1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This pass optimizes atomic operations by using a single lane of a wavefront
12 /// to perform the atomic operation, thus reducing contention on that memory
13 /// location.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AMDGPU.h"
18 #include "AMDGPUSubtarget.h"
19 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
20 #include "llvm/CodeGen/TargetPassConfig.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/InstVisitor.h"
23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
24 
25 #define DEBUG_TYPE "amdgpu-atomic-optimizer"
26 
27 using namespace llvm;
28 
29 namespace {
30 
31 enum DPP_CTRL {
32   DPP_ROW_SR1 = 0x111,
33   DPP_ROW_SR2 = 0x112,
34   DPP_ROW_SR4 = 0x114,
35   DPP_ROW_SR8 = 0x118,
36   DPP_WF_SR1 = 0x138,
37   DPP_ROW_BCAST15 = 0x142,
38   DPP_ROW_BCAST31 = 0x143
39 };
40 
41 struct ReplacementInfo {
42   Instruction *I;
43   Instruction::BinaryOps Op;
44   unsigned ValIdx;
45   bool ValDivergent;
46 };
47 
48 class AMDGPUAtomicOptimizer : public FunctionPass,
49                               public InstVisitor<AMDGPUAtomicOptimizer> {
50 private:
51   SmallVector<ReplacementInfo, 8> ToReplace;
52   const LegacyDivergenceAnalysis *DA;
53   const DataLayout *DL;
54   DominatorTree *DT;
55   bool HasDPP;
56 
57   void optimizeAtomic(Instruction &I, Instruction::BinaryOps Op,
58                       unsigned ValIdx, bool ValDivergent) const;
59 
60   void setConvergent(CallInst *const CI) const;
61 
62 public:
63   static char ID;
64 
65   AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
66 
67   bool runOnFunction(Function &F) override;
68 
69   void getAnalysisUsage(AnalysisUsage &AU) const override {
70     AU.addPreserved<DominatorTreeWrapperPass>();
71     AU.addRequired<LegacyDivergenceAnalysis>();
72     AU.addRequired<TargetPassConfig>();
73   }
74 
75   void visitAtomicRMWInst(AtomicRMWInst &I);
76   void visitIntrinsicInst(IntrinsicInst &I);
77 };
78 
79 } // namespace
80 
81 char AMDGPUAtomicOptimizer::ID = 0;
82 
83 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
84 
85 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
86   if (skipFunction(F)) {
87     return false;
88   }
89 
90   DA = &getAnalysis<LegacyDivergenceAnalysis>();
91   DL = &F.getParent()->getDataLayout();
92   DominatorTreeWrapperPass *const DTW =
93       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
94   DT = DTW ? &DTW->getDomTree() : nullptr;
95   const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
96   const TargetMachine &TM = TPC.getTM<TargetMachine>();
97   const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
98   HasDPP = ST.hasDPP();
99 
100   visit(F);
101 
102   const bool Changed = !ToReplace.empty();
103 
104   for (ReplacementInfo &Info : ToReplace) {
105     optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
106   }
107 
108   ToReplace.clear();
109 
110   return Changed;
111 }
112 
113 void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
114   // Early exit for unhandled address space atomic instructions.
115   switch (I.getPointerAddressSpace()) {
116   default:
117     return;
118   case AMDGPUAS::GLOBAL_ADDRESS:
119   case AMDGPUAS::LOCAL_ADDRESS:
120     break;
121   }
122 
123   Instruction::BinaryOps Op;
124 
125   switch (I.getOperation()) {
126   default:
127     return;
128   case AtomicRMWInst::Add:
129     Op = Instruction::Add;
130     break;
131   case AtomicRMWInst::Sub:
132     Op = Instruction::Sub;
133     break;
134   }
135 
136   const unsigned PtrIdx = 0;
137   const unsigned ValIdx = 1;
138 
139   // If the pointer operand is divergent, then each lane is doing an atomic
140   // operation on a different address, and we cannot optimize that.
141   if (DA->isDivergent(I.getOperand(PtrIdx))) {
142     return;
143   }
144 
145   const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
146 
147   // If the value operand is divergent, each lane is contributing a different
148   // value to the atomic calculation. We can only optimize divergent values if
149   // we have DPP available on our subtarget, and the atomic operation is 32
150   // bits.
151   if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
152     return;
153   }
154 
155   // If we get here, we can optimize the atomic using a single wavefront-wide
156   // atomic operation to do the calculation for the entire wavefront, so
157   // remember the instruction so we can come back to it.
