1 //===-- AMDGPUAsmPrinter.cpp - AMDGPU assembly printer --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// 11 /// The AMDGPUAsmPrinter is used to print both assembly string and also binary 12 /// code. When passed an MCAsmStreamer it prints assembly and when passed 13 /// an MCObjectStreamer it outputs binary code. 14 // 15 //===----------------------------------------------------------------------===// 16 // 17 18 #include "AMDGPUAsmPrinter.h" 19 #include "AMDGPU.h" 20 #include "AMDGPUSubtarget.h" 21 #include "AMDGPUTargetMachine.h" 22 #include "MCTargetDesc/AMDGPUInstPrinter.h" 23 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 24 #include "MCTargetDesc/AMDGPUTargetStreamer.h" 25 #include "R600AsmPrinter.h" 26 #include "R600Defines.h" 27 #include "R600MachineFunctionInfo.h" 28 #include "R600RegisterInfo.h" 29 #include "SIDefines.h" 30 #include "SIInstrInfo.h" 31 #include "SIMachineFunctionInfo.h" 32 #include "SIRegisterInfo.h" 33 #include "TargetInfo/AMDGPUTargetInfo.h" 34 #include "Utils/AMDGPUBaseInfo.h" 35 #include "llvm/BinaryFormat/ELF.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/IR/DiagnosticInfo.h" 38 #include "llvm/MC/MCAssembler.h" 39 #include "llvm/MC/MCContext.h" 40 #include "llvm/MC/MCSectionELF.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/Support/AMDGPUMetadata.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/TargetParser.h" 45 #include "llvm/Support/TargetRegistry.h" 46 #include "llvm/Target/TargetLoweringObjectFile.h" 47 48 using namespace llvm; 49 using namespace llvm::AMDGPU; 50 using namespace llvm::AMDGPU::HSAMD; 51 52 // We need to tell the runtime some amount ahead of time if we don't know the 53 // true stack size. Assume a smaller number if this is only due to dynamic / 54 // non-entry block allocas. 55 static cl::opt<uint32_t> AssumedStackSizeForExternalCall( 56 "amdgpu-assume-external-call-stack-size", 57 cl::desc("Assumed stack use of any external call (in bytes)"), 58 cl::Hidden, 59 cl::init(16384)); 60 61 static cl::opt<uint32_t> AssumedStackSizeForDynamicSizeObjects( 62 "amdgpu-assume-dynamic-stack-object-size", 63 cl::desc("Assumed extra stack use if there are any " 64 "variable sized objects (in bytes)"), 65 cl::Hidden, 66 cl::init(4096)); 67 68 // This should get the default rounding mode from the kernel. We just set the 69 // default here, but this could change if the OpenCL rounding mode pragmas are 70 // used. 71 // 72 // The denormal mode here should match what is reported by the OpenCL runtime 73 // for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but 74 // can also be override to flush with the -cl-denorms-are-zero compiler flag. 75 // 76 // AMD OpenCL only sets flush none and reports CL_FP_DENORM for double 77 // precision, and leaves single precision to flush all and does not report 78 // CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports 79 // CL_FP_DENORM for both. 80 // 81 // FIXME: It seems some instructions do not support single precision denormals 82 // regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32, 83 // and sin_f32, cos_f32 on most parts). 84 85 // We want to use these instructions, and using fp32 denormals also causes 86 // instructions to run at the double precision rate for the device so it's 87 // probably best to just report no single precision denormals. 88 static uint32_t getFPMode(AMDGPU::SIModeRegisterDefaults Mode) { 89 return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) | 90 FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) | 91 FP_DENORM_MODE_SP(Mode.fpDenormModeSPValue()) | 92 FP_DENORM_MODE_DP(Mode.fpDenormModeDPValue()); 93 } 94 95 static AsmPrinter * 96 createAMDGPUAsmPrinterPass(TargetMachine &tm, 97 std::unique_ptr<MCStreamer> &&Streamer) { 98 return new AMDGPUAsmPrinter(tm, std::move(Streamer)); 99 } 100 101 extern "C" void LLVM_EXTERNAL_VISIBILITY LLVMInitializeAMDGPUAsmPrinter() { 102 TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(), 103 llvm::createR600AsmPrinterPass); 104 TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(), 105 createAMDGPUAsmPrinterPass); 106 } 107 108 AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, 109 std::unique_ptr<MCStreamer> Streamer) 110 : AsmPrinter(TM, std::move(Streamer)) { 111 if (IsaInfo::hasCodeObjectV3(getGlobalSTI())) 112 HSAMetadataStream.reset(new MetadataStreamerV3()); 113 else 114 HSAMetadataStream.reset(new MetadataStreamerV2()); 115 } 116 117 StringRef AMDGPUAsmPrinter::getPassName() const { 118 return "AMDGPU Assembly Printer"; 119 } 120 121 const MCSubtargetInfo *AMDGPUAsmPrinter::getGlobalSTI() const { 122 return TM.getMCSubtargetInfo(); 123 } 124 125 AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const { 126 if (!OutStreamer) 127 return nullptr; 128 return static_cast<AMDGPUTargetStreamer*>(OutStreamer->getTargetStreamer()); 129 } 130 131 void AMDGPUAsmPrinter::emitStartOfAsmFile(Module &M) { 132 if (IsaInfo::hasCodeObjectV3(getGlobalSTI())) { 133 std::string ExpectedTarget; 134 raw_string_ostream ExpectedTargetOS(ExpectedTarget); 135 IsaInfo::streamIsaVersion(getGlobalSTI(), ExpectedTargetOS); 136 137 getTargetStreamer()->EmitDirectiveAMDGCNTarget(ExpectedTarget); 138 } 139 140 if (TM.getTargetTriple().getOS() != Triple::AMDHSA && 141 TM.getTargetTriple().getOS() != Triple::AMDPAL) 142 return; 143 144 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) 145 HSAMetadataStream->begin(M); 146 147 if (TM.getTargetTriple().getOS() == Triple::AMDPAL) 148 getTargetStreamer()->getPALMetadata()->readFromIR(M); 149 150 if (IsaInfo::hasCodeObjectV3(getGlobalSTI())) 151 return; 152 153 // HSA emits NT_AMDGPU_HSA_CODE_OBJECT_VERSION for code objects v2. 154 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) 155 getTargetStreamer()->EmitDirectiveHSACodeObjectVersion(2, 1); 156 157 // HSA and PAL emit NT_AMDGPU_HSA_ISA for code objects v2. 158 IsaVersion Version = getIsaVersion(getGlobalSTI()->getCPU()); 159 getTargetStreamer()->EmitDirectiveHSACodeObjectISA( 160 Version.Major, Version.Minor, Version.Stepping, "AMD", "AMDGPU"); 161 } 162 163 void AMDGPUAsmPrinter::emitEndOfAsmFile(Module &M) { 164 // Following code requires TargetStreamer to be present. 165 if (!getTargetStreamer()) 166 return; 167 168 if (!IsaInfo::hasCodeObjectV3(getGlobalSTI())) { 169 // Emit ISA Version (NT_AMD_AMDGPU_ISA). 