1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass optimizes atomic operations by using a single lane of a wavefront
11 /// to perform the atomic operation, thus reducing contention on that memory
12 /// location.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPU.h"
17 #include "AMDGPUSubtarget.h"
18 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
19 #include "llvm/CodeGen/TargetPassConfig.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/InstVisitor.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 
24 #define DEBUG_TYPE "amdgpu-atomic-optimizer"
25 
26 using namespace llvm;
27 
28 namespace {
29 
30 enum DPP_CTRL {
31   DPP_ROW_SR1 = 0x111,
32   DPP_ROW_SR2 = 0x112,
33   DPP_ROW_SR3 = 0x113,
34   DPP_ROW_SR4 = 0x114,
35   DPP_ROW_SR8 = 0x118,
36   DPP_WF_SR1 = 0x138,
37   DPP_ROW_BCAST15 = 0x142,
38   DPP_ROW_BCAST31 = 0x143
39 };
40 
41 struct ReplacementInfo {
42   Instruction *I;
43   Instruction::BinaryOps Op;
44   unsigned ValIdx;
45   bool ValDivergent;
46 };
47 
48 class AMDGPUAtomicOptimizer : public FunctionPass,
49                               public InstVisitor<AMDGPUAtomicOptimizer> {
50 private:
51   SmallVector<ReplacementInfo, 8> ToReplace;
52   const LegacyDivergenceAnalysis *DA;
53   const DataLayout *DL;
54   DominatorTree *DT;
55   bool HasDPP;
56   bool IsPixelShader;
57 
58   void optimizeAtomic(Instruction &I, Instruction::BinaryOps Op,
59                       unsigned ValIdx, bool ValDivergent) const;
60 
61 public:
62   static char ID;
63 
64   AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
65 
66   bool runOnFunction(Function &F) override;
67 
68   void getAnalysisUsage(AnalysisUsage &AU) const override {
69     AU.addPreserved<DominatorTreeWrapperPass>();
70     AU.addRequired<LegacyDivergenceAnalysis>();
71     AU.addRequired<TargetPassConfig>();
72   }
73 
74   void visitAtomicRMWInst(AtomicRMWInst &I);
75   void visitIntrinsicInst(IntrinsicInst &I);
76 };
77 
78 } // namespace
79 
80 char AMDGPUAtomicOptimizer::ID = 0;
81 
82 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
83 
84 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
85   if (skipFunction(F)) {
86     return false;
87   }
88 
89   DA = &getAnalysis<LegacyDivergenceAnalysis>();
90   DL = &F.getParent()->getDataLayout();
91   DominatorTreeWrapperPass *const DTW =
92       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
93   DT = DTW ? &DTW->getDomTree() : nullptr;
94   const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
95   const TargetMachine &TM = TPC.getTM<TargetMachine>();
96   const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
97   HasDPP = ST.hasDPP();
98   IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
99 
100   visit(F);
101 
102   const bool Changed = !ToReplace.empty();
103 
104   for (ReplacementInfo &Info : ToReplace) {
105     optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
106   }
107 
108   ToReplace.clear();
109 
110   return Changed;
111 }
112 
113 void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
114   // Early exit for unhandled address space atomic instructions.
115   switch (I.getPointerAddressSpace()) {
116   default:
117     return;
118   case AMDGPUAS::GLOBAL_ADDRESS:
119   case AMDGPUAS::LOCAL_ADDRESS:
120     break;
121   }
122 
123   Instruction::BinaryOps Op;
124 
125   switch (I.getOperation()) {
126   default:
127     return;
128   case AtomicRMWInst::Add:
129     Op = Instruction::Add;
130     break;
131   case AtomicRMWInst::Sub:
132     Op = Instruction::Sub;
133     break;
134   }
135 
136   const unsigned PtrIdx = 0;
137   const unsigned ValIdx = 1;
138 
139   // If the pointer operand is divergent, then each lane is doing an atomic
140   // operation on a different address, and we cannot optimize that.
141   if (DA->isDivergent(I.getOperand(PtrIdx))) {
142     return;
143   }
144 
145   const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
146 
147   // If the value operand is divergent, each lane is contributing a different
148   // value to the atomic calculation. We can only optimize divergent values if
149   // we have DPP available on our subtarget, and the atomic operation is 32
150   // bits.
151   if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
152     return;
153   }
154 
155   // If we get here, we can optimize the atomic using a single wavefront-wide
156   // atomic operation to do the calculation for the entire wavefront, so
157   // remember the instruction so we can come back to it.
158   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
159 
160   ToReplace.push_back(Info);
161 }
162 
163 void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
164   Instruction::BinaryOps Op;
165 
166   switch (I.getIntrinsicID()) {
167   default:
168     return;
169   case Intrinsic::amdgcn_buffer_atomic_add:
170   case Intrinsic::amdgcn_struct_buffer_atomic_add:
171   case Intrinsic::amdgcn_raw_buffer_atomic_add:
172     Op = Instruction::Add;
173     break;
174   case Intrinsic::amdgcn_buffer_atomic_sub:
175   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
176   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
177     Op = Instruction::Sub;
178     break;
179   }
180 
181   const unsigned ValIdx = 0;
182 
183   const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
184 
185   // If the value operand is divergent, each lane is contributing a different
186   // value to the atomic calculation. We can only optimize divergent values if
187   // we have DPP available on our subtarget, and the atomic operation is 32
188   // bits.
