1 //===-- AMDGPUAsmPrinter.cpp - AMDGPU assembly printer -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// 12 /// The AMDGPUAsmPrinter is used to print both assembly string and also binary 13 /// code. When passed an MCAsmStreamer it prints assembly and when passed 14 /// an MCObjectStreamer it outputs binary code. 15 // 16 //===----------------------------------------------------------------------===// 17 // 18 19 #include "AMDGPUAsmPrinter.h" 20 #include "AMDGPU.h" 21 #include "AMDGPUSubtarget.h" 22 #include "AMDGPUTargetMachine.h" 23 #include "InstPrinter/AMDGPUInstPrinter.h" 24 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 25 #include "MCTargetDesc/AMDGPUTargetStreamer.h" 26 #include "R600AsmPrinter.h" 27 #include "R600Defines.h" 28 #include "R600MachineFunctionInfo.h" 29 #include "R600RegisterInfo.h" 30 #include "SIDefines.h" 31 #include "SIInstrInfo.h" 32 #include "SIMachineFunctionInfo.h" 33 #include "SIRegisterInfo.h" 34 #include "Utils/AMDGPUBaseInfo.h" 35 #include "llvm/BinaryFormat/ELF.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/IR/DiagnosticInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/MC/MCSectionELF.h" 40 #include "llvm/MC/MCStreamer.h" 41 #include "llvm/Support/AMDGPUMetadata.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Target/TargetLoweringObjectFile.h" 45 46 using namespace llvm; 47 using namespace llvm::AMDGPU; 48 49 // TODO: This should get the default rounding mode from the kernel. We just set 50 // the default here, but this could change if the OpenCL rounding mode pragmas 51 // are used. 52 // 53 // The denormal mode here should match what is reported by the OpenCL runtime 54 // for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but 55 // can also be override to flush with the -cl-denorms-are-zero compiler flag. 56 // 57 // AMD OpenCL only sets flush none and reports CL_FP_DENORM for double 58 // precision, and leaves single precision to flush all and does not report 59 // CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports 60 // CL_FP_DENORM for both. 61 // 62 // FIXME: It seems some instructions do not support single precision denormals 63 // regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32, 64 // and sin_f32, cos_f32 on most parts). 65 66 // We want to use these instructions, and using fp32 denormals also causes 67 // instructions to run at the double precision rate for the device so it's 68 // probably best to just report no single precision denormals. 69 static uint32_t getFPMode(const MachineFunction &F) { 70 const SISubtarget& ST = F.getSubtarget<SISubtarget>(); 71 // TODO: Is there any real use for the flush in only / flush out only modes? 72 73 uint32_t FP32Denormals = 74 ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; 75 76 uint32_t FP64Denormals = 77 ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; 78 79 return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) | 80 FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) | 81 FP_DENORM_MODE_SP(FP32Denormals) | 82 FP_DENORM_MODE_DP(FP64Denormals); 83 } 84 85 static AsmPrinter * 86 createAMDGPUAsmPrinterPass(TargetMachine &tm, 87 std::unique_ptr<MCStreamer> &&Streamer) { 88 return new AMDGPUAsmPrinter(tm, std::move(Streamer)); 89 } 90 91 extern "C" void LLVMInitializeAMDGPUAsmPrinter() { 92 TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(), 93 llvm::createR600AsmPrinterPass); 94 TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(), 95 createAMDGPUAsmPrinterPass); 96 } 97 98 AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, 99 std::unique_ptr<MCStreamer> Streamer) 100 : AsmPrinter(TM, std::move(Streamer)) { 101 AMDGPUASI = static_cast<AMDGPUTargetMachine*>(&TM)->getAMDGPUAS(); 102 } 103 104 StringRef AMDGPUAsmPrinter::getPassName() const { 105 return "AMDGPU Assembly Printer"; 106 } 107 108 const MCSubtargetInfo* AMDGPUAsmPrinter::getSTI() const { 109 return TM.getMCSubtargetInfo(); 110 } 111 112 AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const { 113 if (!OutStreamer) 114 return nullptr; 115 return static_cast<AMDGPUTargetStreamer*>(OutStreamer->getTargetStreamer()); 116 } 117 118 void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) { 119 if (IsaInfo::hasCodeObjectV3(getSTI()) && 120 TM.getTargetTriple().getOS() == Triple::AMDHSA) 121 return; 122 123 if (TM.getTargetTriple().getOS() != Triple::AMDHSA && 124 TM.getTargetTriple().getOS() != Triple::AMDPAL) 125 return; 126 127 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) 128 HSAMetadataStream.begin(M); 129 130 if (TM.getTargetTriple().getOS() == Triple::AMDPAL) 131 readPALMetadata(M); 132 133 // HSA emits NT_AMDGPU_HSA_CODE_OBJECT_VERSION for code objects v2. 134 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) 135 getTargetStreamer()->EmitDirectiveHSACodeObjectVersion(2, 1); 136 137 // HSA and PAL emit NT_AMDGPU_HSA_ISA for code objects v2. 138 IsaInfo::IsaVersion ISA = IsaInfo::getIsaVersion(getSTI()->getFeatureBits()); 139 getTargetStreamer()->EmitDirectiveHSACodeObjectISA( 140 ISA.Major, ISA.Minor, ISA.Stepping, "AMD", "AMDGPU"); 141 } 142 143 void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) { 144 // TODO: Add metadata to code object v3. 145 if (IsaInfo::hasCodeObjectV3(getSTI()) && 146 TM.getTargetTriple().getOS() == Triple::AMDHSA) 147 return; 148 149 // Following code requires TargetStreamer to be present. 150 if (!getTargetStreamer()) 151 return; 152 153 // Emit ISA Version (NT_AMD_AMDGPU_ISA). 154 std::string ISAVersionString; 155 raw_string_ostream ISAVersionStream(ISAVersionString); 156 IsaInfo::streamIsaVersion(getSTI(), ISAVersionStream); 157 getTargetStreamer()->EmitISAVersion(ISAVersionStream.str()); 158 159 // Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA). 160 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) { 161 HSAMetadataStream.end(); 162 getTargetStreamer()->EmitHSAMetadata(HSAMetadataStream.getHSAMetadata()); 163 } 164 165 // Emit PAL Metadata (NT_AMD_AMDGPU_PAL_METADATA). 