1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass optimizes atomic operations by using a single lane of a wavefront
11 /// to perform the atomic operation, thus reducing contention on that memory
12 /// location.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPU.h"
17 #include "AMDGPUSubtarget.h"
18 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
19 #include "llvm/CodeGen/TargetPassConfig.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/InstVisitor.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 
24 #define DEBUG_TYPE "amdgpu-atomic-optimizer"
25 
26 using namespace llvm;
27 
28 namespace {
29 
30 enum DPP_CTRL {
31   DPP_ROW_SR1 = 0x111,
32   DPP_ROW_SR2 = 0x112,
33   DPP_ROW_SR3 = 0x113,
34   DPP_ROW_SR4 = 0x114,
35   DPP_ROW_SR8 = 0x118,
36   DPP_WF_SR1 = 0x138,
37   DPP_ROW_BCAST15 = 0x142,
38   DPP_ROW_BCAST31 = 0x143
39 };
40 
41 struct ReplacementInfo {
42   Instruction *I;
43   AtomicRMWInst::BinOp Op;
44   unsigned ValIdx;
45   bool ValDivergent;
46 };
47 
48 class AMDGPUAtomicOptimizer : public FunctionPass,
49                               public InstVisitor<AMDGPUAtomicOptimizer> {
50 private:
51   SmallVector<ReplacementInfo, 8> ToReplace;
52   const LegacyDivergenceAnalysis *DA;
53   const DataLayout *DL;
54   DominatorTree *DT;
55   bool HasDPP;
56   bool IsPixelShader;
57 
58   void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx,
59                       bool ValDivergent) const;
60 
61 public:
62   static char ID;
63 
64   AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
65 
66   bool runOnFunction(Function &F) override;
67 
68   void getAnalysisUsage(AnalysisUsage &AU) const override {
69     AU.addPreserved<DominatorTreeWrapperPass>();
70     AU.addRequired<LegacyDivergenceAnalysis>();
71     AU.addRequired<TargetPassConfig>();
72   }
73 
74   void visitAtomicRMWInst(AtomicRMWInst &I);
75   void visitIntrinsicInst(IntrinsicInst &I);
76 };
77 
78 } // namespace
79 
80 char AMDGPUAtomicOptimizer::ID = 0;
81 
82 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
83 
84 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
85   if (skipFunction(F)) {
86     return false;
87   }
88 
89   DA = &getAnalysis<LegacyDivergenceAnalysis>();
90   DL = &F.getParent()->getDataLayout();
91   DominatorTreeWrapperPass *const DTW =
92       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
93   DT = DTW ? &DTW->getDomTree() : nullptr;
94   const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
95   const TargetMachine &TM = TPC.getTM<TargetMachine>();
96   const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
97   HasDPP = ST.hasDPP();
98   IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
99 
100   visit(F);
101 
102   const bool Changed = !ToReplace.empty();
103 
104   for (ReplacementInfo &Info : ToReplace) {
105     optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
106   }
107 
108   ToReplace.clear();
109 
110   return Changed;
111 }
112 
113 void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
114   // Early exit for unhandled address space atomic instructions.
115   switch (I.getPointerAddressSpace()) {
116   default:
117     return;
118   case AMDGPUAS::GLOBAL_ADDRESS:
119   case AMDGPUAS::LOCAL_ADDRESS:
120     break;
121   }
122 
123   AtomicRMWInst::BinOp Op = I.getOperation();
124 
125   switch (Op) {
126   default:
127     return;
128   case AtomicRMWInst::Add:
129   case AtomicRMWInst::Sub:
130   case AtomicRMWInst::Max:
131   case AtomicRMWInst::Min:
132   case AtomicRMWInst::UMax:
133   case AtomicRMWInst::UMin:
134     break;
135   }
136 
137   const unsigned PtrIdx = 0;
138   const unsigned ValIdx = 1;
139 
140   // If the pointer operand is divergent, then each lane is doing an atomic
141   // operation on a different address, and we cannot optimize that.
142   if (DA->isDivergent(I.getOperand(PtrIdx))) {
143     return;
144   }
145 
146   const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
147 
148   // If the value operand is divergent, each lane is contributing a different
149   // value to the atomic calculation. We can only optimize divergent values if
150   // we have DPP available on our subtarget, and the atomic operation is 32
151   // bits.
152   if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
153     return;
154   }
155 
156   // If we get here, we can optimize the atomic using a single wavefront-wide
157   // atomic operation to do the calculation for the entire wavefront, so
158   // remember the instruction so we can come back to it.
