1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPULegalizerInfo.h" 18 #include "AMDGPUTargetMachine.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "SIRegisterInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 26 #define DEBUG_TYPE "amdgpu-call-lowering" 27 28 using namespace llvm; 29 30 namespace { 31 32 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register. 33 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler, 34 Register ValVReg, CCValAssign &VA) { 35 if (VA.getLocVT().getSizeInBits() < 32) { 36 // 16-bit types are reported as legal for 32-bit registers. We need to 37 // extend and do a 32-bit copy to avoid the verifier complaining about it. 38 return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0); 39 } 40 41 return Handler.extendRegister(ValVReg, VA); 42 } 43 44 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler { 45 AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 46 MachineInstrBuilder MIB) 47 : OutgoingValueHandler(B, MRI), MIB(MIB) {} 48 49 MachineInstrBuilder MIB; 50 51 Register getStackAddress(uint64_t Size, int64_t Offset, 52 MachinePointerInfo &MPO, 53 ISD::ArgFlagsTy Flags) override { 54 llvm_unreachable("not implemented"); 55 } 56 57 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 58 MachinePointerInfo &MPO, CCValAssign &VA) override { 59 llvm_unreachable("not implemented"); 60 } 61 62 void assignValueToReg(Register ValVReg, Register PhysReg, 63 CCValAssign &VA) override { 64 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 65 66 // If this is a scalar return, insert a readfirstlane just in case the value 67 // ends up in a VGPR. 68 // FIXME: Assert this is a shader return. 69 const SIRegisterInfo *TRI 70 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 71 if (TRI->isSGPRReg(MRI, PhysReg)) { 72 auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane, 73 {MRI.getType(ExtReg)}, false) 74 .addReg(ExtReg); 75 ExtReg = ToSGPR.getReg(0); 76 } 77 78 MIRBuilder.buildCopy(PhysReg, ExtReg); 79 MIB.addUse(PhysReg, RegState::Implicit); 80 } 81 }; 82 83 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler { 84 uint64_t StackUsed = 0; 85 86 AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) 87 : IncomingValueHandler(B, MRI) {} 88 89 Register getStackAddress(uint64_t Size, int64_t Offset, 90 MachinePointerInfo &MPO, 91 ISD::ArgFlagsTy Flags) override { 92 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 93 94 // Byval is assumed to be writable memory, but other stack passed arguments 95 // are not. 96 const bool IsImmutable = !Flags.isByVal(); 97 int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable); 98 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 99 auto AddrReg = MIRBuilder.buildFrameIndex( 100 LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI); 101 StackUsed = std::max(StackUsed, Size + Offset); 102 return AddrReg.getReg(0); 103 } 104 105 void assignValueToReg(Register ValVReg, Register PhysReg, 106 CCValAssign &VA) override { 107 markPhysRegUsed(PhysReg); 108 109 if (VA.getLocVT().getSizeInBits() < 32) { 110 // 16-bit types are reported as legal for 32-bit registers. We need to do 111 // a 32-bit copy, and truncate to avoid the verifier complaining about it. 112 auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg); 113 114 // If we have signext/zeroext, it applies to the whole 32-bit register 115 // before truncation. 116 auto Extended = 117 buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT())); 118 MIRBuilder.buildTrunc(ValVReg, Extended); 119 return; 120 } 121 122 IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA); 123 } 124 125 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize, 126 MachinePointerInfo &MPO, CCValAssign &VA) override { 127 MachineFunction &MF = MIRBuilder.getMF(); 128 129 // The reported memory location may be wider than the value. 130 const LLT RegTy = MRI.getType(ValVReg); 131 MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize); 132 133 // FIXME: Get alignment 134 auto MMO = MF.getMachineMemOperand( 135 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize, 136 inferAlignFromPtrInfo(MF, MPO)); 137 MIRBuilder.buildLoad(ValVReg, Addr, *MMO); 138 } 139 140 /// How the physical register gets marked varies between formal 141 /// parameters (it's a basic-block live-in), and a call instruction 142 /// (it's an implicit-def of the BL). 143 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 144 }; 145 146 struct FormalArgHandler : public AMDGPUIncomingArgHandler { 147 FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) 148 : AMDGPUIncomingArgHandler(B, MRI) {} 149 150 void markPhysRegUsed(unsigned PhysReg) override { 151 MIRBuilder.getMBB().addLiveIn(PhysReg); 152 } 153 }; 154 155 struct CallReturnHandler : public AMDGPUIncomingArgHandler { 156 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 157 MachineInstrBuilder MIB) 158 : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {} 159 160 void markPhysRegUsed(unsigned PhysReg) override { 161 MIB.addDef(PhysReg, RegState::Implicit); 162 } 163 164 MachineInstrBuilder MIB; 165 }; 166 167 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler { 168 /// For tail calls, the byte offset of the call's argument area from the 169 /// callee's. Unused elsewhere. 170 int FPDiff; 171 172 // Cache the SP register vreg if we need it more than once in this call site. 173 Register SPReg; 174 175 bool IsTailCall; 176 177 AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder, 178 MachineRegisterInfo &MRI, MachineInstrBuilder MIB, 179 bool IsTailCall = false, int FPDiff = 0) 180 : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff), 181 IsTailCall(IsTailCall) {} 182 183 Register getStackAddress(uint64_t Size, int64_t Offset, 184 MachinePointerInfo &MPO, 185 ISD::ArgFlagsTy Flags) override { 186 MachineFunction &MF = MIRBuilder.getMF(); 187 const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32); 188 const LLT S32 = LLT::scalar(32); 189 190 if (IsTailCall) { 191 Offset += FPDiff; 192 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true); 193 auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI); 194 MPO = MachinePointerInfo::getFixedStack(MF, FI); 195 return FIReg.getReg(0); 196 } 197 198 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 