158   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
159 
160   ToReplace.push_back(Info);
161 }
162 
163 void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
164   Instruction::BinaryOps Op;
165 
166   switch (I.getIntrinsicID()) {
167   default:
168     return;
169   case Intrinsic::amdgcn_buffer_atomic_add:
170   case Intrinsic::amdgcn_struct_buffer_atomic_add:
171   case Intrinsic::amdgcn_raw_buffer_atomic_add:
172     Op = Instruction::Add;
173     break;
174   case Intrinsic::amdgcn_buffer_atomic_sub:
175   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
176   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
177     Op = Instruction::Sub;
178     break;
179   }
180 
181   const unsigned ValIdx = 0;
182 
183   const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
184 
185   // If the value operand is divergent, each lane is contributing a different
186   // value to the atomic calculation. We can only optimize divergent values if
187   // we have DPP available on our subtarget, and the atomic operation is 32
188   // bits.
189   if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
190     return;
191   }
192 
193   // If any of the other arguments to the intrinsic are divergent, we can't
194   // optimize the operation.
195   for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
196     if (DA->isDivergent(I.getOperand(Idx))) {
197       return;
198     }
199   }
200 
201   // If we get here, we can optimize the atomic using a single wavefront-wide
202   // atomic operation to do the calculation for the entire wavefront, so
203   // remember the instruction so we can come back to it.
204   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
205 
206   ToReplace.push_back(Info);
207 }
208 
209 void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
210                                            Instruction::BinaryOps Op,
211                                            unsigned ValIdx,
212                                            bool ValDivergent) const {
213   LLVMContext &Context = I.getContext();
214 
215   // Start building just before the instruction.
216   IRBuilder<> B(&I);
217 
218   Type *const Ty = I.getType();
219   const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
220   Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
221 
222   // This is the value in the atomic operation we need to combine in order to
223   // reduce the number of atomic operations.
224   Value *const V = I.getOperand(ValIdx);
225 
226   // We need to know how many lanes are active within the wavefront, and we do
227   // this by getting the exec register, which tells us all the lanes that are
228   // active.
229   MDNode *const RegName =
230       llvm::MDNode::get(Context, llvm::MDString::get(Context, "exec"));
231   Value *const Metadata = llvm::MetadataAsValue::get(Context, RegName);
232   CallInst *const Exec =
233       B.CreateIntrinsic(Intrinsic::read_register, {B.getInt64Ty()}, {Metadata});
234   setConvergent(Exec);
235 
236   // We need to know how many lanes are active within the wavefront that are
237   // below us. If we counted each lane linearly starting from 0, a lane is
238   // below us only if its associated index was less than ours. We do this by
239   // using the mbcnt intrinsic.
240   Value *const BitCast = B.CreateBitCast(Exec, VecTy);
241   Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
242   Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
243   CallInst *const PartialMbcnt = B.CreateIntrinsic(
244       Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)});
245   CallInst *const Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {},
246                                             {ExtractHi, PartialMbcnt});
247 
248   Value *const MbcntCast = B.CreateIntCast(Mbcnt, Ty, false);
249 
250   Value *LaneOffset = nullptr;
251   Value *NewV = nullptr;
252 
253   // If we have a divergent value in each lane, we need to combine the value
254   // using DPP.
255   if (ValDivergent) {
256     // First we need to set all inactive invocations to 0, so that they can
257     // correctly contribute to the final result.
258     CallInst *const SetInactive = B.CreateIntrinsic(
259         Intrinsic::amdgcn_set_inactive, Ty, {V, B.getIntN(TyBitWidth, 0)});
260     setConvergent(SetInactive);
261     NewV = SetInactive;
262 
263     const unsigned Iters = 6;
264     const unsigned DPPCtrl[Iters] = {DPP_ROW_SR1,     DPP_ROW_SR2,
265                                      DPP_ROW_SR4,     DPP_ROW_SR8,
266                                      DPP_ROW_BCAST15, DPP_ROW_BCAST31};
267     const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xa, 0xc};
268 
269     // This loop performs an inclusive scan across the wavefront, with all lanes
270     // active (by using the WWM intrinsic).
271     for (unsigned Idx = 0; Idx < Iters; Idx++) {
272       CallInst *const DPP = B.CreateIntrinsic(Intrinsic::amdgcn_mov_dpp, Ty,
273                                               {NewV, B.getInt32(DPPCtrl[Idx]),
274                                                B.getInt32(RowMask[Idx]),
275                                                B.getInt32(0xf), B.getFalse()});
276       setConvergent(DPP);
277       Value *const WWM = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, DPP);
278 
279       NewV = B.CreateBinOp(Op, NewV, WWM);
280       NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
281     }
282 
283     // NewV has returned the inclusive scan of V, but for the lane offset we
284     // require an exclusive scan. We do this by shifting the values from the
285     // entire wavefront right by 1, and by setting the bound_ctrl (last argument
286     // to the intrinsic below) to true, we can guarantee that 0 will be shifted
287     // into the 0'th invocation.
288     CallInst *const DPP =
289         B.CreateIntrinsic(Intrinsic::amdgcn_mov_dpp, {Ty},
290                           {NewV, B.getInt32(DPP_WF_SR1), B.getInt32(0xf),
291                            B.getInt32(0xf), B.getTrue()});
292     setConvergent(DPP);
293     LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, DPP);
294 
295     // Read the value from the last lane, which has accumlated the values of
296     // each active lane in the wavefront. This will be our new value with which
297     // we will provide to the atomic operation.
