1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPULegalizerInfo.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "SIRegisterInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 26 #define DEBUG_TYPE "amdgpu-call-lowering" 27 28 using namespace llvm; 29 30 namespace { 31 32 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register. 33 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler, 34 Register ValVReg, CCValAssign &VA) { 35 if (VA.getLocVT().getSizeInBits() < 32) { 36 // 16-bit types are reported as legal for 32-bit registers. We need to 37 // extend and do a 32-bit copy to avoid the verifier complaining about it. 38 return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0); 39 } 40 41 return Handler.extendRegister(ValVReg, VA); 42 } 43 44 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler { 45 AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 46 MachineInstrBuilder MIB) 47 : OutgoingValueHandler(B, MRI), MIB(MIB) {} 48 49 MachineInstrBuilder MIB; 50 51 Register getStackAddress(uint64_t Size, int64_t Offset, 52 MachinePointerInfo &MPO, 53 ISD::ArgFlagsTy Flags) override { 54 llvm_unreachable("not implemented"); 55 } 56 57 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 58 MachinePointerInfo &MPO, CCValAssign &VA) override { 59 llvm_unreachable("not implemented"); 60 } 61 62 void assignValueToReg(Register ValVReg, Register PhysReg, 63 CCValAssign &VA) override { 64 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 65 66 // If this is a scalar return, insert a readfirstlane just in case the value 67 // ends up in a VGPR. 68 // FIXME: Assert this is a shader return. 69 const SIRegisterInfo *TRI 70 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 71 if (TRI->isSGPRReg(MRI, PhysReg)) { 72 auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane, 73 {MRI.getType(ExtReg)}, false) 74 .addReg(ExtReg); 75 ExtReg = ToSGPR.getReg(0); 76 } 77 78 MIRBuilder.buildCopy(PhysReg, ExtReg); 79 MIB.addUse(PhysReg, RegState::Implicit); 80 } 81 }; 82 83 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler { 84 uint64_t StackUsed = 0; 85 86 AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) 87 : IncomingValueHandler(B, MRI) {} 88 89 Register getStackAddress(uint64_t Size, int64_t Offset, 90 MachinePointerInfo &MPO, 91 ISD::ArgFlagsTy Flags) override { 92 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 93 94 // Byval is assumed to be writable memory, but other stack passed arguments 95 // are not. 96 const bool IsImmutable = !Flags.isByVal(); 97 int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable); 98 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 99 auto AddrReg = MIRBuilder.buildFrameIndex( 100 LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI); 101 StackUsed = std::max(StackUsed, Size + Offset); 102 return AddrReg.getReg(0); 103 } 104 105 void assignValueToReg(Register ValVReg, Register PhysReg, 106 CCValAssign &VA) override { 107 markPhysRegUsed(PhysReg); 108 109 if (VA.getLocVT().getSizeInBits() < 32) { 110 // 16-bit types are reported as legal for 32-bit registers. We need to do 111 // a 32-bit copy, and truncate to avoid the verifier complaining about it. 112 auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg); 113 114 // If we have signext/zeroext, it applies to the whole 32-bit register 115 // before truncation. 116 auto Extended = 117 buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT())); 118 MIRBuilder.buildTrunc(ValVReg, Extended); 119 return; 120 } 121 122 IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA); 123 } 124 125 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 126 MachinePointerInfo &MPO, CCValAssign &VA) override { 127 MachineFunction &MF = MIRBuilder.getMF(); 128 129 auto MMO = MF.getMachineMemOperand( 130 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy, 131 inferAlignFromPtrInfo(MF, MPO)); 132 MIRBuilder.buildLoad(ValVReg, Addr, *MMO); 133 } 134 135 /// How the physical register gets marked varies between formal 136 /// parameters (it's a basic-block live-in), and a call instruction 137 /// (it's an implicit-def of the BL). 138 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 139 }; 140 141 struct FormalArgHandler : public AMDGPUIncomingArgHandler { 142 FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) 143 : AMDGPUIncomingArgHandler(B, MRI) {} 144 145 void markPhysRegUsed(unsigned PhysReg) override { 146 MIRBuilder.getMBB().addLiveIn(PhysReg); 147 } 148 }; 149 150 struct CallReturnHandler : public AMDGPUIncomingArgHandler { 151 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 152 MachineInstrBuilder MIB) 153 : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {} 154 155 void markPhysRegUsed(unsigned PhysReg) override { 156 MIB.addDef(PhysReg, RegState::Implicit); 157 } 158 159 MachineInstrBuilder MIB; 160 }; 161 162 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler { 163 /// For tail calls, the byte offset of the call's argument area from the 164 /// callee's. Unused elsewhere. 165 int FPDiff; 166 167 // Cache the SP register vreg if we need it more than once in this call site. 168 Register SPReg; 169 170 bool IsTailCall; 171 172 AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder, 173 MachineRegisterInfo &MRI, MachineInstrBuilder MIB, 174 bool IsTailCall = false, int FPDiff = 0) 175 : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff), 176 IsTailCall(IsTailCall) {} 177 178 Register getStackAddress(uint64_t Size, int64_t Offset, 179 MachinePointerInfo &MPO, 180 ISD::ArgFlagsTy Flags) override { 181 MachineFunction &MF = MIRBuilder.getMF(); 182 const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32); 183 const LLT S32 = LLT::scalar(32); 184 185 if (IsTailCall) { 186 Offset += FPDiff; 187 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true); 188 auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI); 189 MPO = MachinePointerInfo::getFixedStack(MF, FI); 190 return FIReg.getReg(0); 191 } 192 193 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 194 195 if (!SPReg) 196 SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0); 197 198 auto OffsetReg = MIRBuilder.buildConstant(S32, Offset); 199 200 auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg); 201 MPO = MachinePointerInfo::getStack(MF, Offset); 202 return AddrReg.getReg(0); 203 } 204 205 void assignValueToReg(Register ValVReg, Register PhysReg, 206 CCValAssign &VA) override { 207 MIB.addUse(PhysReg, RegState::Implicit); 208 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 209 MIRBuilder.buildCopy(PhysReg, ExtReg); 210 } 211 212 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 213 MachinePointerInfo &MPO, CCValAssign &VA) override { 214 MachineFunction &MF = MIRBuilder.getMF(); 215 uint64_t LocMemOffset = VA.getLocMemOffset(); 216 const auto &ST = MF.getSubtarget<GCNSubtarget>(); 217 218 auto MMO = MF.getMachineMemOperand( 219 MPO, MachineMemOperand::MOStore, MemTy, 220 commonAlignment(ST.getStackAlignment(), LocMemOffset)); 221 MIRBuilder.buildStore(ValVReg, Addr, *MMO); 222 } 223 224 void assignValueToAddress(const CallLowering::ArgInfo &Arg, 225 unsigned ValRegIndex, Register Addr, LLT MemTy, 226 MachinePointerInfo &MPO, CCValAssign &VA) override { 227 Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt 228 ? extendRegister(Arg.Regs[ValRegIndex], VA) 229 : Arg.Regs[ValRegIndex]; 230 assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA); 231 } 232 }; 233 } 234 235 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI) 236 : CallLowering(&TLI) { 237 } 238 239 // FIXME: Compatability shim 240 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) { 241 switch (MIOpc) { 242 case TargetOpcode::G_SEXT: 243 return ISD::SIGN_EXTEND; 244 case TargetOpcode::G_ZEXT: 245 return ISD::ZERO_EXTEND; 246 case TargetOpcode::G_ANYEXT: 247 return ISD::ANY_EXTEND; 248 default: 249 llvm_unreachable("not an extend opcode"); 250 } 251 } 252 253 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF, 254 CallingConv::ID CallConv, 255 SmallVectorImpl<BaseArgInfo> &Outs, 256 bool IsVarArg) const { 257 // For shaders. Vector types should be explicitly handled by CC. 258 if (AMDGPU::isEntryFunctionCC(CallConv)) 259 return true; 260 261 SmallVector<CCValAssign, 16> ArgLocs; 262 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 263 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, 264 MF.getFunction().getContext()); 265 266 return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg)); 267 } 268 269 /// Lower the return value for the already existing \p Ret. This assumes that 270 /// \p B's insertion point is correct. 271 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B, 272 const Value *Val, ArrayRef<Register> VRegs, 273 MachineInstrBuilder &Ret) const { 274 if (!Val) 275 return true; 276 277 auto &MF = B.getMF(); 278 const auto &F = MF.getFunction(); 279 const DataLayout &DL = MF.getDataLayout(); 280 MachineRegisterInfo *MRI = B.getMRI(); 281 LLVMContext &Ctx = F.getContext(); 282 283 CallingConv::ID CC = F.getCallingConv(); 284 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 285 286 SmallVector<EVT, 8> SplitEVTs; 287 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); 288 assert(VRegs.size() == SplitEVTs.size() && 289 "For each split Type there should be exactly one VReg."); 290 291 SmallVector<ArgInfo, 8> SplitRetInfos; 292 293 for (unsigned i = 0; i < SplitEVTs.size(); ++i) { 294 EVT VT = SplitEVTs[i]; 295 Register Reg = VRegs[i]; 296 ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx)); 297 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 298 299 if (VT.isScalarInteger()) { 300 unsigned ExtendOp = TargetOpcode::G_ANYEXT; 301 if (RetInfo.Flags[0].isSExt()) { 302 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 303 ExtendOp = TargetOpcode::G_SEXT; 304 } else if (RetInfo.Flags[0].isZExt()) { 305 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 306 ExtendOp = TargetOpcode::G_ZEXT; 307 } 308 309 EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT, 310 extOpcodeToISDExtOpcode(ExtendOp)); 311 if (ExtVT != VT) { 312 RetInfo.Ty = ExtVT.getTypeForEVT(Ctx); 313 LLT ExtTy = getLLTForType(*RetInfo.Ty, DL); 314 Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0); 315 } 316 } 317 318 if (Reg != RetInfo.Regs[0]) { 319 RetInfo.Regs[0] = Reg; 320 // Reset the arg flags after modifying Reg. 321 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 322 } 323 324 splitToValueTypes(RetInfo, SplitRetInfos, DL, CC); 325 } 326 327 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg()); 328 329 OutgoingValueAssigner Assigner(AssignFn); 330 AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret); 331 return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B, 332 CC, F.isVarArg()); 333 } 334 335 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val, 336 ArrayRef<Register> VRegs, 337 FunctionLoweringInfo &FLI) const { 338 339 MachineFunction &MF = B.getMF(); 340 MachineRegisterInfo &MRI = MF.getRegInfo(); 341 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 342 MFI->setIfReturnsVoid(!Val); 343 344 assert(!Val == VRegs.empty() && "Return value without a vreg"); 345 346 CallingConv::ID CC = B.getMF().getFunction().getCallingConv(); 347 const bool IsShader = AMDGPU::isShader(CC); 348 const bool IsWaveEnd = 349 (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC); 350 if (IsWaveEnd) { 351 B.buildInstr(AMDGPU::S_ENDPGM) 352 .addImm(0); 353 return true; 354 } 355 356 auto const &ST = MF.getSubtarget<GCNSubtarget>(); 357 358 unsigned ReturnOpc = 359 IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return; 360 361 auto Ret = B.buildInstrNoInsert(ReturnOpc); 362 Register ReturnAddrVReg; 363 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 364 ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass); 365 Ret.addUse(ReturnAddrVReg); 366 } 367 368 if (!FLI.CanLowerReturn) 369 insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister); 370 else if (!lowerReturnVal(B, Val, VRegs, Ret)) 371 return false; 372 373 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 374 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 375 Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF), 376 &AMDGPU::SGPR_64RegClass); 377 B.buildCopy(ReturnAddrVReg, LiveInReturn); 378 } 379 380 // TODO: Handle CalleeSavedRegsViaCopy. 