159   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
160 
161   ToReplace.push_back(Info);
162 }
163 
164 void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
165   AtomicRMWInst::BinOp Op;
166 
167   switch (I.getIntrinsicID()) {
168   default:
169     return;
170   case Intrinsic::amdgcn_buffer_atomic_add:
171   case Intrinsic::amdgcn_struct_buffer_atomic_add:
172   case Intrinsic::amdgcn_raw_buffer_atomic_add:
173     Op = AtomicRMWInst::Add;
174     break;
175   case Intrinsic::amdgcn_buffer_atomic_sub:
176   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
177   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
178     Op = AtomicRMWInst::Sub;
179     break;
180   case Intrinsic::amdgcn_buffer_atomic_smin:
181   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
182   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
183     Op = AtomicRMWInst::Min;
184     break;
185   case Intrinsic::amdgcn_buffer_atomic_umin:
186   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
187   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
188     Op = AtomicRMWInst::UMin;
189     break;
190   case Intrinsic::amdgcn_buffer_atomic_smax:
191   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
192   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
193     Op = AtomicRMWInst::Max;
194     break;
195   case Intrinsic::amdgcn_buffer_atomic_umax:
196   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
197   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
198     Op = AtomicRMWInst::UMax;
199     break;
200   }
201 
202   const unsigned ValIdx = 0;
203 
204   const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
205 
206   // If the value operand is divergent, each lane is contributing a different
207   // value to the atomic calculation. We can only optimize divergent values if
208   // we have DPP available on our subtarget, and the atomic operation is 32
209   // bits.
210   if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
211     return;
212   }
213 
214   // If any of the other arguments to the intrinsic are divergent, we can't
215   // optimize the operation.
216   for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
217     if (DA->isDivergent(I.getOperand(Idx))) {
218       return;
219     }
220   }
221 
222   // If we get here, we can optimize the atomic using a single wavefront-wide
223   // atomic operation to do the calculation for the entire wavefront, so
224   // remember the instruction so we can come back to it.
225   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
226 
227   ToReplace.push_back(Info);
228 }
229 
230 // Use the builder to create the non-atomic counterpart of the specified
231 // atomicrmw binary op.
232 static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
233                                   Value *LHS, Value *RHS) {
234   CmpInst::Predicate Pred;
235 
236   switch (Op) {
237   default:
238     llvm_unreachable("Unhandled atomic op");
239   case AtomicRMWInst::Add:
240     return B.CreateBinOp(Instruction::Add, LHS, RHS);
241   case AtomicRMWInst::Sub:
242     return B.CreateBinOp(Instruction::Sub, LHS, RHS);
243 
244   case AtomicRMWInst::Max:
245     Pred = CmpInst::ICMP_SGT;
246     break;
247   case AtomicRMWInst::Min:
248     Pred = CmpInst::ICMP_SLT;
249     break;
250   case AtomicRMWInst::UMax:
251     Pred = CmpInst::ICMP_UGT;
252     break;
253   case AtomicRMWInst::UMin:
254     Pred = CmpInst::ICMP_ULT;
255     break;
256   }
257   Value *Cond = B.CreateICmp(Pred, LHS, RHS);
258   return B.CreateSelect(Cond, LHS, RHS);
259 }
260 
261 static APInt getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op,
262                                          unsigned BitWidth) {
263   switch (Op) {
264   default:
265     llvm_unreachable("Unhandled atomic op");
266   case AtomicRMWInst::Add:
267   case AtomicRMWInst::Sub:
268   case AtomicRMWInst::UMax:
269     return APInt::getMinValue(BitWidth);
270   case AtomicRMWInst::UMin:
271     return APInt::getMaxValue(BitWidth);
272   case AtomicRMWInst::Max:
273     return APInt::getSignedMinValue(BitWidth);
274   case AtomicRMWInst::Min:
275     return APInt::getSignedMaxValue(BitWidth);
276   }
277 }
278 
279 void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
280                                            AtomicRMWInst::BinOp Op,
281                                            unsigned ValIdx,
282                                            bool ValDivergent) const {
283   // Start building just before the instruction.
284   IRBuilder<> B(&I);
285 
286   // If we are in a pixel shader, because of how we have to mask out helper
287   // lane invocations, we need to record the entry and exit BB's.
288   BasicBlock *PixelEntryBB = nullptr;
289   BasicBlock *PixelExitBB = nullptr;
290 
291   // If we're optimizing an atomic within a pixel shader, we need to wrap the
292   // entire atomic operation in a helper-lane check. We do not want any helper
293   // lanes that are around only for the purposes of derivatives to take part
294   // in any cross-lane communication, and we use a branch on whether the lane is
295   // live to do this.
296   if (IsPixelShader) {
297     // Record I's original position as the entry block.
298     PixelEntryBB = I.getParent();
299 
300     Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
301     Instruction *const NonHelperTerminator =
302         SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
303 
304     // Record I's new position as the exit block.