166 if (TM.getTargetTriple().getOS() == Triple::AMDPAL) { 167 // Copy the PAL metadata from the map where we collected it into a vector, 168 // then write it as a .note. 169 PALMD::Metadata PALMetadataVector; 170 for (auto i : PALMetadataMap) { 171 PALMetadataVector.push_back(i.first); 172 PALMetadataVector.push_back(i.second); 173 } 174 getTargetStreamer()->EmitPALMetadata(PALMetadataVector); 175 } 176 } 177 178 bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough( 179 const MachineBasicBlock *MBB) const { 180 if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB)) 181 return false; 182 183 if (MBB->empty()) 184 return true; 185 186 // If this is a block implementing a long branch, an expression relative to 187 // the start of the block is needed. to the start of the block. 188 // XXX - Is there a smarter way to check this? 189 return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64); 190 } 191 192 void AMDGPUAsmPrinter::EmitFunctionBodyStart() { 193 const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>(); 194 if (!MFI.isEntryFunction()) 195 return; 196 if (IsaInfo::hasCodeObjectV3(getSTI()) && 197 TM.getTargetTriple().getOS() == Triple::AMDHSA) 198 return; 199 200 const AMDGPUSubtarget &STM = MF->getSubtarget<AMDGPUSubtarget>(); 201 amd_kernel_code_t KernelCode; 202 if (STM.isAmdCodeObjectV2(MF->getFunction())) { 203 getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF); 204 getTargetStreamer()->EmitAMDKernelCodeT(KernelCode); 205 } 206 207 if (TM.getTargetTriple().getOS() != Triple::AMDHSA) 208 return; 209 210 HSAMetadataStream.emitKernel(MF->getFunction(), 211 getHSACodeProps(*MF, CurrentProgramInfo), 212 getHSADebugProps(*MF, CurrentProgramInfo)); 213 } 214 215 void AMDGPUAsmPrinter::EmitFunctionBodyEnd() { 216 const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>(); 217 if (!MFI.isEntryFunction()) 218 return; 219 if (!IsaInfo::hasCodeObjectV3(getSTI()) || 220 TM.getTargetTriple().getOS() != Triple::AMDHSA) 221 return; 222 223 auto &Streamer = getTargetStreamer()->getStreamer(); 224 auto &Context = Streamer.getContext(); 225 auto &ObjectFileInfo = *Context.getObjectFileInfo(); 226 auto &ReadOnlySection = *ObjectFileInfo.getReadOnlySection(); 227 228 Streamer.PushSection(); 229 Streamer.SwitchSection(&ReadOnlySection); 230 231 // CP microcode requires the kernel descriptor to be allocated on 64 byte 232 // alignment. 233 Streamer.EmitValueToAlignment(64, 0, 1, 0); 234 if (ReadOnlySection.getAlignment() < 64) 235 ReadOnlySection.setAlignment(64); 236 237 SmallString<128> KernelName; 238 getNameWithPrefix(KernelName, &MF->getFunction()); 239 getTargetStreamer()->EmitAmdhsaKernelDescriptor( 240 *getSTI(), KernelName, getAmdhsaKernelDescriptor(*MF, CurrentProgramInfo), 241 CurrentProgramInfo.NumVGPRsForWavesPerEU, 242 CurrentProgramInfo.NumSGPRsForWavesPerEU - 243 IsaInfo::getNumExtraSGPRs(getSTI()->getFeatureBits(), 244 CurrentProgramInfo.VCCUsed, 245 CurrentProgramInfo.FlatUsed), 246 CurrentProgramInfo.VCCUsed, CurrentProgramInfo.FlatUsed, 247 hasXNACK(*getSTI())); 248 249 Streamer.PopSection(); 250 } 251 252 void AMDGPUAsmPrinter::EmitFunctionEntryLabel() { 253 if (IsaInfo::hasCodeObjectV3(getSTI()) && 254 TM.getTargetTriple().getOS() == Triple::AMDHSA) { 255 AsmPrinter::EmitFunctionEntryLabel(); 256 return; 257 } 258 259 const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 260 const AMDGPUSubtarget &STM = MF->getSubtarget<AMDGPUSubtarget>(); 261 if (MFI->isEntryFunction() && STM.isAmdCodeObjectV2(MF->getFunction())) { 262 SmallString<128> SymbolName; 263 getNameWithPrefix(SymbolName, &MF->getFunction()), 264 getTargetStreamer()->EmitAMDGPUSymbolType( 265 SymbolName, ELF::STT_AMDGPU_HSA_KERNEL); 266 } 267 const AMDGPUSubtarget &STI = MF->getSubtarget<AMDGPUSubtarget>(); 268 if (STI.dumpCode()) { 269 // Disassemble function name label to text. 270 DisasmLines.push_back(MF->getName().str() + ":"); 271 DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); 272 HexLines.push_back(""); 273 } 274 275 AsmPrinter::EmitFunctionEntryLabel(); 276 } 277 278 void AMDGPUAsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 279 const AMDGPUSubtarget &STI = MBB.getParent()->getSubtarget<AMDGPUSubtarget>(); 280 if (STI.dumpCode() && !isBlockOnlyReachableByFallthrough(&MBB)) { 281 // Write a line for the basic block label if it is not only fallthrough. 282 DisasmLines.push_back( 283 (Twine("BB") + Twine(getFunctionNumber()) 284 + "_" + Twine(MBB.getNumber()) + ":").str()); 285 DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); 286 HexLines.push_back(""); 287 } 288 AsmPrinter::EmitBasicBlockStart(MBB); 289 } 290 291 void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 292 293 // Group segment variables aren't emitted in HSA. 294 if (AMDGPU::isGroupSegment(GV)) 295 return; 296 297 AsmPrinter::EmitGlobalVariable(GV); 298 } 299 300 bool AMDGPUAsmPrinter::doFinalization(Module &M) { 301 CallGraphResourceInfo.clear(); 302 return AsmPrinter::doFinalization(M); 303 } 304 305 // For the amdpal OS type, read the amdgpu.pal.metadata supplied by the 306 // frontend into our PALMetadataMap, ready for per-function modification. It 307 // is a NamedMD containing an MDTuple containing a number of MDNodes each of 308 // which is an integer value, and each two integer values forms a key=value 309 // pair that we store as PALMetadataMap[key]=value in the map. 310 void AMDGPUAsmPrinter::readPALMetadata(Module &M) { 311 auto NamedMD = M.getNamedMetadata("amdgpu.pal.metadata"); 312 if (!NamedMD || !NamedMD->getNumOperands()) 313 return; 314 auto Tuple = dyn_cast<MDTuple>(NamedMD->getOperand(0)); 315 if (!Tuple) 316 return; 317 for (unsigned I = 0, E = Tuple->getNumOperands() & -2; I != E; I += 2) { 318 auto Key = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I)); 319 auto Val = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I + 1)); 320 if (!Key || !Val) 321 continue; 322 PALMetadataMap[Key->getZExtValue()] = Val->getZExtValue(); 323 } 324 } 325 326 // Print comments that apply to both callable functions and entry points. 