199 200 if (!SPReg) 201 SPReg = MIRBuilder.buildCopy(PtrTy, MFI->getStackPtrOffsetReg()).getReg(0); 202 203 auto OffsetReg = MIRBuilder.buildConstant(S32, Offset); 204 205 auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg); 206 MPO = MachinePointerInfo::getStack(MF, Offset); 207 return AddrReg.getReg(0); 208 } 209 210 void assignValueToReg(Register ValVReg, Register PhysReg, 211 CCValAssign &VA) override { 212 MIB.addUse(PhysReg, RegState::Implicit); 213 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 214 MIRBuilder.buildCopy(PhysReg, ExtReg); 215 } 216 217 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size, 218 MachinePointerInfo &MPO, CCValAssign &VA) override { 219 MachineFunction &MF = MIRBuilder.getMF(); 220 uint64_t LocMemOffset = VA.getLocMemOffset(); 221 const auto &ST = MF.getSubtarget<GCNSubtarget>(); 222 223 auto MMO = MF.getMachineMemOperand( 224 MPO, MachineMemOperand::MOStore, Size, 225 commonAlignment(ST.getStackAlignment(), LocMemOffset)); 226 MIRBuilder.buildStore(ValVReg, Addr, *MMO); 227 } 228 229 void assignValueToAddress(const CallLowering::ArgInfo &Arg, 230 unsigned ValRegIndex, Register Addr, 231 uint64_t MemSize, MachinePointerInfo &MPO, 232 CCValAssign &VA) override { 233 Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt 234 ? extendRegister(Arg.Regs[ValRegIndex], VA) 235 : Arg.Regs[ValRegIndex]; 236 237 // If we extended the value type we might need to adjust the MMO's 238 // Size. This happens if ComputeValueVTs widened a small type value to a 239 // legal register type (e.g. s8->s16) 240 const LLT RegTy = MRI.getType(ValVReg); 241 MemSize = std::min(MemSize, (uint64_t)RegTy.getSizeInBytes()); 242 assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA); 243 } 244 }; 245 } 246 247 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI) 248 : CallLowering(&TLI) { 249 } 250 251 // FIXME: Compatability shim 252 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) { 253 switch (MIOpc) { 254 case TargetOpcode::G_SEXT: 255 return ISD::SIGN_EXTEND; 256 case TargetOpcode::G_ZEXT: 257 return ISD::ZERO_EXTEND; 258 case TargetOpcode::G_ANYEXT: 259 return ISD::ANY_EXTEND; 260 default: 261 llvm_unreachable("not an extend opcode"); 262 } 263 } 264 265 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF, 266 CallingConv::ID CallConv, 267 SmallVectorImpl<BaseArgInfo> &Outs, 268 bool IsVarArg) const { 269 // For shaders. Vector types should be explicitly handled by CC. 270 if (AMDGPU::isEntryFunctionCC(CallConv)) 271 return true; 272 273 SmallVector<CCValAssign, 16> ArgLocs; 274 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 275 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, 276 MF.getFunction().getContext()); 277 278 return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg)); 279 } 280 281 /// Lower the return value for the already existing \p Ret. This assumes that 282 /// \p B's insertion point is correct. 283 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B, 284 const Value *Val, ArrayRef<Register> VRegs, 285 MachineInstrBuilder &Ret) const { 286 if (!Val) 287 return true; 288 289 auto &MF = B.getMF(); 290 const auto &F = MF.getFunction(); 291 const DataLayout &DL = MF.getDataLayout(); 292 MachineRegisterInfo *MRI = B.getMRI(); 293 LLVMContext &Ctx = F.getContext(); 294 295 CallingConv::ID CC = F.getCallingConv(); 296 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 297 298 SmallVector<EVT, 8> SplitEVTs; 299 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); 300 assert(VRegs.size() == SplitEVTs.size() && 301 "For each split Type there should be exactly one VReg."); 302 303 SmallVector<ArgInfo, 8> SplitRetInfos; 304 305 for (unsigned i = 0; i < SplitEVTs.size(); ++i) { 306 EVT VT = SplitEVTs[i]; 307 Register Reg = VRegs[i]; 308 ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx)); 309 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 310 311 if (VT.isScalarInteger()) { 312 unsigned ExtendOp = TargetOpcode::G_ANYEXT; 313 if (RetInfo.Flags[0].isSExt()) { 314 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 315 ExtendOp = TargetOpcode::G_SEXT; 316 } else if (RetInfo.Flags[0].isZExt()) { 317 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 318 ExtendOp = TargetOpcode::G_ZEXT; 319 } 320 321 EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT, 322 extOpcodeToISDExtOpcode(ExtendOp)); 323 if (ExtVT != VT) { 324 RetInfo.Ty = ExtVT.getTypeForEVT(Ctx); 325 LLT ExtTy = getLLTForType(*RetInfo.Ty, DL); 326 Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0); 327 } 328 } 329 330 if (Reg != RetInfo.Regs[0]) { 331 RetInfo.Regs[0] = Reg; 332 // Reset the arg flags after modifying Reg. 333 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 334 } 335 336 splitToValueTypes(RetInfo, SplitRetInfos, DL, CC); 337 } 338 339 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg()); 340 341 OutgoingValueAssigner Assigner(AssignFn); 342 AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret); 343 return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B, 344 CC, F.isVarArg()); 345 } 346 347 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val, 348 ArrayRef<Register> VRegs, 349 FunctionLoweringInfo &FLI) const { 350 351 MachineFunction &MF = B.getMF(); 352 MachineRegisterInfo &MRI = MF.getRegInfo(); 353 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 354 MFI->setIfReturnsVoid(!Val); 355 356 assert(!Val == VRegs.empty() && "Return value without a vreg"); 357 358 CallingConv::ID CC = B.getMF().getFunction().getCallingConv(); 359 const bool IsShader = AMDGPU::isShader(CC); 360 const bool IsWaveEnd = 361 (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC); 362 if (IsWaveEnd) { 363 B.buildInstr(AMDGPU::S_ENDPGM) 364 .addImm(0); 365 return true; 366 } 367 368 auto const &ST = MF.getSubtarget<GCNSubtarget>(); 369 370 unsigned ReturnOpc = 371 IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return; 372 373 auto Ret = B.buildInstrNoInsert(ReturnOpc); 374 Register ReturnAddrVReg; 375 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 376 ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass); 377 Ret.addUse(ReturnAddrVReg); 378 } 379 380 if (!FLI.CanLowerReturn) 381 insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister); 382 else if (!lowerReturnVal(B, Val, VRegs, Ret)) 383 return false; 384 385 if (ReturnOpc == AMDGPU::S_SETPC_B64_return) { 386 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 387 Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF), 388 &AMDGPU::SGPR_64RegClass); 389 B.buildCopy(ReturnAddrVReg, LiveInReturn); 390 } 391 392 // TODO: Handle CalleeSavedRegsViaCopy. 