1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass optimizes atomic operations by using a single lane of a wavefront
11 /// to perform the atomic operation, thus reducing contention on that memory
12 /// location.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPU.h"
17 #include "AMDGPUSubtarget.h"
18 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
19 #include "llvm/CodeGen/TargetPassConfig.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/InstVisitor.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 
24 #define DEBUG_TYPE "amdgpu-atomic-optimizer"
25 
26 using namespace llvm;
27 
28 namespace {
29 
30 enum DPP_CTRL {
31   DPP_ROW_SR1 = 0x111,
32   DPP_ROW_SR2 = 0x112,
33   DPP_ROW_SR3 = 0x113,
34   DPP_ROW_SR4 = 0x114,
35   DPP_ROW_SR8 = 0x118,
36   DPP_WF_SR1 = 0x138,
37   DPP_ROW_BCAST15 = 0x142,
38   DPP_ROW_BCAST31 = 0x143
39 };
40 
41 struct ReplacementInfo {
42   Instruction *I;
43   Instruction::BinaryOps Op;
44   unsigned ValIdx;
45   bool ValDivergent;
46 };
47 
48 class AMDGPUAtomicOptimizer : public FunctionPass,
49                               public InstVisitor<AMDGPUAtomicOptimizer> {
50 private:
51   SmallVector<ReplacementInfo, 8> ToReplace;
52   const LegacyDivergenceAnalysis *DA;
53   const DataLayout *DL;
54   DominatorTree *DT;
55   bool HasDPP;
56   bool IsPixelShader;
57 
58   void optimizeAtomic(Instruction &I, Instruction::BinaryOps Op,
59                       unsigned ValIdx, bool ValDivergent) const;
60 
61   void setConvergent(CallInst *const CI) const;
62 
63 public:
64   static char ID;
65 
66   AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
67 
68   bool runOnFunction(Function &F) override;
69 
70   void getAnalysisUsage(AnalysisUsage &AU) const override {
71     AU.addPreserved<DominatorTreeWrapperPass>();
72     AU.addRequired<LegacyDivergenceAnalysis>();
73     AU.addRequired<TargetPassConfig>();
74   }
75 
76   void visitAtomicRMWInst(AtomicRMWInst &I);
77   void visitIntrinsicInst(IntrinsicInst &I);
78 };
79 
80 } // namespace
81 
82 char AMDGPUAtomicOptimizer::ID = 0;
83 
84 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
85 
86 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
87   if (skipFunction(F)) {
88     return false;
89   }
90 
91   DA = &getAnalysis<LegacyDivergenceAnalysis>();
92   DL = &F.getParent()->getDataLayout();
93   DominatorTreeWrapperPass *const DTW =
94       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
95   DT = DTW ? &DTW->getDomTree() : nullptr;
96   const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
97   const TargetMachine &TM = TPC.getTM<TargetMachine>();
98   const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
99   HasDPP = ST.hasDPP();
100   IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
101 
102   visit(F);
103 
104   const bool Changed = !ToReplace.empty();
105 
106   for (ReplacementInfo &Info : ToReplace) {
107     optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
108   }
109 
110   ToReplace.clear();
111 
112   return Changed;
113 }
114 
115 void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
116   // Early exit for unhandled address space atomic instructions.
117   switch (I.getPointerAddressSpace()) {
118   default:
119     return;
120   case AMDGPUAS::GLOBAL_ADDRESS:
121   case AMDGPUAS::LOCAL_ADDRESS:
122     break;
123   }
124 
125   Instruction::BinaryOps Op;
126 
127   switch (I.getOperation()) {
128   default:
129     return;
130   case AtomicRMWInst::Add:
131     Op = Instruction::Add;
132     break;
133   case AtomicRMWInst::Sub:
134     Op = Instruction::Sub;
135     break;
136   }
137 
138   const unsigned PtrIdx = 0;
139   const unsigned ValIdx = 1;
140 
141   // If the pointer operand is divergent, then each lane is doing an atomic
142   // operation on a different address, and we cannot optimize that.