170 std::string ISAVersionString; 171 raw_string_ostream ISAVersionStream(ISAVersionString); 172 IsaInfo::streamIsaVersion(getGlobalSTI(), ISAVersionStream); 173 getTargetStreamer()->EmitISAVersion(ISAVersionStream.str()); 174 } 175 176 // Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA). 177 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) { 178 HSAMetadataStream->end(); 179 bool Success = HSAMetadataStream->emitTo(*getTargetStreamer()); 180 (void)Success; 181 assert(Success && "Malformed HSA Metadata"); 182 } 183 } 184 185 bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough( 186 const MachineBasicBlock *MBB) const { 187 if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB)) 188 return false; 189 190 if (MBB->empty()) 191 return true; 192 193 // If this is a block implementing a long branch, an expression relative to 194 // the start of the block is needed. to the start of the block. 195 // XXX - Is there a smarter way to check this? 196 return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64); 197 } 198 199 void AMDGPUAsmPrinter::emitFunctionBodyStart() { 200 const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>(); 201 if (!MFI.isEntryFunction()) 202 return; 203 204 const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>(); 205 const Function &F = MF->getFunction(); 206 if (!STM.hasCodeObjectV3() && STM.isAmdHsaOrMesa(F) && 207 (F.getCallingConv() == CallingConv::AMDGPU_KERNEL || 208 F.getCallingConv() == CallingConv::SPIR_KERNEL)) { 209 amd_kernel_code_t KernelCode; 210 getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF); 211 getTargetStreamer()->EmitAMDKernelCodeT(KernelCode); 212 } 213 214 if (STM.isAmdHsaOS()) 215 HSAMetadataStream->emitKernel(*MF, CurrentProgramInfo); 216 } 217 218 void AMDGPUAsmPrinter::emitFunctionBodyEnd() { 219 const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>(); 220 if (!MFI.isEntryFunction()) 221 return; 222 223 if (!IsaInfo::hasCodeObjectV3(getGlobalSTI()) || 224 TM.getTargetTriple().getOS() != Triple::AMDHSA) 225 return; 226 227 auto &Streamer = getTargetStreamer()->getStreamer(); 228 auto &Context = Streamer.getContext(); 229 auto &ObjectFileInfo = *Context.getObjectFileInfo(); 230 auto &ReadOnlySection = *ObjectFileInfo.getReadOnlySection(); 231 232 Streamer.PushSection(); 233 Streamer.SwitchSection(&ReadOnlySection); 234 235 // CP microcode requires the kernel descriptor to be allocated on 64 byte 236 // alignment. 237 Streamer.emitValueToAlignment(64, 0, 1, 0); 238 if (ReadOnlySection.getAlignment() < 64) 239 ReadOnlySection.setAlignment(Align(64)); 240 241 const MCSubtargetInfo &STI = MF->getSubtarget(); 242 243 SmallString<128> KernelName; 244 getNameWithPrefix(KernelName, &MF->getFunction()); 245 getTargetStreamer()->EmitAmdhsaKernelDescriptor( 246 STI, KernelName, getAmdhsaKernelDescriptor(*MF, CurrentProgramInfo), 247 CurrentProgramInfo.NumVGPRsForWavesPerEU, 248 CurrentProgramInfo.NumSGPRsForWavesPerEU - 249 IsaInfo::getNumExtraSGPRs(&STI, 250 CurrentProgramInfo.VCCUsed, 251 CurrentProgramInfo.FlatUsed), 252 CurrentProgramInfo.VCCUsed, CurrentProgramInfo.FlatUsed, 253 hasXNACK(STI)); 254 255 Streamer.PopSection(); 256 } 257 258 void AMDGPUAsmPrinter::emitFunctionEntryLabel() { 259 if (IsaInfo::hasCodeObjectV3(getGlobalSTI()) && 260 TM.getTargetTriple().getOS() == Triple::AMDHSA) { 261 AsmPrinter::emitFunctionEntryLabel(); 262 return; 263 } 264 265 const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 266 const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>(); 267 if (MFI->isEntryFunction() && STM.isAmdHsaOrMesa(MF->getFunction())) { 268 SmallString<128> SymbolName; 269 getNameWithPrefix(SymbolName, &MF->getFunction()), 270 getTargetStreamer()->EmitAMDGPUSymbolType( 271 SymbolName, ELF::STT_AMDGPU_HSA_KERNEL); 272 } 273 if (DumpCodeInstEmitter) { 274 // Disassemble function name label to text. 275 DisasmLines.push_back(MF->getName().str() + ":"); 276 DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); 277 HexLines.push_back(""); 278 } 279 280 AsmPrinter::emitFunctionEntryLabel(); 281 } 282 283 void AMDGPUAsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 284 if (DumpCodeInstEmitter && !isBlockOnlyReachableByFallthrough(&MBB)) { 285 // Write a line for the basic block label if it is not only fallthrough. 286 DisasmLines.push_back( 287 (Twine("BB") + Twine(getFunctionNumber()) 288 + "_" + Twine(MBB.getNumber()) + ":").str()); 289 DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); 290 HexLines.push_back(""); 291 } 292 AsmPrinter::emitBasicBlockStart(MBB); 293 } 294 295 void AMDGPUAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 296 if (GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 297 if (GV->hasInitializer() && !isa<UndefValue>(GV->getInitializer())) { 298 OutContext.reportError({}, 299 Twine(GV->getName()) + 300 ": unsupported initializer for address space"); 301 return; 302 } 303 304 // LDS variables aren't emitted in HSA or PAL yet. 305 const Triple::OSType OS = TM.getTargetTriple().getOS(); 306 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) 307 return; 308 309 MCSymbol *GVSym = getSymbol(GV); 310 311 GVSym->redefineIfPossible(); 312 if (GVSym->isDefined() || GVSym->isVariable()) 313 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 314 "' is already defined"); 315 316 const DataLayout &DL = GV->getParent()->getDataLayout(); 317 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 318 unsigned Align = GV->getAlignment(); 319 if (!Align) 320 Align = 4; 321 322 emitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 323 emitLinkage(GV, GVSym); 324 if (auto TS = getTargetStreamer()) 325 TS->emitAMDGPULDS(GVSym, Size, Align); 326 return; 327 } 328 329 AsmPrinter::emitGlobalVariable(GV); 330 } 331 332 bool AMDGPUAsmPrinter::doFinalization(Module &M) { 333 CallGraphResourceInfo.clear(); 334 335 // Pad with s_code_end to help tools and guard against instruction prefetch 336 // causing stale data in caches. Arguably this should be done by the linker, 337 // which is why this isn't done for Mesa. 338 const MCSubtargetInfo &STI = *getGlobalSTI(); 339 if (AMDGPU::isGFX10(STI) && 340 (STI.getTargetTriple().getOS() == Triple::AMDHSA || 341 STI.getTargetTriple().getOS() == Triple::AMDPAL)) { 342 OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); 343 getTargetStreamer()->EmitCodeEnd(); 344 } 345 346 return AsmPrinter::doFinalization(M); 347 } 348 349 // Print comments that apply to both callable functions and entry points. 