298     if (TyBitWidth == 64) {
299       Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
300       Value *const ExtractHi =
301           B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty());
302       CallInst *const ReadLaneLo = B.CreateIntrinsic(
303           Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)});
304       setConvergent(ReadLaneLo);
305       CallInst *const ReadLaneHi = B.CreateIntrinsic(
306           Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)});
307       setConvergent(ReadLaneHi);
308       Value *const PartialInsert = B.CreateInsertElement(
309           UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
310       Value *const Insert =
311           B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
312       NewV = B.CreateBitCast(Insert, Ty);
313     } else if (TyBitWidth == 32) {
314       CallInst *const ReadLane = B.CreateIntrinsic(Intrinsic::amdgcn_readlane,
315                                                    {}, {NewV, B.getInt32(63)});
316       setConvergent(ReadLane);
317       NewV = ReadLane;
318     } else {
319       llvm_unreachable("Unhandled atomic bit width");
320     }
321   } else {
322     // Get the total number of active lanes we have by using popcount.
323     Instruction *const Ctpop = B.CreateUnaryIntrinsic(Intrinsic::ctpop, Exec);
324     Value *const CtpopCast = B.CreateIntCast(Ctpop, Ty, false);
325 
326     // Calculate the new value we will be contributing to the atomic operation
327     // for the entire wavefront.
328     NewV = B.CreateMul(V, CtpopCast);
329     LaneOffset = B.CreateMul(V, MbcntCast);
330   }
331 
332   // We only want a single lane to enter our new control flow, and we do this
333   // by checking if there are any active lanes below us. Only one lane will
334   // have 0 active lanes below us, so that will be the only one to progress.
335   Value *const Cond = B.CreateICmpEQ(MbcntCast, B.getIntN(TyBitWidth, 0));
336 
337   // Store I's original basic block before we split the block.
338   BasicBlock *const EntryBB = I.getParent();
339 
340   // We need to introduce some new control flow to force a single lane to be
341   // active. We do this by splitting I's basic block at I, and introducing the
342   // new block such that:
343   // entry --> single_lane -\
344   //       \------------------> exit
345   Instruction *const SingleLaneTerminator =
346       SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
347 
348   // Move the IR builder into single_lane next.
349   B.SetInsertPoint(SingleLaneTerminator);
350 
351   // Clone the original atomic operation into single lane, replacing the
352   // original value with our newly created one.
353   Instruction *const NewI = I.clone();
354   B.Insert(NewI);
355   NewI->setOperand(ValIdx, NewV);
356 
357   // Move the IR builder into exit next, and start inserting just before the
358   // original instruction.
359   B.SetInsertPoint(&I);
360 
361   // Create a PHI node to get our new atomic result into the exit block.
362   PHINode *const PHI = B.CreatePHI(Ty, 2);
363   PHI->addIncoming(UndefValue::get(Ty), EntryBB);
364   PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
365 
366   // We need to broadcast the value who was the lowest active lane (the first
367   // lane) to all other lanes in the wavefront. We use an intrinsic for this,
368   // but have to handle 64-bit broadcasts with two calls to this intrinsic.
369   Value *BroadcastI = nullptr;
370 
371   if (TyBitWidth == 64) {
372     Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
373     Value *const ExtractHi =
374         B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty());
375     CallInst *const ReadFirstLaneLo =
376         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
377     setConvergent(ReadFirstLaneLo);
378     CallInst *const ReadFirstLaneHi =
379         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
380     setConvergent(ReadFirstLaneHi);
381     Value *const PartialInsert = B.CreateInsertElement(
382         UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
383     Value *const Insert =
384         B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
385     BroadcastI = B.CreateBitCast(Insert, Ty);
386   } else if (TyBitWidth == 32) {
387     CallInst *const ReadFirstLane =
388         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
389     setConvergent(ReadFirstLane);
390     BroadcastI = ReadFirstLane;
391   } else {
392     llvm_unreachable("Unhandled atomic bit width");
393   }
394 
395   // Now that we have the result of our single atomic operation, we need to
396   // get our individual lane's slice into the result. We use the lane offset we
397   // previously calculated combined with the atomic result value we got from the
398   // first lane, to get our lane's index into the atomic result.
399   Value *const Result = B.CreateBinOp(Op, BroadcastI, LaneOffset);
400 
401   // Replace the original atomic instruction with the new one.
402   I.replaceAllUsesWith(Result);
403 
404   // And delete the original.
405   I.eraseFromParent();
406 }
407 
408 void AMDGPUAtomicOptimizer::setConvergent(CallInst *const CI) const {
409   CI->addAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
410 }
411 
412 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
413                       "AMDGPU atomic optimizations", false, false)
414 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
415 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
416 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
417                     "AMDGPU atomic optimizations", false, false)
418 
419 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
420   return new AMDGPUAtomicOptimizer();
421 }
422