381 382 B.insertInstr(Ret); 383 return true; 384 } 385 386 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B, 387 Type *ParamTy, 388 uint64_t Offset) const { 389 MachineFunction &MF = B.getMF(); 390 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 391 MachineRegisterInfo &MRI = MF.getRegInfo(); 392 Register KernArgSegmentPtr = 393 MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 394 Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr); 395 396 auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset); 397 398 B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg); 399 } 400 401 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy, 402 uint64_t Offset, Align Alignment, 403 Register DstReg) const { 404 MachineFunction &MF = B.getMF(); 405 const Function &F = MF.getFunction(); 406 const DataLayout &DL = F.getParent()->getDataLayout(); 407 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 408 unsigned TypeSize = DL.getTypeStoreSize(ParamTy); 409 410 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 411 Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy); 412 lowerParameterPtr(PtrReg, B, ParamTy, Offset); 413 414 MachineMemOperand *MMO = MF.getMachineMemOperand( 415 PtrInfo, 416 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 417 MachineMemOperand::MOInvariant, 418 TypeSize, Alignment); 419 420 B.buildLoad(DstReg, PtrReg, *MMO); 421 } 422 423 // Allocate special inputs passed in user SGPRs. 424 static void allocateHSAUserSGPRs(CCState &CCInfo, 425 MachineIRBuilder &B, 426 MachineFunction &MF, 427 const SIRegisterInfo &TRI, 428 SIMachineFunctionInfo &Info) { 429 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 430 if (Info.hasPrivateSegmentBuffer()) { 431 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 432 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 433 CCInfo.AllocateReg(PrivateSegmentBufferReg); 434 } 435 436 if (Info.hasDispatchPtr()) { 437 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 438 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 439 CCInfo.AllocateReg(DispatchPtrReg); 440 } 441 442 if (Info.hasQueuePtr()) { 443 Register QueuePtrReg = Info.addQueuePtr(TRI); 444 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 445 CCInfo.AllocateReg(QueuePtrReg); 446 } 447 448 if (Info.hasKernargSegmentPtr()) { 449 MachineRegisterInfo &MRI = MF.getRegInfo(); 450 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 451 const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 452 Register VReg = MRI.createGenericVirtualRegister(P4); 453 MRI.addLiveIn(InputPtrReg, VReg); 454 B.getMBB().addLiveIn(InputPtrReg); 455 B.buildCopy(VReg, InputPtrReg); 456 CCInfo.AllocateReg(InputPtrReg); 457 } 458 459 if (Info.hasDispatchID()) { 460 Register DispatchIDReg = Info.addDispatchID(TRI); 461 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 462 CCInfo.AllocateReg(DispatchIDReg); 463 } 464 465 if (Info.hasFlatScratchInit()) { 466 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 467 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 468 CCInfo.AllocateReg(FlatScratchInitReg); 469 } 470 471 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 472 // these from the dispatch pointer. 473 } 474 475 bool AMDGPUCallLowering::lowerFormalArgumentsKernel( 476 MachineIRBuilder &B, const Function &F, 477 ArrayRef<ArrayRef<Register>> VRegs) const { 478 MachineFunction &MF = B.getMF(); 479 const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>(); 480 MachineRegisterInfo &MRI = MF.getRegInfo(); 481 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 482 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 483 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 484 const DataLayout &DL = F.getParent()->getDataLayout(); 485 486 Info->allocateModuleLDSGlobal(F.getParent()); 487 488 SmallVector<CCValAssign, 16> ArgLocs; 489 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); 490 491 allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info); 492 493 unsigned i = 0; 494 const Align KernArgBaseAlign(16); 495 const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F); 496 uint64_t ExplicitArgOffset = 0; 497 498 // TODO: Align down to dword alignment and extract bits for extending loads. 499 for (auto &Arg : F.args()) { 500 const bool IsByRef = Arg.hasByRefAttr(); 501 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 502 unsigned AllocSize = DL.getTypeAllocSize(ArgTy); 503 if (AllocSize == 0) 504 continue; 505 506 MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None; 507 if (!ABIAlign) 508 ABIAlign = DL.getABITypeAlign(ArgTy); 509 510 uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset; 511 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize; 512 513 if (Arg.use_empty()) { 514 ++i; 515 continue; 516 } 517 518 Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset); 519 520 if (IsByRef) { 521 unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace(); 522 523 assert(VRegs[i].size() == 1 && 524 "expected only one register for byval pointers"); 525 if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) { 526 lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset); 527 } else { 528 const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 529 Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy); 530 lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset); 531 532 B.buildAddrSpaceCast(VRegs[i][0], PtrReg); 533 } 534 } else { 535 ArrayRef<Register> OrigArgRegs = VRegs[i]; 536 Register ArgReg = 537 OrigArgRegs.size() == 1 538 ? OrigArgRegs[0] 539 : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL)); 540 541 lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg); 542 if (OrigArgRegs.size() > 1) 543 unpackRegs(OrigArgRegs, ArgReg, ArgTy, B); 544 } 545 546 ++i; 547 } 548 549 TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 550 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false); 551 return true; 552 } 553 554 bool AMDGPUCallLowering::lowerFormalArguments( 555 MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs, 556 FunctionLoweringInfo &FLI) const { 557 CallingConv::ID CC = F.getCallingConv(); 558 559 // The infrastructure for normal calling convention lowering is essentially 560 // useless for kernels. We want to avoid any kind of legalization or argument 561 // splitting. 