1 //===-- AMDGPUAsmPrinter.cpp - AMDGPU assembly printer -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// 12 /// The AMDGPUAsmPrinter is used to print both assembly string and also binary 13 /// code. When passed an MCAsmStreamer it prints assembly and when passed 14 /// an MCObjectStreamer it outputs binary code. 15 // 16 //===----------------------------------------------------------------------===// 17 // 18 19 #include "AMDGPUAsmPrinter.h" 20 #include "AMDGPU.h" 21 #include "AMDGPUSubtarget.h" 22 #include "AMDGPUTargetMachine.h" 23 #include "InstPrinter/AMDGPUInstPrinter.h" 24 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 25 #include "MCTargetDesc/AMDGPUTargetStreamer.h" 26 #include "R600AsmPrinter.h" 27 #include "R600Defines.h" 28 #include "R600MachineFunctionInfo.h" 29 #include "R600RegisterInfo.h" 30 #include "SIDefines.h" 31 #include "SIInstrInfo.h" 32 #include "SIMachineFunctionInfo.h" 33 #include "SIRegisterInfo.h" 34 #include "Utils/AMDGPUBaseInfo.h" 35 #include "llvm/BinaryFormat/ELF.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/IR/DiagnosticInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/MC/MCSectionELF.h" 40 #include "llvm/MC/MCStreamer.h" 41 #include "llvm/Support/AMDGPUMetadata.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/TargetParser.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Target/TargetLoweringObjectFile.h" 46 47 using namespace llvm; 48 using namespace llvm::AMDGPU; 49 50 // TODO: This should get the default rounding mode from the kernel. We just set 51 // the default here, but this could change if the OpenCL rounding mode pragmas 52 // are used. 53 // 54 // The denormal mode here should match what is reported by the OpenCL runtime 55 // for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but 56 // can also be override to flush with the -cl-denorms-are-zero compiler flag. 57 // 58 // AMD OpenCL only sets flush none and reports CL_FP_DENORM for double 59 // precision, and leaves single precision to flush all and does not report 60 // CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports 61 // CL_FP_DENORM for both. 62 // 63 // FIXME: It seems some instructions do not support single precision denormals 64 // regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32, 65 // and sin_f32, cos_f32 on most parts). 66 67 // We want to use these instructions, and using fp32 denormals also causes 68 // instructions to run at the double precision rate for the device so it's 69 // probably best to just report no single precision denormals. 70 static uint32_t getFPMode(const MachineFunction &F) { 71 const GCNSubtarget& ST = F.getSubtarget<GCNSubtarget>(); 72 // TODO: Is there any real use for the flush in only / flush out only modes? 73 74 uint32_t FP32Denormals = 75 ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; 76 77 uint32_t FP64Denormals = 78 ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; 79 80 return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) | 81 FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) | 82 FP_DENORM_MODE_SP(FP32Denormals) | 83 FP_DENORM_MODE_DP(FP64Denormals); 84 } 85 86 static AsmPrinter * 87 createAMDGPUAsmPrinterPass(TargetMachine &tm, 88 std::unique_ptr<MCStreamer> &&Streamer) { 89 return new AMDGPUAsmPrinter(tm, std::move(Streamer)); 90 } 91 92 extern "C" void LLVMInitializeAMDGPUAsmPrinter() { 93 TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(), 94 llvm::createR600AsmPrinterPass); 95 TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(), 96 createAMDGPUAsmPrinterPass); 97 } 98 99 AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, 100 std::unique_ptr<MCStreamer> Streamer) 101 : AsmPrinter(TM, std::move(Streamer)) { 102 } 103 104 StringRef AMDGPUAsmPrinter::getPassName() const { 105 return "AMDGPU Assembly Printer"; 106 } 107 108 const MCSubtargetInfo* AMDGPUAsmPrinter::getSTI() const { 109 return TM.getMCSubtargetInfo(); 110 } 111 112 AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const { 113 if (!OutStreamer) 114 return nullptr; 115 return static_cast<AMDGPUTargetStreamer*>(OutStreamer->getTargetStreamer()); 116 } 117 118 void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) { 119 if (IsaInfo::hasCodeObjectV3(getSTI()) && 120 TM.getTargetTriple().getOS() == Triple::AMDHSA) 121 return; 122 123 if (TM.getTargetTriple().getOS() != Triple::AMDHSA && 124 TM.getTargetTriple().getOS() != Triple::AMDPAL) 125 return; 126 127 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) 128 HSAMetadataStream.begin(M); 129 130 if (TM.getTargetTriple().getOS() == Triple::AMDPAL) 131 readPALMetadata(M); 132 133 // HSA emits NT_AMDGPU_HSA_CODE_OBJECT_VERSION for code objects v2. 134 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) 135 getTargetStreamer()->EmitDirectiveHSACodeObjectVersion(2, 1); 136 137 // HSA and PAL emit NT_AMDGPU_HSA_ISA for code objects v2. 138 IsaVersion Version = getIsaVersion(getSTI()->getCPU()); 139 getTargetStreamer()->EmitDirectiveHSACodeObjectISA( 140 Version.Major, Version.Minor, Version.Stepping, "AMD", "AMDGPU"); 141 } 142 143 void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) { 144 // TODO: Add metadata to code object v3. 145 if (IsaInfo::hasCodeObjectV3(getSTI()) && 146 TM.getTargetTriple().getOS() == Triple::AMDHSA) 147 return; 148 149 // Following code requires TargetStreamer to be present. 150 if (!getTargetStreamer()) 151 return; 152 153 // Emit ISA Version (NT_AMD_AMDGPU_ISA). 154 std::string ISAVersionString; 155 raw_string_ostream ISAVersionStream(ISAVersionString); 156 IsaInfo::streamIsaVersion(getSTI(), ISAVersionStream); 157 getTargetStreamer()->EmitISAVersion(ISAVersionStream.str()); 158 159 // Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA). 