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
905                                   MachineIRBuilder &MIRBuilder,
906                                   AMDGPUCallLowering::CallLoweringInfo &Info) {
907   if (Info.Callee.isReg()) {
908     CallInst.addReg(Info.Callee.getReg());
909     CallInst.addImm(0);
910   } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
911     // The call lowering lightly assumed we can directly encode a call target in
912     // the instruction, which is not the case. Materialize the address here.
913     const GlobalValue *GV = Info.Callee.getGlobal();
914     auto Ptr = MIRBuilder.buildGlobalValue(
915       LLT::pointer(GV->getAddressSpace(), 64), GV);
916     CallInst.addReg(Ptr.getReg(0));
917     CallInst.add(Info.Callee);
918   } else
919     return false;
920 
921   return true;
922 }
923 
924 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
925                                    CallLoweringInfo &Info) const {
926   if (Info.IsVarArg) {
927     LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
928     return false;
929   }
930 
931   MachineFunction &MF = MIRBuilder.getMF();
932   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
933   const SIRegisterInfo *TRI = ST.getRegisterInfo();
934 
935   const Function &F = MF.getFunction();
936   MachineRegisterInfo &MRI = MF.getRegInfo();
937   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
938   const DataLayout &DL = F.getParent()->getDataLayout();
939   CallingConv::ID CallConv = F.getCallingConv();
940 
941   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
942       CallConv != CallingConv::AMDGPU_Gfx) {
943     LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n");
944     return false;
945   }
946 
947   if (AMDGPU::isShader(CallConv)) {
948     LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n");
949     return false;
950   }
951 
952   SmallVector<ArgInfo, 8> OutArgs;
953   for (auto &OrigArg : Info.OrigArgs)
954     splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
955 
956   SmallVector<ArgInfo, 8> InArgs;
957   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy())
958     splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
959 
960   // If we can lower as a tail call, do that instead.
961   bool CanTailCallOpt = false;
962 
963   // We must emit a tail call if we have musttail.
964   if (Info.IsMustTailCall && !CanTailCallOpt) {
965     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
966     return false;
967   }
968 
969   // Find out which ABI gets to decide where things go.
970   CCAssignFn *AssignFnFixed;
971   CCAssignFn *AssignFnVarArg;
972   std::tie(AssignFnFixed, AssignFnVarArg) =
973       getAssignFnsForCC(Info.CallConv, TLI);
974 
975   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
976     .addImm(0)
977     .addImm(0);
978 
979   // Create a temporarily-floating call instruction so we can add the implicit
980   // uses of arg registers.
981   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
982 
983   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
984   MIB.addDef(TRI->getReturnAddressReg(MF));
985 
986   if (!addCallTargetOperands(MIB, MIRBuilder, Info))
987     return false;
988 
989   // Tell the call which registers are clobbered.
990   const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
991   MIB.addRegMask(Mask);
992 
993   SmallVector<CCValAssign, 16> ArgLocs;
994   CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
995 
996   // We could pass MIB and directly add the implicit uses to the call
997   // now. However, as an aesthetic choice, place implicit argument operands
998   // after the ordinary user argument registers.
999   SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1000 
1001   if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
1002       Info.CallConv != CallingConv::AMDGPU_Gfx) {
1003     // With a fixed ABI, allocate fixed registers before user arguments.
1004     if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1005       return false;
1006   }
1007 
1008   // Do the actual argument marshalling.
1009   SmallVector<Register, 8> PhysRegs;
1010   AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
1011                                    AssignFnVarArg, false);
1012   if (!handleAssignments(CCInfo, ArgLocs, MIRBuilder, OutArgs, Handler))
1013     return false;
1014 
1015   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1016 
1017   if (!ST.enableFlatScratch()) {
1018     // Insert copies for the SRD. In the HSA case, this should be an identity
1019     // copy.
1020     auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::vector(4, 32),
1021                                                MFI->getScratchRSrcReg());
1022     MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
1023     MIB.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
1024   }
1025 
1026   for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1027     MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1028     MIB.addReg(ArgReg.first, RegState::Implicit);
1029   }
1030 
1031   // Get a count of how many bytes are to be pushed on the stack.
1032   unsigned NumBytes = CCInfo.getNextStackOffset();
1033 
1034   // If Callee is a reg, since it is used by a target specific
1035   // instruction, it must have a register class matching the
1036   // constraint of that instruction.
1037 
1038   // FIXME: We should define regbankselectable call instructions to handle
1039   // divergent call targets.
1040   if (MIB->getOperand(1).isReg()) {
1041     MIB->getOperand(1).setReg(constrainOperandRegClass(
1042         MF, *TRI, MRI, *ST.getInstrInfo(),
1043         *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1044         1));
1045   }
1046 
1047   // Now we can add the actual call instruction to the correct position.
1048   MIRBuilder.insertInstr(MIB);
1049 
1050   // Finally we can copy the returned value back into its virtual-register. In
1051   // symmetry with the arguments, the physical register must be an
1052   // implicit-define of the call instruction.
1053   if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1054     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1055                                                       Info.IsVarArg);
1056     CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
1057     if (!handleAssignments(MIRBuilder, InArgs, Handler, Info.CallConv,
1058                            Info.IsVarArg))
1059       return false;
1060   }
1061 
1062   uint64_t CalleePopBytes = NumBytes;
1063 
1064   MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN)
1065             .addImm(0)
1066             .addImm(CalleePopBytes);
1067 
1068   if (!Info.CanLowerReturn) {
1069     insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1070                     Info.DemoteRegister, Info.DemoteStackIndex);
1071   }
1072 
1073   return true;
1074 }
1075