393 394 B.insertInstr(Ret); 395 return true; 396 } 397 398 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B, 399 Type *ParamTy, 400 uint64_t Offset) const { 401 MachineFunction &MF = B.getMF(); 402 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 403 MachineRegisterInfo &MRI = MF.getRegInfo(); 404 Register KernArgSegmentPtr = 405 MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 406 Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr); 407 408 auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset); 409 410 B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg); 411 } 412 413 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy, 414 uint64_t Offset, Align Alignment, 415 Register DstReg) const { 416 MachineFunction &MF = B.getMF(); 417 const Function &F = MF.getFunction(); 418 const DataLayout &DL = F.getParent()->getDataLayout(); 419 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 420 unsigned TypeSize = DL.getTypeStoreSize(ParamTy); 421 422 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 423 Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy); 424 lowerParameterPtr(PtrReg, B, ParamTy, Offset); 425 426 MachineMemOperand *MMO = MF.getMachineMemOperand( 427 PtrInfo, 428 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 429 MachineMemOperand::MOInvariant, 430 TypeSize, Alignment); 431 432 B.buildLoad(DstReg, PtrReg, *MMO); 433 } 434 435 // Allocate special inputs passed in user SGPRs. 436 static void allocateHSAUserSGPRs(CCState &CCInfo, 437 MachineIRBuilder &B, 438 MachineFunction &MF, 439 const SIRegisterInfo &TRI, 440 SIMachineFunctionInfo &Info) { 441 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 442 if (Info.hasPrivateSegmentBuffer()) { 443 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 444 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 445 CCInfo.AllocateReg(PrivateSegmentBufferReg); 446 } 447 448 if (Info.hasDispatchPtr()) { 449 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 450 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 451 CCInfo.AllocateReg(DispatchPtrReg); 452 } 453 454 if (Info.hasQueuePtr()) { 455 Register QueuePtrReg = Info.addQueuePtr(TRI); 456 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 457 CCInfo.AllocateReg(QueuePtrReg); 458 } 459 460 if (Info.hasKernargSegmentPtr()) { 461 MachineRegisterInfo &MRI = MF.getRegInfo(); 462 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 463 const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 464 Register VReg = MRI.createGenericVirtualRegister(P4); 465 MRI.addLiveIn(InputPtrReg, VReg); 466 B.getMBB().addLiveIn(InputPtrReg); 467 B.buildCopy(VReg, InputPtrReg); 468 CCInfo.AllocateReg(InputPtrReg); 469 } 470 471 if (Info.hasDispatchID()) { 472 Register DispatchIDReg = Info.addDispatchID(TRI); 473 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 474 CCInfo.AllocateReg(DispatchIDReg); 475 } 476 477 if (Info.hasFlatScratchInit()) { 478 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 479 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 480 CCInfo.AllocateReg(FlatScratchInitReg); 481 } 482 483 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 484 // these from the dispatch pointer. 485 } 486 487 bool AMDGPUCallLowering::lowerFormalArgumentsKernel( 488 MachineIRBuilder &B, const Function &F, 489 ArrayRef<ArrayRef<Register>> VRegs) const { 490 MachineFunction &MF = B.getMF(); 491 const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>(); 492 MachineRegisterInfo &MRI = MF.getRegInfo(); 493 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 494 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 495 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 496 const DataLayout &DL = F.getParent()->getDataLayout(); 497 498 Info->allocateModuleLDSGlobal(F.getParent()); 499 500 SmallVector<CCValAssign, 16> ArgLocs; 501 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); 502 503 allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info); 504 505 unsigned i = 0; 506 const Align KernArgBaseAlign(16); 507 const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F); 508 uint64_t ExplicitArgOffset = 0; 509 510 // TODO: Align down to dword alignment and extract bits for extending loads. 511 for (auto &Arg : F.args()) { 512 const bool IsByRef = Arg.hasByRefAttr(); 513 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 514 unsigned AllocSize = DL.getTypeAllocSize(ArgTy); 515 if (AllocSize == 0) 516 continue; 517 518 MaybeAlign ABIAlign = IsByRef ? Arg.getParamAlign() : None; 519 if (!ABIAlign) 520 ABIAlign = DL.getABITypeAlign(ArgTy); 521 522 uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset; 523 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize; 524 525 if (Arg.use_empty()) { 526 ++i; 527 continue; 528 } 529 530 Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset); 531 532 if (IsByRef) { 533 unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace(); 534 535 assert(VRegs[i].size() == 1 && 536 "expected only one register for byval pointers"); 537 if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) { 538 lowerParameterPtr(VRegs[i][0], B, ArgTy, ArgOffset); 539 } else { 540 const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 541 Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy); 542 lowerParameterPtr(PtrReg, B, ArgTy, ArgOffset); 543 544 B.buildAddrSpaceCast(VRegs[i][0], PtrReg); 545 } 546 } else { 547 ArrayRef<Register> OrigArgRegs = VRegs[i]; 548 Register ArgReg = 549 OrigArgRegs.size() == 1 550 ? OrigArgRegs[0] 551 : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL)); 552 553 lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg); 554 if (OrigArgRegs.size() > 1) 555 unpackRegs(OrigArgRegs, ArgReg, ArgTy, B); 556 } 557 558 ++i; 559 } 560 561 TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 562 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false); 563 return true; 564 } 565 566 bool AMDGPUCallLowering::lowerFormalArguments( 567 MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs, 568 FunctionLoweringInfo &FLI) const { 569 CallingConv::ID CC = F.getCallingConv(); 570 571 // The infrastructure for normal calling convention lowering is essentially 572 // useless for kernels. We want to avoid any kind of legalization or argument 573 // splitting. 