189   if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
190     return;
191   }
192 
193   // If any of the other arguments to the intrinsic are divergent, we can't
194   // optimize the operation.
195   for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
196     if (DA->isDivergent(I.getOperand(Idx))) {
197       return;
198     }
199   }
200 
201   // If we get here, we can optimize the atomic using a single wavefront-wide
202   // atomic operation to do the calculation for the entire wavefront, so
203   // remember the instruction so we can come back to it.
204   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
205 
206   ToReplace.push_back(Info);
207 }
208 
209 void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
210                                            Instruction::BinaryOps Op,
211                                            unsigned ValIdx,
212                                            bool ValDivergent) const {
213   // Start building just before the instruction.
214   IRBuilder<> B(&I);
215 
216   // If we are in a pixel shader, because of how we have to mask out helper
217   // lane invocations, we need to record the entry and exit BB's.
218   BasicBlock *PixelEntryBB = nullptr;
219   BasicBlock *PixelExitBB = nullptr;
220 
221   // If we're optimizing an atomic within a pixel shader, we need to wrap the
222   // entire atomic operation in a helper-lane check. We do not want any helper
223   // lanes that are around only for the purposes of derivatives to take part
224   // in any cross-lane communication, and we use a branch on whether the lane is
225   // live to do this.
226   if (IsPixelShader) {
227     // Record I's original position as the entry block.
228     PixelEntryBB = I.getParent();
229 
230     Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
231     Instruction *const NonHelperTerminator =
232         SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
233 
234     // Record I's new position as the exit block.
235     PixelExitBB = I.getParent();
236 
237     I.moveBefore(NonHelperTerminator);
238     B.SetInsertPoint(&I);
239   }
240 
241   Type *const Ty = I.getType();
242   const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
243   Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
244 
245   // This is the value in the atomic operation we need to combine in order to
246   // reduce the number of atomic operations.
247   Value *const V = I.getOperand(ValIdx);
248 
249   // We need to know how many lanes are active within the wavefront, and we do
250   // this by doing a ballot of active lanes.
251   CallInst *const Ballot =
252       B.CreateIntrinsic(Intrinsic::amdgcn_icmp,
253                         {B.getInt64Ty(), B.getInt32Ty()},
254                         {B.getInt32(1), B.getInt32(0), B.getInt32(33)});
255 
256   // We need to know how many lanes are active within the wavefront that are
257   // below us. If we counted each lane linearly starting from 0, a lane is
258   // below us only if its associated index was less than ours. We do this by
259   // using the mbcnt intrinsic.
260   Value *const BitCast = B.CreateBitCast(Ballot, VecTy);
261   Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
262   Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
263   CallInst *const PartialMbcnt = B.CreateIntrinsic(
264       Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)});
265   CallInst *const Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {},
266                                             {ExtractHi, PartialMbcnt});
267 
268   Value *const MbcntCast = B.CreateIntCast(Mbcnt, Ty, false);
269 
270   Value *LaneOffset = nullptr;
271   Value *NewV = nullptr;
272 
273   // If we have a divergent value in each lane, we need to combine the value
274   // using DPP.
275   if (ValDivergent) {
276     Value *const Identity = B.getIntN(TyBitWidth, 0);
277 
278     // First we need to set all inactive invocations to 0, so that they can
279     // correctly contribute to the final result.
280     CallInst *const SetInactive =
281         B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
282 
283     CallInst *const FirstDPP =
284         B.CreateIntrinsic(Intrinsic::amdgcn_update_dpp, Ty,
285                           {Identity, SetInactive, B.getInt32(DPP_WF_SR1),
286                            B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
287     NewV = FirstDPP;
288 
289     const unsigned Iters = 7;
290     const unsigned DPPCtrl[Iters] = {
291         DPP_ROW_SR1, DPP_ROW_SR2,     DPP_ROW_SR3,    DPP_ROW_SR4,
292         DPP_ROW_SR8, DPP_ROW_BCAST15, DPP_ROW_BCAST31};
293     const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xf, 0xa, 0xc};
294     const unsigned BankMask[Iters] = {0xf, 0xf, 0xf, 0xe, 0xc, 0xf, 0xf};
295 
296     // This loop performs an exclusive scan across the wavefront, with all lanes
297     // active (by using the WWM intrinsic).
298     for (unsigned Idx = 0; Idx < Iters; Idx++) {
299       Value *const UpdateValue = Idx < 3 ? FirstDPP : NewV;
300       CallInst *const DPP = B.CreateIntrinsic(
301           Intrinsic::amdgcn_update_dpp, Ty,
302           {Identity, UpdateValue, B.getInt32(DPPCtrl[Idx]),
303            B.getInt32(RowMask[Idx]), B.getInt32(BankMask[Idx]), B.getFalse()});
304 
305       NewV = B.CreateBinOp(Op, NewV, DPP);
306     }
307 
308     LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
309     NewV = B.CreateBinOp(Op, SetInactive, NewV);
310 
311     // Read the value from the last lane, which has accumlated the values of
312     // each active lane in the wavefront. This will be our new value with which
313     // we will provide to the atomic operation.
