1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This pass optimizes atomic operations by using a single lane of a wavefront 12 /// to perform the atomic operation, thus reducing contention on that memory 13 /// location. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "AMDGPU.h" 18 #include "AMDGPUSubtarget.h" 19 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 20 #include "llvm/CodeGen/TargetPassConfig.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/IR/InstVisitor.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 25 #define DEBUG_TYPE "amdgpu-atomic-optimizer" 26 27 using namespace llvm; 28 29 namespace { 30 31 enum DPP_CTRL { 32 DPP_ROW_SR1 = 0x111, 33 DPP_ROW_SR2 = 0x112, 34 DPP_ROW_SR4 = 0x114, 35 DPP_ROW_SR8 = 0x118, 36 DPP_WF_SR1 = 0x138, 37 DPP_ROW_BCAST15 = 0x142, 38 DPP_ROW_BCAST31 = 0x143 39 }; 40 41 struct ReplacementInfo { 42 Instruction *I; 43 Instruction::BinaryOps Op; 44 unsigned ValIdx; 45 bool ValDivergent; 46 }; 47 48 class AMDGPUAtomicOptimizer : public FunctionPass, 49 public InstVisitor<AMDGPUAtomicOptimizer> { 50 private: 51 SmallVector<ReplacementInfo, 8> ToReplace; 52 const LegacyDivergenceAnalysis *DA; 53 const DataLayout *DL; 54 DominatorTree *DT; 55 bool HasDPP; 56 bool IsPixelShader; 57 58 void optimizeAtomic(Instruction &I, Instruction::BinaryOps Op, 59 unsigned ValIdx, bool ValDivergent) const; 60 61 void setConvergent(CallInst *const CI) const; 62 63 public: 64 static char ID; 65 66 AMDGPUAtomicOptimizer() : FunctionPass(ID) {} 67 68 bool runOnFunction(Function &F) override; 69 70 void getAnalysisUsage(AnalysisUsage &AU) const override { 71 AU.addPreserved<DominatorTreeWrapperPass>(); 72 AU.addRequired<LegacyDivergenceAnalysis>(); 73 AU.addRequired<TargetPassConfig>(); 74 } 75 76 void visitAtomicRMWInst(AtomicRMWInst &I); 77 void visitIntrinsicInst(IntrinsicInst &I); 78 }; 79 80 } // namespace 81 82 char AMDGPUAtomicOptimizer::ID = 0; 83 84 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID; 85 86 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) { 87 if (skipFunction(F)) { 88 return false; 89 } 90 91 DA = &getAnalysis<LegacyDivergenceAnalysis>(); 92 DL = &F.getParent()->getDataLayout(); 93 DominatorTreeWrapperPass *const DTW = 94 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 95 DT = DTW ? &DTW->getDomTree() : nullptr; 96 const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>(); 97 const TargetMachine &TM = TPC.getTM<TargetMachine>(); 98 const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 99 HasDPP = ST.hasDPP(); 100 IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS; 101 102 visit(F); 103 104 const bool Changed = !ToReplace.empty(); 105 106 for (ReplacementInfo &Info : ToReplace) { 107 optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent); 108 } 109 110 ToReplace.clear(); 111 112 return Changed; 113 } 114 115 void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) { 116 // Early exit for unhandled address space atomic instructions. 117 switch (I.getPointerAddressSpace()) { 118 default: 119 return; 120 case AMDGPUAS::GLOBAL_ADDRESS: 121 case AMDGPUAS::LOCAL_ADDRESS: 122 break; 123 } 124 125 Instruction::BinaryOps Op; 126 127 switch (I.getOperation()) { 128 default: 129 return; 130 case AtomicRMWInst::Add: 131 Op = Instruction::Add; 132 break; 133 case AtomicRMWInst::Sub: 134 Op = Instruction::Sub; 135 break; 136 } 137 138 const unsigned PtrIdx = 0; 139 const unsigned ValIdx = 1; 140 141 // If the pointer operand is divergent, then each lane is doing an atomic 142 // operation on a different address, and we cannot optimize that. 143 if (DA->isDivergent(I.getOperand(PtrIdx))) { 144 return; 145 } 146 147 const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx)); 148 149 // If the value operand is divergent, each lane is contributing a different 150 // value to the atomic calculation. We can only optimize divergent values if 151 // we have DPP available on our subtarget, and the atomic operation is 32 152 // bits. 153 if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) { 154 return; 155 } 156 157 // If we get here, we can optimize the atomic using a single wavefront-wide 158 // atomic