327 void AMDGPUAsmPrinter::emitCommonFunctionComments( 328 uint32_t NumVGPR, 329 uint32_t NumSGPR, 330 uint64_t ScratchSize, 331 uint64_t CodeSize, 332 const AMDGPUMachineFunction *MFI) { 333 OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false); 334 OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false); 335 OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false); 336 OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false); 337 OutStreamer->emitRawComment(" MemoryBound: " + Twine(MFI->isMemoryBound()), 338 false); 339 } 340 341 uint16_t AMDGPUAsmPrinter::getAmdhsaKernelCodeProperties( 342 const MachineFunction &MF) const { 343 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 344 uint16_t KernelCodeProperties = 0; 345 346 if (MFI.hasPrivateSegmentBuffer()) { 347 KernelCodeProperties |= 348 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; 349 } 350 if (MFI.hasDispatchPtr()) { 351 KernelCodeProperties |= 352 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 353 } 354 if (MFI.hasQueuePtr()) { 355 KernelCodeProperties |= 356 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; 357 } 358 if (MFI.hasKernargSegmentPtr()) { 359 KernelCodeProperties |= 360 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; 361 } 362 if (MFI.hasDispatchID()) { 363 KernelCodeProperties |= 364 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; 365 } 366 if (MFI.hasFlatScratchInit()) { 367 KernelCodeProperties |= 368 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; 369 } 370 371 return KernelCodeProperties; 372 } 373 374 amdhsa::kernel_descriptor_t AMDGPUAsmPrinter::getAmdhsaKernelDescriptor( 375 const MachineFunction &MF, 376 const SIProgramInfo &PI) const { 377 amdhsa::kernel_descriptor_t KernelDescriptor; 378 memset(&KernelDescriptor, 0x0, sizeof(KernelDescriptor)); 379 380 assert(isUInt<32>(PI.ScratchSize)); 381 assert(isUInt<32>(PI.ComputePGMRSrc1)); 382 assert(isUInt<32>(PI.ComputePGMRSrc2)); 383 384 KernelDescriptor.group_segment_fixed_size = PI.LDSSize; 385 KernelDescriptor.private_segment_fixed_size = PI.ScratchSize; 386 KernelDescriptor.compute_pgm_rsrc1 = PI.ComputePGMRSrc1; 387 KernelDescriptor.compute_pgm_rsrc2 = PI.ComputePGMRSrc2; 388 KernelDescriptor.kernel_code_properties = getAmdhsaKernelCodeProperties(MF); 389 390 return KernelDescriptor; 391 } 392 393 bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 394 CurrentProgramInfo = SIProgramInfo(); 395 396 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 397 398 // The starting address of all shader programs must be 256 bytes aligned. 399 // Regular functions just need the basic required instruction alignment. 400 MF.setAlignment(MFI->isEntryFunction() ? 8 : 2); 401 402 SetupMachineFunction(MF); 403 404 const AMDGPUSubtarget &STM = MF.getSubtarget<AMDGPUSubtarget>(); 405 MCContext &Context = getObjFileLowering().getContext(); 406 // FIXME: This should be an explicit check for Mesa. 407 if (!STM.isAmdHsaOS() && !STM.isAmdPalOS()) { 408 MCSectionELF *ConfigSection = 409 Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0); 410 OutStreamer->SwitchSection(ConfigSection); 411 } 412 413 if (MFI->isEntryFunction()) { 414 getSIProgramInfo(CurrentProgramInfo, MF); 415 } else { 416 auto I = CallGraphResourceInfo.insert( 417 std::make_pair(&MF.getFunction(), SIFunctionResourceInfo())); 418 SIFunctionResourceInfo &Info = I.first->second; 419 assert(I.second && "should only be called once per function"); 420 Info = analyzeResourceUsage(MF); 421 } 422 423 if (STM.isAmdPalOS()) 424 EmitPALMetadata(MF, CurrentProgramInfo); 425 else if (!STM.isAmdHsaOS()) { 426 EmitProgramInfoSI(MF, CurrentProgramInfo); 427 } 428 429 DisasmLines.clear(); 430 HexLines.clear(); 431 DisasmLineMaxLen = 0; 432 433 EmitFunctionBody(); 434 435 if (isVerbose()) { 436 MCSectionELF *CommentSection = 437 Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0); 438 OutStreamer->SwitchSection(CommentSection); 439 440 if (!MFI->isEntryFunction()) { 441 OutStreamer->emitRawComment(" Function info:", false); 442 SIFunctionResourceInfo &Info = CallGraphResourceInfo[&MF.getFunction()]; 443 emitCommonFunctionComments( 444 Info.NumVGPR, 445 Info.getTotalNumSGPRs(MF.getSubtarget<SISubtarget>()), 446 Info.PrivateSegmentSize, 447 getFunctionCodeSize(MF), MFI); 448 return false; 449 } 450 451 OutStreamer->emitRawComment(" Kernel info:", false); 452 emitCommonFunctionComments(CurrentProgramInfo.NumVGPR, 453 CurrentProgramInfo.NumSGPR, 454 CurrentProgramInfo.ScratchSize, 455 getFunctionCodeSize(MF), MFI); 456 457 OutStreamer->emitRawComment( 458 " FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false); 459 OutStreamer->emitRawComment( 460 " IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false); 461 OutStreamer->emitRawComment( 462 " LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) + 463 " bytes/workgroup (compile time only)", false); 464 465 OutStreamer->emitRawComment( 466 " SGPRBlocks: " + Twine(CurrentProgramInfo.SGPRBlocks), false); 467 OutStreamer->emitRawComment( 468 " VGPRBlocks: " + Twine(CurrentProgramInfo.VGPRBlocks), false); 469 470 OutStreamer->emitRawComment( 471 " NumSGPRsForWavesPerEU: " + 472 Twine(CurrentProgramInfo.NumSGPRsForWavesPerEU), false); 473 OutStreamer->emitRawComment( 474 " NumVGPRsForWavesPerEU: " + 475 Twine(CurrentProgramInfo.NumVGPRsForWavesPerEU), false); 476 477 OutStreamer->emitRawComment( 478 " WaveLimiterHint : " + Twine(MFI->needsWaveLimiter()), false); 479 480 if (MF.getSubtarget<SISubtarget>().debuggerEmitPrologue()) { 481 OutStreamer->emitRawComment( 482 " DebuggerWavefrontPrivateSegmentOffsetSGPR: s" + 483 Twine(CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR), false); 484 OutStreamer->emitRawComment( 485 " DebuggerPrivateSegmentBufferSGPR: s" + 486 Twine(CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR), false); 487 } 488 489 OutStreamer->emitRawComment( 490 " COMPUTE_PGM_RSRC2:USER_SGPR: " + 491 Twine(G_00B84C_USER_SGPR(CurrentProgramInfo.ComputePGMRSrc2)), false); 492 OutStreamer->emitRawComment( 493 " COMPUTE_PGM_RSRC2:TRAP_HANDLER: " + 494 Twine(G_00B84C_TRAP_HANDLER(CurrentProgramInfo.ComputePGMRSrc2)), false); 495 OutStreamer->emitRawComment( 496 " COMPUTE_PGM_RSRC2:TGID_X_EN: " + 497 Twine(G_00B84C_TGID_X_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 498 OutStreamer->emitRawComment( 499 " COMPUTE_PGM_RSRC2:TGID_Y_EN: " + 500 Twine(G_00B84C_TGID_Y_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 501 OutStreamer->emitRawComment( 502 " COMPUTE_PGM_RSRC2:TGID_Z_EN: " + 503 Twine(G_00B84C_TGID_Z_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 504 OutStreamer->emitRawComment( 505 " COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " + 506 Twine(G_00B84C_TIDIG_COMP_CNT(CurrentProgramInfo.ComputePGMRSrc2)), 507 false); 508 } 509 510 if (STM.dumpCode()) { 511 512 OutStreamer->SwitchSection( 513 Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0)); 514 515 for (size_t i = 0; i < DisasmLines.size(); ++i) { 516 std::string Comment = "\n"; 517 if (!HexLines[i].empty()) { 518 Comment = std::string(DisasmLineMaxLen - DisasmLines[i].size(), ' '); 519 Comment += " ; " + HexLines[i] + "\n"; 520 } 521 522 OutStreamer->EmitBytes(StringRef(DisasmLines[i])); 523 OutStreamer->EmitBytes(StringRef(Comment)); 524 } 525 } 526 527 return false; 528 } 529 530 uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const { 531 const SISubtarget &STM = MF.getSubtarget<SISubtarget>(); 532 const SIInstrInfo *TII = STM.getInstrInfo(); 533 534 uint64_t CodeSize = 0; 535 536 for (const MachineBasicBlock &MBB : MF) { 537 for (const MachineInstr &MI : MBB) { 538 // TODO: CodeSize should account for multiple functions. 539 540 // TODO: Should we count size of debug info? 541 if (MI.isDebugInstr()) 542 continue; 543 544 CodeSize += TII->getInstSizeInBytes(MI); 545 } 546 } 547 548 return CodeSize; 549 } 550 551 static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI, 552 const SIInstrInfo &TII, 553 unsigned Reg) { 554 for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) { 555 if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent())) 556 return true; 557 } 558 559 return false; 560 } 561 562 int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumSGPRs( 563 const SISubtarget &ST) const { 564 return NumExplicitSGPR + IsaInfo::getNumExtraSGPRs(ST.getFeatureBits(), 565 UsesVCC, UsesFlatScratch); 566 } 567 568 AMDGPUAsmPrinter::SIFunctionResourceInfo AMDGPUAsmPrinter::analyzeResourceUsage( 569 const MachineFunction &MF) const { 570 SIFunctionResourceInfo Info; 571 572 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 573 const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); 574 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 575 const MachineRegisterInfo &MRI = MF.getRegInfo(); 576 const SIInstrInfo *TII = ST.getInstrInfo(); 577 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 578 579 Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) || 580 MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI); 581 582 // Even if FLAT_SCRATCH is implicitly used, it has no effect if flat 583 // instructions aren't used to access the scratch buffer. Inline assembly may 584 // need it though. 585 // 586 // If we only have implicit uses of flat_scr on flat instructions, it is not 587 // really needed. 588 if (Info.UsesFlatScratch && !MFI->hasFlatScratchInit() && 589 (!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) && 590 !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) && 591 !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) { 592 Info.UsesFlatScratch = false; 593 } 594 595 Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects(); 596 Info.PrivateSegmentSize = FrameInfo.getStackSize(); 597 if (MFI->isStackRealigned()) 598 Info.PrivateSegmentSize += FrameInfo.getMaxAlignment(); 599 600 601 Info.UsesVCC = MRI.isPhysRegUsed(AMDGPU::VCC_LO) || 602 MRI.isPhysRegUsed(AMDGPU::VCC_HI); 603 604 // If there are no calls, MachineRegisterInfo can tell us the used register 605 // count easily. 606 // A tail call isn't considered a call for MachineFrameInfo's purposes. 607 if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) { 608 MCPhysReg HighestVGPRReg = AMDGPU::NoRegister; 609 for (MCPhysReg Reg : reverse(AMDGPU::VGPR_32RegClass.getRegisters())) { 610 if (MRI.isPhysRegUsed(Reg)) { 611 HighestVGPRReg = Reg; 612 break; 613 } 614 } 615 616 MCPhysReg HighestSGPRReg = AMDGPU::NoRegister; 617 for (MCPhysReg Reg : reverse(AMDGPU::SGPR_32RegClass.getRegisters())) { 618 if (MRI.isPhysRegUsed(Reg)) { 619 HighestSGPRReg = Reg; 620 break; 621 } 622 } 623 624 // We found the maximum register index. They start at 0, so add one to get the 625 // number of registers. 626 Info.NumVGPR = HighestVGPRReg == AMDGPU::NoRegister ? 0 : 627 TRI.getHWRegIndex(HighestVGPRReg) + 1; 628 Info.NumExplicitSGPR = HighestSGPRReg == AMDGPU::NoRegister ? 0 : 629 TRI.getHWRegIndex(HighestSGPRReg) + 1; 630 631 return Info; 632 } 633 634 int32_t MaxVGPR = -1; 635 int32_t MaxSGPR = -1; 636 uint64_t CalleeFrameSize = 0; 637 638 for (const MachineBasicBlock &MBB : MF) { 639 for (const MachineInstr &MI : MBB) { 640 // TODO: Check regmasks? Do they occur anywhere except calls? 