1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass optimizes atomic operations by using a single lane of a wavefront
11 /// to perform the atomic operation, thus reducing contention on that memory
12 /// location.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPU.h"
17 #include "AMDGPUSubtarget.h"
18 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
19 #include "llvm/CodeGen/TargetPassConfig.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/InstVisitor.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 
24 #define DEBUG_TYPE "amdgpu-atomic-optimizer"
25 
26 using namespace llvm;
27 
28 namespace {
29 
30 enum DPP_CTRL {
31   DPP_ROW_SR1 = 0x111,
32   DPP_ROW_SR2 = 0x112,
33   DPP_ROW_SR4 = 0x114,
34   DPP_ROW_SR8 = 0x118,
35   DPP_WF_SR1 = 0x138,
36   DPP_ROW_BCAST15 = 0x142,
37   DPP_ROW_BCAST31 = 0x143
38 };
39 
40 struct ReplacementInfo {
41   Instruction *I;
42   Instruction::BinaryOps Op;
43   unsigned ValIdx;
44   bool ValDivergent;
45 };
46 
47 class AMDGPUAtomicOptimizer : public FunctionPass,
48                               public InstVisitor<AMDGPUAtomicOptimizer> {
49 private:
50   SmallVector<ReplacementInfo, 8> ToReplace;
51   const LegacyDivergenceAnalysis *DA;
52   const DataLayout *DL;
53   DominatorTree *DT;
54   bool HasDPP;
55   bool IsPixelShader;
56 
57   void optimizeAtomic(Instruction &I, Instruction::BinaryOps Op,
58                       unsigned ValIdx, bool ValDivergent) const;
59 
60   void setConvergent(CallInst *const CI) const;
61 
62 public:
63   static char ID;
64 
65   AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
66 
67   bool runOnFunction(Function &F) override;
68 
69   void getAnalysisUsage(AnalysisUsage &AU) const override {
70     AU.addPreserved<DominatorTreeWrapperPass>();
71     AU.addRequired<LegacyDivergenceAnalysis>();
72     AU.addRequired<TargetPassConfig>();
73   }
74 
75   void visitAtomicRMWInst(AtomicRMWInst &I);
76   void visitIntrinsicInst(IntrinsicInst &I);
77 };
78 
79 } // namespace
80 
81 char AMDGPUAtomicOptimizer::ID = 0;
82 
83 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
84 
85 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
86   if (skipFunction(F)) {
87     return false;
88   }
89 
90   DA = &getAnalysis<LegacyDivergenceAnalysis>();
91   DL = &F.getParent()->getDataLayout();
92   DominatorTreeWrapperPass *const DTW =
93       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
94   DT = DTW ? &DTW->getDomTree() : nullptr;
95   const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
96   const TargetMachine &TM = TPC.getTM<TargetMachine>();
97   const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
98   HasDPP = ST.hasDPP();
99   IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
100 
101   visit(F);
102 
103   const bool Changed = !ToReplace.empty();
104 
105   for (ReplacementInfo &Info : ToReplace) {
106     optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
107   }
108 
109   ToReplace.clear();
110 
111   return Changed;
112 }
113 
114 void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
115   // Early exit for unhandled address space atomic instructions.
116   switch (I.getPointerAddressSpace()) {
117   default:
118     return;
119   case AMDGPUAS::GLOBAL_ADDRESS:
120   case AMDGPUAS::LOCAL_ADDRESS:
121     break;
122   }
123 
124   Instruction::BinaryOps Op;
125 
126   switch (I.getOperation()) {
127   default:
128     return;
129   case AtomicRMWInst::Add:
130     Op = Instruction::Add;
131     break;
132   case AtomicRMWInst::Sub:
133     Op = Instruction::Sub;
134     break;
135   }
136 
137   const unsigned PtrIdx = 0;
138   const unsigned ValIdx = 1;
139 
140   // If the pointer operand is divergent, then each lane is doing an atomic
141   // operation on a different address, and we cannot optimize that.