143   if (DA->isDivergent(I.getOperand(PtrIdx))) {
144     return;
145   }
146 
147   const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
148 
149   // If the value operand is divergent, each lane is contributing a different
150   // value to the atomic calculation. We can only optimize divergent values if
151   // we have DPP available on our subtarget, and the atomic operation is 32
152   // bits.
153   if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
154     return;
155   }
156 
157   // If we get here, we can optimize the atomic using a single wavefront-wide
158   // atomic operation to do the calculation for the entire wavefront, so
159   // remember the instruction so we can come back to it.
160   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
161 
162   ToReplace.push_back(Info);
163 }
164 
165 void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
166   Instruction::BinaryOps Op;
167 
168   switch (I.getIntrinsicID()) {
169   default:
170     return;
171   case Intrinsic::amdgcn_buffer_atomic_add:
172   case Intrinsic::amdgcn_struct_buffer_atomic_add:
173   case Intrinsic::amdgcn_raw_buffer_atomic_add:
174     Op = Instruction::Add;
175     break;
176   case Intrinsic::amdgcn_buffer_atomic_sub:
177   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
178   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
179     Op = Instruction::Sub;
180     break;
181   }
182 
183   const unsigned ValIdx = 0;
184 
185   const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
186 
187   // If the value operand is divergent, each lane is contributing a different
188   // value to the atomic calculation. We can only optimize divergent values if
189   // we have DPP available on our subtarget, and the atomic operation is 32
190   // bits.
191   if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
192     return;
193   }
194 
195   // If any of the other arguments to the intrinsic are divergent, we can't
196   // optimize the operation.
197   for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
198     if (DA->isDivergent(I.getOperand(Idx))) {
199       return;
200     }
201   }
202 
203   // If we get here, we can optimize the atomic using a single wavefront-wide
204   // atomic operation to do the calculation for the entire wavefront, so
205   // remember the instruction so we can come back to it.
206   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
207 
208   ToReplace.push_back(Info);
209 }
210 
211 void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
212                                            Instruction::BinaryOps Op,
213                                            unsigned ValIdx,
214                                            bool ValDivergent) const {
215   // Start building just before the instruction.
216   IRBuilder<> B(&I);
217 
218   // If we are in a pixel shader, because of how we have to mask out helper
219   // lane invocations, we need to record the entry and exit BB's.
220   BasicBlock *PixelEntryBB = nullptr;
221   BasicBlock *PixelExitBB = nullptr;
222 
223   // If we're optimizing an atomic within a pixel shader, we need to wrap the
224   // entire atomic operation in a helper-lane check. We do not want any helper
225   // lanes that are around only for the purposes of derivatives to take part
226   // in any cross-lane communication, and we use a branch on whether the lane is
227   // live to do this.
228   if (IsPixelShader) {
229     // Record I's original position as the entry block.
230     PixelEntryBB = I.getParent();
231 
232     Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
233     Instruction *const NonHelperTerminator =
234         SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
235 
236     // Record I's new position as the exit block.
237     PixelExitBB = I.getParent();
238 
239     I.moveBefore(NonHelperTerminator);
240     B.SetInsertPoint(&I);
241   }
242 
243   Type *const Ty = I.getType();
244   const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
245   Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
246 
247   // This is the value in the atomic operation we need to combine in order to
248   // reduce the number of atomic operations.
249   Value *const V = I.getOperand(ValIdx);
250 
251   // We need to know how many lanes are active within the wavefront, and we do
252   // this by doing a ballot of active lanes.
253   CallInst *const Ballot =
254       B.CreateIntrinsic(Intrinsic::amdgcn_icmp, {B.getInt32Ty()},
255                         {B.getInt32(1), B.getInt32(0), B.getInt32(33)});
256   setConvergent(Ballot);
257 
258   // We need to know how many lanes are active within the wavefront that are
259   // below us. If we counted each lane linearly starting from 0, a lane is
260   // below us only if its associated index was less than ours. We do this by
261   // using the mbcnt intrinsic.