562 if (CC == CallingConv::AMDGPU_KERNEL) 563 return lowerFormalArgumentsKernel(B, F, VRegs); 564 565 const bool IsGraphics = AMDGPU::isGraphics(CC); 566 const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC); 567 568 MachineFunction &MF = B.getMF(); 569 MachineBasicBlock &MBB = B.getMBB(); 570 MachineRegisterInfo &MRI = MF.getRegInfo(); 571 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 572 const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>(); 573 const SIRegisterInfo *TRI = Subtarget.getRegisterInfo(); 574 const DataLayout &DL = F.getParent()->getDataLayout(); 575 576 Info->allocateModuleLDSGlobal(F.getParent()); 577 578 SmallVector<CCValAssign, 16> ArgLocs; 579 CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext()); 580 581 if (!IsEntryFunc) { 582 Register ReturnAddrReg = TRI->getReturnAddressReg(MF); 583 Register LiveInReturn = MF.addLiveIn(ReturnAddrReg, 584 &AMDGPU::SGPR_64RegClass); 585 MBB.addLiveIn(ReturnAddrReg); 586 B.buildCopy(LiveInReturn, ReturnAddrReg); 587 } 588 589 if (Info->hasImplicitBufferPtr()) { 590 Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI); 591 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 592 CCInfo.AllocateReg(ImplicitBufferPtrReg); 593 } 594 595 SmallVector<ArgInfo, 32> SplitArgs; 596 unsigned Idx = 0; 597 unsigned PSInputNum = 0; 598 599 // Insert the hidden sret parameter if the return value won't fit in the 600 // return registers. 601 if (!FLI.CanLowerReturn) 602 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL); 603 604 for (auto &Arg : F.args()) { 605 if (DL.getTypeStoreSize(Arg.getType()) == 0) 606 continue; 607 608 const bool InReg = Arg.hasAttribute(Attribute::InReg); 609 610 // SGPR arguments to functions not implemented. 611 if (!IsGraphics && InReg) 612 return false; 613 614 if (Arg.hasAttribute(Attribute::SwiftSelf) || 615 Arg.hasAttribute(Attribute::SwiftError) || 616 Arg.hasAttribute(Attribute::Nest)) 617 return false; 618 619 if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) { 620 const bool ArgUsed = !Arg.use_empty(); 621 bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum); 622 623 if (!SkipArg) { 624 Info->markPSInputAllocated(PSInputNum); 625 if (ArgUsed) 626 Info->markPSInputEnabled(PSInputNum); 627 } 628 629 ++PSInputNum; 630 631 if (SkipArg) { 632 for (int I = 0, E = VRegs[Idx].size(); I != E; ++I) 633 B.buildUndef(VRegs[Idx][I]); 634 635 ++Idx; 636 continue; 637 } 638 } 639 640 ArgInfo OrigArg(VRegs[Idx], Arg); 641 const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex; 642 setArgFlags(OrigArg, OrigArgIdx, DL, F); 643 644 splitToValueTypes(OrigArg, SplitArgs, DL, CC); 645 ++Idx; 646 } 647 648 // At least one interpolation mode must be enabled or else the GPU will 649 // hang. 650 // 651 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 652 // set PSInputAddr, the user wants to enable some bits after the compilation 653 // based on run-time states. Since we can't know what the final PSInputEna 654 // will look like, so we shouldn't do anything here and the user should take 655 // responsibility for the correct programming. 656 // 657 // Otherwise, the following restrictions apply: 658 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 659 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 660 // enabled too. 661 if (CC == CallingConv::AMDGPU_PS) { 662 if ((Info->getPSInputAddr() & 0x7F) == 0 || 663 ((Info->getPSInputAddr() & 0xF) == 0 && 664 Info->isPSInputAllocated(11))) { 665 CCInfo.AllocateReg(AMDGPU::VGPR0); 666 CCInfo.AllocateReg(AMDGPU::VGPR1); 667 Info->markPSInputAllocated(0); 668 Info->markPSInputEnabled(0); 669 } 670 671 if (Subtarget.isAmdPalOS()) { 672 // For isAmdPalOS, the user does not enable some bits after compilation 673 // based on run-time states; the register values being generated here are 674 // the final ones set in hardware. Therefore we need to apply the 675 // workaround to PSInputAddr and PSInputEnable together. (The case where 676 // a bit is set in PSInputAddr but not PSInputEnable is where the frontend 677 // set up an input arg for a particular interpolation mode, but nothing 678 // uses that input arg. Really we should have an earlier pass that removes 679 // such an arg.) 680 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 681 if ((PsInputBits & 0x7F) == 0 || 682 ((PsInputBits & 0xF) == 0 && 683 (PsInputBits >> 11 & 1))) 684 Info->markPSInputEnabled( 685 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 686 } 687 } 688 689 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 690 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg()); 691 692 if (!MBB.empty()) 693 B.setInstr(*MBB.begin()); 694 695 if (!IsEntryFunc) { 696 // For the fixed ABI, pass workitem IDs in the last argument register. 697 if (AMDGPUTargetMachine::EnableFixedFunctionABI) 698 TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 699 } 700 701 IncomingValueAssigner Assigner(AssignFn); 702 if (!determineAssignments(Assigner, SplitArgs, CCInfo)) 703 return false; 704 705 FormalArgHandler Handler(B, MRI); 706 if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B)) 707 return false; 708 709 uint64_t StackOffset = Assigner.StackOffset; 710 711 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) { 712 // Special inputs come after user arguments. 713 TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); 714 } 715 716 // Start adding system SGPRs. 717 if (IsEntryFunc) { 718 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics); 719 } else { 720 if (!Subtarget.enableFlatScratch()) 721 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 722 TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 723 } 724 725 // When we tail call, we need to check if the callee's arguments will fit on 726 // the caller's stack. So, whenever we lower formal arguments, we should keep 727 // track of this information, since we might lower a tail call in this 728 // function later. 729 Info->setBytesInStackArgArea(StackOffset); 730 731 // Move back to the end of the basic block. 