641 for (const MachineOperand &MO : MI.operands()) { 642 unsigned Width = 0; 643 bool IsSGPR = false; 644 645 if (!MO.isReg()) 646 continue; 647 648 unsigned Reg = MO.getReg(); 649 switch (Reg) { 650 case AMDGPU::EXEC: 651 case AMDGPU::EXEC_LO: 652 case AMDGPU::EXEC_HI: 653 case AMDGPU::SCC: 654 case AMDGPU::M0: 655 case AMDGPU::SRC_SHARED_BASE: 656 case AMDGPU::SRC_SHARED_LIMIT: 657 case AMDGPU::SRC_PRIVATE_BASE: 658 case AMDGPU::SRC_PRIVATE_LIMIT: 659 continue; 660 661 case AMDGPU::NoRegister: 662 assert(MI.isDebugInstr()); 663 continue; 664 665 case AMDGPU::VCC: 666 case AMDGPU::VCC_LO: 667 case AMDGPU::VCC_HI: 668 Info.UsesVCC = true; 669 continue; 670 671 case AMDGPU::FLAT_SCR: 672 case AMDGPU::FLAT_SCR_LO: 673 case AMDGPU::FLAT_SCR_HI: 674 continue; 675 676 case AMDGPU::XNACK_MASK: 677 case AMDGPU::XNACK_MASK_LO: 678 case AMDGPU::XNACK_MASK_HI: 679 llvm_unreachable("xnack_mask registers should not be used"); 680 681 case AMDGPU::TBA: 682 case AMDGPU::TBA_LO: 683 case AMDGPU::TBA_HI: 684 case AMDGPU::TMA: 685 case AMDGPU::TMA_LO: 686 case AMDGPU::TMA_HI: 687 llvm_unreachable("trap handler registers should not be used"); 688 689 default: 690 break; 691 } 692 693 if (AMDGPU::SReg_32RegClass.contains(Reg)) { 694 assert(!AMDGPU::TTMP_32RegClass.contains(Reg) && 695 "trap handler registers should not be used"); 696 IsSGPR = true; 697 Width = 1; 698 } else if (AMDGPU::VGPR_32RegClass.contains(Reg)) { 699 IsSGPR = false; 700 Width = 1; 701 } else if (AMDGPU::SReg_64RegClass.contains(Reg)) { 702 assert(!AMDGPU::TTMP_64RegClass.contains(Reg) && 703 "trap handler registers should not be used"); 704 IsSGPR = true; 705 Width = 2; 706 } else if (AMDGPU::VReg_64RegClass.contains(Reg)) { 707 IsSGPR = false; 708 Width = 2; 709 } else if (AMDGPU::VReg_96RegClass.contains(Reg)) { 710 IsSGPR = false; 711 Width = 3; 712 } else if (AMDGPU::SReg_128RegClass.contains(Reg)) { 713 assert(!AMDGPU::TTMP_128RegClass.contains(Reg) && 714 "trap handler registers should not be used"); 715 IsSGPR = true; 716 Width = 4; 717 } else if (AMDGPU::VReg_128RegClass.contains(Reg)) { 718 IsSGPR = false; 719 Width = 4; 720 } else if (AMDGPU::SReg_256RegClass.contains(Reg)) { 721 assert(!AMDGPU::TTMP_256RegClass.contains(Reg) && 722 "trap handler registers should not be used"); 723 IsSGPR = true; 724 Width = 8; 725 } else if (AMDGPU::VReg_256RegClass.contains(Reg)) { 726 IsSGPR = false; 727 Width = 8; 728 } else if (AMDGPU::SReg_512RegClass.contains(Reg)) { 729 assert(!AMDGPU::TTMP_512RegClass.contains(Reg) && 730 "trap handler registers should not be used"); 731 IsSGPR = true; 732 Width = 16; 733 } else if (AMDGPU::VReg_512RegClass.contains(Reg)) { 734 IsSGPR = false; 735 Width = 16; 736 } else { 737 llvm_unreachable("Unknown register class"); 738 } 739 unsigned HWReg = TRI.getHWRegIndex(Reg); 740 int MaxUsed = HWReg + Width - 1; 741 if (IsSGPR) { 742 MaxSGPR = MaxUsed > MaxSGPR ? MaxUsed : MaxSGPR; 743 } else { 744 MaxVGPR = MaxUsed > MaxVGPR ? MaxUsed : MaxVGPR; 745 } 746 } 747 748 if (MI.isCall()) { 749 // Pseudo used just to encode the underlying global. Is there a better 750 // way to track this? 751 752 const MachineOperand *CalleeOp 753 = TII->getNamedOperand(MI, AMDGPU::OpName::callee); 754 const Function *Callee = cast<Function>(CalleeOp->getGlobal()); 755 if (Callee->isDeclaration()) { 756 // If this is a call to an external function, we can't do much. Make 757 // conservative guesses. 758 759 // 48 SGPRs - vcc, - flat_scr, -xnack 760 int MaxSGPRGuess = 761 47 - IsaInfo::getNumExtraSGPRs(ST.getFeatureBits(), true, 762 ST.hasFlatAddressSpace()); 763 MaxSGPR = std::max(MaxSGPR, MaxSGPRGuess); 764 MaxVGPR = std::max(MaxVGPR, 23); 765 766 CalleeFrameSize = std::max(CalleeFrameSize, UINT64_C(16384)); 767 Info.UsesVCC = true; 768 Info.UsesFlatScratch = ST.hasFlatAddressSpace(); 769 Info.HasDynamicallySizedStack = true; 770 } else { 771 // We force CodeGen to run in SCC order, so the callee's register 772 // usage etc. should be the cumulative usage of all callees. 773 auto I = CallGraphResourceInfo.find(Callee); 774 assert(I != CallGraphResourceInfo.end() && 775 "callee should have been handled before caller"); 776 777 MaxSGPR = std::max(I->second.NumExplicitSGPR - 1, MaxSGPR); 778 MaxVGPR = std::max(I->second.NumVGPR - 1, MaxVGPR); 779 CalleeFrameSize 780 = std::max(I->second.PrivateSegmentSize, CalleeFrameSize); 781 Info.UsesVCC |= I->second.UsesVCC; 782 Info.UsesFlatScratch |= I->second.UsesFlatScratch; 783 Info.HasDynamicallySizedStack |= I->second.HasDynamicallySizedStack; 784 Info.HasRecursion |= I->second.HasRecursion; 785 } 786 787 if (!Callee->doesNotRecurse()) 788 Info.HasRecursion = true; 789 } 790 } 791 } 792 793 Info.NumExplicitSGPR = MaxSGPR + 1; 794 Info.NumVGPR = MaxVGPR + 1; 795 Info.PrivateSegmentSize += CalleeFrameSize; 796 797 return Info; 798 } 799 800 void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo, 801 const MachineFunction &MF) { 802 SIFunctionResourceInfo Info = analyzeResourceUsage(MF); 803 804 ProgInfo.NumVGPR = Info.NumVGPR; 805 ProgInfo.NumSGPR = Info.NumExplicitSGPR; 806 ProgInfo.ScratchSize = Info.PrivateSegmentSize; 807 ProgInfo.VCCUsed = Info.UsesVCC; 808 ProgInfo.FlatUsed = Info.UsesFlatScratch; 809 ProgInfo.DynamicCallStack = Info.HasDynamicallySizedStack || Info.HasRecursion; 810 811 if (!isUInt<32>(ProgInfo.ScratchSize)) { 812 DiagnosticInfoStackSize DiagStackSize(MF.getFunction(), 813 ProgInfo.ScratchSize, DS_Error); 814 MF.getFunction().getContext().diagnose(DiagStackSize); 815 } 816 817 const SISubtarget &STM = MF.getSubtarget<SISubtarget>(); 818 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 819 const SIInstrInfo *TII = STM.getInstrInfo(); 820 const SIRegisterInfo *RI = &TII->getRegisterInfo(); 821 822 // TODO(scott.linder): The calculations related to SGPR/VGPR blocks are 823 // duplicated in part in AMDGPUAsmParser::calculateGPRBlocks, and could be 824 // unified. 825 unsigned ExtraSGPRs = IsaInfo::getNumExtraSGPRs( 826 STM.getFeatureBits(), ProgInfo.VCCUsed, ProgInfo.FlatUsed); 827 828 // Check the addressable register limit before we add ExtraSGPRs. 