1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass optimizes atomic operations by using a single lane of a wavefront 11 /// to perform the atomic operation, thus reducing contention on that memory 12 /// location. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPU.h" 17 #include "AMDGPUSubtarget.h" 18 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 19 #include "llvm/CodeGen/TargetPassConfig.h" 20 #include "llvm/IR/IRBuilder.h" 21 #include "llvm/IR/InstVisitor.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 24 #define DEBUG_TYPE "amdgpu-atomic-optimizer" 25 26 using namespace llvm; 27 28 namespace { 29 30 enum DPP_CTRL { 31 DPP_ROW_SR1 = 0x111, 32 DPP_ROW_SR2 = 0x112, 33 DPP_ROW_SR3 = 0x113, 34 DPP_ROW_SR4 = 0x114, 35 DPP_ROW_SR8 = 0x118, 36 DPP_WF_SR1 = 0x138, 37 DPP_ROW_BCAST15 = 0x142, 38 DPP_ROW_BCAST31 = 0x143 39 }; 40 41 struct ReplacementInfo { 42 Instruction *I; 43 Instruction::BinaryOps Op; 44 unsigned ValIdx; 45 bool ValDivergent; 46 }; 47 48 class AMDGPUAtomicOptimizer : public FunctionPass, 49 public InstVisitor<AMDGPUAtomicOptimizer> { 50 private: 51 SmallVector<ReplacementInfo, 8> ToReplace; 52 const LegacyDivergenceAnalysis *DA; 53 const DataLayout *DL; 54 DominatorTree *DT; 55 bool HasDPP; 56 bool IsPixelShader; 57 58 void optimizeAtomic(Instruction &I, Instruction::BinaryOps Op, 59 unsigned ValIdx, bool ValDivergent) const; 60 61 public: 62 static char ID; 63 64 AMDGPUAtomicOptimizer() : FunctionPass(ID) {} 65 66 bool runOnFunction(Function &F) override; 67 68 void getAnalysisUsage(AnalysisUsage &AU) const override { 69 AU.addPreserved<DominatorTreeWrapperPass>(); 70 AU.addRequired<LegacyDivergenceAnalysis>(); 71 AU.addRequired<TargetPassConfig>(); 72 } 73 74 void visitAtomicRMWInst(AtomicRMWInst &I); 75 void visitIntrinsicInst(IntrinsicInst &I); 76 }; 77 78 } // namespace 79 80 char AMDGPUAtomicOptimizer::ID = 0; 81 82 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID; 83 84 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) { 85 if (skipFunction(F)) { 86 return false; 87 } 88 89 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 90 DL = &F.getParent()->getDataLayout(); 91 DominatorTreeWrapperPass *const DTW = 92 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 93 DT = DTW ? &DTW->getDomTree() : nullptr; 94 const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>(); 95 const TargetMachine &TM = TPC.getTM<TargetMachine>(); 96 const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 97 HasDPP = ST.hasDPP(); 98 IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS; 99 100 visit(F); 101 102 const bool Changed = !ToReplace.empty(); 103 104 for (ReplacementInfo &Info : ToReplace) { 105 optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent); 106 } 107 108 ToReplace.clear(); 109 110 return Changed; 111 } 112 113 void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) { 114 // Early exit for unhandled address space atomic instructions. 115 switch (I.getPointerAddressSpace()) { 116 default: 117 return; 118 case AMDGPUAS::GLOBAL_ADDRESS: 119 case AMDGPUAS::LOCAL_ADDRESS: 120 break; 121 } 122 123 Instruction::BinaryOps Op; 124 125 switch (I.getOperation()) { 126 default: 127 return; 128 case AtomicRMWInst::Add: 129 Op = Instruction::Add; 130 break; 131 case AtomicRMWInst::Sub: 132 Op = Instruction::Sub; 133 break; 134 } 135 136 const unsigned PtrIdx = 0; 137 const unsigned ValIdx = 1; 138 139 // If the pointer operand is divergent, then each lane is doing an atomic 140 // operation on a different address, and we cannot optimize that. 141 if (DA->isDivergent(I.getOperand(PtrIdx))) { 142 return; 143 } 144 145 const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx)); 146 147 // If the value operand is divergent, each lane is contributing a different 148 // value to the atomic calculation. We can only optimize divergent values if 149 // we have DPP available on our subtarget, and the atomic operation is 32 150 // bits. 