574 if (CC == CallingConv::AMDGPU_KERNEL) 575 return lowerFormalArgumentsKernel(B, F, VRegs); 576 577 const bool IsGraphics = AMDGPU::isGraphics(CC); 578 const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC); 579 580 MachineFunction &MF = B.getMF(); 581 MachineBasicBlock &MBB = B.getMBB(); 582 MachineRegisterInfo &MRI = MF.getRegInfo(); 583 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 584 const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>(); 585 const SIRegisterInfo *TRI = Subtarget.getRegisterInfo(); 586 const DataLayout &DL = F.getParent()->getDataLayout(); 587 588 Info->allocateModuleLDSGlobal(F.getParent()); 589 590 SmallVector<CCValAssign, 16> ArgLocs; 591 CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext()); 592 593 if (!IsEntryFunc) { 594 Register ReturnAddrReg = TRI->getReturnAddressReg(MF); 595 Register LiveInReturn = MF.addLiveIn(ReturnAddrReg, 596 &AMDGPU::SGPR_64RegClass); 597 MBB.addLiveIn(ReturnAddrReg); 598 B.buildCopy(LiveInReturn, ReturnAddrReg); 599 } 600 601 if (Info->hasImplicitBufferPtr()) { 602 Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI); 603 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 604 CCInfo.AllocateReg(ImplicitBufferPtrReg); 605 } 606 607 SmallVector<ArgInfo, 32> SplitArgs; 608 unsigned Idx = 0; 609 unsigned PSInputNum = 0; 610 611 // Insert the hidden sret parameter if the return value won't fit in the 612 // return registers. 613 if (!FLI.CanLowerReturn) 614 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL); 615 616 for (auto &Arg : F.args()) { 617 if (DL.getTypeStoreSize(Arg.getType()) == 0) 618 continue; 619 620 const bool InReg = Arg.hasAttribute(Attribute::InReg); 621 622 // SGPR arguments to functions not implemented. 623 if (!IsGraphics && InReg) 624 return false; 625 626 if (Arg.hasAttribute(Attribute::SwiftSelf) || 627 Arg.hasAttribute(Attribute::SwiftError) || 628 Arg.hasAttribute(Attribute::Nest)) 629 return false; 630 631 if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) { 632 const bool ArgUsed = !Arg.use_empty(); 633 bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum); 634 635 if (!SkipArg) { 636 Info->markPSInputAllocated(PSInputNum); 637 if (ArgUsed) 638 Info->markPSInputEnabled(PSInputNum); 639 } 640 641 ++PSInputNum; 642 643 if (SkipArg) { 644 for (int I = 0, E = VRegs[Idx].size(); I != E; ++I) 645 B.buildUndef(VRegs[Idx][I]); 646 647 ++Idx; 648 continue; 649 } 650 } 651 652 ArgInfo OrigArg(VRegs[Idx], Arg); 653 const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex; 654 setArgFlags(OrigArg, OrigArgIdx, DL, F); 655 656 splitToValueTypes(OrigArg, SplitArgs, DL, CC); 657 ++Idx; 658 } 659 660 // At least one interpolation mode must be enabled or else the GPU will 661 // hang. 662 // 663 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 664 // set PSInputAddr, the user wants to enable some bits after the compilation 665 // based on run-time states. Since we can't know what the final PSInputEna 666 // will look like, so we shouldn't do anything here and the user should take 667 // responsibility for the correct programming. 668 // 669 // Otherwise, the following restrictions apply: 670 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 671 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 672 // enabled too. 673 if (CC == CallingConv::AMDGPU_PS) { 674 if ((Info->getPSInputAddr() & 0x7F) == 0 || 675 ((Info->getPSInputAddr() & 0xF) == 0 && 676 Info->isPSInputAllocated(11))) { 677 CCInfo.AllocateReg(AMDGPU::VGPR0); 678 CCInfo.AllocateReg(AMDGPU::VGPR1); 679 Info->markPSInputAllocated(0); 680 Info->markPSInputEnabled(0); 681 } 682 683 if (Subtarget.isAmdPalOS()) { 684 // For isAmdPalOS, the user does not enable some bits after compilation 685 // based on run-time states; the register values being generated here are 686 // the final ones set in hardware. Therefore we need to apply the 687 // workaround to PSInputAddr and PSInputEnable together. (The case where 688 // a bit is set in PSInputAddr but not PSInputEnable is where the frontend 689 // set up an input arg for a particular interpolation mode, but nothing 690 // uses that input arg. Really we should have an earlier pass that removes 691 // such an arg.) 692 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 693 if ((PsInputBits & 0x7F) == 0 || 694 ((PsInputBits & 0xF) == 0 && 695 (PsInputBits >> 11 & 1))) 696 Info->markPSInputEnabled( 697 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined)); 698 } 699 } 700 701 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 702 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg()); 703 704 if (!MBB.empty()) 705 B.setInstr(*MBB.begin()); 706 707 if (!IsEntryFunc) { 708 // For the fixed ABI, pass workitem IDs in the last argument register. 709 if (AMDGPUTargetMachine::EnableFixedFunctionABI) 710 TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 711 } 712 713 IncomingValueAssigner Assigner(AssignFn); 714 if (!determineAssignments(Assigner, SplitArgs, CCInfo)) 715 return false; 716 717 FormalArgHandler Handler(B, MRI); 718 if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B)) 719 return false; 720 721 uint64_t StackOffset = Assigner.StackOffset; 722 723 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) { 724 // Special inputs come after user arguments. 725 TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info); 726 } 727 728 // Start adding system SGPRs. 729 if (IsEntryFunc) { 730 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics); 731 } else { 732 if (!Subtarget.enableFlatScratch()) 733 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 734 TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 735 } 736 737 // When we tail call, we need to check if the callee's arguments will fit on 738 // the caller's stack. So, whenever we lower formal arguments, we should keep 739 // track of this information, since we might lower a tail call in this 740 // function later. 