732 B.setMBB(MBB); 733 734 return true; 735 } 736 737 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder, 738 CCState &CCInfo, 739 SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs, 740 CallLoweringInfo &Info) const { 741 MachineFunction &MF = MIRBuilder.getMF(); 742 743 const AMDGPUFunctionArgInfo *CalleeArgInfo 744 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 745 746 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 747 const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo(); 748 749 750 // TODO: Unify with private memory register handling. This is complicated by 751 // the fact that at least in kernels, the input argument is not necessarily 752 // in the same location as the input. 753 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 754 AMDGPUFunctionArgInfo::DISPATCH_PTR, 755 AMDGPUFunctionArgInfo::QUEUE_PTR, 756 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, 757 AMDGPUFunctionArgInfo::DISPATCH_ID, 758 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 759 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 760 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z 761 }; 762 763 MachineRegisterInfo &MRI = MF.getRegInfo(); 764 765 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 766 const AMDGPULegalizerInfo *LI 767 = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo()); 768 769 for (auto InputID : InputRegs) { 770 const ArgDescriptor *OutgoingArg; 771 const TargetRegisterClass *ArgRC; 772 LLT ArgTy; 773 774 std::tie(OutgoingArg, ArgRC, ArgTy) = 775 CalleeArgInfo->getPreloadedValue(InputID); 776 if (!OutgoingArg) 777 continue; 778 779 const ArgDescriptor *IncomingArg; 780 const TargetRegisterClass *IncomingArgRC; 781 std::tie(IncomingArg, IncomingArgRC, ArgTy) = 782 CallerArgInfo.getPreloadedValue(InputID); 783 assert(IncomingArgRC == ArgRC); 784 785 Register InputReg = MRI.createGenericVirtualRegister(ArgTy); 786 787 if (IncomingArg) { 788 LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy); 789 } else { 790 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 791 LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder); 792 } 793 794 if (OutgoingArg->isRegister()) { 795 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 796 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 797 report_fatal_error("failed to allocate implicit input argument"); 798 } else { 799 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 800 return false; 801 } 802 } 803 804 // Pack workitem IDs into a single register or pass it as is if already 805 // packed. 806 const ArgDescriptor *OutgoingArg; 807 const TargetRegisterClass *ArgRC; 808 LLT ArgTy; 809 810 std::tie(OutgoingArg, ArgRC, ArgTy) = 811 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 812 if (!OutgoingArg) 813 std::tie(OutgoingArg, ArgRC, ArgTy) = 814 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 815 if (!OutgoingArg) 816 std::tie(OutgoingArg, ArgRC, ArgTy) = 817 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 818 if (!OutgoingArg) 819 return false; 820 821 auto WorkitemIDX = 822 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 823 auto WorkitemIDY = 824 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 825 auto WorkitemIDZ = 826 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 827 828 const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX); 829 const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY); 830 const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ); 831 const LLT S32 = LLT::scalar(32); 832 833 // If incoming ids are not packed we need to pack them. 834 // FIXME: Should consider known workgroup size to eliminate known 0 cases. 835 Register InputReg; 836 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) { 837 InputReg = MRI.createGenericVirtualRegister(S32); 838 LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX, 839 std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX)); 840 } 841 842 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) { 843 Register Y = MRI.createGenericVirtualRegister(S32); 844 LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY), 845 std::get<2>(WorkitemIDY)); 846 847 Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0); 848 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y; 849 } 850 851 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) { 852 Register Z = MRI.createGenericVirtualRegister(S32); 853 LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ), 854 std::get<2>(WorkitemIDZ)); 855 856 Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0); 857 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z; 858 } 859 860 if (!InputReg) { 861 InputReg = MRI.createGenericVirtualRegister(S32); 862 863 // Workitem ids are already packed, any of present incoming arguments will 864 // carry all required fields. 865 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 866 IncomingArgX ? *IncomingArgX : 867 IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u); 868 LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg, 869 &AMDGPU::VGPR_32RegClass, S32); 870 } 871 872 if (OutgoingArg->isRegister()) { 873 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 874 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 875 report_fatal_error("failed to allocate implicit input argument"); 876 } else { 877 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 878 return false; 879 } 880 881 return true; 882 } 883 884 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for 885 /// CC. 886 static std::pair<CCAssignFn *, CCAssignFn *> 887 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) { 888 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; 889 } 890 891 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, 892 bool IsTailCall) { 893 return IsTailCall ? AMDGPU::SI_TCRETURN : AMDGPU::SI_CALL; 894 } 895 896 // Add operands to call instruction to track the callee. 