142   if (DA->isDivergent(I.getOperand(PtrIdx))) {
143     return;
144   }
145 
146   const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
147 
148   // If the value operand is divergent, each lane is contributing a different
149   // value to the atomic calculation. We can only optimize divergent values if
150   // we have DPP available on our subtarget, and the atomic operation is 32
151   // bits.
152   if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
153     return;
154   }
155 
156   // If we get here, we can optimize the atomic using a single wavefront-wide
157   // atomic operation to do the calculation for the entire wavefront, so
158   // remember the instruction so we can come back to it.
159   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
160 
161   ToReplace.push_back(Info);
162 }
163 
164 void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
165   Instruction::BinaryOps Op;
166 
167   switch (I.getIntrinsicID()) {
168   default:
169     return;
170   case Intrinsic::amdgcn_buffer_atomic_add:
171   case Intrinsic::amdgcn_struct_buffer_atomic_add:
172   case Intrinsic::amdgcn_raw_buffer_atomic_add:
173     Op = Instruction::Add;
174     break;
175   case Intrinsic::amdgcn_buffer_atomic_sub:
176   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
177   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
178     Op = Instruction::Sub;
179     break;
180   }
181 
182   const unsigned ValIdx = 0;
183 
184   const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
185 
186   // If the value operand is divergent, each lane is contributing a different
187   // value to the atomic calculation. We can only optimize divergent values if
188   // we have DPP available on our subtarget, and the atomic operation is 32
189   // bits.
190   if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
191     return;
192   }
193 
194   // If any of the other arguments to the intrinsic are divergent, we can't
195   // optimize the operation.
196   for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
197     if (DA->isDivergent(I.getOperand(Idx))) {
198       return;
199     }
200   }
201 
202   // If we get here, we can optimize the atomic using a single wavefront-wide
203   // atomic operation to do the calculation for the entire wavefront, so
204   // remember the instruction so we can come back to it.
205   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
206 
207   ToReplace.push_back(Info);
208 }
209 
210 void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
211                                            Instruction::BinaryOps Op,
212                                            unsigned ValIdx,
213                                            bool ValDivergent) const {
214   LLVMContext &Context = I.getContext();
215 
216   // Start building just before the instruction.
217   IRBuilder<> B(&I);
218 
219   // If we are in a pixel shader, because of how we have to mask out helper
220   // lane invocations, we need to record the entry and exit BB's.
221   BasicBlock *PixelEntryBB = nullptr;
222   BasicBlock *PixelExitBB = nullptr;
223 
224   // If we're optimizing an atomic within a pixel shader, we need to wrap the
225   // entire atomic operation in a helper-lane check. We do not want any helper
226   // lanes that are around only for the purposes of derivatives to take part
227   // in any cross-lane communication, and we use a branch on whether the lane is
228   // live to do this.
229   if (IsPixelShader) {
230     // Record I's original position as the entry block.
231     PixelEntryBB = I.getParent();
232 
233     Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
234     Instruction *const NonHelperTerminator =
235         SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
236 
237     // Record I's new position as the exit block.
238     PixelExitBB = I.getParent();
239 
240     I.moveBefore(NonHelperTerminator);
241     B.SetInsertPoint(&I);
242   }
243 
244   Type *const Ty = I.getType();
245   const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
246   Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
247 
248   // This is the value in the atomic operation we need to combine in order to
249   // reduce the number of atomic operations.
250   Value *const V = I.getOperand(ValIdx);
251 
252   // We need to know how many lanes are active within the wavefront, and we do
253   // this by getting the exec register, which tells us all the lanes that are
254   // active.
255   MDNode *const RegName =
256       llvm::MDNode::get(Context, llvm::MDString::get(Context, "exec"));
257   Value *const Metadata = llvm::MetadataAsValue::get(Context, RegName);
258   CallInst *const Exec =
259       B.CreateIntrinsic(Intrinsic::read_register, {B.getInt64Ty()}, {Metadata});
260   setConvergent(Exec);
261 
262   // We need to know how many lanes are active within the wavefront that are
263   // below us. If we counted each lane linearly starting from 0, a lane is
264   // below us only if its associated index was less than ours. We do this by
265   // using the mbcnt intrinsic.