829 if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && 830 !STM.hasSGPRInitBug()) { 831 unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); 832 if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { 833 // This can happen due to a compiler bug or when using inline asm. 834 LLVMContext &Ctx = MF.getFunction().getContext(); 835 DiagnosticInfoResourceLimit Diag(MF.getFunction(), 836 "addressable scalar registers", 837 ProgInfo.NumSGPR, DS_Error, 838 DK_ResourceLimit, 839 MaxAddressableNumSGPRs); 840 Ctx.diagnose(Diag); 841 ProgInfo.NumSGPR = MaxAddressableNumSGPRs - 1; 842 } 843 } 844 845 // Account for extra SGPRs and VGPRs reserved for debugger use. 846 ProgInfo.NumSGPR += ExtraSGPRs; 847 848 // Ensure there are enough SGPRs and VGPRs for wave dispatch, where wave 849 // dispatch registers are function args. 850 unsigned WaveDispatchNumSGPR = 0, WaveDispatchNumVGPR = 0; 851 for (auto &Arg : MF.getFunction().args()) { 852 unsigned NumRegs = (Arg.getType()->getPrimitiveSizeInBits() + 31) / 32; 853 if (Arg.hasAttribute(Attribute::InReg)) 854 WaveDispatchNumSGPR += NumRegs; 855 else 856 WaveDispatchNumVGPR += NumRegs; 857 } 858 ProgInfo.NumSGPR = std::max(ProgInfo.NumSGPR, WaveDispatchNumSGPR); 859 ProgInfo.NumVGPR = std::max(ProgInfo.NumVGPR, WaveDispatchNumVGPR); 860 861 // Adjust number of registers used to meet default/requested minimum/maximum 862 // number of waves per execution unit request. 863 ProgInfo.NumSGPRsForWavesPerEU = std::max( 864 std::max(ProgInfo.NumSGPR, 1u), STM.getMinNumSGPRs(MFI->getMaxWavesPerEU())); 865 ProgInfo.NumVGPRsForWavesPerEU = std::max( 866 std::max(ProgInfo.NumVGPR, 1u), STM.getMinNumVGPRs(MFI->getMaxWavesPerEU())); 867 868 if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS || 869 STM.hasSGPRInitBug()) { 870 unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); 871 if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { 872 // This can happen due to a compiler bug or when using inline asm to use 873 // the registers which are usually reserved for vcc etc. 874 LLVMContext &Ctx = MF.getFunction().getContext(); 875 DiagnosticInfoResourceLimit Diag(MF.getFunction(), 876 "scalar registers", 877 ProgInfo.NumSGPR, DS_Error, 878 DK_ResourceLimit, 879 MaxAddressableNumSGPRs); 880 Ctx.diagnose(Diag); 881 ProgInfo.NumSGPR = MaxAddressableNumSGPRs; 882 ProgInfo.NumSGPRsForWavesPerEU = MaxAddressableNumSGPRs; 883 } 884 } 885 886 if (STM.hasSGPRInitBug()) { 887 ProgInfo.NumSGPR = 888 AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 889 ProgInfo.NumSGPRsForWavesPerEU = 890 AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 891 } 892 893 if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) { 894 LLVMContext &Ctx = MF.getFunction().getContext(); 895 DiagnosticInfoResourceLimit Diag(MF.getFunction(), "user SGPRs", 896 MFI->getNumUserSGPRs(), DS_Error); 897 Ctx.diagnose(Diag); 898 } 899 900 if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) { 901 LLVMContext &Ctx = MF.getFunction().getContext(); 902 DiagnosticInfoResourceLimit Diag(MF.getFunction(), "local memory", 903 MFI->getLDSSize(), DS_Error); 904 Ctx.diagnose(Diag); 905 } 906 907 ProgInfo.SGPRBlocks = IsaInfo::getNumSGPRBlocks( 908 STM.getFeatureBits(), ProgInfo.NumSGPRsForWavesPerEU); 909 ProgInfo.VGPRBlocks = IsaInfo::getNumVGPRBlocks( 910 STM.getFeatureBits(), ProgInfo.NumVGPRsForWavesPerEU); 911 912 // Update DebuggerWavefrontPrivateSegmentOffsetSGPR and 913 // DebuggerPrivateSegmentBufferSGPR fields if "amdgpu-debugger-emit-prologue" 914 // attribute was requested. 915 if (STM.debuggerEmitPrologue()) { 916 ProgInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR = 917 RI->getHWRegIndex(MFI->getScratchWaveOffsetReg()); 918 ProgInfo.DebuggerPrivateSegmentBufferSGPR = 919 RI->getHWRegIndex(MFI->getScratchRSrcReg()); 920 } 921 922 // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode 923 // register. 924 ProgInfo.FloatMode = getFPMode(MF); 925 926 ProgInfo.IEEEMode = STM.enableIEEEBit(MF); 927 928 // Make clamp modifier on NaN input returns 0. 929 ProgInfo.DX10Clamp = STM.enableDX10Clamp(); 930 931 unsigned LDSAlignShift; 932 if (STM.getGeneration() < SISubtarget::SEA_ISLANDS) { 933 // LDS is allocated in 64 dword blocks. 934 LDSAlignShift = 8; 935 } else { 936 // LDS is allocated in 128 dword blocks. 937 LDSAlignShift = 9; 938 } 939 940 unsigned LDSSpillSize = 941 MFI->getLDSWaveSpillSize() * MFI->getMaxFlatWorkGroupSize(); 942 943 ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize; 944 ProgInfo.LDSBlocks = 945 alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift; 946 947 // Scratch is allocated in 256 dword blocks. 948 unsigned ScratchAlignShift = 10; 949 // We need to program the hardware with the amount of scratch memory that 950 // is used by the entire wave. ProgInfo.ScratchSize is the amount of 951 // scratch memory used per thread. 952 ProgInfo.ScratchBlocks = 953 alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(), 954 1ULL << ScratchAlignShift) >> 955 ScratchAlignShift; 956 957 ProgInfo.ComputePGMRSrc1 = 958 S_00B848_VGPRS(ProgInfo.VGPRBlocks) | 959 S_00B848_SGPRS(ProgInfo.SGPRBlocks) | 960 S_00B848_PRIORITY(ProgInfo.Priority) | 961 S_00B848_FLOAT_MODE(ProgInfo.FloatMode) | 962 S_00B848_PRIV(ProgInfo.Priv) | 963 S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) | 964 S_00B848_DEBUG_MODE(ProgInfo.DebugMode) | 965 S_00B848_IEEE_MODE(ProgInfo.IEEEMode); 966 967 // 0 = X, 1 = XY, 2 = XYZ 968 unsigned TIDIGCompCnt = 0; 969 if (MFI->hasWorkItemIDZ()) 970 TIDIGCompCnt = 2; 971 else if (MFI->hasWorkItemIDY()) 972 TIDIGCompCnt = 1; 973 974 ProgInfo.ComputePGMRSrc2 = 975 S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) | 976 S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) | 977 // For AMDHSA, TRAP_HANDLER must be zero, as it is populated by the CP. 978 S_00B84C_TRAP_HANDLER(STM.isAmdHsaOS() ? 