160 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) { 161 HSAMetadataStream.end(); 162 getTargetStreamer()->EmitHSAMetadata(HSAMetadataStream.getHSAMetadata()); 163 } 164 165 // Emit PAL Metadata (NT_AMD_AMDGPU_PAL_METADATA). 166 if (TM.getTargetTriple().getOS() == Triple::AMDPAL) { 167 // Copy the PAL metadata from the map where we collected it into a vector, 168 // then write it as a .note. 169 PALMD::Metadata PALMetadataVector; 170 for (auto i : PALMetadataMap) { 171 PALMetadataVector.push_back(i.first); 172 PALMetadataVector.push_back(i.second); 173 } 174 getTargetStreamer()->EmitPALMetadata(PALMetadataVector); 175 } 176 } 177 178 bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough( 179 const MachineBasicBlock *MBB) const { 180 if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB)) 181 return false; 182 183 if (MBB->empty()) 184 return true; 185 186 // If this is a block implementing a long branch, an expression relative to 187 // the start of the block is needed. to the start of the block. 188 // XXX - Is there a smarter way to check this? 189 return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64); 190 } 191 192 void AMDGPUAsmPrinter::EmitFunctionBodyStart() { 193 const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>(); 194 if (!MFI.isEntryFunction()) 195 return; 196 if (IsaInfo::hasCodeObjectV3(getSTI()) && 197 TM.getTargetTriple().getOS() == Triple::AMDHSA) 198 return; 199 200 const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>(); 201 const Function &F = MF->getFunction(); 202 if (STM.isAmdCodeObjectV2(F) && 203 (F.getCallingConv() == CallingConv::AMDGPU_KERNEL || 204 F.getCallingConv() == CallingConv::SPIR_KERNEL)) { 205 amd_kernel_code_t KernelCode; 206 getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF); 207 getTargetStreamer()->EmitAMDKernelCodeT(KernelCode); 208 } 209 210 if (TM.getTargetTriple().getOS() != Triple::AMDHSA) 211 return; 212 213 HSAMetadataStream.emitKernel(*MF, CurrentProgramInfo); 214 } 215 216 void AMDGPUAsmPrinter::EmitFunctionBodyEnd() { 217 const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>(); 218 if (!MFI.isEntryFunction()) 219 return; 220 if (!IsaInfo::hasCodeObjectV3(getSTI()) || 221 TM.getTargetTriple().getOS() != Triple::AMDHSA) 222 return; 223 224 auto &Streamer = getTargetStreamer()->getStreamer(); 225 auto &Context = Streamer.getContext(); 226 auto &ObjectFileInfo = *Context.getObjectFileInfo(); 227 auto &ReadOnlySection = *ObjectFileInfo.getReadOnlySection(); 228 229 Streamer.PushSection(); 230 Streamer.SwitchSection(&ReadOnlySection); 231 232 // CP microcode requires the kernel descriptor to be allocated on 64 byte 233 // alignment. 234 Streamer.EmitValueToAlignment(64, 0, 1, 0); 235 if (ReadOnlySection.getAlignment() < 64) 236 ReadOnlySection.setAlignment(64); 237 238 SmallString<128> KernelName; 239 getNameWithPrefix(KernelName, &MF->getFunction()); 240 getTargetStreamer()->EmitAmdhsaKernelDescriptor( 241 *getSTI(), KernelName, getAmdhsaKernelDescriptor(*MF, CurrentProgramInfo), 242 CurrentProgramInfo.NumVGPRsForWavesPerEU, 243 CurrentProgramInfo.NumSGPRsForWavesPerEU - 244 IsaInfo::getNumExtraSGPRs(getSTI(), 245 CurrentProgramInfo.VCCUsed, 246 CurrentProgramInfo.FlatUsed), 247 CurrentProgramInfo.VCCUsed, CurrentProgramInfo.FlatUsed, 248 hasXNACK(*getSTI())); 249 250 Streamer.PopSection(); 251 } 252 253 void AMDGPUAsmPrinter::EmitFunctionEntryLabel() { 254 if (IsaInfo::hasCodeObjectV3(getSTI()) && 255 TM.getTargetTriple().getOS() == Triple::AMDHSA) { 256 AsmPrinter::EmitFunctionEntryLabel(); 257 return; 258 } 259 260 const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 261 const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>(); 262 if (MFI->isEntryFunction() && STM.isAmdCodeObjectV2(MF->getFunction())) { 263 SmallString<128> SymbolName; 264 getNameWithPrefix(SymbolName, &MF->getFunction()), 265 getTargetStreamer()->EmitAMDGPUSymbolType( 266 SymbolName, ELF::STT_AMDGPU_HSA_KERNEL); 267 } 268 const GCNSubtarget &STI = MF->getSubtarget<GCNSubtarget>(); 269 if (STI.dumpCode()) { 270 // Disassemble function name label to text. 271 DisasmLines.push_back(MF->getName().str() + ":"); 272 DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); 273 HexLines.push_back(""); 274 } 275 276 AsmPrinter::EmitFunctionEntryLabel(); 277 } 278 279 void AMDGPUAsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 280 const GCNSubtarget &STI = MBB.getParent()->getSubtarget<GCNSubtarget>(); 281 if (STI.dumpCode() && !isBlockOnlyReachableByFallthrough(&MBB)) { 282 // Write a line for the basic block label if it is not only fallthrough. 283 DisasmLines.push_back( 284 (Twine("BB") + Twine(getFunctionNumber()) 285 + "_" + Twine(MBB.getNumber()) + ":").str()); 286 DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); 287 HexLines.push_back(""); 288 } 289 AsmPrinter::EmitBasicBlockStart(MBB); 290 } 291 292 void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 293 294 // Group segment variables aren't emitted in HSA. 295 if (AMDGPU::isGroupSegment(GV)) 296 return; 297 298 AsmPrinter::EmitGlobalVariable(GV); 299 } 300 301 bool AMDGPUAsmPrinter::doFinalization(Module &M) { 302 CallGraphResourceInfo.clear(); 303 return AsmPrinter::doFinalization(M); 304 } 305 306 // For the amdpal OS type, read the amdgpu.pal.metadata supplied by the 307 // frontend into our PALMetadataMap, ready for per-function modification. It 308 // is a NamedMD containing an MDTuple containing a number of MDNodes each of 309 // which is an integer value, and each two integer values forms a key=value 310 // pair that we store as PALMetadataMap[key]=value in the map. 311 void AMDGPUAsmPrinter::readPALMetadata(Module &M) { 312 auto NamedMD = M.getNamedMetadata("amdgpu.pal.metadata"); 313 if (!NamedMD || !NamedMD->getNumOperands()) 314 return; 315 auto Tuple = dyn_cast<MDTuple>(NamedMD->getOperand(0)); 316 if (!Tuple) 317 return; 318 for (unsigned I = 0, E = Tuple->getNumOperands() & -2; I != E; I += 2) { 319 auto Key = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I)); 320 auto Val = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I + 1)); 321 if (!Key || !Val) 322 continue; 323 PALMetadataMap[Key->getZExtValue()] = Val->getZExtValue(); 324 } 325 } 326 327 // Print comments that apply to both callable functions and entry points. 