305     PixelExitBB = I.getParent();
306 
307     I.moveBefore(NonHelperTerminator);
308     B.SetInsertPoint(&I);
309   }
310 
311   Type *const Ty = I.getType();
312   const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
313   Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
314 
315   // This is the value in the atomic operation we need to combine in order to
316   // reduce the number of atomic operations.
317   Value *const V = I.getOperand(ValIdx);
318 
319   // We need to know how many lanes are active within the wavefront, and we do
320   // this by doing a ballot of active lanes.
321   CallInst *const Ballot = B.CreateIntrinsic(
322       Intrinsic::amdgcn_icmp, {B.getInt64Ty(), B.getInt32Ty()},
323       {B.getInt32(1), B.getInt32(0), B.getInt32(CmpInst::ICMP_NE)});
324 
325   // We need to know how many lanes are active within the wavefront that are
326   // below us. If we counted each lane linearly starting from 0, a lane is
327   // below us only if its associated index was less than ours. We do this by
328   // using the mbcnt intrinsic.
329   Value *const BitCast = B.CreateBitCast(Ballot, VecTy);
330   Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
331   Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
332   CallInst *const PartialMbcnt = B.CreateIntrinsic(
333       Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)});
334   CallInst *const Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {},
335                                             {ExtractHi, PartialMbcnt});
336 
337   Value *const MbcntCast = B.CreateIntCast(Mbcnt, Ty, false);
338 
339   Value *const Identity = B.getInt(getIdentityValueForAtomicOp(Op, TyBitWidth));
340 
341   Value *ExclScan = nullptr;
342   Value *NewV = nullptr;
343 
344   // If we have a divergent value in each lane, we need to combine the value
345   // using DPP.
346   if (ValDivergent) {
347     // First we need to set all inactive invocations to the identity value, so
348     // that they can correctly contribute to the final result.
349     CallInst *const SetInactive =
350         B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
351 
352     CallInst *const FirstDPP =
353         B.CreateIntrinsic(Intrinsic::amdgcn_update_dpp, Ty,
354                           {Identity, SetInactive, B.getInt32(DPP_WF_SR1),
355                            B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
356     ExclScan = FirstDPP;
357 
358     const unsigned Iters = 7;
359     const unsigned DPPCtrl[Iters] = {
360         DPP_ROW_SR1, DPP_ROW_SR2,     DPP_ROW_SR3,    DPP_ROW_SR4,
361         DPP_ROW_SR8, DPP_ROW_BCAST15, DPP_ROW_BCAST31};
362     const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xf, 0xa, 0xc};
363     const unsigned BankMask[Iters] = {0xf, 0xf, 0xf, 0xe, 0xc, 0xf, 0xf};
364 
365     // This loop performs an exclusive scan across the wavefront, with all lanes
366     // active (by using the WWM intrinsic).
367     for (unsigned Idx = 0; Idx < Iters; Idx++) {
368       Value *const UpdateValue = Idx < 3 ? FirstDPP : ExclScan;
369       CallInst *const DPP = B.CreateIntrinsic(
370           Intrinsic::amdgcn_update_dpp, Ty,
371           {Identity, UpdateValue, B.getInt32(DPPCtrl[Idx]),
372            B.getInt32(RowMask[Idx]), B.getInt32(BankMask[Idx]), B.getFalse()});
373 
374       ExclScan = buildNonAtomicBinOp(B, Op, ExclScan, DPP);
375     }
376 
377     NewV = buildNonAtomicBinOp(B, Op, SetInactive, ExclScan);
378 
379     // Read the value from the last lane, which has accumlated the values of
380     // each active lane in the wavefront. This will be our new value which we
381     // will provide to the atomic operation.
382     if (TyBitWidth == 64) {
383       Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
384       Value *const ExtractHi =
385           B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty());
386       CallInst *const ReadLaneLo = B.CreateIntrinsic(
387           Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)});
388       CallInst *const ReadLaneHi = B.CreateIntrinsic(
389           Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)});
390       Value *const PartialInsert = B.CreateInsertElement(
391           UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
392       Value *const Insert =
393           B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
394       NewV = B.CreateBitCast(Insert, Ty);
395     } else if (TyBitWidth == 32) {
396       NewV = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {},
397                                {NewV, B.getInt32(63)});
398     } else {
399       llvm_unreachable("Unhandled atomic bit width");
400     }
401 
402     // Finally mark the readlanes in the WWM section.
403     NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
404   } else {
405     switch (Op) {
406     default:
407       llvm_unreachable("Unhandled atomic op");
408 
409     case AtomicRMWInst::Add:
410     case AtomicRMWInst::Sub: {
411       // Get the total number of active lanes we have by using popcount.