350 void AMDGPUAsmPrinter::emitCommonFunctionComments( 351 uint32_t NumVGPR, 352 Optional<uint32_t> NumAGPR, 353 uint32_t TotalNumVGPR, 354 uint32_t NumSGPR, 355 uint64_t ScratchSize, 356 uint64_t CodeSize, 357 const AMDGPUMachineFunction *MFI) { 358 OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false); 359 OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false); 360 OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false); 361 if (NumAGPR) { 362 OutStreamer->emitRawComment(" NumAgprs: " + Twine(*NumAGPR), false); 363 OutStreamer->emitRawComment(" TotalNumVgprs: " + Twine(TotalNumVGPR), 364 false); 365 } 366 OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false); 367 OutStreamer->emitRawComment(" MemoryBound: " + Twine(MFI->isMemoryBound()), 368 false); 369 } 370 371 uint16_t AMDGPUAsmPrinter::getAmdhsaKernelCodeProperties( 372 const MachineFunction &MF) const { 373 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 374 uint16_t KernelCodeProperties = 0; 375 376 if (MFI.hasPrivateSegmentBuffer()) { 377 KernelCodeProperties |= 378 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; 379 } 380 if (MFI.hasDispatchPtr()) { 381 KernelCodeProperties |= 382 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 383 } 384 if (MFI.hasQueuePtr()) { 385 KernelCodeProperties |= 386 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; 387 } 388 if (MFI.hasKernargSegmentPtr()) { 389 KernelCodeProperties |= 390 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; 391 } 392 if (MFI.hasDispatchID()) { 393 KernelCodeProperties |= 394 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; 395 } 396 if (MFI.hasFlatScratchInit()) { 397 KernelCodeProperties |= 398 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; 399 } 400 if (MF.getSubtarget<GCNSubtarget>().isWave32()) { 401 KernelCodeProperties |= 402 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; 403 } 404 405 return KernelCodeProperties; 406 } 407 408 amdhsa::kernel_descriptor_t AMDGPUAsmPrinter::getAmdhsaKernelDescriptor( 409 const MachineFunction &MF, 410 const SIProgramInfo &PI) const { 411 amdhsa::kernel_descriptor_t KernelDescriptor; 412 memset(&KernelDescriptor, 0x0, sizeof(KernelDescriptor)); 413 414 assert(isUInt<32>(PI.ScratchSize)); 415 assert(isUInt<32>(PI.ComputePGMRSrc1)); 416 assert(isUInt<32>(PI.ComputePGMRSrc2)); 417 418 KernelDescriptor.group_segment_fixed_size = PI.LDSSize; 419 KernelDescriptor.private_segment_fixed_size = PI.ScratchSize; 420 KernelDescriptor.compute_pgm_rsrc1 = PI.ComputePGMRSrc1; 421 KernelDescriptor.compute_pgm_rsrc2 = PI.ComputePGMRSrc2; 422 KernelDescriptor.kernel_code_properties = getAmdhsaKernelCodeProperties(MF); 423 424 return KernelDescriptor; 425 } 426 427 bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 428 CurrentProgramInfo = SIProgramInfo(); 429 430 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 431 432 // The starting address of all shader programs must be 256 bytes aligned. 433 // Regular functions just need the basic required instruction alignment. 434 MF.setAlignment(MFI->isEntryFunction() ? Align(256) : Align(4)); 435 436 SetupMachineFunction(MF); 437 438 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 439 MCContext &Context = getObjFileLowering().getContext(); 440 // FIXME: This should be an explicit check for Mesa. 441 if (!STM.isAmdHsaOS() && !STM.isAmdPalOS()) { 442 MCSectionELF *ConfigSection = 443 Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0); 444 OutStreamer->SwitchSection(ConfigSection); 445 } 446 447 if (MFI->isEntryFunction()) { 448 getSIProgramInfo(CurrentProgramInfo, MF); 449 } else { 450 auto I = CallGraphResourceInfo.insert( 451 std::make_pair(&MF.getFunction(), SIFunctionResourceInfo())); 452 SIFunctionResourceInfo &Info = I.first->second; 453 assert(I.second && "should only be called once per function"); 454 Info = analyzeResourceUsage(MF); 455 } 456 457 if (STM.isAmdPalOS()) 458 EmitPALMetadata(MF, CurrentProgramInfo); 459 else if (!STM.isAmdHsaOS()) { 460 EmitProgramInfoSI(MF, CurrentProgramInfo); 461 } 462 463 DumpCodeInstEmitter = nullptr; 464 if (STM.dumpCode()) { 465 // For -dumpcode, get the assembler out of the streamer, even if it does 466 // not really want to let us have it. This only works with -filetype=obj. 467 bool SaveFlag = OutStreamer->getUseAssemblerInfoForParsing(); 468 OutStreamer->setUseAssemblerInfoForParsing(true); 469 MCAssembler *Assembler = OutStreamer->getAssemblerPtr(); 470 OutStreamer->setUseAssemblerInfoForParsing(SaveFlag); 471 if (Assembler) 472 DumpCodeInstEmitter = Assembler->getEmitterPtr(); 473 } 474 475 DisasmLines.clear(); 476 HexLines.clear(); 477 DisasmLineMaxLen = 0; 478 479 emitFunctionBody(); 480 481 if (isVerbose()) { 482 MCSectionELF *CommentSection = 483 Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0); 484 OutStreamer->SwitchSection(CommentSection); 485 486 if (!MFI->isEntryFunction()) { 487 OutStreamer->emitRawComment(" Function info:", false); 488 SIFunctionResourceInfo &Info = CallGraphResourceInfo[&MF.getFunction()]; 489 emitCommonFunctionComments( 490 Info.NumVGPR, 491 STM.hasMAIInsts() ? Info.NumAGPR : Optional<uint32_t>(), 492 Info.getTotalNumVGPRs(STM), 493 Info.getTotalNumSGPRs(MF.getSubtarget<GCNSubtarget>()), 494 Info.PrivateSegmentSize, 495 getFunctionCodeSize(MF), MFI); 496 return false; 497 } 498 499 OutStreamer->emitRawComment(" Kernel info:", false); 500 emitCommonFunctionComments(CurrentProgramInfo.NumArchVGPR, 501 STM.hasMAIInsts() 502 ? CurrentProgramInfo.NumAccVGPR 503 : Optional<uint32_t>(), 504 CurrentProgramInfo.NumVGPR, 505 CurrentProgramInfo.NumSGPR, 506 CurrentProgramInfo.ScratchSize, 507 getFunctionCodeSize(MF), MFI); 508 509 OutStreamer->emitRawComment( 510 " FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false); 511 OutStreamer->emitRawComment( 512 " IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false); 513 OutStreamer->emitRawComment( 514 " LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) + 515 " bytes/workgroup (compile time only)", false); 516 517 OutStreamer->emitRawComment( 518 " SGPRBlocks: " + Twine(CurrentProgramInfo.SGPRBlocks), false); 519 OutStreamer->emitRawComment( 520 " VGPRBlocks: " + Twine(CurrentProgramInfo.VGPRBlocks), false); 521 522 OutStreamer->emitRawComment( 523 " NumSGPRsForWavesPerEU: " + 524 Twine(CurrentProgramInfo.NumSGPRsForWavesPerEU), false); 525 OutStreamer->emitRawComment( 526 " NumVGPRsForWavesPerEU: " + 527 Twine(CurrentProgramInfo.NumVGPRsForWavesPerEU), false); 528 529 OutStreamer->emitRawComment( 530 " Occupancy: " + 531 Twine(CurrentProgramInfo.Occupancy), false); 532 533 OutStreamer->emitRawComment( 534 " WaveLimiterHint : " + Twine(MFI->needsWaveLimiter()), false); 535 536 OutStreamer->emitRawComment( 537 " COMPUTE_PGM_RSRC2:USER_SGPR: " + 538 Twine(G_00B84C_USER_SGPR(CurrentProgramInfo.ComputePGMRSrc2)), false); 539 OutStreamer->emitRawComment( 540 " COMPUTE_PGM_RSRC2:TRAP_HANDLER: " + 541 Twine(G_00B84C_TRAP_HANDLER(CurrentProgramInfo.ComputePGMRSrc2)), false); 542 OutStreamer->emitRawComment( 543 " COMPUTE_PGM_RSRC2:TGID_X_EN: " + 544 Twine(G_00B84C_TGID_X_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 545 OutStreamer->emitRawComment( 546 " COMPUTE_PGM_RSRC2:TGID_Y_EN: " + 547 Twine(G_00B84C_TGID_Y_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 548 OutStreamer->emitRawComment( 549 " COMPUTE_PGM_RSRC2:TGID_Z_EN: " + 550 Twine(G_00B84C_TGID_Z_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 551 OutStreamer->emitRawComment( 552 " COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " + 553 Twine(G_00B84C_TIDIG_COMP_CNT(CurrentProgramInfo.ComputePGMRSrc2)), 554 false); 555 } 556 557 if (DumpCodeInstEmitter) { 558 559 OutStreamer->SwitchSection( 560 Context.getELFSection(".AMDGPU.disasm", ELF::SHT_PROGBITS, 0)); 561 562 for (size_t i = 0; i < DisasmLines.size(); ++i) { 563 std::string Comment = "\n"; 564 if (!HexLines[i].empty()) { 565 Comment = std::string(DisasmLineMaxLen - DisasmLines[i].size(), ' '); 566 Comment += " ; " + HexLines[i] + "\n"; 567 } 568 569 OutStreamer->emitBytes(StringRef(DisasmLines[i])); 570 OutStreamer->emitBytes(StringRef(Comment)); 571 } 572 } 573 574 return false; 575 } 576 577 uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const { 578 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 579 const SIInstrInfo *TII = STM.getInstrInfo(); 580 581 uint64_t CodeSize = 0; 582 583 for (const MachineBasicBlock &MBB : MF) { 584 for (const MachineInstr &MI : MBB) { 585 // TODO: CodeSize should account for multiple functions. 586 587 // TODO: Should we count size of debug info? 588 if (MI.isDebugInstr()) 589 continue; 590 591 CodeSize += TII->getInstSizeInBytes(MI); 592 } 593 } 594 595 return CodeSize; 596 } 597 598 static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI, 599 const SIInstrInfo &TII, 600 unsigned Reg) { 601 for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) { 602 if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent())) 603 return true; 604 } 605 606 return false; 607 } 608 609 int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumSGPRs( 610 const GCNSubtarget &ST) const { 611 return NumExplicitSGPR + IsaInfo::getNumExtraSGPRs(&ST, 612 UsesVCC, UsesFlatScratch); 613 } 614 615 int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumVGPRs( 616 const GCNSubtarget &ST) const { 617 return std::max(NumVGPR, NumAGPR); 618 } 619 620 static const Function *getCalleeFunction(const MachineOperand &Op) { 621 if (Op.isImm()) { 622 assert(Op.getImm() == 0); 623 return nullptr; 624 } 625 626 return cast<Function>(Op.getGlobal()); 627 } 628 629 AMDGPUAsmPrinter::SIFunctionResourceInfo AMDGPUAsmPrinter::analyzeResourceUsage( 630 const MachineFunction &MF) const { 631 SIFunctionResourceInfo Info; 632 633 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 634 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 635 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 636 const MachineRegisterInfo &MRI = MF.getRegInfo(); 637 const SIInstrInfo *TII = ST.getInstrInfo(); 638 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 639 640 Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) || 641 MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI); 642 643 // Even if FLAT_SCRATCH is implicitly used, it has no effect if flat 644 // instructions aren't used to access the scratch buffer. Inline assembly may 645 // need it though. 646 // 647 // If we only have implicit uses of flat_scr on flat instructions, it is not 648 // really needed. 649 if (Info.UsesFlatScratch && !MFI->hasFlatScratchInit() && 650 (!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) && 651 !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) && 652 !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) { 653 Info.UsesFlatScratch = false; 654 } 655 656 Info.PrivateSegmentSize = FrameInfo.getStackSize(); 657 658 // Assume a big number if there are any unknown sized objects. 659 Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects(); 660 if (Info.HasDynamicallySizedStack) 661 Info.PrivateSegmentSize += AssumedStackSizeForDynamicSizeObjects; 662 663 if (MFI->isStackRealigned()) 664 Info.PrivateSegmentSize += FrameInfo.getMaxAlign().value(); 665 666 Info.UsesVCC = MRI.isPhysRegUsed(AMDGPU::VCC_LO) || 667 MRI.isPhysRegUsed(AMDGPU::VCC_HI); 668 669 // If there are no calls, MachineRegisterInfo can tell us the used register 670 // count easily. 671 // A tail call isn't considered a call for MachineFrameInfo's purposes. 672 if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) { 673 MCPhysReg HighestVGPRReg = AMDGPU::NoRegister; 674 for (MCPhysReg Reg : reverse(AMDGPU::VGPR_32RegClass.getRegisters())) { 675 if (MRI.isPhysRegUsed(Reg)) { 676 HighestVGPRReg = Reg; 677 break; 678 } 679 } 680 681 if (ST.hasMAIInsts()) { 682 MCPhysReg HighestAGPRReg = AMDGPU::NoRegister; 683 for (MCPhysReg Reg : reverse(AMDGPU::AGPR_32RegClass.getRegisters())) { 684 if (MRI.isPhysRegUsed(Reg)) { 685 HighestAGPRReg = Reg; 686 break; 687 } 688 } 689 Info.NumAGPR = HighestAGPRReg == AMDGPU::NoRegister ? 