0 : STM.isTrapHandlerEnabled()) | 979 S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) | 980 S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) | 981 S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) | 982 S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) | 983 S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) | 984 S_00B84C_EXCP_EN_MSB(0) | 985 // For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP. 986 S_00B84C_LDS_SIZE(STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks) | 987 S_00B84C_EXCP_EN(0); 988 } 989 990 static unsigned getRsrcReg(CallingConv::ID CallConv) { 991 switch (CallConv) { 992 default: LLVM_FALLTHROUGH; 993 case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1; 994 case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS; 995 case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS; 996 case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES; 997 case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS; 998 case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS; 999 case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS; 1000 } 1001 } 1002 1003 void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF, 1004 const SIProgramInfo &CurrentProgramInfo) { 1005 const SISubtarget &STM = MF.getSubtarget<SISubtarget>(); 1006 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1007 unsigned RsrcReg = getRsrcReg(MF.getFunction().getCallingConv()); 1008 1009 if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { 1010 OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4); 1011 1012 OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc1, 4); 1013 1014 OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4); 1015 OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc2, 4); 1016 1017 OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4); 1018 OutStreamer->EmitIntValue(S_00B860_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); 1019 1020 // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 = 1021 // 0" comment but I don't see a corresponding field in the register spec. 1022 } else { 1023 OutStreamer->EmitIntValue(RsrcReg, 4); 1024 OutStreamer->EmitIntValue(S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | 1025 S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks), 4); 1026 if (STM.isVGPRSpillingEnabled(MF.getFunction())) { 1027 OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4); 1028 OutStreamer->EmitIntValue(S_0286E8_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); 1029 } 1030 } 1031 1032 if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { 1033 OutStreamer->EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4); 1034 OutStreamer->EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks), 4); 1035 OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4); 1036 OutStreamer->EmitIntValue(MFI->getPSInputEnable(), 4); 1037 OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4); 1038 OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4); 1039 } 1040 1041 OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4); 1042 OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4); 1043 OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4); 1044 OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4); 1045 } 1046 1047 // This is the equivalent of EmitProgramInfoSI above, but for when the OS type 1048 // is AMDPAL. It stores each compute/SPI register setting and other PAL 1049 // metadata items into the PALMetadataMap, combining with any provided by the 1050 // frontend as LLVM metadata. Once all functions are written, PALMetadataMap is 1051 // then written as a single block in the .note section. 1052 void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF, 1053 const SIProgramInfo &CurrentProgramInfo) { 1054 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1055 // Given the calling convention, calculate the register number for rsrc1. In 1056 // principle the register number could change in future hardware, but we know 1057 // it is the same for gfx6-9 (except that LS and ES don't exist on gfx9), so 1058 // we can use the same fixed value that .AMDGPU.config has for Mesa. Note 1059 // that we use a register number rather than a byte offset, so we need to 1060 // divide by 4. 1061 unsigned Rsrc1Reg = getRsrcReg(MF.getFunction().getCallingConv()) / 4; 1062 unsigned Rsrc2Reg = Rsrc1Reg + 1; 1063 // Also calculate the PAL metadata key for *S_SCRATCH_SIZE. It can be used 1064 // with a constant offset to access any non-register shader-specific PAL 1065 // metadata key. 1066 unsigned ScratchSizeKey = PALMD::Key::CS_SCRATCH_SIZE; 1067 switch (MF.getFunction().getCallingConv()) { 1068 case CallingConv::AMDGPU_PS: 1069 ScratchSizeKey = PALMD::Key::PS_SCRATCH_SIZE; 1070 break; 1071 case CallingConv::AMDGPU_VS: 1072 ScratchSizeKey = PALMD::Key::VS_SCRATCH_SIZE; 1073 break; 1074 case CallingConv::AMDGPU_GS: 1075 ScratchSizeKey = PALMD::Key::GS_SCRATCH_SIZE; 1076 break; 1077 case CallingConv::AMDGPU_ES: 1078 ScratchSizeKey = PALMD::Key::ES_SCRATCH_SIZE; 1079 break; 1080 case CallingConv::AMDGPU_HS: 1081 ScratchSizeKey = PALMD::Key::HS_SCRATCH_SIZE; 1082 break; 1083 case CallingConv::AMDGPU_LS: 1084 ScratchSizeKey = PALMD::Key::LS_SCRATCH_SIZE; 1085 break; 1086 } 1087 unsigned NumUsedVgprsKey = ScratchSizeKey + 1088 PALMD::Key::VS_NUM_USED_VGPRS - PALMD::Key::VS_SCRATCH_SIZE; 1089 unsigned NumUsedSgprsKey = ScratchSizeKey + 1090 PALMD::Key::VS_NUM_USED_SGPRS - PALMD::Key::VS_SCRATCH_SIZE; 1091 PALMetadataMap[NumUsedVgprsKey] = CurrentProgramInfo.NumVGPRsForWavesPerEU; 1092 PALMetadataMap[NumUsedSgprsKey] = CurrentProgramInfo.NumSGPRsForWavesPerEU; 1093 if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { 1094 PALMetadataMap[Rsrc1Reg] |= CurrentProgramInfo.ComputePGMRSrc1; 1095 PALMetadataMap[Rsrc2Reg] |= CurrentProgramInfo.ComputePGMRSrc2; 1096 // ScratchSize is in bytes, 16 aligned. 1097 PALMetadataMap[ScratchSizeKey] |= 1098 alignTo(CurrentProgramInfo.ScratchSize, 16); 1099 } else { 1100 PALMetadataMap[Rsrc1Reg] |= S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | 1101 S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks); 1102 if (CurrentProgramInfo.ScratchBlocks > 0) 1103 PALMetadataMap[Rsrc2Reg] |= S_00B84C_SCRATCH_EN(1); 1104 // ScratchSize is in bytes, 16 aligned. 