266   Value *const BitCast = B.CreateBitCast(Exec, VecTy);
267   Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
268   Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
269   CallInst *const PartialMbcnt = B.CreateIntrinsic(
270       Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)});
271   CallInst *const Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {},
272                                             {ExtractHi, PartialMbcnt});
273 
274   Value *const MbcntCast = B.CreateIntCast(Mbcnt, Ty, false);
275 
276   Value *LaneOffset = nullptr;
277   Value *NewV = nullptr;
278 
279   // If we have a divergent value in each lane, we need to combine the value
280   // using DPP.
281   if (ValDivergent) {
282     // First we need to set all inactive invocations to 0, so that they can
283     // correctly contribute to the final result.
284     CallInst *const SetInactive = B.CreateIntrinsic(
285         Intrinsic::amdgcn_set_inactive, Ty, {V, B.getIntN(TyBitWidth, 0)});
286     setConvergent(SetInactive);
287     NewV = SetInactive;
288 
289     const unsigned Iters = 6;
290     const unsigned DPPCtrl[Iters] = {DPP_ROW_SR1,     DPP_ROW_SR2,
291                                      DPP_ROW_SR4,     DPP_ROW_SR8,
292                                      DPP_ROW_BCAST15, DPP_ROW_BCAST31};
293     const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xa, 0xc};
294 
295     // This loop performs an inclusive scan across the wavefront, with all lanes
296     // active (by using the WWM intrinsic).
297     for (unsigned Idx = 0; Idx < Iters; Idx++) {
298       CallInst *const DPP = B.CreateIntrinsic(Intrinsic::amdgcn_mov_dpp, Ty,
299                                               {NewV, B.getInt32(DPPCtrl[Idx]),
300                                                B.getInt32(RowMask[Idx]),
301                                                B.getInt32(0xf), B.getFalse()});
302       setConvergent(DPP);
303       Value *const WWM = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, DPP);
304 
305       NewV = B.CreateBinOp(Op, NewV, WWM);
306       NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
307     }
308 
309     // NewV has returned the inclusive scan of V, but for the lane offset we
310     // require an exclusive scan. We do this by shifting the values from the
311     // entire wavefront right by 1, and by setting the bound_ctrl (last argument
312     // to the intrinsic below) to true, we can guarantee that 0 will be shifted
313     // into the 0'th invocation.
314     CallInst *const DPP =
315         B.CreateIntrinsic(Intrinsic::amdgcn_mov_dpp, {Ty},
316                           {NewV, B.getInt32(DPP_WF_SR1), B.getInt32(0xf),
317                            B.getInt32(0xf), B.getTrue()});
318     setConvergent(DPP);
319     LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, DPP);
320 
321     // Read the value from the last lane, which has accumlated the values of
322     // each active lane in the wavefront. This will be our new value with which
323     // we will provide to the atomic operation.
324     if (TyBitWidth == 64) {
325       Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
326       Value *const ExtractHi =
327           B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty());
328       CallInst *const ReadLaneLo = B.CreateIntrinsic(
329           Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)});
330       setConvergent(ReadLaneLo);
331       CallInst *const ReadLaneHi = B.CreateIntrinsic(
332           Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)});
333       setConvergent(ReadLaneHi);
334       Value *const PartialInsert = B.CreateInsertElement(
335           UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
336       Value *const Insert =
337           B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
338       NewV = B.CreateBitCast(Insert, Ty);
339     } else if (TyBitWidth == 32) {
340       CallInst *const ReadLane = B.CreateIntrinsic(Intrinsic::amdgcn_readlane,
341                                                    {}, {NewV, B.getInt32(63)});
342       setConvergent(ReadLane);
343       NewV = ReadLane;
344     } else {
345       llvm_unreachable("Unhandled atomic bit width");
346     }
347   } else {
348     // Get the total number of active lanes we have by using popcount.
349     Instruction *const Ctpop = B.CreateUnaryIntrinsic(Intrinsic::ctpop, Exec);
350     Value *const CtpopCast = B.CreateIntCast(Ctpop, Ty, false);
351 
352     // Calculate the new value we will be contributing to the atomic operation
353     // for the entire wavefront.