0 : 690 TRI.getHWRegIndex(HighestAGPRReg) + 1; 691 } 692 693 MCPhysReg HighestSGPRReg = AMDGPU::NoRegister; 694 for (MCPhysReg Reg : reverse(AMDGPU::SGPR_32RegClass.getRegisters())) { 695 if (MRI.isPhysRegUsed(Reg)) { 696 HighestSGPRReg = Reg; 697 break; 698 } 699 } 700 701 // We found the maximum register index. They start at 0, so add one to get the 702 // number of registers. 703 Info.NumVGPR = HighestVGPRReg == AMDGPU::NoRegister ? 0 : 704 TRI.getHWRegIndex(HighestVGPRReg) + 1; 705 Info.NumExplicitSGPR = HighestSGPRReg == AMDGPU::NoRegister ? 0 : 706 TRI.getHWRegIndex(HighestSGPRReg) + 1; 707 708 return Info; 709 } 710 711 int32_t MaxVGPR = -1; 712 int32_t MaxAGPR = -1; 713 int32_t MaxSGPR = -1; 714 uint64_t CalleeFrameSize = 0; 715 716 for (const MachineBasicBlock &MBB : MF) { 717 for (const MachineInstr &MI : MBB) { 718 // TODO: Check regmasks? Do they occur anywhere except calls? 719 for (const MachineOperand &MO : MI.operands()) { 720 unsigned Width = 0; 721 bool IsSGPR = false; 722 bool IsAGPR = false; 723 724 if (!MO.isReg()) 725 continue; 726 727 Register Reg = MO.getReg(); 728 switch (Reg) { 729 case AMDGPU::EXEC: 730 case AMDGPU::EXEC_LO: 731 case AMDGPU::EXEC_HI: 732 case AMDGPU::SCC: 733 case AMDGPU::M0: 734 case AMDGPU::SRC_SHARED_BASE: 735 case AMDGPU::SRC_SHARED_LIMIT: 736 case AMDGPU::SRC_PRIVATE_BASE: 737 case AMDGPU::SRC_PRIVATE_LIMIT: 738 case AMDGPU::SGPR_NULL: 739 case AMDGPU::MODE: 740 continue; 741 742 case AMDGPU::SRC_POPS_EXITING_WAVE_ID: 743 llvm_unreachable("src_pops_exiting_wave_id should not be used"); 744 745 case AMDGPU::NoRegister: 746 assert(MI.isDebugInstr()); 747 continue; 748 749 case AMDGPU::VCC: 750 case AMDGPU::VCC_LO: 751 case AMDGPU::VCC_HI: 752 case AMDGPU::VCC_LO_LO16: 753 case AMDGPU::VCC_LO_HI16: 754 case AMDGPU::VCC_HI_LO16: 755 case AMDGPU::VCC_HI_HI16: 756 Info.UsesVCC = true; 757 continue; 758 759 case AMDGPU::FLAT_SCR: 760 case AMDGPU::FLAT_SCR_LO: 761 case AMDGPU::FLAT_SCR_HI: 762 continue; 763 764 case AMDGPU::XNACK_MASK: 765 case AMDGPU::XNACK_MASK_LO: 766 case AMDGPU::XNACK_MASK_HI: 767 llvm_unreachable("xnack_mask registers should not be used"); 768 769 case AMDGPU::LDS_DIRECT: 770 llvm_unreachable("lds_direct register should not be used"); 771 772 case AMDGPU::TBA: 773 case AMDGPU::TBA_LO: 774 case AMDGPU::TBA_HI: 775 case AMDGPU::TMA: 776 case AMDGPU::TMA_LO: 777 case AMDGPU::TMA_HI: 778 llvm_unreachable("trap handler registers should not be used"); 779 780 case AMDGPU::SRC_VCCZ: 781 llvm_unreachable("src_vccz register should not be used"); 782 783 case AMDGPU::SRC_EXECZ: 784 llvm_unreachable("src_execz register should not be used"); 785 786 case AMDGPU::SRC_SCC: 787 llvm_unreachable("src_scc register should not be used"); 788 789 default: 790 break; 791 } 792 793 if (AMDGPU::SReg_32RegClass.contains(Reg) || 794 AMDGPU::SReg_LO16RegClass.contains(Reg) || 795 AMDGPU::SGPR_HI16RegClass.contains(Reg)) { 796 assert(!AMDGPU::TTMP_32RegClass.contains(Reg) && 797 "trap handler registers should not be used"); 798 IsSGPR = true; 799 Width = 1; 800 } else if (AMDGPU::VGPR_32RegClass.contains(Reg) || 801 AMDGPU::VGPR_LO16RegClass.contains(Reg) || 802 AMDGPU::VGPR_HI16RegClass.contains(Reg)) { 803 IsSGPR = false; 804 Width = 1; 805 } else if (AMDGPU::AGPR_32RegClass.contains(Reg) || 806 AMDGPU::AGPR_LO16RegClass.contains(Reg)) { 807 IsSGPR = false; 808 IsAGPR = true; 809 Width = 1; 810 } else if (AMDGPU::SReg_64RegClass.contains(Reg)) { 811 assert(!AMDGPU::TTMP_64RegClass.contains(Reg) && 812 "trap handler registers should not be used"); 813 IsSGPR = true; 814 Width = 2; 815 } else if (AMDGPU::VReg_64RegClass.contains(Reg)) { 816 IsSGPR = false; 817 Width = 2; 818 } else if (AMDGPU::AReg_64RegClass.contains(Reg)) { 819 IsSGPR = false; 820 IsAGPR = true; 821 Width = 2; 822 } else if (AMDGPU::VReg_96RegClass.contains(Reg)) { 823 IsSGPR = false; 824 Width = 3; 825 } else if (AMDGPU::SReg_96RegClass.contains(Reg)) { 826 IsSGPR = true; 827 Width = 3; 828 } else if (AMDGPU::AReg_96RegClass.contains(Reg)) { 829 IsSGPR = false; 830 IsAGPR = true; 831 Width = 3; 832 } else if (AMDGPU::SReg_128RegClass.contains(Reg)) { 833 assert(!AMDGPU::TTMP_128RegClass.contains(Reg) && 834 "trap handler registers should not be used"); 835 IsSGPR = true; 836 Width = 4; 837 } else if (AMDGPU::VReg_128RegClass.contains(Reg)) { 838 IsSGPR = false; 839 Width = 4; 840 } else if (AMDGPU::AReg_128RegClass.contains(Reg)) { 841 IsSGPR = false; 842 IsAGPR = true; 843 Width = 4; 844 } else if (AMDGPU::VReg_160RegClass.contains(Reg)) { 845 IsSGPR = false; 846 Width = 5; 847 } else if (AMDGPU::SReg_160RegClass.contains(Reg)) { 848 IsSGPR = true; 849 Width = 5; 850 } else if (AMDGPU::AReg_160RegClass.contains(Reg)) { 851 IsSGPR = false; 852 IsAGPR = true; 853 Width = 5; 854 } else if (AMDGPU::VReg_192RegClass.contains(Reg)) { 855 IsSGPR = false; 856 Width = 6; 857 } else if (AMDGPU::SReg_192RegClass.contains(Reg)) { 858 IsSGPR = true; 859 Width = 6; 860 } else if (AMDGPU::AReg_192RegClass.contains(Reg)) { 861 IsSGPR = false; 862 IsAGPR = true; 863 Width = 6; 864 } else if (AMDGPU::SReg_256RegClass.contains(Reg)) { 865 assert(!AMDGPU::TTMP_256RegClass.contains(Reg) && 866 "trap handler registers should not be used"); 867 IsSGPR = true; 868 Width = 8; 869 } else if (AMDGPU::VReg_256RegClass.contains(Reg)) { 870 IsSGPR = false; 871 Width = 8; 872 } else if (AMDGPU::AReg_256RegClass.contains(Reg)) { 873 IsSGPR = false; 874 IsAGPR = true; 875 Width = 8; 876 } else if (AMDGPU::SReg_512RegClass.contains(Reg)) { 877 assert(!AMDGPU::TTMP_512RegClass.contains(Reg) && 878 "trap handler registers should not be used"); 879 IsSGPR = true; 880 Width = 16; 881 } else if (AMDGPU::VReg_512RegClass.contains(Reg)) { 882 IsSGPR = false; 883 Width = 16; 884 } else if (AMDGPU::AReg_512RegClass.contains(Reg)) { 885 IsSGPR = false; 886 IsAGPR = true; 887 Width = 16; 888 } else if (AMDGPU::SReg_1024RegClass.contains(Reg)) { 889 IsSGPR = true; 890 Width = 32; 891 } else if (AMDGPU::VReg_1024RegClass.contains(Reg)) { 892 IsSGPR = false; 893 Width = 32; 894 } else if (AMDGPU::AReg_1024RegClass.contains(Reg)) { 895 IsSGPR = false; 896 IsAGPR = true; 897 Width = 32; 898 } else { 899 llvm_unreachable("Unknown register class"); 900 } 901 unsigned HWReg = TRI.getHWRegIndex(Reg); 902 int MaxUsed = HWReg + Width - 1; 903 if (IsSGPR) { 904 MaxSGPR = MaxUsed > MaxSGPR ? MaxUsed : MaxSGPR; 905 } else if (IsAGPR) { 906 MaxAGPR = MaxUsed > MaxAGPR ? MaxUsed : MaxAGPR; 907 } else { 908 MaxVGPR = MaxUsed > MaxVGPR ? MaxUsed : MaxVGPR; 909 } 910 } 911 912 if (MI.isCall()) { 913 // Pseudo used just to encode the underlying global. Is there a better 914 // way to track this? 915 916 const MachineOperand *CalleeOp 917 = TII->getNamedOperand(MI, AMDGPU::OpName::callee); 918 919 const Function *Callee = getCalleeFunction(*CalleeOp); 920 if (!Callee || Callee->isDeclaration()) { 921 // If this is a call to an external function, we can't do much. Make 922 // conservative guesses. 