1105 PALMetadataMap[ScratchSizeKey] |= 1106 alignTo(CurrentProgramInfo.ScratchSize, 16); 1107 } 1108 if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { 1109 PALMetadataMap[Rsrc2Reg] |= 1110 S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks); 1111 PALMetadataMap[R_0286CC_SPI_PS_INPUT_ENA / 4] |= MFI->getPSInputEnable(); 1112 PALMetadataMap[R_0286D0_SPI_PS_INPUT_ADDR / 4] |= MFI->getPSInputAddr(); 1113 } 1114 } 1115 1116 // This is supposed to be log2(Size) 1117 static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) { 1118 switch (Size) { 1119 case 4: 1120 return AMD_ELEMENT_4_BYTES; 1121 case 8: 1122 return AMD_ELEMENT_8_BYTES; 1123 case 16: 1124 return AMD_ELEMENT_16_BYTES; 1125 default: 1126 llvm_unreachable("invalid private_element_size"); 1127 } 1128 } 1129 1130 void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out, 1131 const SIProgramInfo &CurrentProgramInfo, 1132 const MachineFunction &MF) const { 1133 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1134 const SISubtarget &STM = MF.getSubtarget<SISubtarget>(); 1135 1136 AMDGPU::initDefaultAMDKernelCodeT(Out, STM.getFeatureBits()); 1137 1138 Out.compute_pgm_resource_registers = 1139 CurrentProgramInfo.ComputePGMRSrc1 | 1140 (CurrentProgramInfo.ComputePGMRSrc2 << 32); 1141 Out.code_properties = AMD_CODE_PROPERTY_IS_PTR64; 1142 1143 if (CurrentProgramInfo.DynamicCallStack) 1144 Out.code_properties |= AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK; 1145 1146 AMD_HSA_BITS_SET(Out.code_properties, 1147 AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE, 1148 getElementByteSizeValue(STM.getMaxPrivateElementSize())); 1149 1150 if (MFI->hasPrivateSegmentBuffer()) { 1151 Out.code_properties |= 1152 AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; 1153 } 1154 1155 if (MFI->hasDispatchPtr()) 1156 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 1157 1158 if (MFI->hasQueuePtr()) 1159 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; 1160 1161 if (MFI->hasKernargSegmentPtr()) 1162 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; 1163 1164 if (MFI->hasDispatchID()) 1165 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; 1166 1167 if (MFI->hasFlatScratchInit()) 1168 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; 1169 1170 if (MFI->hasDispatchPtr()) 1171 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 1172 1173 if (STM.debuggerSupported()) 1174 Out.code_properties |= AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED; 1175 1176 if (STM.isXNACKEnabled()) 1177 Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED; 1178 1179 // FIXME: Should use getKernArgSize 1180 Out.kernarg_segment_byte_size = 1181 STM.getKernArgSegmentSize(MF.getFunction(), MFI->getExplicitKernArgSize()); 1182 Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR; 1183 Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR; 1184 Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize; 1185 Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize; 1186 1187 // These alignment values are specified in powers of two, so alignment = 1188 // 2^n. The minimum alignment is 2^4 = 16. 1189 Out.kernarg_segment_alignment = std::max((size_t)4, 1190 countTrailingZeros(MFI->getMaxKernArgAlign())); 1191 1192 if (STM.debuggerEmitPrologue()) { 1193 Out.debug_wavefront_private_segment_offset_sgpr = 1194 CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR; 1195 Out.debug_private_segment_buffer_sgpr = 1196 CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR; 1197 } 1198 } 1199 1200 AMDGPU::HSAMD::Kernel::CodeProps::Metadata AMDGPUAsmPrinter::getHSACodeProps( 1201 const MachineFunction &MF, 1202 const SIProgramInfo &ProgramInfo) const { 1203 const SISubtarget &STM = MF.getSubtarget<SISubtarget>(); 1204 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 1205 HSAMD::Kernel::CodeProps::Metadata HSACodeProps; 1206 1207 HSACodeProps.mKernargSegmentSize = 1208 STM.getKernArgSegmentSize(MF.getFunction(), MFI.getExplicitKernArgSize()); 1209 HSACodeProps.mGroupSegmentFixedSize = ProgramInfo.LDSSize; 1210 HSACodeProps.mPrivateSegmentFixedSize = ProgramInfo.ScratchSize; 1211 HSACodeProps.mKernargSegmentAlign = 1212 std::max(uint32_t(4), MFI.getMaxKernArgAlign()); 1213 HSACodeProps.mWavefrontSize = STM.getWavefrontSize(); 1214 HSACodeProps.mNumSGPRs = CurrentProgramInfo.NumSGPR; 1215 HSACodeProps.mNumVGPRs = CurrentProgramInfo.NumVGPR; 1216 HSACodeProps.mMaxFlatWorkGroupSize = MFI.getMaxFlatWorkGroupSize(); 1217 HSACodeProps.mIsDynamicCallStack = ProgramInfo.DynamicCallStack; 1218 HSACodeProps.mIsXNACKEnabled = STM.isXNACKEnabled(); 1219 HSACodeProps.mNumSpilledSGPRs = MFI.getNumSpilledSGPRs(); 1220 HSACodeProps.mNumSpilledVGPRs = MFI.getNumSpilledVGPRs(); 1221 1222 return HSACodeProps; 1223 } 1224 1225 AMDGPU::HSAMD::Kernel::DebugProps::Metadata AMDGPUAsmPrinter::getHSADebugProps( 1226 const MachineFunction &MF, 1227 const SIProgramInfo &ProgramInfo) const { 1228 const SISubtarget &STM = MF.getSubtarget<SISubtarget>(); 1229 HSAMD::Kernel::DebugProps::Metadata HSADebugProps; 1230 1231 if (!STM.debuggerSupported()) 1232 return HSADebugProps; 1233 1234 HSADebugProps.mDebuggerABIVersion.push_back(1); 1235 HSADebugProps.mDebuggerABIVersion.push_back(0); 1236 1237 if (STM.debuggerEmitPrologue()) { 1238 HSADebugProps.mPrivateSegmentBufferSGPR = 1239 ProgramInfo.DebuggerPrivateSegmentBufferSGPR; 1240 HSADebugProps.mWavefrontPrivateSegmentOffsetSGPR = 1241 ProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR; 1242 } 1243 1244 return HSADebugProps; 1245 } 1246 1247 bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1248 unsigned AsmVariant, 1249 const char *ExtraCode, raw_ostream &O) { 1250 // First try the generic code, which knows about modifiers like 'c' and 'n'. 1251 if (!AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O)) 1252 return false; 1253 1254 if (ExtraCode && ExtraCode[0]) { 1255 if (ExtraCode[1] != 0) 1256 return true; // Unknown modifier. 1257 1258 switch (ExtraCode[0]) { 1259 case 'r': 1260 break; 1261 default: 1262 return true; 1263 } 1264 } 1265 1266 // TODO: Should be able to support other operand types like globals. 1267 const MachineOperand &MO = MI->getOperand(OpNo); 1268 if (MO.isReg()) { 1269 AMDGPUInstPrinter::printRegOperand(MO.getReg(), O, 1270 *MF->getSubtarget().getRegisterInfo()); 1271 return false; 1272 } 1273 1274 return true; 1275 } 1276