354     NewV = B.CreateMul(V, CtpopCast);
355     LaneOffset = B.CreateMul(V, MbcntCast);
356   }
357 
358   // We only want a single lane to enter our new control flow, and we do this
359   // by checking if there are any active lanes below us. Only one lane will
360   // have 0 active lanes below us, so that will be the only one to progress.
361   Value *const Cond = B.CreateICmpEQ(MbcntCast, B.getIntN(TyBitWidth, 0));
362 
363   // Store I's original basic block before we split the block.
364   BasicBlock *const EntryBB = I.getParent();
365 
366   // We need to introduce some new control flow to force a single lane to be
367   // active. We do this by splitting I's basic block at I, and introducing the
368   // new block such that:
369   // entry --> single_lane -\
370   //       \------------------> exit
371   Instruction *const SingleLaneTerminator =
372       SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
373 
374   // Move the IR builder into single_lane next.
375   B.SetInsertPoint(SingleLaneTerminator);
376 
377   // Clone the original atomic operation into single lane, replacing the
378   // original value with our newly created one.
379   Instruction *const NewI = I.clone();
380   B.Insert(NewI);
381   NewI->setOperand(ValIdx, NewV);
382 
383   // Move the IR builder into exit next, and start inserting just before the
384   // original instruction.
385   B.SetInsertPoint(&I);
386 
387   // Create a PHI node to get our new atomic result into the exit block.
388   PHINode *const PHI = B.CreatePHI(Ty, 2);
389   PHI->addIncoming(UndefValue::get(Ty), EntryBB);
390   PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
391 
392   // We need to broadcast the value who was the lowest active lane (the first
393   // lane) to all other lanes in the wavefront. We use an intrinsic for this,
394   // but have to handle 64-bit broadcasts with two calls to this intrinsic.
395   Value *BroadcastI = nullptr;
396 
397   if (TyBitWidth == 64) {
398     Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
399     Value *const ExtractHi =
400         B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty());
401     CallInst *const ReadFirstLaneLo =
402         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
403     setConvergent(ReadFirstLaneLo);
404     CallInst *const ReadFirstLaneHi =
405         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
406     setConvergent(ReadFirstLaneHi);
407     Value *const PartialInsert = B.CreateInsertElement(
408         UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
409     Value *const Insert =
410         B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
411     BroadcastI = B.CreateBitCast(Insert, Ty);
412   } else if (TyBitWidth == 32) {
413     CallInst *const ReadFirstLane =
414         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
415     setConvergent(ReadFirstLane);
416     BroadcastI = ReadFirstLane;
417   } else {
418     llvm_unreachable("Unhandled atomic bit width");
419   }
420 
421   // Now that we have the result of our single atomic operation, we need to
422   // get our individual lane's slice into the result. We use the lane offset we
423   // previously calculated combined with the atomic result value we got from the
424   // first lane, to get our lane's index into the atomic result.
425   Value *const Result = B.CreateBinOp(Op, BroadcastI, LaneOffset);
426 
427   if (IsPixelShader) {
428     // Need a final PHI to reconverge to above the helper lane branch mask.
429     B.SetInsertPoint(PixelExitBB->getFirstNonPHI());
430 
431     PHINode *const PHI = B.CreatePHI(Ty, 2);
432     PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB);
433     PHI->addIncoming(Result, I.getParent());
434     I.replaceAllUsesWith(PHI);
435   } else {
436     // Replace the original atomic instruction with the new one.
437     I.replaceAllUsesWith(Result);
438   }
439 
440   // And delete the original.
441   I.eraseFromParent();
442 }
443 
444 void AMDGPUAtomicOptimizer::setConvergent(CallInst *const CI) const {
445   CI->addAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
446 }
447 
448 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
449                       "AMDGPU atomic optimizations", false, false)
450 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
451 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
452 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
453                     "AMDGPU atomic optimizations", false, false)
454 
455 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
456   return new AMDGPUAtomicOptimizer();
457 }
458