151 if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) { 152 return; 153 } 154 155 // If we get here, we can optimize the atomic using a single wavefront-wide 156 // atomic operation to do the calculation for the entire wavefront, so 157 // remember the instruction so we can come back to it. 158 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; 159 160 ToReplace.push_back(Info); 161 } 162 163 void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) { 164 Instruction::BinaryOps Op; 165 166 switch (I.getIntrinsicID()) { 167 default: 168 return; 169 case Intrinsic::amdgcn_buffer_atomic_add: 170 case Intrinsic::amdgcn_struct_buffer_atomic_add: 171 case Intrinsic::amdgcn_raw_buffer_atomic_add: 172 Op = Instruction::Add; 173 break; 174 case Intrinsic::amdgcn_buffer_atomic_sub: 175 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 176 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 177 Op = Instruction::Sub; 178 break; 179 } 180 181 const unsigned ValIdx = 0; 182 183 const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx)); 184 185 // If the value operand is divergent, each lane is contributing a different 186 // value to the atomic calculation. We can only optimize divergent values if 187 // we have DPP available on our subtarget, and the atomic operation is 32 188 // bits. 189 if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) { 190 return; 191 } 192 193 // If any of the other arguments to the intrinsic are divergent, we can't 194 // optimize the operation. 195 for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) { 196 if (DA->isDivergent(I.getOperand(Idx))) { 197 return; 198 } 199 } 200 201 // If we get here, we can optimize the atomic using a single wavefront-wide 202 // atomic operation to do the calculation for the entire wavefront, so 203 // remember the instruction so we can come back to it. 204 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; 205 206 ToReplace.push_back(Info); 207 } 208 209 void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I, 210 Instruction::BinaryOps Op, 211 unsigned ValIdx, 212 bool ValDivergent) const { 213 // Start building just before the instruction. 214 IRBuilder<> B(&I); 215 216 // If we are in a pixel shader, because of how we have to mask out helper 217 // lane invocations, we need to record the entry and exit BB's. 218 BasicBlock *PixelEntryBB = nullptr; 219 BasicBlock *PixelExitBB = nullptr; 220 221 // If we're optimizing an atomic within a pixel shader, we need to wrap the 222 // entire atomic operation in a helper-lane check. We do not want any helper 223 // lanes that are around only for the purposes of derivatives to take part 224 // in any cross-lane communication, and we use a branch on whether the lane is 225 // live to do this. 226 if (IsPixelShader) { 227 // Record I's original position as the entry block. 228 PixelEntryBB = I.getParent(); 229 230 Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {}); 231 Instruction *const NonHelperTerminator = 232 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); 233 234 // Record I's new position as the exit block. 235 PixelExitBB = I.getParent(); 236 237 I.moveBefore(NonHelperTerminator); 238 B.SetInsertPoint(&I); 239 } 240 241 Type *const Ty = I.getType(); 242 const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty); 243 Type *const VecTy = VectorType::get(B.getInt32Ty(), 2); 244 245 // This is the value in the atomic operation we need to combine in order to 246 // reduce the number of atomic operations. 247 Value *const V = I.getOperand(ValIdx); 248 249 // We need to know how many lanes are active within the wavefront, and we do 250 // this by doing a ballot of active lanes. 251 CallInst *const Ballot = 252 B.CreateIntrinsic(Intrinsic::amdgcn_icmp, 253 {B.getInt64Ty(), B.getInt32Ty()}, 254 {B.getInt32(1), B.getInt32(0), B.getInt32(33)}); 255 256 // We need to know how many lanes are active within the wavefront that are 257 // below us. If we counted each lane linearly starting from 0, a lane is 258 // below us only if its associated index was less than ours. We do this by 259 // using the mbcnt intrinsic. 