923 924 // 48 SGPRs - vcc, - flat_scr, -xnack 925 int MaxSGPRGuess = 926 47 - IsaInfo::getNumExtraSGPRs(&ST, true, ST.hasFlatAddressSpace()); 927 MaxSGPR = std::max(MaxSGPR, MaxSGPRGuess); 928 MaxVGPR = std::max(MaxVGPR, 23); 929 MaxAGPR = std::max(MaxAGPR, 23); 930 931 CalleeFrameSize = std::max(CalleeFrameSize, 932 static_cast<uint64_t>(AssumedStackSizeForExternalCall)); 933 934 Info.UsesVCC = true; 935 Info.UsesFlatScratch = ST.hasFlatAddressSpace(); 936 Info.HasDynamicallySizedStack = true; 937 } else { 938 // We force CodeGen to run in SCC order, so the callee's register 939 // usage etc. should be the cumulative usage of all callees. 940 941 auto I = CallGraphResourceInfo.find(Callee); 942 if (I == CallGraphResourceInfo.end()) { 943 // Avoid crashing on undefined behavior with an illegal call to a 944 // kernel. If a callsite's calling convention doesn't match the 945 // function's, it's undefined behavior. If the callsite calling 946 // convention does match, that would have errored earlier. 947 // FIXME: The verifier shouldn't allow this. 948 if (AMDGPU::isEntryFunctionCC(Callee->getCallingConv())) 949 report_fatal_error("invalid call to entry function"); 950 951 llvm_unreachable("callee should have been handled before caller"); 952 } 953 954 MaxSGPR = std::max(I->second.NumExplicitSGPR - 1, MaxSGPR); 955 MaxVGPR = std::max(I->second.NumVGPR - 1, MaxVGPR); 956 MaxAGPR = std::max(I->second.NumAGPR - 1, MaxAGPR); 957 CalleeFrameSize 958 = std::max(I->second.PrivateSegmentSize, CalleeFrameSize); 959 Info.UsesVCC |= I->second.UsesVCC; 960 Info.UsesFlatScratch |= I->second.UsesFlatScratch; 961 Info.HasDynamicallySizedStack |= I->second.HasDynamicallySizedStack; 962 Info.HasRecursion |= I->second.HasRecursion; 963 } 964 965 // FIXME: Call site could have norecurse on it 966 if (!Callee || !Callee->doesNotRecurse()) 967 Info.HasRecursion = true; 968 } 969 } 970 } 971 972 Info.NumExplicitSGPR = MaxSGPR + 1; 973 Info.NumVGPR = MaxVGPR + 1; 974 Info.NumAGPR = MaxAGPR + 1; 975 Info.PrivateSegmentSize += CalleeFrameSize; 976 977 return Info; 978 } 979 980 void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo, 981 const MachineFunction &MF) { 982 SIFunctionResourceInfo Info = analyzeResourceUsage(MF); 983 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 984 985 ProgInfo.NumArchVGPR = Info.NumVGPR; 986 ProgInfo.NumAccVGPR = Info.NumAGPR; 987 ProgInfo.NumVGPR = Info.getTotalNumVGPRs(STM); 988 ProgInfo.NumSGPR = Info.NumExplicitSGPR; 989 ProgInfo.ScratchSize = Info.PrivateSegmentSize; 990 ProgInfo.VCCUsed = Info.UsesVCC; 991 ProgInfo.FlatUsed = Info.UsesFlatScratch; 992 ProgInfo.DynamicCallStack = Info.HasDynamicallySizedStack || Info.HasRecursion; 993 994 if (!isUInt<32>(ProgInfo.ScratchSize)) { 995 DiagnosticInfoStackSize DiagStackSize(MF.getFunction(), 996 ProgInfo.ScratchSize, DS_Error); 997 MF.getFunction().getContext().diagnose(DiagStackSize); 998 } 999 1000 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1001 1002 // TODO(scott.linder): The calculations related to SGPR/VGPR blocks are 1003 // duplicated in part in AMDGPUAsmParser::calculateGPRBlocks, and could be 1004 // unified. 1005 unsigned ExtraSGPRs = IsaInfo::getNumExtraSGPRs( 1006 &STM, ProgInfo.VCCUsed, ProgInfo.FlatUsed); 1007 1008 // Check the addressable register limit before we add ExtraSGPRs. 1009 if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && 1010 !STM.hasSGPRInitBug()) { 1011 unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); 1012 if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { 1013 // This can happen due to a compiler bug or when using inline asm. 1014 LLVMContext &Ctx = MF.getFunction().getContext(); 1015 DiagnosticInfoResourceLimit Diag(MF.getFunction(), 1016 "addressable scalar registers", 1017 ProgInfo.NumSGPR, DS_Error, 1018 DK_ResourceLimit, 1019 MaxAddressableNumSGPRs); 1020 Ctx.diagnose(Diag); 1021 ProgInfo.NumSGPR = MaxAddressableNumSGPRs - 1; 1022 } 1023 } 1024 1025 // Account for extra SGPRs and VGPRs reserved for debugger use. 1026 ProgInfo.NumSGPR += ExtraSGPRs; 1027 1028 // Ensure there are enough SGPRs and VGPRs for wave dispatch, where wave 1029 // dispatch registers are function args. 1030 unsigned WaveDispatchNumSGPR = 0, WaveDispatchNumVGPR = 0; 1031 for (auto &Arg : MF.getFunction().args()) { 1032 unsigned NumRegs = (Arg.getType()->getPrimitiveSizeInBits() + 31) / 32; 1033 if (Arg.hasAttribute(Attribute::InReg)) 1034 WaveDispatchNumSGPR += NumRegs; 1035 else 1036 WaveDispatchNumVGPR += NumRegs; 1037 } 1038 ProgInfo.NumSGPR = std::max(ProgInfo.NumSGPR, WaveDispatchNumSGPR); 1039 ProgInfo.NumVGPR = std::max(ProgInfo.NumVGPR, WaveDispatchNumVGPR); 1040 1041 // Adjust number of registers used to meet default/requested minimum/maximum 1042 // number of waves per execution unit request. 