1 //===-- AMDGPUAsmPrinter.cpp - AMDGPU Assebly printer --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// 12 /// The AMDGPUAsmPrinter is used to print both assembly string and also binary 13 /// code. When passed an MCAsmStreamer it prints assembly and when passed 14 /// an MCObjectStreamer it outputs binary code. 15 // 16 //===----------------------------------------------------------------------===// 17 // 18 19 #include "AMDGPUAsmPrinter.h" 20 #include "MCTargetDesc/AMDGPUTargetStreamer.h" 21 #include "InstPrinter/AMDGPUInstPrinter.h" 22 #include "Utils/AMDGPUBaseInfo.h" 23 #include "AMDGPU.h" 24 #include "AMDKernelCodeT.h" 25 #include "AMDGPUSubtarget.h" 26 #include "R600Defines.h" 27 #include "R600MachineFunctionInfo.h" 28 #include "R600RegisterInfo.h" 29 #include "SIDefines.h" 30 #include "SIMachineFunctionInfo.h" 31 #include "SIInstrInfo.h" 32 #include "SIRegisterInfo.h" 33 #include "llvm/CodeGen/MachineFrameInfo.h" 34 #include "llvm/IR/DiagnosticInfo.h" 35 #include "llvm/MC/MCContext.h" 36 #include "llvm/MC/MCSectionELF.h" 37 #include "llvm/MC/MCStreamer.h" 38 #include "llvm/Support/ELF.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/TargetRegistry.h" 41 #include "llvm/Target/TargetLoweringObjectFile.h" 42 #include "AMDGPURuntimeMetadata.h" 43 44 using namespace ::AMDGPU; 45 using namespace llvm; 46 47 // TODO: This should get the default rounding mode from the kernel. We just set 48 // the default here, but this could change if the OpenCL rounding mode pragmas 49 // are used. 50 // 51 // The denormal mode here should match what is reported by the OpenCL runtime 52 // for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but 53 // can also be override to flush with the -cl-denorms-are-zero compiler flag. 54 // 55 // AMD OpenCL only sets flush none and reports CL_FP_DENORM for double 56 // precision, and leaves single precision to flush all and does not report 57 // CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports 58 // CL_FP_DENORM for both. 59 // 60 // FIXME: It seems some instructions do not support single precision denormals 61 // regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32, 62 // and sin_f32, cos_f32 on most parts). 63 64 // We want to use these instructions, and using fp32 denormals also causes 65 // instructions to run at the double precision rate for the device so it's 66 // probably best to just report no single precision denormals. 67 static uint32_t getFPMode(const MachineFunction &F) { 68 const SISubtarget& ST = F.getSubtarget<SISubtarget>(); 69 // TODO: Is there any real use for the flush in only / flush out only modes? 70 71 uint32_t FP32Denormals = 72 ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; 73 74 uint32_t FP64Denormals = 75 ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; 76 77 return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) | 78 FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) | 79 FP_DENORM_MODE_SP(FP32Denormals) | 80 FP_DENORM_MODE_DP(FP64Denormals); 81 } 82 83 static AsmPrinter * 84 createAMDGPUAsmPrinterPass(TargetMachine &tm, 85 std::unique_ptr<MCStreamer> &&Streamer) { 86 return new AMDGPUAsmPrinter(tm, std::move(Streamer)); 87 } 88 89 extern "C" void LLVMInitializeAMDGPUAsmPrinter() { 90 TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(), 91 createAMDGPUAsmPrinterPass); 92 TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(), 93 createAMDGPUAsmPrinterPass); 94 } 95 96 AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, 97 std::unique_ptr<MCStreamer> Streamer) 98 : AsmPrinter(TM, std::move(Streamer)) {} 99 100 StringRef AMDGPUAsmPrinter::getPassName() const { 101 return "AMDGPU Assembly Printer"; 102 } 103 104 void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) { 105 if (TM.getTargetTriple().getOS() != Triple::AMDHSA) 106 return; 107 108 // Need to construct an MCSubtargetInfo here in case we have no functions 109 // in the module. 110 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 111 TM.getTargetTriple().str(), TM.getTargetCPU(), 112 TM.getTargetFeatureString())); 113 114 AMDGPUTargetStreamer *TS = 115 static_cast<AMDGPUTargetStreamer *>(OutStreamer->getTargetStreamer()); 116 117 TS->EmitDirectiveHSACodeObjectVersion(2, 1); 118 119 AMDGPU::IsaVersion ISA = AMDGPU::getIsaVersion(STI->getFeatureBits()); 120 TS->EmitDirectiveHSACodeObjectISA(ISA.Major, ISA.Minor, ISA.Stepping, 121 "AMD", "AMDGPU"); 122 emitStartOfRuntimeMetadata(M); 123 } 124 125 bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough( 126 const MachineBasicBlock *MBB) const { 127 if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB)) 128 return false; 129 130 if (MBB->empty()) 131 return true; 132 133 // If this is a block implementing a long branch, an expression relative to 134 // the start of the block is needed. to the start of the block. 