897 static bool addCallTargetOperands(MachineInstrBuilder &CallInst, 898 MachineIRBuilder &MIRBuilder, 899 AMDGPUCallLowering::CallLoweringInfo &Info) { 900 if (Info.Callee.isReg()) { 901 CallInst.addReg(Info.Callee.getReg()); 902 CallInst.addImm(0); 903 } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) { 904 // The call lowering lightly assumed we can directly encode a call target in 905 // the instruction, which is not the case. Materialize the address here. 906 const GlobalValue *GV = Info.Callee.getGlobal(); 907 auto Ptr = MIRBuilder.buildGlobalValue( 908 LLT::pointer(GV->getAddressSpace(), 64), GV); 909 CallInst.addReg(Ptr.getReg(0)); 910 CallInst.add(Info.Callee); 911 } else 912 return false; 913 914 return true; 915 } 916 917 bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay( 918 CallLoweringInfo &Info, MachineFunction &MF, 919 SmallVectorImpl<ArgInfo> &InArgs) const { 920 const Function &CallerF = MF.getFunction(); 921 CallingConv::ID CalleeCC = Info.CallConv; 922 CallingConv::ID CallerCC = CallerF.getCallingConv(); 923 924 // If the calling conventions match, then everything must be the same. 925 if (CalleeCC == CallerCC) 926 return true; 927 928 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 929 930 // Make sure that the caller and callee preserve all of the same registers. 931 auto TRI = ST.getRegisterInfo(); 932 933 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 934 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 935 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 936 return false; 937 938 // Check if the caller and callee will handle arguments in the same way. 939 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 940 CCAssignFn *CalleeAssignFnFixed; 941 CCAssignFn *CalleeAssignFnVarArg; 942 std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) = 943 getAssignFnsForCC(CalleeCC, TLI); 944 945 CCAssignFn *CallerAssignFnFixed; 946 CCAssignFn *CallerAssignFnVarArg; 947 std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) = 948 getAssignFnsForCC(CallerCC, TLI); 949 950 // FIXME: We are not accounting for potential differences in implicitly passed 951 // inputs, but only the fixed ABI is supported now anyway. 952 IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed, 953 CalleeAssignFnVarArg); 954 IncomingValueAssigner CallerAssigner(CallerAssignFnFixed, 955 CallerAssignFnVarArg); 956 return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner); 957 } 958 959 bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable( 960 CallLoweringInfo &Info, MachineFunction &MF, 961 SmallVectorImpl<ArgInfo> &OutArgs) const { 962 // If there are no outgoing arguments, then we are done. 963 if (OutArgs.empty()) 964 return true; 965 966 const Function &CallerF = MF.getFunction(); 967 CallingConv::ID CalleeCC = Info.CallConv; 968 CallingConv::ID CallerCC = CallerF.getCallingConv(); 969 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 970 971 CCAssignFn *AssignFnFixed; 972 CCAssignFn *AssignFnVarArg; 973 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 974 975 // We have outgoing arguments. Make sure that we can tail call with them. 976 SmallVector<CCValAssign, 16> OutLocs; 977 CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext()); 978 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 979 980 if (!determineAssignments(Assigner, OutArgs, OutInfo)) { 981 LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n"); 982 return false; 983 } 984 985 // Make sure that they can fit on the caller's stack. 986 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 987 if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) { 988 LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n"); 989 return false; 990 } 991 992 // Verify that the parameters in callee-saved registers match. 993 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 994 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 995 const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC); 996 MachineRegisterInfo &MRI = MF.getRegInfo(); 997 return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs); 998 } 999 1000 /// Return true if the calling convention is one that we can guarantee TCO for. 1001 static bool canGuaranteeTCO(CallingConv::ID CC) { 1002 return CC == CallingConv::Fast; 1003 } 1004 1005 /// Return true if we might ever do TCO for calls with this calling convention. 1006 static bool mayTailCallThisCC(CallingConv::ID CC) { 1007 switch (CC) { 1008 case CallingConv::C: 1009 case CallingConv::AMDGPU_Gfx: 1010 return true; 1011 default: 1012 return canGuaranteeTCO(CC); 1013 } 1014 } 1015 1016 bool AMDGPUCallLowering::isEligibleForTailCallOptimization( 1017 MachineIRBuilder &B, CallLoweringInfo &Info, 1018 SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const { 1019 // Must pass all target-independent checks in order to tail call optimize. 1020 if (!Info.IsTailCall) 1021 return false; 1022 1023 MachineFunction &MF = B.getMF(); 1024 const Function &CallerF = MF.getFunction(); 1025 CallingConv::ID CalleeCC = Info.CallConv; 1026 CallingConv::ID CallerCC = CallerF.getCallingConv(); 1027 1028 const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo(); 1029 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1030 // Kernels aren't callable, and don't have a live in return address so it 1031 // doesn't make sense to do a tail call with entry functions. 1032 if (!CallerPreserved) 1033 return false; 1034 1035 if (!mayTailCallThisCC(CalleeCC)) { 1036 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n"); 1037 return false; 1038 } 1039 1040 if (any_of(CallerF.args(), [](const Argument &A) { 1041 return A.hasByValAttr() || A.hasSwiftErrorAttr(); 1042 })) { 1043 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval " 1044 "or swifterror arguments\n"); 1045 return false; 1046 } 1047 1048 // If we have -tailcallopt, then we're done. 1049 if (MF.getTarget().Options.GuaranteedTailCallOpt) 1050 return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv(); 1051 1052 // Verify that the incoming and outgoing arguments from the callee are 1053 // safe to tail call. 1054 if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) { 1055 LLVM_DEBUG( 1056 dbgs() 1057 << "... Caller and callee have incompatible calling conventions.