314     if (TyBitWidth == 64) {
315       Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
316       Value *const ExtractHi =
317           B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty());
318       CallInst *const ReadLaneLo = B.CreateIntrinsic(
319           Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)});
320       CallInst *const ReadLaneHi = B.CreateIntrinsic(
321           Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)});
322       Value *const PartialInsert = B.CreateInsertElement(
323           UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
324       Value *const Insert =
325           B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
326       NewV = B.CreateBitCast(Insert, Ty);
327     } else if (TyBitWidth == 32) {
328       CallInst *const ReadLane = B.CreateIntrinsic(Intrinsic::amdgcn_readlane,
329                                                    {}, {NewV, B.getInt32(63)});
330       NewV = ReadLane;
331     } else {
332       llvm_unreachable("Unhandled atomic bit width");
333     }
334 
335     // Finally mark the readlanes in the WWM section.
336     NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
337   } else {
338     // Get the total number of active lanes we have by using popcount.
339     Instruction *const Ctpop = B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot);
340     Value *const CtpopCast = B.CreateIntCast(Ctpop, Ty, false);
341 
342     // Calculate the new value we will be contributing to the atomic operation
343     // for the entire wavefront.
344     NewV = B.CreateMul(V, CtpopCast);
345     LaneOffset = B.CreateMul(V, MbcntCast);
346   }
347 
348   // We only want a single lane to enter our new control flow, and we do this
349   // by checking if there are any active lanes below us. Only one lane will
350   // have 0 active lanes below us, so that will be the only one to progress.
351   Value *const Cond = B.CreateICmpEQ(MbcntCast, B.getIntN(TyBitWidth, 0));
352 
353   // Store I's original basic block before we split the block.
354   BasicBlock *const EntryBB = I.getParent();
355 
356   // We need to introduce some new control flow to force a single lane to be
357   // active. We do this by splitting I's basic block at I, and introducing the
358   // new block such that:
359   // entry --> single_lane -\
360   //       \------------------> exit
361   Instruction *const SingleLaneTerminator =
362       SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
363 
364   // Move the IR builder into single_lane next.
365   B.SetInsertPoint(SingleLaneTerminator);
366 
367   // Clone the original atomic operation into single lane, replacing the
368   // original value with our newly created one.
369   Instruction *const NewI = I.clone();
370   B.Insert(NewI);
371   NewI->setOperand(ValIdx, NewV);
372 
373   // Move the IR builder into exit next, and start inserting just before the
374   // original instruction.
375   B.SetInsertPoint(&I);
376 
377   // Create a PHI node to get our new atomic result into the exit block.
378   PHINode *const PHI = B.CreatePHI(Ty, 2);
379   PHI->addIncoming(UndefValue::get(Ty), EntryBB);
380   PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
381 
382   // We need to broadcast the value who was the lowest active lane (the first
383   // lane) to all other lanes in the wavefront. We use an intrinsic for this,
384   // but have to handle 64-bit broadcasts with two calls to this intrinsic.
385   Value *BroadcastI = nullptr;
386 
387   if (TyBitWidth == 64) {
388     Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
389     Value *const ExtractHi =
390         B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty());
391     CallInst *const ReadFirstLaneLo =
392         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
393     CallInst *const ReadFirstLaneHi =
394         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
395     Value *const PartialInsert = B.CreateInsertElement(
396         UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
397     Value *const Insert =
398         B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
399     BroadcastI = B.CreateBitCast(Insert, Ty);
400   } else if (TyBitWidth == 32) {
401 
402     BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
403   } else {
404     llvm_unreachable("Unhandled atomic bit width");
405   }
406 
407   // Now that we have the result of our single atomic operation, we need to
408   // get our individual lane's slice into the result. We use the lane offset we
409   // previously calculated combined with the atomic result value we got from the
410   // first lane, to get our lane's index into the atomic result.
411   Value *const Result = B.CreateBinOp(Op, BroadcastI, LaneOffset);
412 
413   if (IsPixelShader) {
414     // Need a final PHI to reconverge to above the helper lane branch mask.
415     B.SetInsertPoint(PixelExitBB->getFirstNonPHI());
416 
417     PHINode *const PHI = B.CreatePHI(Ty, 2);
418     PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB);
419     PHI->addIncoming(Result, I.getParent());
420     I.replaceAllUsesWith(PHI);
421   } else {
422     // Replace the original atomic instruction with the new one.
423     I.replaceAllUsesWith(Result);
424   }
425 
426   // And delete the original.
427   I.eraseFromParent();
428 }
429 
430 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
431                       "AMDGPU atomic optimizations", false, false)
432 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
433 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
434 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
435                     "AMDGPU atomic optimizations", false, false)
436 
437 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
438   return new AMDGPUAtomicOptimizer();
439 }
440