328 void AMDGPUAsmPrinter::emitCommonFunctionComments( 329 uint32_t NumVGPR, 330 uint32_t NumSGPR, 331 uint64_t ScratchSize, 332 uint64_t CodeSize, 333 const AMDGPUMachineFunction *MFI) { 334 OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false); 335 OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false); 336 OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false); 337 OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false); 338 OutStreamer->emitRawComment(" MemoryBound: " + Twine(MFI->isMemoryBound()), 339 false); 340 } 341 342 uint16_t AMDGPUAsmPrinter::getAmdhsaKernelCodeProperties( 343 const MachineFunction &MF) const { 344 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 345 uint16_t KernelCodeProperties = 0; 346 347 if (MFI.hasPrivateSegmentBuffer()) { 348 KernelCodeProperties |= 349 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; 350 } 351 if (MFI.hasDispatchPtr()) { 352 KernelCodeProperties |= 353 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 354 } 355 if (MFI.hasQueuePtr()) { 356 KernelCodeProperties |= 357 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; 358 } 359 if (MFI.hasKernargSegmentPtr()) { 360 KernelCodeProperties |= 361 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; 362 } 363 if (MFI.hasDispatchID()) { 364 KernelCodeProperties |= 365 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; 366 } 367 if (MFI.hasFlatScratchInit()) { 368 KernelCodeProperties |= 369 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; 370 } 371 372 return KernelCodeProperties; 373 } 374 375 amdhsa::kernel_descriptor_t AMDGPUAsmPrinter::getAmdhsaKernelDescriptor( 376 const MachineFunction &MF, 377 const SIProgramInfo &PI) const { 378 amdhsa::kernel_descriptor_t KernelDescriptor; 379 memset(&KernelDescriptor, 0x0, sizeof(KernelDescriptor)); 380 381 assert(isUInt<32>(PI.ScratchSize)); 382 assert(isUInt<32>(PI.ComputePGMRSrc1)); 383 assert(isUInt<32>(PI.ComputePGMRSrc2)); 384 385 KernelDescriptor.group_segment_fixed_size = PI.LDSSize; 386 KernelDescriptor.private_segment_fixed_size = PI.ScratchSize; 387 KernelDescriptor.compute_pgm_rsrc1 = PI.ComputePGMRSrc1; 388 KernelDescriptor.compute_pgm_rsrc2 = PI.ComputePGMRSrc2; 389 KernelDescriptor.kernel_code_properties = getAmdhsaKernelCodeProperties(MF); 390 391 return KernelDescriptor; 392 } 393 394 bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 395 CurrentProgramInfo = SIProgramInfo(); 396 397 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 398 399 // The starting address of all shader programs must be 256 bytes aligned. 400 // Regular functions just need the basic required instruction alignment. 401 MF.setAlignment(MFI->isEntryFunction() ? 8 : 2); 402 403 SetupMachineFunction(MF); 404 405 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 406 MCContext &Context = getObjFileLowering().getContext(); 407 // FIXME: This should be an explicit check for Mesa. 408 if (!STM.isAmdHsaOS() && !STM.isAmdPalOS()) { 409 MCSectionELF *ConfigSection = 410 Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0); 411 OutStreamer->SwitchSection(ConfigSection); 412 } 413 414 if (MFI->isEntryFunction()) { 415 getSIProgramInfo(CurrentProgramInfo, MF); 416 } else { 417 auto I = CallGraphResourceInfo.insert( 418 std::make_pair(&MF.getFunction(), SIFunctionResourceInfo())); 419 SIFunctionResourceInfo &Info = I.first->second; 420 assert(I.second && "should only be called once per function"); 421 Info = analyzeResourceUsage(MF); 422 } 423 424 if (STM.isAmdPalOS()) 425 EmitPALMetadata(MF, CurrentProgramInfo); 426 else if (!STM.isAmdHsaOS()) { 427 EmitProgramInfoSI(MF, CurrentProgramInfo); 428 } 429 430 DisasmLines.clear(); 431 HexLines.clear(); 432 DisasmLineMaxLen = 0; 433 434 EmitFunctionBody(); 435 436 if (isVerbose()) { 437 MCSectionELF *CommentSection = 438 Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0); 439 OutStreamer->SwitchSection(CommentSection); 440 441 if (!MFI->isEntryFunction()) { 442 OutStreamer->emitRawComment(" Function info:", false); 443 SIFunctionResourceInfo &Info = CallGraphResourceInfo[&MF.getFunction()]; 444 emitCommonFunctionComments( 445 Info.NumVGPR, 446 Info.getTotalNumSGPRs(MF.getSubtarget<GCNSubtarget>()), 447 Info.PrivateSegmentSize, 448 getFunctionCodeSize(MF), MFI); 449 return false; 450 } 451 452 OutStreamer->emitRawComment(" Kernel info:", false); 453 emitCommonFunctionComments(CurrentProgramInfo.NumVGPR, 454 CurrentProgramInfo.NumSGPR, 455 CurrentProgramInfo.ScratchSize, 456 getFunctionCodeSize(MF), MFI); 457 458 OutStreamer->emitRawComment( 459 " FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false); 460 OutStreamer->emitRawComment( 461 " IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false); 462 OutStreamer->emitRawComment( 463 " LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) + 464 " bytes/workgroup (compile time only)", false); 465 466 OutStreamer->emitRawComment( 467 " SGPRBlocks: " + Twine(CurrentProgramInfo.SGPRBlocks), false); 468 OutStreamer->emitRawComment( 469 " VGPRBlocks: " + Twine(CurrentProgramInfo.VGPRBlocks), false); 470 471 OutStreamer->emitRawComment( 472 " NumSGPRsForWavesPerEU: " + 473 