operation to do the calculation for the entire wavefront, so 159 // remember the instruction so we can come back to it. 160 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; 161 162 ToReplace.push_back(Info); 163 } 164 165 void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) { 166 Instruction::BinaryOps Op; 167 168 switch (I.getIntrinsicID()) { 169 default: 170 return; 171 case Intrinsic::amdgcn_buffer_atomic_add: 172 case Intrinsic::amdgcn_struct_buffer_atomic_add: 173 case Intrinsic::amdgcn_raw_buffer_atomic_add: 174 Op = Instruction::Add; 175 break; 176 case Intrinsic::amdgcn_buffer_atomic_sub: 177 case Intrinsic::amdgcn_struct_buffer_atomic_sub: 178 case Intrinsic::amdgcn_raw_buffer_atomic_sub: 179 Op = Instruction::Sub; 180 break; 181 } 182 183 const unsigned ValIdx = 0; 184 185 const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx)); 186 187 // If the value operand is divergent, each lane is contributing a different 188 // value to the atomic calculation. We can only optimize divergent values if 189 // we have DPP available on our subtarget, and the atomic operation is 32 190 // bits. 191 if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) { 192 return; 193 } 194 195 // If any of the other arguments to the intrinsic are divergent, we can't 196 // optimize the operation. 197 for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) { 198 if (DA->isDivergent(I.getOperand(Idx))) { 199 return; 200 } 201 } 202 203 // If we get here, we can optimize the atomic using a single wavefront-wide 204 // atomic operation to do the calculation for the entire wavefront, so 205 // remember the instruction so we can come back to it. 206 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent}; 207 208 ToReplace.push_back(Info); 209 } 210 211 void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I, 212 Instruction::BinaryOps Op, 213 unsigned ValIdx, 214 bool ValDivergent) const { 215 LLVMContext &Context = I.getContext(); 216 217 // Start building just before the instruction. 218 IRBuilder<> B(&I); 219 220 // If we are in a pixel shader, because of how we have to mask out helper 221 // lane invocations, we need to record the entry and exit BB's. 222 BasicBlock *PixelEntryBB = nullptr; 223 BasicBlock *PixelExitBB = nullptr; 224 225 // If we're optimizing an atomic within a pixel shader, we need to wrap the 226 // entire atomic operation in a helper-lane check. We do not want any helper 227 // lanes that are around only for the purposes of derivatives to take part 228 // in any cross-lane communication, and we use a branch on whether the lane is 229 // live to do this. 230 if (IsPixelShader) { 231 // Record I's original position as the entry block. 232 PixelEntryBB = I.getParent(); 233 234 Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {}); 235 Instruction *const NonHelperTerminator = 236 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); 237 238 // Record I's new position as the exit block. 239 PixelExitBB = I.getParent(); 240 241 I.moveBefore(NonHelperTerminator); 242 B.SetInsertPoint(&I); 243 } 244 245 Type *const Ty = I.getType(); 246 const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty); 247 Type *const VecTy = VectorType::get(B.getInt32Ty(), 2); 248 249 // This is the value in the atomic operation we need to combine in order to 250 // reduce the number of atomic operations. 251 Value *const V = I.getOperand(ValIdx); 252 253 // We need to know how many lanes are active within the wavefront, and we do 254 // this by getting the exec register, which tells us all the lanes that are 255 // active. 256 MDNode *const RegName = 257 llvm::MDNode::get(Context, llvm::MDString::get(Context, "exec")); 258 Value *const Metadata = llvm::MetadataAsValue::get(Context, RegName); 259 CallInst *const Exec = 260 B.CreateIntrinsic(Intrinsic::read_register, {B.getInt64Ty()}, {Metadata}); 261 setConvergent(Exec); 262 263 // We need to know how many lanes are active within the wavefront that are 264 // below us. If we counted each lane linearly starting from 0, a lane is 265 // below us only if its associated index was less than ours. We do this by 266 // using the mbcnt intrinsic. 