1 //===-- AMDGPUAsmPrinter.cpp - AMDGPU assembly printer -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// 12 /// The AMDGPUAsmPrinter is used to print both assembly string and also binary 13 /// code. When passed an MCAsmStreamer it prints assembly and when passed 14 /// an MCObjectStreamer it outputs binary code. 15 // 16 //===----------------------------------------------------------------------===// 17 // 18 19 #include "AMDGPUAsmPrinter.h" 20 #include "AMDGPU.h" 21 #include "AMDGPUSubtarget.h" 22 #include "AMDGPUTargetMachine.h" 23 #include "InstPrinter/AMDGPUInstPrinter.h" 24 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 25 #include "MCTargetDesc/AMDGPUTargetStreamer.h" 26 #include "R600AsmPrinter.h" 27 #include "R600Defines.h" 28 #include "R600MachineFunctionInfo.h" 29 #include "R600RegisterInfo.h" 30 #include "SIDefines.h" 31 #include "SIInstrInfo.h" 32 #include "SIMachineFunctionInfo.h" 33 #include "SIRegisterInfo.h" 34 #include "Utils/AMDGPUBaseInfo.h" 35 #include "llvm/BinaryFormat/ELF.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/IR/DiagnosticInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/MC/MCSectionELF.h" 40 #include "llvm/MC/MCStreamer.h" 41 #include "llvm/Support/AMDGPUMetadata.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/TargetParser.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Target/TargetLoweringObjectFile.h" 46 47 using namespace llvm; 48 using namespace llvm::AMDGPU; 49 using namespace llvm::AMDGPU::HSAMD; 50 51 // TODO: This should get the default rounding mode from the kernel. We just set 52 // the default here, but this could change if the OpenCL rounding mode pragmas 53 // are used. 54 // 55 // The denormal mode here should match what is reported by the OpenCL runtime 56 // for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but 57 // can also be override to flush with the -cl-denorms-are-zero compiler flag. 58 // 59 // AMD OpenCL only sets flush none and reports CL_FP_DENORM for double 60 // precision, and leaves single precision to flush all and does not report 61 // CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports 62 // CL_FP_DENORM for both. 63 // 64 // FIXME: It seems some instructions do not support single precision denormals 65 // regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32, 66 // and sin_f32, cos_f32 on most parts). 67 68 // We want to use these instructions, and using fp32 denormals also causes 69 // instructions to run at the double precision rate for the device so it's 70 // probably best to just report no single precision denormals. 71 static uint32_t getFPMode(const MachineFunction &F) { 72 const GCNSubtarget& ST = F.getSubtarget<GCNSubtarget>(); 73 // TODO: Is there any real use for the flush in only / flush out only modes? 74 75 uint32_t FP32Denormals = 76 ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; 77 78 uint32_t FP64Denormals = 79 ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; 80 81 return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) | 82 FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) | 83 FP_DENORM_MODE_SP(FP32Denormals) | 84 FP_DENORM_MODE_DP(FP64Denormals); 85 } 86 87 static AsmPrinter * 88 createAMDGPUAsmPrinterPass(TargetMachine &tm, 89 std::unique_ptr<MCStreamer> &&Streamer) { 90 return new AMDGPUAsmPrinter(tm, std::move(Streamer)); 91 } 92 93 extern "C" void LLVMInitializeAMDGPUAsmPrinter() { 94 TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(), 95 llvm::createR600AsmPrinterPass); 96 TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(), 97 createAMDGPUAsmPrinterPass); 98 } 99 100 AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, 101 std::unique_ptr<MCStreamer> Streamer) 102 : AsmPrinter(TM, std::move(Streamer)) { 103 if (IsaInfo::hasCodeObjectV3(getSTI())) 104 HSAMetadataStream.reset(new MetadataStreamerV3()); 105 else 106 HSAMetadataStream.reset(new MetadataStreamerV2()); 107 } 108 109 StringRef AMDGPUAsmPrinter::getPassName() const { 110 return "AMDGPU Assembly Printer"; 111 } 112 113 const MCSubtargetInfo* AMDGPUAsmPrinter::getSTI() const { 114 return TM.getMCSubtargetInfo(); 115 } 116 117 AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const { 118 if (!OutStreamer) 119 return nullptr; 120 return static_cast<AMDGPUTargetStreamer*>(OutStreamer->getTargetStreamer()); 121 } 122 123 void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) { 124 if (IsaInfo::hasCodeObjectV3(getSTI())) { 125 std::string ExpectedTarget; 126 raw_string_ostream ExpectedTargetOS(ExpectedTarget); 127 IsaInfo::streamIsaVersion(getSTI(), ExpectedTargetOS); 128 129 getTargetStreamer()->EmitDirectiveAMDGCNTarget(ExpectedTarget); 130 } 131 132 if (TM.getTargetTriple().getOS() != Triple::AMDHSA && 133 TM.getTargetTriple().getOS() != Triple::AMDPAL) 134 return; 135 136 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) 137 HSAMetadataStream->begin(M); 138 139 if (TM.getTargetTriple().getOS() == Triple::AMDPAL) 140 readPALMetadata(M); 141 142 if (IsaInfo::hasCodeObjectV3(getSTI())) 143 return; 144 145 // HSA emits NT_AMDGPU_HSA_CODE_OBJECT_VERSION for code objects v2. 