Twine(CurrentProgramInfo.NumSGPRsForWavesPerEU), false); 474 OutStreamer->emitRawComment( 475 " NumVGPRsForWavesPerEU: " + 476 Twine(CurrentProgramInfo.NumVGPRsForWavesPerEU), false); 477 478 OutStreamer->emitRawComment( 479 " WaveLimiterHint : " + Twine(MFI->needsWaveLimiter()), false); 480 481 if (MF.getSubtarget<GCNSubtarget>().debuggerEmitPrologue()) { 482 OutStreamer->emitRawComment( 483 " DebuggerWavefrontPrivateSegmentOffsetSGPR: s" + 484 Twine(CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR), false); 485 OutStreamer->emitRawComment( 486 " DebuggerPrivateSegmentBufferSGPR: s" + 487 Twine(CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR), false); 488 } 489 490 OutStreamer->emitRawComment( 491 " COMPUTE_PGM_RSRC2:USER_SGPR: " + 492 Twine(G_00B84C_USER_SGPR(CurrentProgramInfo.ComputePGMRSrc2)), false); 493 OutStreamer->emitRawComment( 494 " COMPUTE_PGM_RSRC2:TRAP_HANDLER: " + 495 Twine(G_00B84C_TRAP_HANDLER(CurrentProgramInfo.ComputePGMRSrc2)), false); 496 OutStreamer->emitRawComment( 497 " COMPUTE_PGM_RSRC2:TGID_X_EN: " + 498 Twine(G_00B84C_TGID_X_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 499 OutStreamer->emitRawComment( 500 " COMPUTE_PGM_RSRC2:TGID_Y_EN: " + 501 Twine(G_00B84C_TGID_Y_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 502 OutStreamer->emitRawComment( 503 " COMPUTE_PGM_RSRC2:TGID_Z_EN: " + 504 Twine(G_00B84C_TGID_Z_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 505 OutStreamer->emitRawComment( 506 " COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " + 507 Twine(G_00B84C_TIDIG_COMP_CNT(CurrentProgramInfo.ComputePGMRSrc2)), 508 false); 509 } 510 511 if (STM.dumpCode()) { 512 513 OutStreamer->SwitchSection( 514 Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0)); 515 516 for (size_t i = 0; i < DisasmLines.size(); ++i) { 517 std::string Comment = "\n"; 518 if (!HexLines[i].empty()) { 519 Comment = std::string(DisasmLineMaxLen - DisasmLines[i].size(), ' '); 520 Comment += " ; " + HexLines[i] + "\n"; 521 } 522 523 OutStreamer->EmitBytes(StringRef(DisasmLines[i])); 524 OutStreamer->EmitBytes(StringRef(Comment)); 525 } 526 } 527 528 return false; 529 } 530 531 uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const { 532 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 533 const SIInstrInfo *TII = STM.getInstrInfo(); 534 535 uint64_t CodeSize = 0; 536 537 for (const MachineBasicBlock &MBB : MF) { 538 for (const MachineInstr &MI : MBB) { 539 // TODO: CodeSize should account for multiple functions. 540 541 // TODO: Should we count size of debug info? 542 if (MI.isDebugInstr()) 543 continue; 544 545 CodeSize += TII->getInstSizeInBytes(MI); 546 } 547 } 548 549 return CodeSize; 550 } 551 552 static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI, 553 const SIInstrInfo &TII, 554 unsigned Reg) { 555 for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) { 556 if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent())) 557 return true; 558 } 559 560 return false; 561 } 562 563 int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumSGPRs( 564 const GCNSubtarget &ST) const { 565 return NumExplicitSGPR + IsaInfo::getNumExtraSGPRs(&ST, 566 UsesVCC, UsesFlatScratch); 567 } 568 569 AMDGPUAsmPrinter::SIFunctionResourceInfo AMDGPUAsmPrinter::analyzeResourceUsage( 570 const MachineFunction &MF) const { 571 SIFunctionResourceInfo Info; 572 573 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 574 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 575 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 576 const MachineRegisterInfo &MRI = MF.getRegInfo(); 577 const SIInstrInfo *TII = ST.getInstrInfo(); 578 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 579 580 Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) || 581 MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI); 582 583 // Even if FLAT_SCRATCH is implicitly used, it has no effect if flat 584 // instructions aren't used to access the scratch buffer. Inline assembly may 585 // need it though. 586 // 587 // If we only have implicit uses of flat_scr on flat instructions, it is not 588 // really needed. 589 if (Info.UsesFlatScratch && !MFI->hasFlatScratchInit() && 590 (!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) && 591 !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) && 592 !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) { 593 Info.UsesFlatScratch = false; 594 } 595 596 Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects(); 597 Info.PrivateSegmentSize = FrameInfo.getStackSize(); 598 if (MFI->isStackRealigned()) 599 Info.PrivateSegmentSize += FrameInfo.getMaxAlignment(); 600 601 602 Info.UsesVCC = MRI.isPhysRegUsed(AMDGPU::VCC_LO) || 603 MRI.isPhysRegUsed(AMDGPU::VCC_HI); 604 605 // If there are no calls, MachineRegisterInfo can tell us the used register 606 // count easily. 607 // A tail call isn't considered a call for MachineFrameInfo's purposes. 608 if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) { 609 MCPhysReg HighestVGPRReg = AMDGPU::NoRegister; 610 for (MCPhysReg Reg : reverse(AMDGPU::VGPR_32RegClass.getRegisters())) { 611 if (MRI.isPhysRegUsed(Reg)) { 612 HighestVGPRReg = Reg; 613 break; 614 } 615 } 616 617 MCPhysReg HighestSGPRReg = AMDGPU::NoRegister; 618 for (MCPhysReg Reg : reverse(AMDGPU::SGPR_32RegClass.getRegisters())) { 619 if (MRI.isPhysRegUsed(Reg)) { 620 HighestSGPRReg = Reg; 621 break; 622 } 623 } 624 625 // We found the maximum register index. They start at 0, so add one to get the 626 // number of registers. 627 Info.NumVGPR = HighestVGPRReg == AMDGPU::NoRegister ? 0 : 628 TRI.getHWRegIndex(HighestVGPRReg) + 1; 629 Info.NumExplicitSGPR = HighestSGPRReg == AMDGPU::NoRegister ? 