262   Value *const BitCast = B.CreateBitCast(Ballot, VecTy);
263   Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
264   Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
265   CallInst *const PartialMbcnt = B.CreateIntrinsic(
266       Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)});
267   CallInst *const Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {},
268                                             {ExtractHi, PartialMbcnt});
269 
270   Value *const MbcntCast = B.CreateIntCast(Mbcnt, Ty, false);
271 
272   Value *LaneOffset = nullptr;
273   Value *NewV = nullptr;
274 
275   // If we have a divergent value in each lane, we need to combine the value
276   // using DPP.
277   if (ValDivergent) {
278     Value *const Identity = B.getIntN(TyBitWidth, 0);
279 
280     // First we need to set all inactive invocations to 0, so that they can
281     // correctly contribute to the final result.
282     CallInst *const SetInactive =
283         B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
284     setConvergent(SetInactive);
285 
286     CallInst *const FirstDPP =
287         B.CreateIntrinsic(Intrinsic::amdgcn_update_dpp, Ty,
288                           {Identity, SetInactive, B.getInt32(DPP_WF_SR1),
289                            B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
290     setConvergent(FirstDPP);
291     NewV = FirstDPP;
292 
293     const unsigned Iters = 7;
294     const unsigned DPPCtrl[Iters] = {
295         DPP_ROW_SR1, DPP_ROW_SR2,     DPP_ROW_SR3,    DPP_ROW_SR4,
296         DPP_ROW_SR8, DPP_ROW_BCAST15, DPP_ROW_BCAST31};
297     const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xf, 0xa, 0xc};
298     const unsigned BankMask[Iters] = {0xf, 0xf, 0xf, 0xe, 0xc, 0xf, 0xf};
299 
300     // This loop performs an exclusive scan across the wavefront, with all lanes
301     // active (by using the WWM intrinsic).
302     for (unsigned Idx = 0; Idx < Iters; Idx++) {
303       Value *const UpdateValue = Idx < 3 ? FirstDPP : NewV;
304       CallInst *const DPP = B.CreateIntrinsic(
305           Intrinsic::amdgcn_update_dpp, Ty,
306           {Identity, UpdateValue, B.getInt32(DPPCtrl[Idx]),
307            B.getInt32(RowMask[Idx]), B.getInt32(BankMask[Idx]), B.getFalse()});
308       setConvergent(DPP);
309 
310       NewV = B.CreateBinOp(Op, NewV, DPP);
311     }
312 
313     LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
314     NewV = B.CreateBinOp(Op, SetInactive, NewV);
315 
316     // Read the value from the last lane, which has accumlated the values of
317     // each active lane in the wavefront. This will be our new value with which
318     // we will provide to the atomic operation.
319     if (TyBitWidth == 64) {
320       Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
321       Value *const ExtractHi =
322           B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty());
323       CallInst *const ReadLaneLo = B.CreateIntrinsic(
324           Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)});
325       setConvergent(ReadLaneLo);
326       CallInst *const ReadLaneHi = B.CreateIntrinsic(
327           Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)});
328       setConvergent(ReadLaneHi);
329       Value *const PartialInsert = B.CreateInsertElement(
330           UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
331       Value *const Insert =
332           B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
333       NewV = B.CreateBitCast(Insert, Ty);
334     } else if (TyBitWidth == 32) {
335       CallInst *const ReadLane = B.CreateIntrinsic(Intrinsic::amdgcn_readlane,
336                                                    {}, {NewV, B.getInt32(63)});
337       setConvergent(ReadLane);
338       NewV = ReadLane;
339     } else {
340       llvm_unreachable("Unhandled atomic bit width");
341     }
342 
343     // Finally mark the readlanes in the WWM section.
344     NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
345   } else {
346     // Get the total number of active lanes we have by using popcount.
347     Instruction *const Ctpop = B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot);
348     Value *const CtpopCast = B.CreateIntCast(Ctpop, Ty, false);
349 
350     // Calculate the new value we will be contributing to the atomic operation
351     // for the entire wavefront.