267 Value *const BitCast = B.CreateBitCast(Exec, VecTy); 268 Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0)); 269 Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1)); 270 CallInst *const PartialMbcnt = B.CreateIntrinsic( 271 Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)}); 272 CallInst *const Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, 273 {ExtractHi, PartialMbcnt}); 274 275 Value *const MbcntCast = B.CreateIntCast(Mbcnt, Ty, false); 276 277 Value *LaneOffset = nullptr; 278 Value *NewV = nullptr; 279 280 // If we have a divergent value in each lane, we need to combine the value 281 // using DPP. 282 if (ValDivergent) { 283 // First we need to set all inactive invocations to 0, so that they can 284 // correctly contribute to the final result. 285 CallInst *const SetInactive = B.CreateIntrinsic( 286 Intrinsic::amdgcn_set_inactive, Ty, {V, B.getIntN(TyBitWidth, 0)}); 287 setConvergent(SetInactive); 288 NewV = SetInactive; 289 290 const unsigned Iters = 6; 291 const unsigned DPPCtrl[Iters] = {DPP_ROW_SR1, DPP_ROW_SR2, 292 DPP_ROW_SR4, DPP_ROW_SR8, 293 DPP_ROW_BCAST15, DPP_ROW_BCAST31}; 294 const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xa, 0xc}; 295 296 // This loop performs an inclusive scan across the wavefront, with all lanes 297 // active (by using the WWM intrinsic). 298 for (unsigned Idx = 0; Idx < Iters; Idx++) { 299 CallInst *const DPP = B.CreateIntrinsic(Intrinsic::amdgcn_mov_dpp, Ty, 300 {NewV, B.getInt32(DPPCtrl[Idx]), 301 B.getInt32(RowMask[Idx]), 302 B.getInt32(0xf), B.getFalse()}); 303 setConvergent(DPP); 304 Value *const WWM = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, DPP); 305 306 NewV = B.CreateBinOp(Op, NewV, WWM); 307 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV); 308 } 309 310 // NewV has returned the inclusive scan of V, but for the lane offset we 311 // require an exclusive scan. We do this by shifting the values from the 312 // entire wavefront right by 1, and by setting the bound_ctrl (last argument 313 // to the intrinsic below) to true, we can guarantee that 0 will be shifted 314 // into the 0'th invocation. 315 CallInst *const DPP = 316 B.CreateIntrinsic(Intrinsic::amdgcn_mov_dpp, {Ty}, 317 {NewV, B.getInt32(DPP_WF_SR1), B.getInt32(0xf), 318 B.getInt32(0xf), B.getTrue()}); 319 setConvergent(DPP); 320 LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, DPP); 321 322 // Read the value from the last lane, which has accumlated the values of 323 // each active lane in the wavefront. This will be our new value with which 324 // we will provide to the atomic operation. 325 if (TyBitWidth == 64) { 326 Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty()); 327 Value *const ExtractHi = 328 B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty()); 329 CallInst *const ReadLaneLo = B.CreateIntrinsic( 330 Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)}); 331 setConvergent(ReadLaneLo); 332 CallInst *const ReadLaneHi = B.CreateIntrinsic( 333 Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)}); 334 setConvergent(ReadLaneHi); 335 Value *const PartialInsert = B.CreateInsertElement( 336 UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0)); 337 Value *const Insert = 338 B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1)); 339 NewV = B.CreateBitCast(Insert, Ty); 340 } else if (TyBitWidth == 32) { 341 CallInst *const ReadLane = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, 342 {}, {NewV, B.getInt32(63)}); 343 setConvergent(ReadLane); 344 NewV = ReadLane; 345 } else { 346 llvm_unreachable("Unhandled atomic bit width"); 347 } 348 } else { 349 // Get the total number of active lanes we have by using popcount. 350 Instruction *const Ctpop = B.CreateUnaryIntrinsic(Intrinsic::ctpop, Exec); 351 Value *const CtpopCast = B.CreateIntCast(Ctpop, Ty, false); 352 353 // Calculate the new value we will be contributing to the atomic operation 354 // for the entire wavefront. 355 NewV = B.CreateMul(V, CtpopCast); 356 LaneOffset = B.CreateMul(V, MbcntCast); 357 } 358 359 // We only want a single lane to enter our new control flow, and we do this 360 // by checking if there are any active lanes below us. Only one lane will 361 // have 0 active lanes below us, so that will be the only one to progress. 