0 : 630 TRI.getHWRegIndex(HighestSGPRReg) + 1; 631 632 return Info; 633 } 634 635 int32_t MaxVGPR = -1; 636 int32_t MaxSGPR = -1; 637 uint64_t CalleeFrameSize = 0; 638 639 for (const MachineBasicBlock &MBB : MF) { 640 for (const MachineInstr &MI : MBB) { 641 // TODO: Check regmasks? Do they occur anywhere except calls? 642 for (const MachineOperand &MO : MI.operands()) { 643 unsigned Width = 0; 644 bool IsSGPR = false; 645 646 if (!MO.isReg()) 647 continue; 648 649 unsigned Reg = MO.getReg(); 650 switch (Reg) { 651 case AMDGPU::EXEC: 652 case AMDGPU::EXEC_LO: 653 case AMDGPU::EXEC_HI: 654 case AMDGPU::SCC: 655 case AMDGPU::M0: 656 case AMDGPU::SRC_SHARED_BASE: 657 case AMDGPU::SRC_SHARED_LIMIT: 658 case AMDGPU::SRC_PRIVATE_BASE: 659 case AMDGPU::SRC_PRIVATE_LIMIT: 660 continue; 661 662 case AMDGPU::NoRegister: 663 assert(MI.isDebugInstr()); 664 continue; 665 666 case AMDGPU::VCC: 667 case AMDGPU::VCC_LO: 668 case AMDGPU::VCC_HI: 669 Info.UsesVCC = true; 670 continue; 671 672 case AMDGPU::FLAT_SCR: 673 case AMDGPU::FLAT_SCR_LO: 674 case AMDGPU::FLAT_SCR_HI: 675 continue; 676 677 case AMDGPU::XNACK_MASK: 678 case AMDGPU::XNACK_MASK_LO: 679 case AMDGPU::XNACK_MASK_HI: 680 llvm_unreachable("xnack_mask registers should not be used"); 681 682 case AMDGPU::TBA: 683 case AMDGPU::TBA_LO: 684 case AMDGPU::TBA_HI: 685 case AMDGPU::TMA: 686 case AMDGPU::TMA_LO: 687 case AMDGPU::TMA_HI: 688 llvm_unreachable("trap handler registers should not be used"); 689 690 default: 691 break; 692 } 693 694 if (AMDGPU::SReg_32RegClass.contains(Reg)) { 695 assert(!AMDGPU::TTMP_32RegClass.contains(Reg) && 696 "trap handler registers should not be used"); 697 IsSGPR = true; 698 Width = 1; 699 } else if (AMDGPU::VGPR_32RegClass.contains(Reg)) { 700 IsSGPR = false; 701 Width = 1; 702 } else if (AMDGPU::SReg_64RegClass.contains(Reg)) { 703 assert(!AMDGPU::TTMP_64RegClass.contains(Reg) && 704 "trap handler registers should not be used"); 705 IsSGPR = true; 706 Width = 2; 707 } else if (AMDGPU::VReg_64RegClass.contains(Reg)) { 708 IsSGPR = false; 709 Width = 2; 710 } else if (AMDGPU::VReg_96RegClass.contains(Reg)) { 711 IsSGPR = false; 712 Width = 3; 713 } else if (AMDGPU::SReg_128RegClass.contains(Reg)) { 714 assert(!AMDGPU::TTMP_128RegClass.contains(Reg) && 715 "trap handler registers should not be used"); 716 IsSGPR = true; 717 Width = 4; 718 } else if (AMDGPU::VReg_128RegClass.contains(Reg)) { 719 IsSGPR = false; 720 Width = 4; 721 } else if (AMDGPU::SReg_256RegClass.contains(Reg)) { 722 assert(!AMDGPU::TTMP_256RegClass.contains(Reg) && 723 "trap handler registers should not be used"); 724 IsSGPR = true; 725 Width = 8; 726 } else if (AMDGPU::VReg_256RegClass.contains(Reg)) { 727 IsSGPR = false; 728 Width = 8; 729 } else if (AMDGPU::SReg_512RegClass.contains(Reg)) { 730 assert(!AMDGPU::TTMP_512RegClass.contains(Reg) && 731 "trap handler registers should not be used"); 732 IsSGPR = true; 733 Width = 16; 734 } else if (AMDGPU::VReg_512RegClass.contains(Reg)) { 735 IsSGPR = false; 736 Width = 16; 737 } else { 738 llvm_unreachable("Unknown register class"); 739 } 740 unsigned HWReg = TRI.getHWRegIndex(Reg); 741 int MaxUsed = HWReg + Width - 1; 742 if (IsSGPR) { 743 MaxSGPR = MaxUsed > MaxSGPR ? MaxUsed : MaxSGPR; 744 } else { 745 MaxVGPR = MaxUsed > MaxVGPR ? MaxUsed : MaxVGPR; 746 } 747 } 748 749 if (MI.isCall()) { 750 // Pseudo used just to encode the underlying global. Is there a better 751 // way to track this? 752 753 const MachineOperand *CalleeOp 754 = TII->getNamedOperand(MI, AMDGPU::OpName::callee); 755 const Function *Callee = cast<Function>(CalleeOp->getGlobal()); 756 if (Callee->isDeclaration()) { 757 // If this is a call to an external function, we can't do much. Make 758 // conservative guesses. 759 760 // 48 SGPRs - vcc, - flat_scr, -xnack 761 int MaxSGPRGuess = 762 47 - IsaInfo::getNumExtraSGPRs(getSTI(), true, 763 ST.hasFlatAddressSpace()); 764 MaxSGPR = std::max(MaxSGPR, MaxSGPRGuess); 765 MaxVGPR = std::max(MaxVGPR, 23); 766 767 CalleeFrameSize = std::max(CalleeFrameSize, UINT64_C(16384)); 768 Info.UsesVCC = true; 769 Info.UsesFlatScratch = ST.hasFlatAddressSpace(); 770 Info.HasDynamicallySizedStack = true; 771 } else { 772 // We force CodeGen to run in SCC order, so the callee's register 773 // usage etc. should be the cumulative usage of all callees. 774 auto I = CallGraphResourceInfo.find(Callee); 775 assert(I != CallGraphResourceInfo.end() && 776 "callee should have been handled before caller"); 777 778 MaxSGPR = std::max(I->second.NumExplicitSGPR - 1, MaxSGPR); 779 MaxVGPR = std::max(I->second.NumVGPR - 1, MaxVGPR); 780 CalleeFrameSize 781 = std::max(I->second.PrivateSegmentSize, CalleeFrameSize); 782 Info.UsesVCC |= I->second.UsesVCC; 783 Info.UsesFlatScratch |= I->second.UsesFlatScratch; 784 Info.HasDynamicallySizedStack |= I->second.HasDynamicallySizedStack; 785 Info.HasRecursion |= I->second.HasRecursion; 786 } 787 788 if (!Callee->doesNotRecurse()) 789 Info.HasRecursion = true; 790 } 791 } 792 } 793 794 Info.NumExplicitSGPR = MaxSGPR + 1; 795 Info.NumVGPR = MaxVGPR + 1; 796 Info.PrivateSegmentSize += CalleeFrameSize; 797 798 return Info; 799 } 800 801 void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo, 802 const MachineFunction &MF) { 803 SIFunctionResourceInfo Info = analyzeResourceUsage(MF); 804 805 ProgInfo.NumVGPR = Info.NumVGPR; 806 ProgInfo.NumSGPR = Info.NumExplicitSGPR; 807 ProgInfo.ScratchSize = Info.PrivateSegmentSize; 808 ProgInfo.VCCUsed = Info.UsesVCC; 809 ProgInfo.FlatUsed = Info.UsesFlatScratch; 810 ProgInfo.DynamicCallStack = Info.HasDynamicallySizedStack || Info.HasRecursion; 811 812 if (!isUInt<32>(ProgInfo.ScratchSize)) { 813 DiagnosticInfoStackSize DiagStackSize(MF.getFunction(), 814 ProgInfo.ScratchSize, DS_Error); 815 MF.getFunction().getContext().diagnose(DiagStackSize); 816 } 817 818 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 819 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 820 const SIInstrInfo *TII = STM.getInstrInfo(); 821 const SIRegisterInfo *RI = &TII->getRegisterInfo(); 822 823 // TODO(scott.linder): The calculations related to SGPR/VGPR blocks are 824 // duplicated in part in AMDGPUAsmParser::calculateGPRBlocks, and could be 825 // unified. 