352     NewV = B.CreateMul(V, CtpopCast);
353     LaneOffset = B.CreateMul(V, MbcntCast);
354   }
355 
356   // We only want a single lane to enter our new control flow, and we do this
357   // by checking if there are any active lanes below us. Only one lane will
358   // have 0 active lanes below us, so that will be the only one to progress.
359   Value *const Cond = B.CreateICmpEQ(MbcntCast, B.getIntN(TyBitWidth, 0));
360 
361   // Store I's original basic block before we split the block.
362   BasicBlock *const EntryBB = I.getParent();
363 
364   // We need to introduce some new control flow to force a single lane to be
365   // active. We do this by splitting I's basic block at I, and introducing the
366   // new block such that:
367   // entry --> single_lane -\
368   //       \------------------> exit
369   Instruction *const SingleLaneTerminator =
370       SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
371 
372   // Move the IR builder into single_lane next.
373   B.SetInsertPoint(SingleLaneTerminator);
374 
375   // Clone the original atomic operation into single lane, replacing the
376   // original value with our newly created one.
377   Instruction *const NewI = I.clone();
378   B.Insert(NewI);
379   NewI->setOperand(ValIdx, NewV);
380 
381   // Move the IR builder into exit next, and start inserting just before the
382   // original instruction.
383   B.SetInsertPoint(&I);
384 
385   // Create a PHI node to get our new atomic result into the exit block.
386   PHINode *const PHI = B.CreatePHI(Ty, 2);
387   PHI->addIncoming(UndefValue::get(Ty), EntryBB);
388   PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
389 
390   // We need to broadcast the value who was the lowest active lane (the first
391   // lane) to all other lanes in the wavefront. We use an intrinsic for this,
392   // but have to handle 64-bit broadcasts with two calls to this intrinsic.
393   Value *BroadcastI = nullptr;
394 
395   if (TyBitWidth == 64) {
396     Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
397     Value *const ExtractHi =
398         B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty());
399     CallInst *const ReadFirstLaneLo =
400         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
401     setConvergent(ReadFirstLaneLo);
402     CallInst *const ReadFirstLaneHi =
403         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
404     setConvergent(ReadFirstLaneHi);
405     Value *const PartialInsert = B.CreateInsertElement(
406         UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
407     Value *const Insert =
408         B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
409     BroadcastI = B.CreateBitCast(Insert, Ty);
410   } else if (TyBitWidth == 32) {
411     CallInst *const ReadFirstLane =
412         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
413     setConvergent(ReadFirstLane);
414     BroadcastI = ReadFirstLane;
415   } else {
416     llvm_unreachable("Unhandled atomic bit width");
417   }
418 
419   // Now that we have the result of our single atomic operation, we need to
420   // get our individual lane's slice into the result. We use the lane offset we
421   // previously calculated combined with the atomic result value we got from the
422   // first lane, to get our lane's index into the atomic result.
423   Value *const Result = B.CreateBinOp(Op, BroadcastI, LaneOffset);
424 
425   if (IsPixelShader) {
426     // Need a final PHI to reconverge to above the helper lane branch mask.
427     B.SetInsertPoint(PixelExitBB->getFirstNonPHI());
428 
429     PHINode *const PHI = B.CreatePHI(Ty, 2);
430     PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB);
431     PHI->addIncoming(Result, I.getParent());
432     I.replaceAllUsesWith(PHI);
433   } else {
434     // Replace the original atomic instruction with the new one.
435     I.replaceAllUsesWith(Result);
436   }
437 
438   // And delete the original.
439   I.eraseFromParent();
440 }
441 
442 void AMDGPUAtomicOptimizer::setConvergent(CallInst *const CI) const {
443   CI->addAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
444 }
445 
446 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
447                       "AMDGPU atomic optimizations", false, false)
448 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
449 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
450 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
451                     "AMDGPU atomic optimizations", false, false)
452 
453 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
454   return new AMDGPUAtomicOptimizer();
455 }
456