\n"); 1058 return false; 1059 } 1060 1061 if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs)) 1062 return false; 1063 1064 LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n"); 1065 return true; 1066 } 1067 1068 // Insert outgoing implicit arguments for a call, by inserting copies to the 1069 // implicit argument registers and adding the necessary implicit uses to the 1070 // call instruction. 1071 void AMDGPUCallLowering::handleImplicitCallArguments( 1072 MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst, 1073 const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo, 1074 ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const { 1075 if (!ST.enableFlatScratch()) { 1076 // Insert copies for the SRD. In the HSA case, this should be an identity 1077 // copy. 1078 auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32), 1079 FuncInfo.getScratchRSrcReg()); 1080 MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 1081 CallInst.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit); 1082 } 1083 1084 for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) { 1085 MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second); 1086 CallInst.addReg(ArgReg.first, RegState::Implicit); 1087 } 1088 } 1089 1090 bool AMDGPUCallLowering::lowerTailCall( 1091 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, 1092 SmallVectorImpl<ArgInfo> &OutArgs) const { 1093 MachineFunction &MF = MIRBuilder.getMF(); 1094 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1095 SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 1096 const Function &F = MF.getFunction(); 1097 MachineRegisterInfo &MRI = MF.getRegInfo(); 1098 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1099 1100 // True when we're tail calling, but without -tailcallopt. 1101 bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt; 1102 1103 // Find out which ABI gets to decide where things go. 1104 CallingConv::ID CalleeCC = Info.CallConv; 1105 CCAssignFn *AssignFnFixed; 1106 CCAssignFn *AssignFnVarArg; 1107 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 1108 1109 MachineInstrBuilder CallSeqStart; 1110 if (!IsSibCall) 1111 CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP); 1112 1113 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true); 1114 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1115 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1116 return false; 1117 1118 // Byte offset for the tail call. When we are sibcalling, this will always 1119 // be 0. 1120 MIB.addImm(0); 1121 1122 // Tell the call which registers are clobbered. 1123 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1124 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC); 1125 MIB.addRegMask(Mask); 1126 1127 // FPDiff is the byte offset of the call's argument area from the callee's. 1128 // Stores to callee stack arguments will be placed in FixedStackSlots offset 1129 // by this amount for a tail call. In a sibling call it must be 0 because the 1130 // caller will deallocate the entire stack and the callee still expects its 1131 // arguments to begin at SP+0. 1132 int FPDiff = 0; 1133 1134 // This will be 0 for sibcalls, potentially nonzero for tail calls produced 1135 // by -tailcallopt. For sibcalls, the memory operands for the call are 1136 // already available in the caller's incoming argument space. 1137 unsigned NumBytes = 0; 1138 if (!IsSibCall) { 1139 // We aren't sibcalling, so we need to compute FPDiff. We need to do this 1140 // before handling assignments, because FPDiff must be known for memory 1141 // arguments. 1142 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); 1143 SmallVector<CCValAssign, 16> OutLocs; 1144 CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext()); 1145 1146 // FIXME: Not accounting for callee implicit inputs 1147 OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg); 1148 if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) 1149 return false; 1150 1151 // The callee will pop the argument stack as a tail call. Thus, we must 1152 // keep it 16-byte aligned. 1153 NumBytes = alignTo(OutInfo.getNextStackOffset(), ST.getStackAlignment()); 1154 1155 // FPDiff will be negative if this tail call requires more space than we 1156 // would automatically have in our incoming argument space. Positive if we 1157 // actually shrink the stack. 1158 FPDiff = NumReusableBytes - NumBytes; 1159 1160 // The stack pointer must be 16-byte aligned at all times it's used for a 1161 // memory operation, which in practice means at *all* times and in 1162 // particular across call boundaries. Therefore our own arguments started at 1163 // a 16-byte aligned SP and the delta applied for the tail call should 1164 // satisfy the same constraint. 1165 assert(isAligned(ST.getStackAlignment(), FPDiff) && 1166 "unaligned stack on tail call"); 1167 } 1168 1169 SmallVector<CCValAssign, 16> ArgLocs; 1170 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1171 1172 // We could pass MIB and directly add the implicit uses to the call 1173 // now. However, as an aesthetic choice, place implicit argument operands 1174 // after the ordinary user argument registers. 1175 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1176 1177 if (AMDGPUTargetMachine::EnableFixedFunctionABI && 1178 Info.CallConv != CallingConv::AMDGPU_Gfx) { 1179 // With a fixed ABI, allocate fixed registers before user arguments. 1180 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1181 return false; 1182 } 1183 1184 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1185 1186 if (!determineAssignments(Assigner, OutArgs, CCInfo)) 1187 return false; 1188 1189 // Do the actual argument marshalling. 1190 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff); 1191 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) 1192 return false; 1193 1194 handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, ImplicitArgRegs); 1195 1196 // If we have -tailcallopt, we need to adjust the stack. We'll do the call 1197 // sequence start and end here. 1198 if (!IsSibCall) { 1199 MIB->getOperand(1).setImm(FPDiff); 1200 CallSeqStart.addImm(NumBytes).addImm(0); 1201 // End the call sequence *before* emitting the call. Normally, we would 1202 // tidy the frame up after the call. However, here, we've laid out the 1203 // parameters so that when SP is reset, they will be in the correct 1204 // location. 