826 unsigned ExtraSGPRs = IsaInfo::getNumExtraSGPRs( 827 getSTI(), ProgInfo.VCCUsed, ProgInfo.FlatUsed); 828 829 // Check the addressable register limit before we add ExtraSGPRs. 830 if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && 831 !STM.hasSGPRInitBug()) { 832 unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); 833 if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { 834 // This can happen due to a compiler bug or when using inline asm. 835 LLVMContext &Ctx = MF.getFunction().getContext(); 836 DiagnosticInfoResourceLimit Diag(MF.getFunction(), 837 "addressable scalar registers", 838 ProgInfo.NumSGPR, DS_Error, 839 DK_ResourceLimit, 840 MaxAddressableNumSGPRs); 841 Ctx.diagnose(Diag); 842 ProgInfo.NumSGPR = MaxAddressableNumSGPRs - 1; 843 } 844 } 845 846 // Account for extra SGPRs and VGPRs reserved for debugger use. 847 ProgInfo.NumSGPR += ExtraSGPRs; 848 849 // Ensure there are enough SGPRs and VGPRs for wave dispatch, where wave 850 // dispatch registers are function args. 851 unsigned WaveDispatchNumSGPR = 0, WaveDispatchNumVGPR = 0; 852 for (auto &Arg : MF.getFunction().args()) { 853 unsigned NumRegs = (Arg.getType()->getPrimitiveSizeInBits() + 31) / 32; 854 if (Arg.hasAttribute(Attribute::InReg)) 855 WaveDispatchNumSGPR += NumRegs; 856 else 857 WaveDispatchNumVGPR += NumRegs; 858 } 859 ProgInfo.NumSGPR = std::max(ProgInfo.NumSGPR, WaveDispatchNumSGPR); 860 ProgInfo.NumVGPR = std::max(ProgInfo.NumVGPR, WaveDispatchNumVGPR); 861 862 // Adjust number of registers used to meet default/requested minimum/maximum 863 // number of waves per execution unit request. 864 ProgInfo.NumSGPRsForWavesPerEU = std::max( 865 std::max(ProgInfo.NumSGPR, 1u), STM.getMinNumSGPRs(MFI->getMaxWavesPerEU())); 866 ProgInfo.NumVGPRsForWavesPerEU = std::max( 867 std::max(ProgInfo.NumVGPR, 1u), STM.getMinNumVGPRs(MFI->getMaxWavesPerEU())); 868 869 if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS || 870 STM.hasSGPRInitBug()) { 871 unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); 872 if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { 873 // This can happen due to a compiler bug or when using inline asm to use 874 // the registers which are usually reserved for vcc etc. 875 LLVMContext &Ctx = MF.getFunction().getContext(); 876 DiagnosticInfoResourceLimit Diag(MF.getFunction(), 877 "scalar registers", 878 ProgInfo.NumSGPR, DS_Error, 879 DK_ResourceLimit, 880 MaxAddressableNumSGPRs); 881 Ctx.diagnose(Diag); 882 ProgInfo.NumSGPR = MaxAddressableNumSGPRs; 883 ProgInfo.NumSGPRsForWavesPerEU = MaxAddressableNumSGPRs; 884 } 885 } 886 887 if (STM.hasSGPRInitBug()) { 888 ProgInfo.NumSGPR = 889 AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 890 ProgInfo.NumSGPRsForWavesPerEU = 891 AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 892 } 893 894 if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) { 895 LLVMContext &Ctx = MF.getFunction().getContext(); 896 DiagnosticInfoResourceLimit Diag(MF.getFunction(), "user SGPRs", 897 MFI->getNumUserSGPRs(), DS_Error); 898 Ctx.diagnose(Diag); 899 } 900 901 if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) { 902 LLVMContext &Ctx = MF.getFunction().getContext(); 903 DiagnosticInfoResourceLimit Diag(MF.getFunction(), "local memory", 904 MFI->getLDSSize(), DS_Error); 905 Ctx.diagnose(Diag); 906 } 907 908 ProgInfo.SGPRBlocks = IsaInfo::getNumSGPRBlocks( 909 getSTI(), ProgInfo.NumSGPRsForWavesPerEU); 910 ProgInfo.VGPRBlocks = IsaInfo::getNumVGPRBlocks( 911 getSTI(), ProgInfo.NumVGPRsForWavesPerEU); 912 913 // Update DebuggerWavefrontPrivateSegmentOffsetSGPR and 914 // DebuggerPrivateSegmentBufferSGPR fields if "amdgpu-debugger-emit-prologue" 915 // attribute was requested. 916 if (STM.debuggerEmitPrologue()) { 917 ProgInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR = 918 RI->getHWRegIndex(MFI->getScratchWaveOffsetReg()); 919 ProgInfo.DebuggerPrivateSegmentBufferSGPR = 920 RI->getHWRegIndex(MFI->getScratchRSrcReg()); 921 } 922 923 // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode 924 // register. 925 ProgInfo.FloatMode = getFPMode(MF); 926 927 ProgInfo.IEEEMode = STM.enableIEEEBit(MF); 928 929 // Make clamp modifier on NaN input returns 0. 930 ProgInfo.DX10Clamp = STM.enableDX10Clamp(); 931 932 unsigned LDSAlignShift; 933 if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 934 // LDS is allocated in 64 dword blocks. 935 LDSAlignShift = 8; 936 } else { 937 // LDS is allocated in 128 dword blocks. 938 LDSAlignShift = 9; 939 } 940 941 unsigned LDSSpillSize = 942 MFI->getLDSWaveSpillSize() * MFI->getMaxFlatWorkGroupSize(); 943 944 ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize; 945 ProgInfo.LDSBlocks = 946 alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift; 947 948 // Scratch is allocated in 256 dword blocks. 949 unsigned ScratchAlignShift = 10; 950 // We need to program the hardware with the amount of scratch memory that 951 // is used by the entire wave. ProgInfo.ScratchSize is the amount of 952 // scratch memory used per thread. 