135 // XXX - Is there a smarter way to check this? 136 return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64); 137 } 138 139 140 void AMDGPUAsmPrinter::EmitFunctionBodyStart() { 141 const AMDGPUSubtarget &STM = MF->getSubtarget<AMDGPUSubtarget>(); 142 SIProgramInfo KernelInfo; 143 if (STM.isAmdCodeObjectV2()) { 144 getSIProgramInfo(KernelInfo, *MF); 145 EmitAmdKernelCodeT(*MF, KernelInfo); 146 } 147 } 148 149 void AMDGPUAsmPrinter::EmitFunctionEntryLabel() { 150 const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 151 const AMDGPUSubtarget &STM = MF->getSubtarget<AMDGPUSubtarget>(); 152 if (MFI->isKernel() && STM.isAmdCodeObjectV2()) { 153 AMDGPUTargetStreamer *TS = 154 static_cast<AMDGPUTargetStreamer *>(OutStreamer->getTargetStreamer()); 155 SmallString<128> SymbolName; 156 getNameWithPrefix(SymbolName, MF->getFunction()), 157 TS->EmitAMDGPUSymbolType(SymbolName, ELF::STT_AMDGPU_HSA_KERNEL); 158 } 159 160 AsmPrinter::EmitFunctionEntryLabel(); 161 } 162 163 void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 164 165 // Group segment variables aren't emitted in HSA. 166 if (AMDGPU::isGroupSegment(GV)) 167 return; 168 169 AsmPrinter::EmitGlobalVariable(GV); 170 } 171 172 bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 173 174 // The starting address of all shader programs must be 256 bytes aligned. 175 MF.setAlignment(8); 176 177 SetupMachineFunction(MF); 178 179 MCContext &Context = getObjFileLowering().getContext(); 180 MCSectionELF *ConfigSection = 181 Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0); 182 OutStreamer->SwitchSection(ConfigSection); 183 184 const AMDGPUSubtarget &STM = MF.getSubtarget<AMDGPUSubtarget>(); 185 SIProgramInfo KernelInfo; 186 if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { 187 getSIProgramInfo(KernelInfo, MF); 188 if (!STM.isAmdHsaOS()) { 189 EmitProgramInfoSI(MF, KernelInfo); 190 } 191 } else { 192 EmitProgramInfoR600(MF); 193 } 194 195 DisasmLines.clear(); 196 HexLines.clear(); 197 DisasmLineMaxLen = 0; 198 199 EmitFunctionBody(); 200 201 if (isVerbose()) { 202 MCSectionELF *CommentSection = 203 Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0); 204 OutStreamer->SwitchSection(CommentSection); 205 206 if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { 207 OutStreamer->emitRawComment(" Kernel info:", false); 208 OutStreamer->emitRawComment(" codeLenInByte = " + Twine(KernelInfo.CodeLen), 209 false); 210 OutStreamer->emitRawComment(" NumSgprs: " + Twine(KernelInfo.NumSGPR), 211 false); 212 OutStreamer->emitRawComment(" NumVgprs: " + Twine(KernelInfo.NumVGPR), 213 false); 214 OutStreamer->emitRawComment(" FloatMode: " + Twine(KernelInfo.FloatMode), 215 false); 216 OutStreamer->emitRawComment(" IeeeMode: " + Twine(KernelInfo.IEEEMode), 217 false); 218 OutStreamer->emitRawComment(" ScratchSize: " + Twine(KernelInfo.ScratchSize), 219 false); 220 OutStreamer->emitRawComment(" LDSByteSize: " + Twine(KernelInfo.LDSSize) + 221 " bytes/workgroup (compile time only)", false); 222 223 OutStreamer->emitRawComment(" SGPRBlocks: " + 224 Twine(KernelInfo.SGPRBlocks), false); 225 OutStreamer->emitRawComment(" VGPRBlocks: " + 226 Twine(KernelInfo.VGPRBlocks), false); 227 228 OutStreamer->emitRawComment(" NumSGPRsForWavesPerEU: " + 229 Twine(KernelInfo.NumSGPRsForWavesPerEU), false); 230 OutStreamer->emitRawComment(" NumVGPRsForWavesPerEU: " + 231 Twine(KernelInfo.NumVGPRsForWavesPerEU), false); 232 233 OutStreamer->emitRawComment(" ReservedVGPRFirst: " + Twine(KernelInfo.ReservedVGPRFirst), 234 false); 235 OutStreamer->emitRawComment(" ReservedVGPRCount: " + Twine(KernelInfo.ReservedVGPRCount), 236 false); 237 238 if (MF.getSubtarget<SISubtarget>().debuggerEmitPrologue()) { 239 OutStreamer->emitRawComment(" DebuggerWavefrontPrivateSegmentOffsetSGPR: s" + 240 Twine(KernelInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR), false); 241 OutStreamer->emitRawComment(" DebuggerPrivateSegmentBufferSGPR: s" + 242 Twine(KernelInfo.DebuggerPrivateSegmentBufferSGPR), false); 243 } 244 245 OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:USER_SGPR: " + 246 Twine(G_00B84C_USER_SGPR(KernelInfo.ComputePGMRSrc2)), 247 false); 248 OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_X_EN: " + 249 Twine(G_00B84C_TGID_X_EN(KernelInfo.ComputePGMRSrc2)), 250 false); 251 OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_Y_EN: " + 252 Twine(G_00B84C_TGID_Y_EN(KernelInfo.ComputePGMRSrc2)), 253 false); 254 OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_Z_EN: " + 255 Twine(G_00B84C_TGID_Z_EN(KernelInfo.ComputePGMRSrc2)), 256 false); 257 OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " + 258 Twine(G_00B84C_TIDIG_COMP_CNT(KernelInfo.ComputePGMRSrc2)), 259 false); 260 261 } else { 262 R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>(); 263 OutStreamer->emitRawComment( 264 Twine("SQ_PGM_RESOURCES:STACK_SIZE = " + Twine(MFI->CFStackSize))); 265 } 266 } 267 268 if (STM.dumpCode()) { 269 270 OutStreamer->SwitchSection( 271 Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0)); 272 273 for (size_t i = 0; i < DisasmLines.size(); ++i) { 274 std::string Comment(DisasmLineMaxLen - DisasmLines[i].size(), ' '); 275 Comment += " ; " + HexLines[i] + "\n"; 276 277 OutStreamer->EmitBytes(StringRef(DisasmLines[i])); 278 OutStreamer->EmitBytes(StringRef(Comment)); 279 } 280 } 281 282 emitRuntimeMetadata(*MF.getFunction()); 283 284 return false; 285 } 286 287 void AMDGPUAsmPrinter::EmitProgramInfoR600(const MachineFunction &MF) { 288 unsigned MaxGPR = 0; 289 bool killPixel = false; 290 const R600Subtarget &STM = MF.getSubtarget<R600Subtarget>(); 291 const R600RegisterInfo *RI = STM.getRegisterInfo(); 292 const R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>(); 293 294 for (const MachineBasicBlock &MBB : MF) { 295 for (const MachineInstr &MI : MBB) { 296 if (MI.getOpcode() == AMDGPU::KILLGT) 297 killPixel = true; 298 unsigned numOperands = MI.getNumOperands(); 299 for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) { 300 const MachineOperand &MO = MI.getOperand(op_idx); 301 if (!MO.isReg()) 302 continue; 303 unsigned HWReg = RI->getEncodingValue(MO.getReg()) & 0xff; 304 305 // Register with value > 127 aren't GPR 306 if (HWReg > 127) 307 continue; 308 MaxGPR = std::max(MaxGPR, HWReg); 309 } 310 } 311 } 312 313 unsigned RsrcReg; 314 if (STM.getGeneration() >= R600Subtarget::EVERGREEN) { 315 // Evergreen / Northern Islands 316 switch (MF.getFunction()->getCallingConv()) { 317 default: LLVM_FALLTHROUGH; 318 case CallingConv::AMDGPU_CS: RsrcReg = R_0288D4_SQ_PGM_RESOURCES_LS; break; 319 case CallingConv::AMDGPU_GS: RsrcReg = R_028878_SQ_PGM_RESOURCES_GS; break; 320 case CallingConv::AMDGPU_PS: RsrcReg = R_028844_SQ_PGM_RESOURCES_PS; break; 321 case CallingConv::AMDGPU_VS: RsrcReg = R_028860_SQ_PGM_RESOURCES_VS; break; 322 } 323 } else { 324 // R600 / R700 325 switch (MF.getFunction()->getCallingConv()) { 326 default: LLVM_FALLTHROUGH; 327 case CallingConv::AMDGPU_GS: LLVM_FALLTHROUGH; 328 case CallingConv::AMDGPU_CS: LLVM_FALLTHROUGH; 329 case CallingConv::AMDGPU_VS: RsrcReg = R_028868_SQ_PGM_RESOURCES_VS; break; 330 case CallingConv::AMDGPU_PS: RsrcReg = R_028850_SQ_PGM_RESOURCES_PS; break; 331 } 332 } 333 334 OutStreamer->EmitIntValue(RsrcReg, 4); 335 OutStreamer->EmitIntValue(S_NUM_GPRS(MaxGPR + 1) | 336 S_STACK_SIZE(MFI->CFStackSize), 4); 337 OutStreamer->EmitIntValue(R_02880C_DB_SHADER_CONTROL, 4); 338 OutStreamer->EmitIntValue(S_02880C_KILL_ENABLE(killPixel), 4); 339 340 if (AMDGPU::isCompute(MF.getFunction()->getCallingConv())) { 341 OutStreamer->EmitIntValue(R_0288E8_SQ_LDS_ALLOC, 4); 342 OutStreamer->EmitIntValue(alignTo(MFI->getLDSSize(), 4) >> 2, 4); 343 } 344 } 345 346 void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo, 347 const MachineFunction &MF) const { 348 const SISubtarget &STM = MF.getSubtarget<SISubtarget>(); 349 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 350 uint64_t CodeSize = 0; 351 unsigned MaxSGPR = 0; 352 unsigned MaxVGPR = 0; 353 bool VCCUsed = false; 354 bool FlatUsed = false; 355 const SIRegisterInfo *RI = STM.getRegisterInfo(); 356 const SIInstrInfo *TII = STM.getInstrInfo(); 357 358 for (const MachineBasicBlock &MBB : MF) { 359 for (const MachineInstr &MI : MBB) { 360 // TODO: CodeSize should account for multiple functions. 361 362 // TODO: Should we count size of debug info? 363 if (MI.isDebugValue()) 364 continue; 365 366 if (isVerbose()) 367 CodeSize += TII->getInstSizeInBytes(MI); 368 369 unsigned numOperands = MI.getNumOperands(); 370 for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) { 371 const MachineOperand &MO = MI.getOperand(op_idx); 372 unsigned width = 0; 373 bool isSGPR = false; 374 375 if (!MO.isReg()) 376 continue; 377 378 unsigned reg = MO.getReg(); 379 switch (reg) { 380 case AMDGPU::EXEC: 381 case AMDGPU::EXEC_LO: 382 case AMDGPU::EXEC_HI: 383 case AMDGPU::SCC: 384 case AMDGPU::M0: 385 continue; 386 387 case AMDGPU::VCC: 388 case AMDGPU::VCC_LO: 389 case AMDGPU::VCC_HI: 390 VCCUsed = true; 391 continue; 392 393 case AMDGPU::FLAT_SCR: 394 case AMDGPU::FLAT_SCR_LO: 395 case AMDGPU::FLAT_SCR_HI: 396 FlatUsed = true; 397 continue; 398 399 case AMDGPU::TBA: 400 case AMDGPU::TBA_LO: 401 case AMDGPU::TBA_HI: 402 case AMDGPU::TMA: 403 case AMDGPU::TMA_LO: 404 case AMDGPU::TMA_HI: 405 llvm_unreachable("trap handler registers should not be used"); 406 407 default: 408 break; 409 } 410 411 if (AMDGPU::SReg_32RegClass.contains(reg)) { 412 assert(!AMDGPU::TTMP_32RegClass.contains(reg) && 413 "trap handler registers should not be used"); 414 isSGPR = true; 415 width = 1; 416 } else if (AMDGPU::VGPR_32RegClass.contains(reg)) { 417 isSGPR = false; 418 width = 1; 419 } else if (AMDGPU::SReg_64RegClass.contains(reg)) { 420 assert(!AMDGPU::TTMP_64RegClass.contains(reg) && 421 "trap handler registers should not be used"); 422 isSGPR = true; 423 width = 2; 424 } else if (AMDGPU::VReg_64RegClass.contains(reg)) { 425 isSGPR = false; 426 width = 2; 427 } else if (AMDGPU::VReg_96RegClass.contains(reg)) { 428 isSGPR = false; 