412       Instruction *const Ctpop =
413           B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot);
414       Value *const CtpopCast = B.CreateIntCast(Ctpop, Ty, false);
415 
416       // Calculate the new value we will be contributing to the atomic operation
417       // for the entire wavefront.
418       NewV = B.CreateMul(V, CtpopCast);
419       break;
420     }
421 
422     case AtomicRMWInst::Max:
423     case AtomicRMWInst::Min:
424     case AtomicRMWInst::UMax:
425     case AtomicRMWInst::UMin:
426       // Max/min with a uniform value is idempotent: doing the atomic operation
427       // multiple times has the same effect as doing it once.
428       NewV = V;
429       break;
430     }
431   }
432 
433   // We only want a single lane to enter our new control flow, and we do this
434   // by checking if there are any active lanes below us. Only one lane will
435   // have 0 active lanes below us, so that will be the only one to progress.
436   Value *const Cond = B.CreateICmpEQ(MbcntCast, B.getIntN(TyBitWidth, 0));
437 
438   // Store I's original basic block before we split the block.
439   BasicBlock *const EntryBB = I.getParent();
440 
441   // We need to introduce some new control flow to force a single lane to be
442   // active. We do this by splitting I's basic block at I, and introducing the
443   // new block such that:
444   // entry --> single_lane -\
445   //       \------------------> exit
446   Instruction *const SingleLaneTerminator =
447       SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
448 
449   // Move the IR builder into single_lane next.
450   B.SetInsertPoint(SingleLaneTerminator);
451 
452   // Clone the original atomic operation into single lane, replacing the
453   // original value with our newly created one.
454   Instruction *const NewI = I.clone();
455   B.Insert(NewI);
456   NewI->setOperand(ValIdx, NewV);
457 
458   // Move the IR builder into exit next, and start inserting just before the
459   // original instruction.
460   B.SetInsertPoint(&I);
461 
462   // Create a PHI node to get our new atomic result into the exit block.
463   PHINode *const PHI = B.CreatePHI(Ty, 2);
464   PHI->addIncoming(UndefValue::get(Ty), EntryBB);
465   PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
466 
467   // We need to broadcast the value who was the lowest active lane (the first
468   // lane) to all other lanes in the wavefront. We use an intrinsic for this,
469   // but have to handle 64-bit broadcasts with two calls to this intrinsic.
470   Value *BroadcastI = nullptr;
471 
472   if (TyBitWidth == 64) {
473     Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
474     Value *const ExtractHi =
475         B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty());
476     CallInst *const ReadFirstLaneLo =
477         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
478     CallInst *const ReadFirstLaneHi =
479         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
480     Value *const PartialInsert = B.CreateInsertElement(
481         UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
482     Value *const Insert =
483         B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
484     BroadcastI = B.CreateBitCast(Insert, Ty);
485   } else if (TyBitWidth == 32) {
486 
487     BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
488   } else {
489     llvm_unreachable("Unhandled atomic bit width");
490   }
491 
492   // Now that we have the result of our single atomic operation, we need to
493   // get our individual lane's slice into the result. We use the lane offset we
494   // previously calculated combined with the atomic result value we got from the
495   // first lane, to get our lane's index into the atomic result.
496   Value *LaneOffset = nullptr;
497   if (ValDivergent) {
498     LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, ExclScan);
499   } else {
500     switch (Op) {
501     default:
502       llvm_unreachable("Unhandled atomic op");
503     case AtomicRMWInst::Add:
504     case AtomicRMWInst::Sub:
505       LaneOffset = B.CreateMul(V, MbcntCast);
506       break;
507     case AtomicRMWInst::Max:
508     case AtomicRMWInst::Min:
509     case AtomicRMWInst::UMax:
510     case AtomicRMWInst::UMin:
511       LaneOffset = B.CreateSelect(Cond, Identity, V);
512       break;
513     }
514   }
515   Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset);
516 
517   if (IsPixelShader) {
518     // Need a final PHI to reconverge to above the helper lane branch mask.
519     B.SetInsertPoint(PixelExitBB->getFirstNonPHI());
520 
521     PHINode *const PHI = B.CreatePHI(Ty, 2);
522     PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB);
523     PHI->addIncoming(Result, I.getParent());
524     I.replaceAllUsesWith(PHI);
525   } else {
526     // Replace the original atomic instruction with the new one.
527     I.replaceAllUsesWith(Result);
528   }
529 
530   // And delete the original.
531   I.eraseFromParent();
532 }
533 
534 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
535                       "AMDGPU atomic optimizations", false, false)
536 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
537 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
538 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
539                     "AMDGPU atomic optimizations", false, false)
540 
541 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
542   return new AMDGPUAtomicOptimizer();
543 }
544