953 ProgInfo.ScratchBlocks = 954 alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(), 955 1ULL << ScratchAlignShift) >> 956 ScratchAlignShift; 957 958 ProgInfo.ComputePGMRSrc1 = 959 S_00B848_VGPRS(ProgInfo.VGPRBlocks) | 960 S_00B848_SGPRS(ProgInfo.SGPRBlocks) | 961 S_00B848_PRIORITY(ProgInfo.Priority) | 962 S_00B848_FLOAT_MODE(ProgInfo.FloatMode) | 963 S_00B848_PRIV(ProgInfo.Priv) | 964 S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) | 965 S_00B848_DEBUG_MODE(ProgInfo.DebugMode) | 966 S_00B848_IEEE_MODE(ProgInfo.IEEEMode); 967 968 // 0 = X, 1 = XY, 2 = XYZ 969 unsigned TIDIGCompCnt = 0; 970 if (MFI->hasWorkItemIDZ()) 971 TIDIGCompCnt = 2; 972 else if (MFI->hasWorkItemIDY()) 973 TIDIGCompCnt = 1; 974 975 ProgInfo.ComputePGMRSrc2 = 976 S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) | 977 S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) | 978 // For AMDHSA, TRAP_HANDLER must be zero, as it is populated by the CP. 979 S_00B84C_TRAP_HANDLER(STM.isAmdHsaOS() ? 0 : STM.isTrapHandlerEnabled()) | 980 S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) | 981 S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) | 982 S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) | 983 S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) | 984 S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) | 985 S_00B84C_EXCP_EN_MSB(0) | 986 // For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP. 987 S_00B84C_LDS_SIZE(STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks) | 988 S_00B84C_EXCP_EN(0); 989 } 990 991 static unsigned getRsrcReg(CallingConv::ID CallConv) { 992 switch (CallConv) { 993 default: LLVM_FALLTHROUGH; 994 case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1; 995 case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS; 996 case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS; 997 case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES; 998 case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS; 999 case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS; 1000 case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS; 1001 } 1002 } 1003 1004 void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF, 1005 const SIProgramInfo &CurrentProgramInfo) { 1006 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 1007 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1008 unsigned RsrcReg = getRsrcReg(MF.getFunction().getCallingConv()); 1009 1010 if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { 1011 OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4); 1012 1013 OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc1, 4); 1014 1015 OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4); 1016 OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc2, 4); 1017 1018 OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4); 1019 OutStreamer->EmitIntValue(S_00B860_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); 1020 1021 // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 = 1022 // 0" comment but I don't see a corresponding field in the register spec. 1023 } else { 1024 OutStreamer->EmitIntValue(RsrcReg, 4); 1025 OutStreamer->EmitIntValue(S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | 1026 S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks), 4); 1027 if (STM.isVGPRSpillingEnabled(MF.getFunction())) { 1028 OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4); 1029 OutStreamer->EmitIntValue(S_0286E8_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); 1030 } 1031 } 1032 1033 if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { 1034 OutStreamer->EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4); 1035 OutStreamer->EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks), 4); 1036 OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4); 1037 OutStreamer->EmitIntValue(MFI->getPSInputEnable(), 4); 1038 OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4); 1039 OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4); 1040 } 1041 1042 OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4); 1043 OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4); 1044 OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4); 1045 OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4); 1046 } 1047 1048 // This is the equivalent of EmitProgramInfoSI above, but for when the OS type 1049 // is AMDPAL. It stores each compute/SPI register setting and other PAL 1050 // metadata items into the PALMetadataMap, combining with any provided by the 1051 // frontend as LLVM metadata. Once all functions are written, PALMetadataMap is 1052 // then written as a single block in the .note section. 1053 void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF, 1054 const SIProgramInfo &CurrentProgramInfo) { 1055 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1056 // Given the calling convention, calculate the register number for rsrc1. In 1057 // principle the register number could change in future hardware, but we know 1058 // it is the same for gfx6-9 (except that LS and ES don't exist on gfx9), so 1059 // we can use the same fixed value that .AMDGPU.config has for Mesa. Note 1060 // that we use a register number rather than a byte offset, so we need to 1061 // divide by 4. 