1205 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0); 1206 } 1207 1208 // Now we can add the actual call instruction to the correct basic block. 1209 MIRBuilder.insertInstr(MIB); 1210 1211 // If Callee is a reg, since it is used by a target specific 1212 // instruction, it must have a register class matching the 1213 // constraint of that instruction. 1214 1215 // FIXME: We should define regbankselectable call instructions to handle 1216 // divergent call targets. 1217 if (MIB->getOperand(0).isReg()) { 1218 MIB->getOperand(0).setReg(constrainOperandRegClass( 1219 MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB, 1220 MIB->getDesc(), MIB->getOperand(0), 0)); 1221 } 1222 1223 MF.getFrameInfo().setHasTailCall(); 1224 Info.LoweredTailCall = true; 1225 return true; 1226 } 1227 1228 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 1229 CallLoweringInfo &Info) const { 1230 if (Info.IsVarArg) { 1231 LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n"); 1232 return false; 1233 } 1234 1235 MachineFunction &MF = MIRBuilder.getMF(); 1236 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1237 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1238 1239 const Function &F = MF.getFunction(); 1240 MachineRegisterInfo &MRI = MF.getRegInfo(); 1241 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1242 const DataLayout &DL = F.getParent()->getDataLayout(); 1243 1244 if (!AMDGPUTargetMachine::EnableFixedFunctionABI && 1245 Info.CallConv != CallingConv::AMDGPU_Gfx) { 1246 LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n"); 1247 return false; 1248 } 1249 1250 SmallVector<ArgInfo, 8> OutArgs; 1251 for (auto &OrigArg : Info.OrigArgs) 1252 splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv); 1253 1254 SmallVector<ArgInfo, 8> InArgs; 1255 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) 1256 splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv); 1257 1258 // If we can lower as a tail call, do that instead. 1259 bool CanTailCallOpt = 1260 isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs); 1261 1262 // We must emit a tail call if we have musttail. 1263 if (Info.IsMustTailCall && !CanTailCallOpt) { 1264 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); 1265 return false; 1266 } 1267 1268 if (CanTailCallOpt) 1269 return lowerTailCall(MIRBuilder, Info, OutArgs); 1270 1271 // Find out which ABI gets to decide where things go. 1272 CCAssignFn *AssignFnFixed; 1273 CCAssignFn *AssignFnVarArg; 1274 std::tie(AssignFnFixed, AssignFnVarArg) = 1275 getAssignFnsForCC(Info.CallConv, TLI); 1276 1277 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP) 1278 .addImm(0) 1279 .addImm(0); 1280 1281 // Create a temporarily-floating call instruction so we can add the implicit 1282 // uses of arg registers. 1283 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false); 1284 1285 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1286 MIB.addDef(TRI->getReturnAddressReg(MF)); 1287 1288 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1289 return false; 1290 1291 // Tell the call which registers are clobbered. 1292 const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv); 1293 MIB.addRegMask(Mask); 1294 1295 SmallVector<CCValAssign, 16> ArgLocs; 1296 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1297 1298 // We could pass MIB and directly add the implicit uses to the call 1299 // now. However, as an aesthetic choice, place implicit argument operands 1300 // after the ordinary user argument registers. 1301 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1302 1303 if (AMDGPUTargetMachine::EnableFixedFunctionABI && 1304 Info.CallConv != CallingConv::AMDGPU_Gfx) { 1305 // With a fixed ABI, allocate fixed registers before user arguments. 1306 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1307 return false; 1308 } 1309 1310 // Do the actual argument marshalling. 1311 SmallVector<Register, 8> PhysRegs; 1312 1313 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1314 if (!determineAssignments(Assigner, OutArgs, CCInfo)) 1315 return false; 1316 1317 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false); 1318 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) 1319 return false; 1320 1321 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1322 1323 handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, ImplicitArgRegs); 1324 1325 // Get a count of how many bytes are to be pushed on the stack. 1326 unsigned NumBytes = CCInfo.getNextStackOffset(); 1327 1328 // If Callee is a reg, since it is used by a target specific 1329 // instruction, it must have a register class matching the 1330 // constraint of that instruction. 1331 1332 // FIXME: We should define regbankselectable call instructions to handle 1333 // divergent call targets. 1334 if (MIB->getOperand(1).isReg()) { 1335 MIB->getOperand(1).setReg(constrainOperandRegClass( 1336 MF, *TRI, MRI, *ST.getInstrInfo(), 1337 *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1), 1338 1)); 1339 } 1340 1341 // Now we can add the actual call instruction to the correct position. 1342 MIRBuilder.insertInstr(MIB); 1343 1344 // Finally we can copy the returned value back into its virtual-register. In 1345 // symmetry with the arguments, the physical register must be an 1346 // implicit-define of the call instruction. 1347 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { 1348 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, 1349 Info.IsVarArg); 1350 IncomingValueAssigner Assigner(RetAssignFn); 1351 CallReturnHandler Handler(MIRBuilder, MRI, MIB); 1352 if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder, 1353 Info.CallConv, Info.IsVarArg)) 1354 return false; 1355 } 1356 1357 uint64_t CalleePopBytes = NumBytes; 1358 1359 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN) 1360 .addImm(0) 1361 .addImm(CalleePopBytes); 1362 1363 if (!Info.CanLowerReturn) { 1364 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs, 1365 Info.DemoteRegister, Info.DemoteStackIndex); 1366 } 1367 1368 return true; 1369 } 1370