260 Value *const BitCast = B.CreateBitCast(Ballot, VecTy); 261 Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0)); 262 Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1)); 263 CallInst *const PartialMbcnt = B.CreateIntrinsic( 264 Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)}); 265 CallInst *const Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, 266 {ExtractHi, PartialMbcnt}); 267 268 Value *const MbcntCast = B.CreateIntCast(Mbcnt, Ty, false); 269 270 Value *LaneOffset = nullptr; 271 Value *NewV = nullptr; 272 273 // If we have a divergent value in each lane, we need to combine the value 274 // using DPP. 275 if (ValDivergent) { 276 Value *const Identity = B.getIntN(TyBitWidth, 0); 277 278 // First we need to set all inactive invocations to 0, so that they can 279 // correctly contribute to the final result. 280 CallInst *const SetInactive = 281 B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity}); 282 283 CallInst *const FirstDPP = 284 B.CreateIntrinsic(Intrinsic::amdgcn_update_dpp, Ty, 285 {Identity, SetInactive, B.getInt32(DPP_WF_SR1), 286 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}); 287 NewV = FirstDPP; 288 289 const unsigned Iters = 7; 290 const unsigned DPPCtrl[Iters] = { 291 DPP_ROW_SR1, DPP_ROW_SR2, DPP_ROW_SR3, DPP_ROW_SR4, 292 DPP_ROW_SR8, DPP_ROW_BCAST15, DPP_ROW_BCAST31}; 293 const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xf, 0xa, 0xc}; 294 const unsigned BankMask[Iters] = {0xf, 0xf, 0xf, 0xe, 0xc, 0xf, 0xf}; 295 296 // This loop performs an exclusive scan across the wavefront, with all lanes 297 // active (by using the WWM intrinsic). 298 for (unsigned Idx = 0; Idx < Iters; Idx++) { 299 Value *const UpdateValue = Idx < 3 ? FirstDPP : NewV; 300 CallInst *const DPP = B.CreateIntrinsic( 301 Intrinsic::amdgcn_update_dpp, Ty, 302 {Identity, UpdateValue, B.getInt32(DPPCtrl[Idx]), 303 B.getInt32(RowMask[Idx]), B.getInt32(BankMask[Idx]), B.getFalse()}); 304 305 NewV = B.CreateBinOp(Op, NewV, DPP); 306 } 307 308 LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV); 309 NewV = B.CreateBinOp(Op, SetInactive, NewV); 310 311 // Read the value from the last lane, which has accumlated the values of 312 // each active lane in the wavefront. This will be our new value with which 313 // we will provide to the atomic operation. 314 if (TyBitWidth == 64) { 315 Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty()); 316 Value *const ExtractHi = 317 B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty()); 318 CallInst *const ReadLaneLo = B.CreateIntrinsic( 319 Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)}); 320 CallInst *const ReadLaneHi = B.CreateIntrinsic( 321 Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)}); 322 Value *const PartialInsert = B.CreateInsertElement( 323 UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0)); 324 Value *const Insert = 325 B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1)); 326 NewV = B.CreateBitCast(Insert, Ty); 327 } else if (TyBitWidth == 32) { 328 CallInst *const ReadLane = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, 329 {}, {NewV, B.getInt32(63)}); 330 NewV = ReadLane; 331 } else { 332 llvm_unreachable("Unhandled atomic bit width"); 333 } 334 335 // Finally mark the readlanes in the WWM section. 336 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV); 337 } else { 338 // Get the total number of active lanes we have by using popcount. 339 Instruction *const Ctpop = B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot); 340 Value *const CtpopCast = B.CreateIntCast(Ctpop, Ty, false); 341 342 // Calculate the new value we will be contributing to the atomic operation 343 // for the entire wavefront. 