741 Info->setBytesInStackArgArea(StackOffset); 742 743 // Move back to the end of the basic block. 744 B.setMBB(MBB); 745 746 return true; 747 } 748 749 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder, 750 CCState &CCInfo, 751 SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs, 752 CallLoweringInfo &Info) const { 753 MachineFunction &MF = MIRBuilder.getMF(); 754 755 const AMDGPUFunctionArgInfo *CalleeArgInfo 756 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 757 758 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 759 const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo(); 760 761 762 // TODO: Unify with private memory register handling. This is complicated by 763 // the fact that at least in kernels, the input argument is not necessarily 764 // in the same location as the input. 765 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 766 AMDGPUFunctionArgInfo::DISPATCH_PTR, 767 AMDGPUFunctionArgInfo::QUEUE_PTR, 768 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, 769 AMDGPUFunctionArgInfo::DISPATCH_ID, 770 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 771 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 772 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z 773 }; 774 775 MachineRegisterInfo &MRI = MF.getRegInfo(); 776 777 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 778 const AMDGPULegalizerInfo *LI 779 = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo()); 780 781 for (auto InputID : InputRegs) { 782 const ArgDescriptor *OutgoingArg; 783 const TargetRegisterClass *ArgRC; 784 LLT ArgTy; 785 786 std::tie(OutgoingArg, ArgRC, ArgTy) = 787 CalleeArgInfo->getPreloadedValue(InputID); 788 if (!OutgoingArg) 789 continue; 790 791 const ArgDescriptor *IncomingArg; 792 const TargetRegisterClass *IncomingArgRC; 793 std::tie(IncomingArg, IncomingArgRC, ArgTy) = 794 CallerArgInfo.getPreloadedValue(InputID); 795 assert(IncomingArgRC == ArgRC); 796 797 Register InputReg = MRI.createGenericVirtualRegister(ArgTy); 798 799 if (IncomingArg) { 800 LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy); 801 } else { 802 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); 803 LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder); 804 } 805 806 if (OutgoingArg->isRegister()) { 807 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 808 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 809 report_fatal_error("failed to allocate implicit input argument"); 810 } else { 811 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 812 return false; 813 } 814 } 815 816 // Pack workitem IDs into a single register or pass it as is if already 817 // packed. 818 const ArgDescriptor *OutgoingArg; 819 const TargetRegisterClass *ArgRC; 820 LLT ArgTy; 821 822 std::tie(OutgoingArg, ArgRC, ArgTy) = 823 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 824 if (!OutgoingArg) 825 std::tie(OutgoingArg, ArgRC, ArgTy) = 826 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 827 if (!OutgoingArg) 828 std::tie(OutgoingArg, ArgRC, ArgTy) = 829 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 830 if (!OutgoingArg) 831 return false; 832 833 auto WorkitemIDX = 834 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 835 auto WorkitemIDY = 836 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 837 auto WorkitemIDZ = 838 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 839 840 const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX); 841 const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY); 842 const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ); 843 const LLT S32 = LLT::scalar(32); 844 845 // If incoming ids are not packed we need to pack them. 846 // FIXME: Should consider known workgroup size to eliminate known 0 cases. 847 Register InputReg; 848 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX) { 849 InputReg = MRI.createGenericVirtualRegister(S32); 850 LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX, 851 std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX)); 852 } 853 854 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) { 855 Register Y = MRI.createGenericVirtualRegister(S32); 856 LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY), 857 std::get<2>(WorkitemIDY)); 858 859 Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0); 860 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y; 861 } 862 863 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) { 864 Register Z = MRI.createGenericVirtualRegister(S32); 865 LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ), 866 std::get<2>(WorkitemIDZ)); 867 868 Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0); 869 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z; 870 } 871 872 if (!InputReg) { 873 InputReg = MRI.createGenericVirtualRegister(S32); 874 875 // Workitem ids are already packed, any of present incoming arguments will 876 // carry all required fields. 877 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 878 IncomingArgX ? *IncomingArgX : 879 IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u); 880 LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg, 881 &AMDGPU::VGPR_32RegClass, S32); 882 } 883 884 if (OutgoingArg->isRegister()) { 885 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 886 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 887 report_fatal_error("failed to allocate implicit input argument"); 888 } else { 889 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 890 return false; 891 } 892 893 return true; 894 } 895 896 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for 897 /// CC. 898 static std::pair<CCAssignFn *, CCAssignFn *> 899 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) { 900 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; 901 } 902 903 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, 904 bool IsTailCall) { 905 return IsTailCall ? AMDGPU::SI_TCRETURN : AMDGPU::SI_CALL; 906 } 907 908 // Add operands to call instruction to track the callee. 