1043 ProgInfo.NumSGPRsForWavesPerEU = std::max( 1044 std::max(ProgInfo.NumSGPR, 1u), STM.getMinNumSGPRs(MFI->getMaxWavesPerEU())); 1045 ProgInfo.NumVGPRsForWavesPerEU = std::max( 1046 std::max(ProgInfo.NumVGPR, 1u), STM.getMinNumVGPRs(MFI->getMaxWavesPerEU())); 1047 1048 if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS || 1049 STM.hasSGPRInitBug()) { 1050 unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); 1051 if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { 1052 // This can happen due to a compiler bug or when using inline asm to use 1053 // the registers which are usually reserved for vcc etc. 1054 LLVMContext &Ctx = MF.getFunction().getContext(); 1055 DiagnosticInfoResourceLimit Diag(MF.getFunction(), 1056 "scalar registers", 1057 ProgInfo.NumSGPR, DS_Error, 1058 DK_ResourceLimit, 1059 MaxAddressableNumSGPRs); 1060 Ctx.diagnose(Diag); 1061 ProgInfo.NumSGPR = MaxAddressableNumSGPRs; 1062 ProgInfo.NumSGPRsForWavesPerEU = MaxAddressableNumSGPRs; 1063 } 1064 } 1065 1066 if (STM.hasSGPRInitBug()) { 1067 ProgInfo.NumSGPR = 1068 AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 1069 ProgInfo.NumSGPRsForWavesPerEU = 1070 AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 1071 } 1072 1073 if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) { 1074 LLVMContext &Ctx = MF.getFunction().getContext(); 1075 DiagnosticInfoResourceLimit Diag(MF.getFunction(), "user SGPRs", 1076 MFI->getNumUserSGPRs(), DS_Error); 1077 Ctx.diagnose(Diag); 1078 } 1079 1080 if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) { 1081 LLVMContext &Ctx = MF.getFunction().getContext(); 1082 DiagnosticInfoResourceLimit Diag(MF.getFunction(), "local memory", 1083 MFI->getLDSSize(), DS_Error); 1084 Ctx.diagnose(Diag); 1085 } 1086 1087 ProgInfo.SGPRBlocks = IsaInfo::getNumSGPRBlocks( 1088 &STM, ProgInfo.NumSGPRsForWavesPerEU); 1089 ProgInfo.VGPRBlocks = IsaInfo::getNumVGPRBlocks( 1090 &STM, ProgInfo.NumVGPRsForWavesPerEU); 1091 1092 const SIModeRegisterDefaults Mode = MFI->getMode(); 1093 1094 // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode 1095 // register. 1096 ProgInfo.FloatMode = getFPMode(Mode); 1097 1098 ProgInfo.IEEEMode = Mode.IEEE; 1099 1100 // Make clamp modifier on NaN input returns 0. 1101 ProgInfo.DX10Clamp = Mode.DX10Clamp; 1102 1103 unsigned LDSAlignShift; 1104 if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 1105 // LDS is allocated in 64 dword blocks. 1106 LDSAlignShift = 8; 1107 } else { 1108 // LDS is allocated in 128 dword blocks. 1109 LDSAlignShift = 9; 1110 } 1111 1112 unsigned LDSSpillSize = 1113 MFI->getLDSWaveSpillSize() * MFI->getMaxFlatWorkGroupSize(); 1114 1115 ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize; 1116 ProgInfo.LDSBlocks = 1117 alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift; 1118 1119 // Scratch is allocated in 256 dword blocks. 1120 unsigned ScratchAlignShift = 10; 1121 // We need to program the hardware with the amount of scratch memory that 1122 // is used by the entire wave. ProgInfo.ScratchSize is the amount of 1123 // scratch memory used per thread. 1124 ProgInfo.ScratchBlocks = 1125 alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(), 1126 1ULL << ScratchAlignShift) >> 1127 ScratchAlignShift; 1128 1129 if (getIsaVersion(getGlobalSTI()->getCPU()).Major >= 10) { 1130 ProgInfo.WgpMode = STM.isCuModeEnabled() ? 0 : 1; 1131 ProgInfo.MemOrdered = 1; 1132 } 1133 1134 ProgInfo.ComputePGMRSrc1 = 1135 S_00B848_VGPRS(ProgInfo.VGPRBlocks) | 1136 S_00B848_SGPRS(ProgInfo.SGPRBlocks) | 1137 S_00B848_PRIORITY(ProgInfo.Priority) | 1138 S_00B848_FLOAT_MODE(ProgInfo.FloatMode) | 1139 S_00B848_PRIV(ProgInfo.Priv) | 1140 S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) | 1141 S_00B848_DEBUG_MODE(ProgInfo.DebugMode) | 1142 S_00B848_IEEE_MODE(ProgInfo.IEEEMode) | 1143 S_00B848_WGP_MODE(ProgInfo.WgpMode) | 1144 S_00B848_MEM_ORDERED(ProgInfo.MemOrdered); 1145 1146 // 0 = X, 1 = XY, 2 = XYZ 1147 unsigned TIDIGCompCnt = 0; 1148 if (MFI->hasWorkItemIDZ()) 1149 TIDIGCompCnt = 2; 1150 else if (MFI->hasWorkItemIDY()) 1151 TIDIGCompCnt = 1; 1152 1153 ProgInfo.ComputePGMRSrc2 = 1154 S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) | 1155 S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) | 1156 // For AMDHSA, TRAP_HANDLER must be zero, as it is populated by the CP. 1157 S_00B84C_TRAP_HANDLER(STM.isAmdHsaOS() ? 0 : STM.isTrapHandlerEnabled()) | 1158 S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) | 1159 S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) | 1160 S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) | 1161 S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) | 1162 S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) | 1163 S_00B84C_EXCP_EN_MSB(0) | 1164 // For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP. 1165 S_00B84C_LDS_SIZE(STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks) | 1166 S_00B84C_EXCP_EN(0); 1167 1168 ProgInfo.Occupancy = STM.computeOccupancy(MF, ProgInfo.LDSSize, 1169 ProgInfo.NumSGPRsForWavesPerEU, 1170 ProgInfo.NumVGPRsForWavesPerEU); 1171 } 1172 1173 static unsigned getRsrcReg(CallingConv::ID CallConv) { 1174 switch (CallConv) { 1175 default: LLVM_FALLTHROUGH; 1176 case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1; 1177 case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS; 1178 case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS; 1179 case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES; 1180 case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS; 1181 case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS; 1182 case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS; 1183 } 1184 } 1185 1186 void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF, 1187 const SIProgramInfo &CurrentProgramInfo) { 1188 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1189 unsigned RsrcReg = getRsrcReg(MF.getFunction().getCallingConv()); 1190 1191 if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { 1192 OutStreamer->emitInt32(R_00B848_COMPUTE_PGM_RSRC1); 1193 1194 OutStreamer->emitInt32(CurrentProgramInfo.ComputePGMRSrc1); 1195 1196 OutStreamer->emitInt32(R_00B84C_COMPUTE_PGM_RSRC2); 1197 OutStreamer->emitInt32(CurrentProgramInfo.ComputePGMRSrc2); 1198 1199 OutStreamer->emitInt32(R_00B860_COMPUTE_TMPRING_SIZE); 1200 OutStreamer->emitInt32(S_00B860_WAVESIZE(CurrentProgramInfo.ScratchBlocks)); 1201 1202 // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 = 1203 // 0" comment but I don't see a corresponding field in the register spec. 1204 } else { 1205 OutStreamer->emitInt32(RsrcReg); 1206 OutStreamer->emitIntValue(S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | 1207 S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks), 4); 1208 OutStreamer->emitInt32(R_0286E8_SPI_TMPRING_SIZE); 1209 OutStreamer->emitIntValue( 1210 S_0286E8_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); 1211 } 1212 1213 if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { 1214 OutStreamer->emitInt32(R_00B02C_SPI_SHADER_PGM_RSRC2_PS); 1215 OutStreamer->emitInt32( 1216 S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks)); 1217 OutStreamer->emitInt32(R_0286CC_SPI_PS_INPUT_ENA); 1218 OutStreamer->emitInt32(MFI->getPSInputEnable()); 1219 OutStreamer->emitInt32(R_0286D0_SPI_PS_INPUT_ADDR); 1220 OutStreamer->emitInt32(MFI->getPSInputAddr()); 1221 } 1222 1223 OutStreamer->emitInt32(R_SPILLED_SGPRS); 1224 OutStreamer->emitInt32(MFI->getNumSpilledSGPRs()); 1225 OutStreamer->emitInt32(R_SPILLED_VGPRS); 1226 OutStreamer->emitInt32(MFI->getNumSpilledVGPRs()); 1227 } 1228 1229 // This is the equivalent of EmitProgramInfoSI above, but for when the OS type 1230 // is AMDPAL. It stores each compute/SPI register setting and other PAL 1231 // metadata items into the PALMD::Metadata, combining with any provided by the 1232 // frontend as LLVM metadata. Once all functions are written, the PAL metadata 1233 // is then written as a single block in the .note section. 