1062 unsigned Rsrc1Reg = getRsrcReg(MF.getFunction().getCallingConv()) / 4; 1063 unsigned Rsrc2Reg = Rsrc1Reg + 1; 1064 // Also calculate the PAL metadata key for *S_SCRATCH_SIZE. It can be used 1065 // with a constant offset to access any non-register shader-specific PAL 1066 // metadata key. 1067 unsigned ScratchSizeKey = PALMD::Key::CS_SCRATCH_SIZE; 1068 switch (MF.getFunction().getCallingConv()) { 1069 case CallingConv::AMDGPU_PS: 1070 ScratchSizeKey = PALMD::Key::PS_SCRATCH_SIZE; 1071 break; 1072 case CallingConv::AMDGPU_VS: 1073 ScratchSizeKey = PALMD::Key::VS_SCRATCH_SIZE; 1074 break; 1075 case CallingConv::AMDGPU_GS: 1076 ScratchSizeKey = PALMD::Key::GS_SCRATCH_SIZE; 1077 break; 1078 case CallingConv::AMDGPU_ES: 1079 ScratchSizeKey = PALMD::Key::ES_SCRATCH_SIZE; 1080 break; 1081 case CallingConv::AMDGPU_HS: 1082 ScratchSizeKey = PALMD::Key::HS_SCRATCH_SIZE; 1083 break; 1084 case CallingConv::AMDGPU_LS: 1085 ScratchSizeKey = PALMD::Key::LS_SCRATCH_SIZE; 1086 break; 1087 } 1088 unsigned NumUsedVgprsKey = ScratchSizeKey + 1089 PALMD::Key::VS_NUM_USED_VGPRS - PALMD::Key::VS_SCRATCH_SIZE; 1090 unsigned NumUsedSgprsKey = ScratchSizeKey + 1091 PALMD::Key::VS_NUM_USED_SGPRS - PALMD::Key::VS_SCRATCH_SIZE; 1092 PALMetadataMap[NumUsedVgprsKey] = CurrentProgramInfo.NumVGPRsForWavesPerEU; 1093 PALMetadataMap[NumUsedSgprsKey] = CurrentProgramInfo.NumSGPRsForWavesPerEU; 1094 if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { 1095 PALMetadataMap[Rsrc1Reg] |= CurrentProgramInfo.ComputePGMRSrc1; 1096 PALMetadataMap[Rsrc2Reg] |= CurrentProgramInfo.ComputePGMRSrc2; 1097 // ScratchSize is in bytes, 16 aligned. 1098 PALMetadataMap[ScratchSizeKey] |= 1099 alignTo(CurrentProgramInfo.ScratchSize, 16); 1100 } else { 1101 PALMetadataMap[Rsrc1Reg] |= S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | 1102 S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks); 1103 if (CurrentProgramInfo.ScratchBlocks > 0) 1104 PALMetadataMap[Rsrc2Reg] |= S_00B84C_SCRATCH_EN(1); 1105 // ScratchSize is in bytes, 16 aligned. 1106 PALMetadataMap[ScratchSizeKey] |= 1107 alignTo(CurrentProgramInfo.ScratchSize, 16); 1108 } 1109 if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { 1110 PALMetadataMap[Rsrc2Reg] |= 1111 S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks); 1112 PALMetadataMap[R_0286CC_SPI_PS_INPUT_ENA / 4] |= MFI->getPSInputEnable(); 1113 PALMetadataMap[R_0286D0_SPI_PS_INPUT_ADDR / 4] |= MFI->getPSInputAddr(); 1114 } 1115 } 1116 1117 // This is supposed to be log2(Size) 1118 static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) { 1119 switch (Size) { 1120 case 4: 1121 return AMD_ELEMENT_4_BYTES; 1122 case 8: 1123 return AMD_ELEMENT_8_BYTES; 1124 case 16: 1125 return AMD_ELEMENT_16_BYTES; 1126 default: 1127 llvm_unreachable("invalid private_element_size"); 1128 } 1129 } 1130 1131 void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out, 1132 const SIProgramInfo &CurrentProgramInfo, 1133 const MachineFunction &MF) const { 1134 const Function &F = MF.getFunction(); 1135 assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || 1136 F.getCallingConv() == CallingConv::SPIR_KERNEL); 1137 1138 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1139 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 1140 1141 AMDGPU::initDefaultAMDKernelCodeT(Out, getSTI()); 1142 1143 Out.compute_pgm_resource_registers = 1144 CurrentProgramInfo.ComputePGMRSrc1 | 1145 (CurrentProgramInfo.ComputePGMRSrc2 << 32); 1146 Out.code_properties = AMD_CODE_PROPERTY_IS_PTR64; 1147 1148 if (CurrentProgramInfo.DynamicCallStack) 1149 Out.code_properties |= AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK; 1150 1151 AMD_HSA_BITS_SET(Out.code_properties, 1152 AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE, 1153 getElementByteSizeValue(STM.getMaxPrivateElementSize())); 1154 1155 if (MFI->hasPrivateSegmentBuffer()) { 1156 Out.code_properties |= 1157 AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; 1158 } 1159 1160 if (MFI->hasDispatchPtr()) 1161 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 1162 1163 if (MFI->hasQueuePtr()) 1164 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; 1165 1166 if (MFI->hasKernargSegmentPtr()) 1167 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; 1168 1169 if (MFI->hasDispatchID()) 1170 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; 1171 1172 if (MFI->hasFlatScratchInit()) 1173 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; 1174 1175 if (MFI->hasDispatchPtr()) 1176 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 1177 1178 if (STM.debuggerSupported()) 1179 Out.code_properties |= AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED; 1180 1181 if (STM.isXNACKEnabled()) 1182 Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED; 1183 1184 unsigned MaxKernArgAlign; 1185 Out.kernarg_segment_byte_size = STM.getKernArgSegmentSize(F, MaxKernArgAlign); 1186 Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR; 1187 Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR; 1188 Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize; 1189 Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize; 1190 1191 // These alignment values are specified in powers of two, so alignment = 1192 // 2^n. The minimum alignment is 2^4 = 16. 1193 Out.kernarg_segment_alignment = std::max((size_t)4, 1194 countTrailingZeros(MaxKernArgAlign)); 1195 1196 if (STM.debuggerEmitPrologue()) { 1197 Out.debug_wavefront_private_segment_offset_sgpr = 1198 CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR; 1199 Out.debug_private_segment_buffer_sgpr = 1200 CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR; 1201 } 1202 } 1203 1204 bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1205 unsigned AsmVariant, 1206 const char *ExtraCode, raw_ostream &O) { 1207 // First try the generic code, which knows about modifiers like 'c' and 'n'. 1208 if (!AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O)) 1209 return false; 1210 1211 if (ExtraCode && ExtraCode[0]) { 1212 if (ExtraCode[1] != 0) 1213 return true; // Unknown modifier. 1214 1215 switch (ExtraCode[0]) { 1216 case 'r': 1217 break; 1218 default: 1219 return true; 1220 } 1221 } 1222 1223 // TODO: Should be able to support other operand types like globals. 1224 const MachineOperand &MO = MI->getOperand(OpNo); 1225 if (MO.isReg()) { 1226 AMDGPUInstPrinter::printRegOperand(MO.getReg(), O, 1227 *MF->getSubtarget().getRegisterInfo()); 1228 return false; 1229 } 1230 1231 return true; 1232 } 1233