909 static bool addCallTargetOperands(MachineInstrBuilder &CallInst, 910 MachineIRBuilder &MIRBuilder, 911 AMDGPUCallLowering::CallLoweringInfo &Info) { 912 if (Info.Callee.isReg()) { 913 CallInst.addReg(Info.Callee.getReg()); 914 CallInst.addImm(0); 915 } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) { 916 // The call lowering lightly assumed we can directly encode a call target in 917 // the instruction, which is not the case. Materialize the address here. 918 const GlobalValue *GV = Info.Callee.getGlobal(); 919 auto Ptr = MIRBuilder.buildGlobalValue( 920 LLT::pointer(GV->getAddressSpace(), 64), GV); 921 CallInst.addReg(Ptr.getReg(0)); 922 CallInst.add(Info.Callee); 923 } else 924 return false; 925 926 return true; 927 } 928 929 bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay( 930 CallLoweringInfo &Info, MachineFunction &MF, 931 SmallVectorImpl<ArgInfo> &InArgs) const { 932 const Function &CallerF = MF.getFunction(); 933 CallingConv::ID CalleeCC = Info.CallConv; 934 CallingConv::ID CallerCC = CallerF.getCallingConv(); 935 936 // If the calling conventions match, then everything must be the same. 937 if (CalleeCC == CallerCC) 938 return true; 939 940 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 941 942 // Make sure that the caller and callee preserve all of the same registers. 943 auto TRI = ST.getRegisterInfo(); 944 945 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 946 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 947 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 948 return false; 949 950 // Check if the caller and callee will handle arguments in the same way. 951 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 952 CCAssignFn *CalleeAssignFnFixed; 953 CCAssignFn *CalleeAssignFnVarArg; 954 std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) = 955 getAssignFnsForCC(CalleeCC, TLI); 956 957 CCAssignFn *CallerAssignFnFixed; 958 CCAssignFn *CallerAssignFnVarArg; 959 std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) = 960 getAssignFnsForCC(CallerCC, TLI); 961 962 // FIXME: We are not accounting for potential differences in implicitly passed 963 // inputs, but only the fixed ABI is supported now anyway. 964 IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed, 965 CalleeAssignFnVarArg); 966 IncomingValueAssigner CallerAssigner(CallerAssignFnFixed, 967 CallerAssignFnVarArg); 968 return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner); 969 } 970 971 bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable( 972 CallLoweringInfo &Info, MachineFunction &MF, 973 SmallVectorImpl<ArgInfo> &OutArgs) const { 974 // If there are no outgoing arguments, then we are done. 975 if (OutArgs.empty()) 976 return true; 977 978 const Function &CallerF = MF.getFunction(); 979 CallingConv::ID CalleeCC = Info.CallConv; 980 CallingConv::ID CallerCC = CallerF.getCallingConv(); 981 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 982 983 CCAssignFn *AssignFnFixed; 984 CCAssignFn *AssignFnVarArg; 985 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 986 987 // We have outgoing arguments. Make sure that we can tail call with them. 988 SmallVector<CCValAssign, 16> OutLocs; 989 CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext()); 990 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 991 992 if (!determineAssignments(Assigner, OutArgs, OutInfo)) { 993 LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n"); 994 return false; 995 } 996 997 // Make sure that they can fit on the caller's stack. 998 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 999 if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) { 1000 LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n"); 1001 return false; 1002 } 1003 1004 // Verify that the parameters in callee-saved registers match. 1005 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1006 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1007 const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC); 1008 MachineRegisterInfo &MRI = MF.getRegInfo(); 1009 return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs); 1010 } 1011 1012 /// Return true if the calling convention is one that we can guarantee TCO for. 1013 static bool canGuaranteeTCO(CallingConv::ID CC) { 1014 return CC == CallingConv::Fast; 1015 } 1016 1017 /// Return true if we might ever do TCO for calls with this calling convention. 1018 static bool mayTailCallThisCC(CallingConv::ID CC) { 1019 switch (CC) { 1020 case CallingConv::C: 1021 case CallingConv::AMDGPU_Gfx: 1022 return true; 1023 default: 1024 return canGuaranteeTCO(CC); 1025 } 1026 } 1027 1028 bool AMDGPUCallLowering::isEligibleForTailCallOptimization( 1029 MachineIRBuilder &B, CallLoweringInfo &Info, 1030 SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const { 1031 // Must pass all target-independent checks in order to tail call optimize. 1032 if (!Info.IsTailCall) 1033 return false; 1034 1035 MachineFunction &MF = B.getMF(); 1036 const Function &CallerF = MF.getFunction(); 1037 CallingConv::ID CalleeCC = Info.CallConv; 1038 CallingConv::ID CallerCC = CallerF.getCallingConv(); 1039 1040 const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo(); 1041 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1042 // Kernels aren't callable, and don't have a live in return address so it 1043 // doesn't make sense to do a tail call with entry functions. 1044 if (!CallerPreserved) 1045 return false; 1046 1047 if (!mayTailCallThisCC(CalleeCC)) { 1048 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n"); 1049 return false; 1050 } 1051 1052 if (any_of(CallerF.args(), [](const Argument &A) { 1053 return A.hasByValAttr() || A.hasSwiftErrorAttr(); 1054 })) { 1055 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval " 1056 "or swifterror arguments\n"); 1057 return false; 1058 } 1059 1060 // If we have -tailcallopt, then we're done. 1061 if (MF.getTarget().Options.GuaranteedTailCallOpt) 1062 return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv(); 1063 1064 // Verify that the incoming and outgoing arguments from the callee are 1065 // safe to tail call. 1066 if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) { 1067 LLVM_DEBUG( 1068 dbgs() 1069 << "... Caller and callee have incompatible calling conventions.