429 width = 3; 430 } else if (AMDGPU::SReg_128RegClass.contains(reg)) { 431 isSGPR = true; 432 width = 4; 433 } else if (AMDGPU::VReg_128RegClass.contains(reg)) { 434 isSGPR = false; 435 width = 4; 436 } else if (AMDGPU::SReg_256RegClass.contains(reg)) { 437 isSGPR = true; 438 width = 8; 439 } else if (AMDGPU::VReg_256RegClass.contains(reg)) { 440 isSGPR = false; 441 width = 8; 442 } else if (AMDGPU::SReg_512RegClass.contains(reg)) { 443 isSGPR = true; 444 width = 16; 445 } else if (AMDGPU::VReg_512RegClass.contains(reg)) { 446 isSGPR = false; 447 width = 16; 448 } else { 449 llvm_unreachable("Unknown register class"); 450 } 451 unsigned hwReg = RI->getEncodingValue(reg) & 0xff; 452 unsigned maxUsed = hwReg + width - 1; 453 if (isSGPR) { 454 MaxSGPR = maxUsed > MaxSGPR ? maxUsed : MaxSGPR; 455 } else { 456 MaxVGPR = maxUsed > MaxVGPR ? maxUsed : MaxVGPR; 457 } 458 } 459 } 460 } 461 462 unsigned ExtraSGPRs = 0; 463 464 if (VCCUsed) 465 ExtraSGPRs = 2; 466 467 if (STM.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) { 468 if (FlatUsed) 469 ExtraSGPRs = 4; 470 } else { 471 if (STM.isXNACKEnabled()) 472 ExtraSGPRs = 4; 473 474 if (FlatUsed) 475 ExtraSGPRs = 6; 476 } 477 478 // Record first reserved register and reserved register count fields, and 479 // update max register counts if "amdgpu-debugger-reserve-regs" attribute was 480 // requested. 481 ProgInfo.ReservedVGPRFirst = STM.debuggerReserveRegs() ? MaxVGPR + 1 : 0; 482 ProgInfo.ReservedVGPRCount = RI->getNumDebuggerReservedVGPRs(STM); 483 484 // Update DebuggerWavefrontPrivateSegmentOffsetSGPR and 485 // DebuggerPrivateSegmentBufferSGPR fields if "amdgpu-debugger-emit-prologue" 486 // attribute was requested. 487 if (STM.debuggerEmitPrologue()) { 488 ProgInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR = 489 RI->getHWRegIndex(MFI->getScratchWaveOffsetReg()); 490 ProgInfo.DebuggerPrivateSegmentBufferSGPR = 491 RI->getHWRegIndex(MFI->getScratchRSrcReg()); 492 } 493 494 // Account for extra SGPRs and VGPRs reserved for debugger use. 495 MaxSGPR += ExtraSGPRs; 496 MaxVGPR += RI->getNumDebuggerReservedVGPRs(STM); 497 498 // We found the maximum register index. They start at 0, so add one to get the 499 // number of registers. 500 ProgInfo.NumVGPR = MaxVGPR + 1; 501 ProgInfo.NumSGPR = MaxSGPR + 1; 502 503 // Adjust number of registers used to meet default/requested minimum/maximum 504 // number of waves per execution unit request. 505 ProgInfo.NumSGPRsForWavesPerEU = std::max( 506 ProgInfo.NumSGPR, RI->getMinNumSGPRs(STM, MFI->getMaxWavesPerEU())); 507 ProgInfo.NumVGPRsForWavesPerEU = std::max( 508 ProgInfo.NumVGPR, RI->getMinNumVGPRs(MFI->getMaxWavesPerEU())); 509 510 if (STM.hasSGPRInitBug()) { 511 if (ProgInfo.NumSGPR > SISubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG) { 512 LLVMContext &Ctx = MF.getFunction()->getContext(); 513 DiagnosticInfoResourceLimit Diag(*MF.getFunction(), 514 "SGPRs with SGPR init bug", 515 ProgInfo.NumSGPR, DS_Error); 516 Ctx.diagnose(Diag); 517 } 518 519 ProgInfo.NumSGPR = SISubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG; 520 ProgInfo.NumSGPRsForWavesPerEU = SISubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG; 521 } 522 523 if (MFI->NumUserSGPRs > STM.getMaxNumUserSGPRs()) { 524 LLVMContext &Ctx = MF.getFunction()->getContext(); 525 DiagnosticInfoResourceLimit Diag(*MF.getFunction(), "user SGPRs", 526 MFI->NumUserSGPRs, DS_Error); 527 Ctx.diagnose(Diag); 528 } 529 530 if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) { 531 LLVMContext &Ctx = MF.getFunction()->getContext(); 532 DiagnosticInfoResourceLimit Diag(*MF.getFunction(), "local memory", 533 MFI->getLDSSize(), DS_Error); 534 Ctx.diagnose(Diag); 535 } 536 537 // SGPRBlocks is actual number of SGPR blocks minus 1. 538 ProgInfo.SGPRBlocks = alignTo(ProgInfo.NumSGPRsForWavesPerEU, 539 RI->getSGPRAllocGranule()); 540 ProgInfo.SGPRBlocks = ProgInfo.SGPRBlocks / RI->getSGPRAllocGranule() - 1; 541 542 // VGPRBlocks is actual number of VGPR blocks minus 1. 543 ProgInfo.VGPRBlocks = alignTo(ProgInfo.NumVGPRsForWavesPerEU, 544 RI->getVGPRAllocGranule()); 545 ProgInfo.VGPRBlocks = ProgInfo.VGPRBlocks / RI->getVGPRAllocGranule() - 1; 546 547 // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode 548 // register. 549 ProgInfo.FloatMode = getFPMode(MF); 550 551 ProgInfo.IEEEMode = 0; 552 553 // Make clamp modifier on NaN input returns 0. 554 ProgInfo.DX10Clamp = 1; 555 556 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 557 ProgInfo.ScratchSize = FrameInfo.getStackSize(); 558 559 ProgInfo.FlatUsed = FlatUsed; 560 ProgInfo.VCCUsed = VCCUsed; 561 ProgInfo.CodeLen = CodeSize; 562 563 unsigned LDSAlignShift; 564 if (STM.getGeneration() < SISubtarget::SEA_ISLANDS) { 565 // LDS is allocated in 64 dword blocks. 566 LDSAlignShift = 8; 567 } else { 568 // LDS is allocated in 128 dword blocks. 