344 NewV = B.CreateMul(V, CtpopCast); 345 LaneOffset = B.CreateMul(V, MbcntCast); 346 } 347 348 // We only want a single lane to enter our new control flow, and we do this 349 // by checking if there are any active lanes below us. Only one lane will 350 // have 0 active lanes below us, so that will be the only one to progress. 351 Value *const Cond = B.CreateICmpEQ(MbcntCast, B.getIntN(TyBitWidth, 0)); 352 353 // Store I's original basic block before we split the block. 354 BasicBlock *const EntryBB = I.getParent(); 355 356 // We need to introduce some new control flow to force a single lane to be 357 // active. We do this by splitting I's basic block at I, and introducing the 358 // new block such that: 359 // entry --> single_lane -\ 360 // \------------------> exit 361 Instruction *const SingleLaneTerminator = 362 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); 363 364 // Move the IR builder into single_lane next. 365 B.SetInsertPoint(SingleLaneTerminator); 366 367 // Clone the original atomic operation into single lane, replacing the 368 // original value with our newly created one. 369 Instruction *const NewI = I.clone(); 370 B.Insert(NewI); 371 NewI->setOperand(ValIdx, NewV); 372 373 // Move the IR builder into exit next, and start inserting just before the 374 // original instruction. 375 B.SetInsertPoint(&I); 376 377 // Create a PHI node to get our new atomic result into the exit block. 378 PHINode *const PHI = B.CreatePHI(Ty, 2); 379 PHI->addIncoming(UndefValue::get(Ty), EntryBB); 380 PHI->addIncoming(NewI, SingleLaneTerminator->getParent()); 381 382 // We need to broadcast the value who was the lowest active lane (the first 383 // lane) to all other lanes in the wavefront. We use an intrinsic for this, 384 // but have to handle 64-bit broadcasts with two calls to this intrinsic. 385 Value *BroadcastI = nullptr; 386 387 if (TyBitWidth == 64) { 388 Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty()); 389 Value *const ExtractHi = 390 B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty()); 391 CallInst *const ReadFirstLaneLo = 392 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo); 393 CallInst *const ReadFirstLaneHi = 394 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi); 395 Value *const PartialInsert = B.CreateInsertElement( 396 UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0)); 397 Value *const Insert = 398 B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1)); 399 BroadcastI = B.CreateBitCast(Insert, Ty); 400 } else if (TyBitWidth == 32) { 401 402 BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI); 403 } else { 404 llvm_unreachable("Unhandled atomic bit width"); 405 } 406 407 // Now that we have the result of our single atomic operation, we need to 408 // get our individual lane's slice into the result. We use the lane offset we 409 // previously calculated combined with the atomic result value we got from the 410 // first lane, to get our lane's index into the atomic result. 411 Value *const Result = B.CreateBinOp(Op, BroadcastI, LaneOffset); 412 413 if (IsPixelShader) { 414 // Need a final PHI to reconverge to above the helper lane branch mask. 415 B.SetInsertPoint(PixelExitBB->getFirstNonPHI()); 416 417 PHINode *const PHI = B.CreatePHI(Ty, 2); 418 PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB); 419 PHI->addIncoming(Result, I.getParent()); 420 I.replaceAllUsesWith(PHI); 421 } else { 422 // Replace the original atomic instruction with the new one. 423 I.replaceAllUsesWith(Result); 424 } 425 426 // And delete the original. 427 I.eraseFromParent(); 428 } 429 430 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE, 431 "AMDGPU atomic optimizations", false, false) 432 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 433 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 434 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE, 435 "AMDGPU atomic optimizations", false, false) 436 437 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() { 438 return new AMDGPUAtomicOptimizer(); 439 } 440