\n"); 1070 return false; 1071 } 1072 1073 if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs)) 1074 return false; 1075 1076 LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n"); 1077 return true; 1078 } 1079 1080 // Insert outgoing implicit arguments for a call, by inserting copies to the 1081 // implicit argument registers and adding the necessary implicit uses to the 1082 // call instruction. 1083 void AMDGPUCallLowering::handleImplicitCallArguments( 1084 MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst, 1085 const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo, 1086 ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const { 1087 if (!ST.enableFlatScratch()) { 1088 // Insert copies for the SRD. In the HSA case, this should be an identity 1089 // copy. 1090 auto ScratchRSrcReg = 1091 MIRBuilder.buildCopy(LLT::vector(4, 32), FuncInfo.getScratchRSrcReg()); 1092 MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg); 1093 CallInst.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit); 1094 } 1095 1096 for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) { 1097 MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second); 1098 CallInst.addReg(ArgReg.first, RegState::Implicit); 1099 } 1100 } 1101 1102 bool AMDGPUCallLowering::lowerTailCall( 1103 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, 1104 SmallVectorImpl<ArgInfo> &OutArgs) const { 1105 MachineFunction &MF = MIRBuilder.getMF(); 1106 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1107 SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 1108 const Function &F = MF.getFunction(); 1109 MachineRegisterInfo &MRI = MF.getRegInfo(); 1110 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1111 1112 // True when we're tail calling, but without -tailcallopt. 1113 bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt; 1114 1115 // Find out which ABI gets to decide where things go. 1116 CallingConv::ID CalleeCC = Info.CallConv; 1117 CCAssignFn *AssignFnFixed; 1118 CCAssignFn *AssignFnVarArg; 1119 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 1120 1121 MachineInstrBuilder CallSeqStart; 1122 if (!IsSibCall) 1123 CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP); 1124 1125 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true); 1126 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1127 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1128 return false; 1129 1130 // Byte offset for the tail call. When we are sibcalling, this will always 1131 // be 0. 1132 MIB.addImm(0); 1133 1134 // Tell the call which registers are clobbered. 1135 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1136 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC); 1137 MIB.addRegMask(Mask); 1138 1139 // FPDiff is the byte offset of the call's argument area from the callee's. 1140 // Stores to callee stack arguments will be placed in FixedStackSlots offset 1141 // by this amount for a tail call. In a sibling call it must be 0 because the 1142 // caller will deallocate the entire stack and the callee still expects its 1143 // arguments to begin at SP+0. 1144 int FPDiff = 0; 1145 1146 // This will be 0 for sibcalls, potentially nonzero for tail calls produced 1147 // by -tailcallopt. For sibcalls, the memory operands for the call are 1148 // already available in the caller's incoming argument space. 1149 unsigned NumBytes = 0; 1150 if (!IsSibCall) { 1151 // We aren't sibcalling, so we need to compute FPDiff. We need to do this 1152 // before handling assignments, because FPDiff must be known for memory 1153 // arguments. 1154 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); 1155 SmallVector<CCValAssign, 16> OutLocs; 1156 CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext()); 1157 1158 // FIXME: Not accounting for callee implicit inputs 1159 OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg); 1160 if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) 1161 return false; 1162 1163 // The callee will pop the argument stack as a tail call. Thus, we must 1164 // keep it 16-byte aligned. 1165 NumBytes = alignTo(OutInfo.getNextStackOffset(), ST.getStackAlignment()); 1166 1167 // FPDiff will be negative if this tail call requires more space than we 1168 // would automatically have in our incoming argument space. Positive if we 1169 // actually shrink the stack. 1170 FPDiff = NumReusableBytes - NumBytes; 1171 1172 // The stack pointer must be 16-byte aligned at all times it's used for a 1173 // memory operation, which in practice means at *all* times and in 1174 // particular across call boundaries. Therefore our own arguments started at 1175 // a 16-byte aligned SP and the delta applied for the tail call should 1176 // satisfy the same constraint. 1177 assert(isAligned(ST.getStackAlignment(), FPDiff) && 1178 "unaligned stack on tail call"); 1179 } 1180 1181 SmallVector<CCValAssign, 16> ArgLocs; 1182 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1183 1184 // We could pass MIB and directly add the implicit uses to the call 1185 // now. However, as an aesthetic choice, place implicit argument operands 1186 // after the ordinary user argument registers. 1187 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1188 1189 if (AMDGPUTargetMachine::EnableFixedFunctionABI && 1190 Info.CallConv != CallingConv::AMDGPU_Gfx) { 1191 // With a fixed ABI, allocate fixed registers before user arguments. 1192 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1193 return false; 1194 } 1195 1196 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1197 1198 if (!determineAssignments(Assigner, OutArgs, CCInfo)) 1199 return false; 1200 1201 // Do the actual argument marshalling. 1202 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff); 1203 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) 1204 return false; 1205 1206 handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, ImplicitArgRegs); 1207 1208 // If we have -tailcallopt, we need to adjust the stack. We'll do the call 1209 // sequence start and end here. 1210 if (!IsSibCall) { 1211 MIB->getOperand(1).setImm(FPDiff); 1212 CallSeqStart.addImm(NumBytes).addImm(0); 1213 // End the call sequence *before* emitting the call. Normally, we would 1214 // tidy the frame up after the call. However, here, we've laid out the 1215 // parameters so that when SP is reset, they will be in the correct 1216 // location. 