569 LDSAlignShift = 9; 570 } 571 572 unsigned LDSSpillSize = 573 MFI->LDSWaveSpillSize * MFI->getMaxFlatWorkGroupSize(); 574 575 ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize; 576 ProgInfo.LDSBlocks = 577 alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift; 578 579 // Scratch is allocated in 256 dword blocks. 580 unsigned ScratchAlignShift = 10; 581 // We need to program the hardware with the amount of scratch memory that 582 // is used by the entire wave. ProgInfo.ScratchSize is the amount of 583 // scratch memory used per thread. 584 ProgInfo.ScratchBlocks = 585 alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(), 586 1ULL << ScratchAlignShift) >> 587 ScratchAlignShift; 588 589 ProgInfo.ComputePGMRSrc1 = 590 S_00B848_VGPRS(ProgInfo.VGPRBlocks) | 591 S_00B848_SGPRS(ProgInfo.SGPRBlocks) | 592 S_00B848_PRIORITY(ProgInfo.Priority) | 593 S_00B848_FLOAT_MODE(ProgInfo.FloatMode) | 594 S_00B848_PRIV(ProgInfo.Priv) | 595 S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) | 596 S_00B848_DEBUG_MODE(ProgInfo.DebugMode) | 597 S_00B848_IEEE_MODE(ProgInfo.IEEEMode); 598 599 // 0 = X, 1 = XY, 2 = XYZ 600 unsigned TIDIGCompCnt = 0; 601 if (MFI->hasWorkItemIDZ()) 602 TIDIGCompCnt = 2; 603 else if (MFI->hasWorkItemIDY()) 604 TIDIGCompCnt = 1; 605 606 ProgInfo.ComputePGMRSrc2 = 607 S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) | 608 S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) | 609 S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) | 610 S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) | 611 S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) | 612 S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) | 613 S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) | 614 S_00B84C_EXCP_EN_MSB(0) | 615 S_00B84C_LDS_SIZE(ProgInfo.LDSBlocks) | 616 S_00B84C_EXCP_EN(0); 617 } 618 619 static unsigned getRsrcReg(CallingConv::ID CallConv) { 620 switch (CallConv) { 621 default: LLVM_FALLTHROUGH; 622 case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1; 623 case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS; 624 case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS; 625 case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS; 626 } 627 } 628 629 void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF, 630 const SIProgramInfo &KernelInfo) { 631 const SISubtarget &STM = MF.getSubtarget<SISubtarget>(); 632 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 633 unsigned RsrcReg = getRsrcReg(MF.getFunction()->getCallingConv()); 634 635 if (AMDGPU::isCompute(MF.getFunction()->getCallingConv())) { 636 OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4); 637 638 OutStreamer->EmitIntValue(KernelInfo.ComputePGMRSrc1, 4); 639 640 OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4); 641 OutStreamer->EmitIntValue(KernelInfo.ComputePGMRSrc2, 4); 642 643 OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4); 644 OutStreamer->EmitIntValue(S_00B860_WAVESIZE(KernelInfo.ScratchBlocks), 4); 645 646 // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 = 647 // 0" comment but I don't see a corresponding field in the register spec. 648 } else { 649 OutStreamer->EmitIntValue(RsrcReg, 4); 650 OutStreamer->EmitIntValue(S_00B028_VGPRS(KernelInfo.VGPRBlocks) | 651 S_00B028_SGPRS(KernelInfo.SGPRBlocks), 4); 652 if (STM.isVGPRSpillingEnabled(*MF.getFunction())) { 653 OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4); 654 OutStreamer->EmitIntValue(S_0286E8_WAVESIZE(KernelInfo.ScratchBlocks), 4); 655 } 656 } 657 658 if (MF.getFunction()->getCallingConv() == CallingConv::AMDGPU_PS) { 659 OutStreamer->EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4); 660 OutStreamer->EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(KernelInfo.LDSBlocks), 4); 661 OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4); 662 OutStreamer->EmitIntValue(MFI->PSInputEna, 4); 663 OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4); 664 OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4); 665 } 666 667 OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4); 668 OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4); 669 OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4); 670 OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4); 671 } 672 673 // This is supposed to be log2(Size) 674 static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) { 675 switch (Size) { 676 case 4: 677 return AMD_ELEMENT_4_BYTES; 678 case 8: 679 return AMD_ELEMENT_8_BYTES; 680 case 16: 681 return AMD_ELEMENT_16_BYTES; 682 default: 683 llvm_unreachable("invalid private_element_size"); 684 } 685 } 686 687 void AMDGPUAsmPrinter::EmitAmdKernelCodeT(const MachineFunction &MF, 688 const SIProgramInfo &KernelInfo) const { 689 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 690 const SISubtarget &STM = MF.getSubtarget<SISubtarget>(); 691 amd_kernel_code_t header; 692 693 AMDGPU::initDefaultAMDKernelCodeT(header, STM.getFeatureBits()); 694 695 header.compute_pgm_resource_registers = 696 KernelInfo.ComputePGMRSrc1 | 697 (KernelInfo.ComputePGMRSrc2 << 32); 698 header.code_properties = AMD_CODE_PROPERTY_IS_PTR64; 699 700 701 AMD_HSA_BITS_SET(header.code_properties, 702 AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE, 703 getElementByteSizeValue(STM.getMaxPrivateElementSize())); 704 705 if (MFI->hasPrivateSegmentBuffer()) { 706 header.code_properties |= 707 AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; 708 } 709 710 if (MFI->hasDispatchPtr()) 711 header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 712 713 if (MFI->hasQueuePtr()) 714 header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; 715 716 if (MFI->hasKernargSegmentPtr()) 717 header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; 718 719 if (MFI->hasDispatchID()) 720 header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; 721 722 if (MFI->hasFlatScratchInit()) 723 header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; 724 725 // TODO: Private segment size 726 727 if (MFI->hasGridWorkgroupCountX()) { 728 header.code_properties |= 729 AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X; 730 } 731 732 if (MFI->hasGridWorkgroupCountY()) { 733 header.code_properties |= 734 AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y; 735 } 736 737 if (MFI->hasGridWorkgroupCountZ()) { 738 header.code_properties |= 739 AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z; 740 } 741 742 if (MFI->hasDispatchPtr()) 743 header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 744 745 if (STM.debuggerSupported()) 746 header.code_properties |= AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED; 747 748 if (STM.isXNACKEnabled()) 749 header.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED; 750 751 // FIXME: Should use getKernArgSize 752 header.kernarg_segment_byte_size = 753 STM.getKernArgSegmentSize(MFI->getABIArgOffset()); 754 header.wavefront_sgpr_count = KernelInfo.NumSGPR; 755 header.workitem_vgpr_count = KernelInfo.NumVGPR; 756 header.workitem_private_segment_byte_size = KernelInfo.ScratchSize; 757 header.workgroup_group_segment_byte_size = KernelInfo.LDSSize; 758 header.reserved_vgpr_first = KernelInfo.ReservedVGPRFirst; 759 header.reserved_vgpr_count = KernelInfo.ReservedVGPRCount; 760 761 if (STM.debuggerEmitPrologue()) { 762 header.debug_wavefront_private_segment_offset_sgpr = 763 KernelInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR; 764 header.debug_private_segment_buffer_sgpr = 765 KernelInfo.DebuggerPrivateSegmentBufferSGPR; 766 } 767 768 AMDGPUTargetStreamer *TS = 769 static_cast<AMDGPUTargetStreamer *>(OutStreamer->getTargetStreamer()); 770 771 OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); 772 TS->EmitAMDKernelCodeT(header); 773 } 774 775 bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 776 unsigned AsmVariant, 777 const char *ExtraCode, raw_ostream &O) { 778 if (ExtraCode && ExtraCode[0]) { 779 if (ExtraCode[1] != 0) 780 return true; // Unknown modifier. 781 782 switch (ExtraCode[0]) { 783 default: 784 // See if this is a generic print operand 785 return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O); 786 case 'r': 787 break; 788 } 789 } 790 791 AMDGPUInstPrinter::printRegOperand(MI->getOperand(OpNo).getReg(), O, 792 *TM.getSubtargetImpl(*MF->getFunction())->getRegisterInfo()); 793 return false; 794 } 795 796 // Emit a key and an integer value for runtime metadata. 797 static void emitRuntimeMDIntValue(MCStreamer &Streamer, 798 RuntimeMD::Key K, uint64_t V, 799 unsigned Size) { 800 Streamer.EmitIntValue(K, 1); 801 Streamer.EmitIntValue(V, Size); 802 } 803 804 // Emit a key and a string value for runtime metadata. 805 static void emitRuntimeMDStringValue(MCStreamer &Streamer, 806 RuntimeMD::Key K, StringRef S) { 807 Streamer.EmitIntValue(K, 1); 808 Streamer.EmitIntValue(S.size(), 4); 809 Streamer.EmitBytes(S); 810 } 811 812 // Emit a key and three integer values for runtime metadata. 813 // The three integer values are obtained from MDNode \p Node; 814 static void emitRuntimeMDThreeIntValues(MCStreamer &Streamer, 815 RuntimeMD::Key K, MDNode *Node, 816 unsigned Size) { 817 assert(Node->getNumOperands() == 3); 818 819 Streamer.EmitIntValue(K, 1); 820 for (const MDOperand &Op : Node->operands()) { 821 const ConstantInt *CI = mdconst::extract<ConstantInt>(Op); 822 Streamer.EmitIntValue(CI->getZExtValue(), Size); 823 } 824 } 825 826 void AMDGPUAsmPrinter::emitStartOfRuntimeMetadata(const Module &M) { 827 OutStreamer->SwitchSection(getObjFileLowering().getContext() 828 .getELFSection(RuntimeMD::SectionName, ELF::SHT_PROGBITS, 0)); 829 830 emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyMDVersion, 831 RuntimeMD::MDVersion << 8 | RuntimeMD::MDRevision, 2); 832 if (auto MD = M.getNamedMetadata("opencl.ocl.version")) { 833 if (MD->getNumOperands() != 0) { 834 auto Node = MD->getOperand(0); 835 if (Node->getNumOperands() > 1) { 836 emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyLanguage, 837 RuntimeMD::OpenCL_C, 1); 838 uint16_t Major = mdconst::extract<ConstantInt>(Node->getOperand(0)) 839 ->getZExtValue(); 840 uint16_t Minor = mdconst::extract<ConstantInt>(Node->getOperand(1)) 841 ->getZExtValue(); 842 emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyLanguageVersion, 843 Major * 100 + Minor * 10, 2); 844 } 845 } 846 } 847 848 if (auto MD = M.getNamedMetadata("llvm.printf.fmts")) { 849 for (unsigned I = 0; I < MD->getNumOperands(); ++I) { 850 auto Node = MD->getOperand(I); 851 if (Node->getNumOperands() > 0) 852 emitRuntimeMDStringValue(*OutStreamer, RuntimeMD::KeyPrintfInfo, 853 cast<MDString>(Node->getOperand(0))->getString()); 854 } 855 } 856 } 857 858 static std::string getOCLTypeName(Type *Ty, bool Signed) { 859 switch (Ty->getTypeID()) { 860 case Type::HalfTyID: 861 return "half"; 862 case Type::FloatTyID: 863 return "float"; 864 case Type::DoubleTyID: 865 return "double"; 866 case Type::IntegerTyID: { 867 if (!Signed) 868 return (Twine('u') + getOCLTypeName(Ty, true)).str(); 869 unsigned BW = Ty->getIntegerBitWidth(); 870 switch (BW) { 871 case 8: 872 return "char"; 873 case 16: 874 return "short"; 875 case 32: 876 return "int"; 877 case 64: 878 return "long"; 879 default: 880 return (Twine('i') + Twine(BW)).str(); 881 } 882 } 883 case Type::VectorTyID: { 884 VectorType *VecTy = cast<VectorType>(Ty); 885 Type *EleTy = VecTy->getElementType(); 886 unsigned Size = VecTy->getVectorNumElements(); 887 return (Twine(getOCLTypeName(EleTy, Signed)) + Twine(Size)).str(); 888 } 889 default: 890 return "unknown"; 891 } 892 } 893 894 static RuntimeMD::KernelArg::ValueType getRuntimeMDValueType( 895 Type *Ty, StringRef TypeName) { 896 switch (Ty->getTypeID()) { 897 case Type::HalfTyID: 898 return RuntimeMD::KernelArg::F16; 899 case Type::FloatTyID: 900 return RuntimeMD::KernelArg::F32; 901 case Type::DoubleTyID: 902 return RuntimeMD::KernelArg::F64; 903 case Type::IntegerTyID: { 904 bool Signed = !TypeName.startswith("u"); 905 switch (Ty->getIntegerBitWidth()) { 906 case 8: 907 return Signed ? RuntimeMD::KernelArg::I8 : RuntimeMD::KernelArg::U8; 908 case 16: 909 return Signed ? RuntimeMD::KernelArg::I16 : RuntimeMD::KernelArg::U16; 910 case 32: 911 return Signed ? RuntimeMD::KernelArg::I32 : RuntimeMD::KernelArg::U32; 912 case 64: 913 return Signed ? RuntimeMD::KernelArg::I64 : RuntimeMD::KernelArg::U64; 914 default: 915 // Runtime does not recognize other integer types. Report as struct type. 916 return RuntimeMD::KernelArg::Struct; 917 } 918 } 919 case Type::VectorTyID: 920 return getRuntimeMDValueType(Ty->getVectorElementType(), TypeName); 921 case Type::PointerTyID: 922 return getRuntimeMDValueType(Ty->getPointerElementType(), TypeName); 923 default: 924 return RuntimeMD::KernelArg::Struct; 925 } 926 } 927 928 static RuntimeMD::KernelArg::AddressSpaceQualifer getRuntimeAddrSpace( 929 AMDGPUAS::AddressSpaces A) { 930 switch (A) { 931 case AMDGPUAS::GLOBAL_ADDRESS: 932 return RuntimeMD::KernelArg::Global; 933 case AMDGPUAS::CONSTANT_ADDRESS: 934 return RuntimeMD::KernelArg::Constant; 935 case AMDGPUAS::LOCAL_ADDRESS: 936 return RuntimeMD::KernelArg::Local; 937 case AMDGPUAS::FLAT_ADDRESS: 938 return RuntimeMD::KernelArg::Generic; 939 case AMDGPUAS::REGION_ADDRESS: 940 return RuntimeMD::KernelArg::Region; 941 default: 942 return RuntimeMD::KernelArg::Private; 943 } 944 } 945 946 static void emitRuntimeMetadataForKernelArg(const DataLayout &DL, 947 MCStreamer &OutStreamer, Type *T, 948 RuntimeMD::KernelArg::Kind Kind, 949 StringRef BaseTypeName = "", StringRef TypeName = "", 950 StringRef ArgName = "", StringRef TypeQual = "", StringRef AccQual = "") { 951 // Emit KeyArgBegin. 952 OutStreamer.EmitIntValue(RuntimeMD::KeyArgBegin, 1); 953 954 // Emit KeyArgSize and KeyArgAlign. 955 emitRuntimeMDIntValue(OutStreamer, RuntimeMD::KeyArgSize, 956 DL.getTypeAllocSize(T), 4); 957 emitRuntimeMDIntValue(OutStreamer, RuntimeMD::KeyArgAlign, 958 DL.getABITypeAlignment(T), 4); 959 if (auto PT = dyn_cast<PointerType>(T)) { 960 auto ET = PT->getElementType(); 961 if (PT->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS && ET->isSized()) 962 emitRuntimeMDIntValue(OutStreamer, RuntimeMD::KeyArgPointeeAlign, 963 DL.getABITypeAlignment(ET), 4); 964 } 965 966 // Emit KeyArgTypeName. 967 if (!TypeName.empty()) 968 emitRuntimeMDStringValue(OutStreamer, RuntimeMD::KeyArgTypeName, TypeName); 969 970 // Emit KeyArgName. 971 if (!ArgName.empty()) 972 emitRuntimeMDStringValue(OutStreamer, RuntimeMD::KeyArgName, ArgName); 973 974 // Emit KeyArgIsVolatile, KeyArgIsRestrict, KeyArgIsConst and KeyArgIsPipe. 975 SmallVector<StringRef, 1> SplitQ; 976 TypeQual.split(SplitQ, " ", -1, false /* Drop empty entry */); 977 978 for (StringRef KeyName : SplitQ) { 979 auto Key = StringSwitch<RuntimeMD::Key>(KeyName) 980 .Case("volatile", RuntimeMD::KeyArgIsVolatile) 981 .Case("restrict", RuntimeMD::KeyArgIsRestrict) 982 .Case("const", RuntimeMD::KeyArgIsConst) 983 .Case("pipe", RuntimeMD::KeyArgIsPipe) 984 .Default(RuntimeMD::KeyNull); 985 OutStreamer.EmitIntValue(Key, 1); 986 } 987 988 // Emit KeyArgKind. 