1234 void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF, 1235 const SIProgramInfo &CurrentProgramInfo) { 1236 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1237 auto CC = MF.getFunction().getCallingConv(); 1238 auto MD = getTargetStreamer()->getPALMetadata(); 1239 1240 MD->setEntryPoint(CC, MF.getFunction().getName()); 1241 MD->setNumUsedVgprs(CC, CurrentProgramInfo.NumVGPRsForWavesPerEU); 1242 MD->setNumUsedSgprs(CC, CurrentProgramInfo.NumSGPRsForWavesPerEU); 1243 if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { 1244 MD->setRsrc1(CC, CurrentProgramInfo.ComputePGMRSrc1); 1245 MD->setRsrc2(CC, CurrentProgramInfo.ComputePGMRSrc2); 1246 } else { 1247 MD->setRsrc1(CC, S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | 1248 S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks)); 1249 if (CurrentProgramInfo.ScratchBlocks > 0) 1250 MD->setRsrc2(CC, S_00B84C_SCRATCH_EN(1)); 1251 } 1252 // ScratchSize is in bytes, 16 aligned. 1253 MD->setScratchSize(CC, alignTo(CurrentProgramInfo.ScratchSize, 16)); 1254 if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { 1255 MD->setRsrc2(CC, S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks)); 1256 MD->setSpiPsInputEna(MFI->getPSInputEnable()); 1257 MD->setSpiPsInputAddr(MFI->getPSInputAddr()); 1258 } 1259 1260 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 1261 if (STM.isWave32()) 1262 MD->setWave32(MF.getFunction().getCallingConv()); 1263 } 1264 1265 // This is supposed to be log2(Size) 1266 static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) { 1267 switch (Size) { 1268 case 4: 1269 return AMD_ELEMENT_4_BYTES; 1270 case 8: 1271 return AMD_ELEMENT_8_BYTES; 1272 case 16: 1273 return AMD_ELEMENT_16_BYTES; 1274 default: 1275 llvm_unreachable("invalid private_element_size"); 1276 } 1277 } 1278 1279 void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out, 1280 const SIProgramInfo &CurrentProgramInfo, 1281 const MachineFunction &MF) const { 1282 const Function &F = MF.getFunction(); 1283 assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || 1284 F.getCallingConv() == CallingConv::SPIR_KERNEL); 1285 1286 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1287 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 1288 1289 AMDGPU::initDefaultAMDKernelCodeT(Out, &STM); 1290 1291 Out.compute_pgm_resource_registers = 1292 CurrentProgramInfo.ComputePGMRSrc1 | 1293 (CurrentProgramInfo.ComputePGMRSrc2 << 32); 1294 Out.code_properties |= AMD_CODE_PROPERTY_IS_PTR64; 1295 1296 if (CurrentProgramInfo.DynamicCallStack) 1297 Out.code_properties |= AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK; 1298 1299 AMD_HSA_BITS_SET(Out.code_properties, 1300 AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE, 1301 getElementByteSizeValue(STM.getMaxPrivateElementSize())); 1302 1303 if (MFI->hasPrivateSegmentBuffer()) { 1304 Out.code_properties |= 1305 AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; 1306 } 1307 1308 if (MFI->hasDispatchPtr()) 1309 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 1310 1311 if (MFI->hasQueuePtr()) 1312 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; 1313 1314 if (MFI->hasKernargSegmentPtr()) 1315 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; 1316 1317 if (MFI->hasDispatchID()) 1318 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; 1319 1320 if (MFI->hasFlatScratchInit()) 1321 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; 1322 1323 if (MFI->hasDispatchPtr()) 1324 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 1325 1326 if (STM.isXNACKEnabled()) 1327 Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED; 1328 1329 Align MaxKernArgAlign; 1330 Out.kernarg_segment_byte_size = STM.getKernArgSegmentSize(F, MaxKernArgAlign); 1331 Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR; 1332 Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR; 1333 Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize; 1334 Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize; 1335 1336 // kernarg_segment_alignment is specified as log of the alignment. 1337 // The minimum alignment is 16. 1338 Out.kernarg_segment_alignment = Log2(std::max(Align(16), MaxKernArgAlign)); 1339 } 1340 1341 bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1342 const char *ExtraCode, raw_ostream &O) { 1343 // First try the generic code, which knows about modifiers like 'c' and 'n'. 1344 if (!AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O)) 1345 return false; 1346 1347 if (ExtraCode && ExtraCode[0]) { 1348 if (ExtraCode[1] != 0) 1349 return true; // Unknown modifier. 1350 1351 switch (ExtraCode[0]) { 1352 case 'r': 1353 break; 1354 default: 1355 return true; 1356 } 1357 } 1358 1359 // TODO: Should be able to support other operand types like globals. 1360 const MachineOperand &MO = MI->getOperand(OpNo); 1361 if (MO.isReg()) { 1362 AMDGPUInstPrinter::printRegOperand(MO.getReg(), O, 1363 *MF->getSubtarget().getRegisterInfo()); 1364 return false; 1365 } else if (MO.isImm()) { 1366 int64_t Val = MO.getImm(); 1367 if (AMDGPU::isInlinableIntLiteral(Val)) { 1368 O << Val; 1369 } else if (isUInt<16>(Val)) { 1370 O << format("0x%" PRIx64, static_cast<uint16_t>(Val)); 1371 } else if (isUInt<32>(Val)) { 1372 O << format("0x%" PRIx64, static_cast<uint32_t>(Val)); 1373 } else { 1374 O << format("0x%" PRIx64, static_cast<uint64_t>(Val)); 1375 } 1376 return false; 1377 } 1378 return true; 1379 } 1380