1217 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0); 1218 } 1219 1220 // Now we can add the actual call instruction to the correct basic block. 1221 MIRBuilder.insertInstr(MIB); 1222 1223 // If Callee is a reg, since it is used by a target specific 1224 // instruction, it must have a register class matching the 1225 // constraint of that instruction. 1226 1227 // FIXME: We should define regbankselectable call instructions to handle 1228 // divergent call targets. 1229 if (MIB->getOperand(0).isReg()) { 1230 MIB->getOperand(0).setReg(constrainOperandRegClass( 1231 MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB, 1232 MIB->getDesc(), MIB->getOperand(0), 0)); 1233 } 1234 1235 MF.getFrameInfo().setHasTailCall(); 1236 Info.LoweredTailCall = true; 1237 return true; 1238 } 1239 1240 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 1241 CallLoweringInfo &Info) const { 1242 if (Info.IsVarArg) { 1243 LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n"); 1244 return false; 1245 } 1246 1247 MachineFunction &MF = MIRBuilder.getMF(); 1248 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1249 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1250 1251 const Function &F = MF.getFunction(); 1252 MachineRegisterInfo &MRI = MF.getRegInfo(); 1253 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1254 const DataLayout &DL = F.getParent()->getDataLayout(); 1255 CallingConv::ID CallConv = F.getCallingConv(); 1256 1257 if (!AMDGPUTargetMachine::EnableFixedFunctionABI && 1258 CallConv != CallingConv::AMDGPU_Gfx) { 1259 LLVM_DEBUG(dbgs() << "Variable function ABI not implemented\n"); 1260 return false; 1261 } 1262 1263 if (AMDGPU::isShader(CallConv)) { 1264 LLVM_DEBUG(dbgs() << "Unhandled call from graphics shader\n"); 1265 return false; 1266 } 1267 1268 SmallVector<ArgInfo, 8> OutArgs; 1269 for (auto &OrigArg : Info.OrigArgs) 1270 splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv); 1271 1272 SmallVector<ArgInfo, 8> InArgs; 1273 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) 1274 splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv); 1275 1276 // If we can lower as a tail call, do that instead. 1277 bool CanTailCallOpt = 1278 isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs); 1279 1280 // We must emit a tail call if we have musttail. 1281 if (Info.IsMustTailCall && !CanTailCallOpt) { 1282 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); 1283 return false; 1284 } 1285 1286 if (CanTailCallOpt) 1287 return lowerTailCall(MIRBuilder, Info, OutArgs); 1288 1289 // Find out which ABI gets to decide where things go. 1290 CCAssignFn *AssignFnFixed; 1291 CCAssignFn *AssignFnVarArg; 1292 std::tie(AssignFnFixed, AssignFnVarArg) = 1293 getAssignFnsForCC(Info.CallConv, TLI); 1294 1295 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP) 1296 .addImm(0) 1297 .addImm(0); 1298 1299 // Create a temporarily-floating call instruction so we can add the implicit 1300 // uses of arg registers. 1301 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false); 1302 1303 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1304 MIB.addDef(TRI->getReturnAddressReg(MF)); 1305 1306 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1307 return false; 1308 1309 // Tell the call which registers are clobbered. 1310 const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv); 1311 MIB.addRegMask(Mask); 1312 1313 SmallVector<CCValAssign, 16> ArgLocs; 1314 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1315 1316 // We could pass MIB and directly add the implicit uses to the call 1317 // now. However, as an aesthetic choice, place implicit argument operands 1318 // after the ordinary user argument registers. 1319 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1320 1321 if (AMDGPUTargetMachine::EnableFixedFunctionABI && 1322 Info.CallConv != CallingConv::AMDGPU_Gfx) { 1323 // With a fixed ABI, allocate fixed registers before user arguments. 1324 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1325 return false; 1326 } 1327 1328 // Do the actual argument marshalling. 1329 SmallVector<Register, 8> PhysRegs; 1330 1331 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1332 if (!determineAssignments(Assigner, OutArgs, CCInfo)) 1333 return false; 1334 1335 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false); 1336 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) 1337 return false; 1338 1339 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1340 1341 handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, ImplicitArgRegs); 1342 1343 // Get a count of how many bytes are to be pushed on the stack. 1344 unsigned NumBytes = CCInfo.getNextStackOffset(); 1345 1346 // If Callee is a reg, since it is used by a target specific 1347 // instruction, it must have a register class matching the 1348 // constraint of that instruction. 1349 1350 // FIXME: We should define regbankselectable call instructions to handle 1351 // divergent call targets. 1352 if (MIB->getOperand(1).isReg()) { 1353 MIB->getOperand(1).setReg(constrainOperandRegClass( 1354 MF, *TRI, MRI, *ST.getInstrInfo(), 1355 *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1), 1356 1)); 1357 } 1358 1359 // Now we can add the actual call instruction to the correct position. 1360 MIRBuilder.insertInstr(MIB); 1361 1362 // Finally we can copy the returned value back into its virtual-register. In 1363 // symmetry with the arguments, the physical register must be an 1364 // implicit-define of the call instruction. 1365 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { 1366 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, 1367 Info.IsVarArg); 1368 OutgoingValueAssigner Assigner(RetAssignFn); 1369 CallReturnHandler Handler(MIRBuilder, MRI, MIB); 1370 if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder, 1371 Info.CallConv, Info.IsVarArg)) 1372 return false; 1373 } 1374 1375 uint64_t CalleePopBytes = NumBytes; 1376 1377 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN) 1378 .addImm(0) 1379 .addImm(CalleePopBytes); 1380 1381 if (!Info.CanLowerReturn) { 1382 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs, 1383 Info.DemoteRegister, Info.DemoteStackIndex); 1384 } 1385 1386 return true; 1387 } 1388