989 emitRuntimeMDIntValue(OutStreamer, RuntimeMD::KeyArgKind, Kind, 1); 990 991 // Emit KeyArgValueType. 992 emitRuntimeMDIntValue(OutStreamer, RuntimeMD::KeyArgValueType, 993 getRuntimeMDValueType(T, BaseTypeName), 2); 994 995 // Emit KeyArgAccQual. 996 if (!AccQual.empty()) { 997 auto AQ = StringSwitch<RuntimeMD::KernelArg::AccessQualifer>(AccQual) 998 .Case("read_only", RuntimeMD::KernelArg::ReadOnly) 999 .Case("write_only", RuntimeMD::KernelArg::WriteOnly) 1000 .Case("read_write", RuntimeMD::KernelArg::ReadWrite) 1001 .Default(RuntimeMD::KernelArg::None); 1002 emitRuntimeMDIntValue(OutStreamer, RuntimeMD::KeyArgAccQual, AQ, 1); 1003 } 1004 1005 // Emit KeyArgAddrQual. 1006 if (auto *PT = dyn_cast<PointerType>(T)) 1007 emitRuntimeMDIntValue(OutStreamer, RuntimeMD::KeyArgAddrQual, 1008 getRuntimeAddrSpace(static_cast<AMDGPUAS::AddressSpaces>( 1009 PT->getAddressSpace())), 1); 1010 1011 // Emit KeyArgEnd 1012 OutStreamer.EmitIntValue(RuntimeMD::KeyArgEnd, 1); 1013 } 1014 1015 void AMDGPUAsmPrinter::emitRuntimeMetadata(const Function &F) { 1016 if (!F.getMetadata("kernel_arg_type")) 1017 return; 1018 1019 MCContext &Context = getObjFileLowering().getContext(); 1020 OutStreamer->SwitchSection( 1021 Context.getELFSection(RuntimeMD::SectionName, ELF::SHT_PROGBITS, 0)); 1022 OutStreamer->EmitIntValue(RuntimeMD::KeyKernelBegin, 1); 1023 emitRuntimeMDStringValue(*OutStreamer, RuntimeMD::KeyKernelName, F.getName()); 1024 1025 const DataLayout &DL = F.getParent()->getDataLayout(); 1026 for (auto &Arg : F.args()) { 1027 unsigned I = Arg.getArgNo(); 1028 Type *T = Arg.getType(); 1029 auto TypeName = dyn_cast<MDString>(F.getMetadata( 1030 "kernel_arg_type")->getOperand(I))->getString(); 1031 auto BaseTypeName = cast<MDString>(F.getMetadata( 1032 "kernel_arg_base_type")->getOperand(I))->getString(); 1033 StringRef ArgName; 1034 if (auto ArgNameMD = F.getMetadata("kernel_arg_name")) 1035 ArgName = cast<MDString>(ArgNameMD->getOperand(I))->getString(); 1036 auto TypeQual = cast<MDString>(F.getMetadata( 1037 "kernel_arg_type_qual")->getOperand(I))->getString(); 1038 auto AccQual = cast<MDString>(F.getMetadata( 1039 "kernel_arg_access_qual")->getOperand(I))->getString(); 1040 RuntimeMD::KernelArg::Kind Kind; 1041 if (TypeQual.find("pipe") != StringRef::npos) 1042 Kind = RuntimeMD::KernelArg::Pipe; 1043 else Kind = StringSwitch<RuntimeMD::KernelArg::Kind>(BaseTypeName) 1044 .Case("sampler_t", RuntimeMD::KernelArg::Sampler) 1045 .Case("queue_t", RuntimeMD::KernelArg::Queue) 1046 .Cases("image1d_t", "image1d_array_t", "image1d_buffer_t", 1047 "image2d_t" , "image2d_array_t", RuntimeMD::KernelArg::Image) 1048 .Cases("image2d_depth_t", "image2d_array_depth_t", 1049 "image2d_msaa_t", "image2d_array_msaa_t", 1050 "image2d_msaa_depth_t", RuntimeMD::KernelArg::Image) 1051 .Cases("image2d_array_msaa_depth_t", "image3d_t", 1052 RuntimeMD::KernelArg::Image) 1053 .Default(isa<PointerType>(T) ? 1054 (T->getPointerAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ? 1055 RuntimeMD::KernelArg::DynamicSharedPointer : 1056 RuntimeMD::KernelArg::GlobalBuffer) : 1057 RuntimeMD::KernelArg::ByValue); 1058 emitRuntimeMetadataForKernelArg(DL, *OutStreamer, T, 1059 Kind, BaseTypeName, TypeName, ArgName, TypeQual, AccQual); 1060 } 1061 1062 // Emit hidden kernel arguments for OpenCL kernels. 1063 if (F.getParent()->getNamedMetadata("opencl.ocl.version")) { 1064 auto Int64T = Type::getInt64Ty(F.getContext()); 1065 emitRuntimeMetadataForKernelArg(DL, *OutStreamer, Int64T, 1066 RuntimeMD::KernelArg::HiddenGlobalOffsetX); 1067 emitRuntimeMetadataForKernelArg(DL, *OutStreamer, Int64T, 1068 RuntimeMD::KernelArg::HiddenGlobalOffsetY); 1069 emitRuntimeMetadataForKernelArg(DL, *OutStreamer, Int64T, 1070 RuntimeMD::KernelArg::HiddenGlobalOffsetZ); 1071 if (F.getParent()->getNamedMetadata("llvm.printf.fmts")) { 1072 auto Int8PtrT = Type::getInt8PtrTy(F.getContext(), 1073 RuntimeMD::KernelArg::Global); 1074 emitRuntimeMetadataForKernelArg(DL, *OutStreamer, Int8PtrT, 1075 RuntimeMD::KernelArg::HiddenPrintfBuffer); 1076 } 1077 } 1078 1079 // Emit KeyReqdWorkGroupSize, KeyWorkGroupSizeHint, and KeyVecTypeHint. 1080 if (auto RWGS = F.getMetadata("reqd_work_group_size")) { 1081 emitRuntimeMDThreeIntValues(*OutStreamer, RuntimeMD::KeyReqdWorkGroupSize, 1082 RWGS, 4); 1083 } 1084 1085 if (auto WGSH = F.getMetadata("work_group_size_hint")) { 1086 emitRuntimeMDThreeIntValues(*OutStreamer, RuntimeMD::KeyWorkGroupSizeHint, 1087 WGSH, 4); 1088 } 1089 1090 if (auto VTH = F.getMetadata("vec_type_hint")) { 1091 auto TypeName = getOCLTypeName(cast<ValueAsMetadata>( 1092 VTH->getOperand(0))->getType(), mdconst::extract<ConstantInt>( 1093 VTH->getOperand(1))->getZExtValue()); 1094 emitRuntimeMDStringValue(*OutStreamer, RuntimeMD::KeyVecTypeHint, TypeName); 1095 } 1096 1097 // Emit KeyKernelEnd 1098 OutStreamer->EmitIntValue(RuntimeMD::KeyKernelEnd, 1); 1099 } 1100