362 Value *const Cond = B.CreateICmpEQ(MbcntCast, B.getIntN(TyBitWidth, 0)); 363 364 // Store I's original basic block before we split the block. 365 BasicBlock *const EntryBB = I.getParent(); 366 367 // We need to introduce some new control flow to force a single lane to be 368 // active. We do this by splitting I's basic block at I, and introducing the 369 // new block such that: 370 // entry --> single_lane -\ 371 // \------------------> exit 372 Instruction *const SingleLaneTerminator = 373 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr); 374 375 // Move the IR builder into single_lane next. 376 B.SetInsertPoint(SingleLaneTerminator); 377 378 // Clone the original atomic operation into single lane, replacing the 379 // original value with our newly created one. 380 Instruction *const NewI = I.clone(); 381 B.Insert(NewI); 382 NewI->setOperand(ValIdx, NewV); 383 384 // Move the IR builder into exit next, and start inserting just before the 385 // original instruction. 386 B.SetInsertPoint(&I); 387 388 // Create a PHI node to get our new atomic result into the exit block. 389 PHINode *const PHI = B.CreatePHI(Ty, 2); 390 PHI->addIncoming(UndefValue::get(Ty), EntryBB); 391 PHI->addIncoming(NewI, SingleLaneTerminator->getParent()); 392 393 // We need to broadcast the value who was the lowest active lane (the first 394 // lane) to all other lanes in the wavefront. We use an intrinsic for this, 395 // but have to handle 64-bit broadcasts with two calls to this intrinsic. 396 Value *BroadcastI = nullptr; 397 398 if (TyBitWidth == 64) { 399 Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty()); 400 Value *const ExtractHi = 401 B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty()); 402 CallInst *const ReadFirstLaneLo = 403 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo); 404 setConvergent(ReadFirstLaneLo); 405 CallInst *const ReadFirstLaneHi = 406 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi); 407 setConvergent(ReadFirstLaneHi); 408 Value *const PartialInsert = B.CreateInsertElement( 409 UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0)); 410 Value *const Insert = 411 B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1)); 412 BroadcastI = B.CreateBitCast(Insert, Ty); 413 } else if (TyBitWidth == 32) { 414 CallInst *const ReadFirstLane = 415 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI); 416 setConvergent(ReadFirstLane); 417 BroadcastI = ReadFirstLane; 418 } else { 419 llvm_unreachable("Unhandled atomic bit width"); 420 } 421 422 // Now that we have the result of our single atomic operation, we need to 423 // get our individual lane's slice into the result. We use the lane offset we 424 // previously calculated combined with the atomic result value we got from the 425 // first lane, to get our lane's index into the atomic result. 426 Value *const Result = B.CreateBinOp(Op, BroadcastI, LaneOffset); 427 428 if (IsPixelShader) { 429 // Need a final PHI to reconverge to above the helper lane branch mask. 430 B.SetInsertPoint(PixelExitBB->getFirstNonPHI()); 431 432 PHINode *const PHI = B.CreatePHI(Ty, 2); 433 PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB); 434 PHI->addIncoming(Result, I.getParent()); 435 I.replaceAllUsesWith(PHI); 436 } else { 437 // Replace the original atomic instruction with the new one. 438 I.replaceAllUsesWith(Result); 439 } 440 441 // And delete the original. 442 I.eraseFromParent(); 443 } 444 445 void AMDGPUAtomicOptimizer::setConvergent(CallInst *const CI) const { 446 CI->addAttribute(AttributeList::FunctionIndex, Attribute::Convergent); 447 } 448 449 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE, 450 "AMDGPU atomic optimizations", false, false) 451 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 452 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 453 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE, 454 "AMDGPU atomic optimizations", false, false) 455 456 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() { 457 return new AMDGPUAtomicOptimizer(); 458 } 459