146 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) 147 getTargetStreamer()->EmitDirectiveHSACodeObjectVersion(2, 1); 148 149 // HSA and PAL emit NT_AMDGPU_HSA_ISA for code objects v2. 150 IsaVersion Version = getIsaVersion(getSTI()->getCPU()); 151 getTargetStreamer()->EmitDirectiveHSACodeObjectISA( 152 Version.Major, Version.Minor, Version.Stepping, "AMD", "AMDGPU"); 153 } 154 155 void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) { 156 // Following code requires TargetStreamer to be present. 157 if (!getTargetStreamer()) 158 return; 159 160 if (!IsaInfo::hasCodeObjectV3(getSTI())) { 161 // Emit ISA Version (NT_AMD_AMDGPU_ISA). 162 std::string ISAVersionString; 163 raw_string_ostream ISAVersionStream(ISAVersionString); 164 IsaInfo::streamIsaVersion(getSTI(), ISAVersionStream); 165 getTargetStreamer()->EmitISAVersion(ISAVersionStream.str()); 166 } 167 168 // Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA). 169 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) { 170 HSAMetadataStream->end(); 171 bool Success = HSAMetadataStream->emitTo(*getTargetStreamer()); 172 (void)Success; 173 assert(Success && "Malformed HSA Metadata"); 174 } 175 176 if (!IsaInfo::hasCodeObjectV3(getSTI())) { 177 // Emit PAL Metadata (NT_AMD_AMDGPU_PAL_METADATA). 178 if (TM.getTargetTriple().getOS() == Triple::AMDPAL) { 179 // Copy the PAL metadata from the map where we collected it into a vector, 180 // then write it as a .note. 181 PALMD::Metadata PALMetadataVector; 182 for (auto i : PALMetadataMap) { 183 PALMetadataVector.push_back(i.first); 184 PALMetadataVector.push_back(i.second); 185 } 186 getTargetStreamer()->EmitPALMetadata(PALMetadataVector); 187 } 188 } 189 } 190 191 bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough( 192 const MachineBasicBlock *MBB) const { 193 if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB)) 194 return false; 195 196 if (MBB->empty()) 197 return true; 198 199 // If this is a block implementing a long branch, an expression relative to 200 // the start of the block is needed. to the start of the block. 201 // XXX - Is there a smarter way to check this? 202 return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64); 203 } 204 205 void AMDGPUAsmPrinter::EmitFunctionBodyStart() { 206 const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>(); 207 if (!MFI.isEntryFunction()) 208 return; 209 210 const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>(); 211 const Function &F = MF->getFunction(); 212 if (!STM.hasCodeObjectV3() && STM.isAmdHsaOrMesa(F) && 213 (F.getCallingConv() == CallingConv::AMDGPU_KERNEL || 214 F.getCallingConv() == CallingConv::SPIR_KERNEL)) { 215 amd_kernel_code_t KernelCode; 216 getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF); 217 getTargetStreamer()->EmitAMDKernelCodeT(KernelCode); 218 } 219 220 if (STM.isAmdHsaOS()) 221 HSAMetadataStream->emitKernel(*MF, CurrentProgramInfo); 222 } 223 224 void AMDGPUAsmPrinter::EmitFunctionBodyEnd() { 225 const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>(); 226 if (!MFI.isEntryFunction()) 227 return; 228 if (!IsaInfo::hasCodeObjectV3(getSTI()) || 229 TM.getTargetTriple().getOS() != Triple::AMDHSA) 230 return; 231 232 auto &Streamer = getTargetStreamer()->getStreamer(); 233 auto &Context = Streamer.getContext(); 234 auto &ObjectFileInfo = *Context.getObjectFileInfo(); 235 auto &ReadOnlySection = *ObjectFileInfo.getReadOnlySection(); 236 237 Streamer.PushSection(); 238 Streamer.SwitchSection(&ReadOnlySection); 239 240 // CP microcode requires the kernel descriptor to be allocated on 64 byte 241 // alignment. 242 Streamer.EmitValueToAlignment(64, 0, 1, 0); 243 if (ReadOnlySection.getAlignment() < 64) 244 ReadOnlySection.setAlignment(64); 245 246 SmallString<128> KernelName; 247 getNameWithPrefix(KernelName, &MF->getFunction()); 248 getTargetStreamer()->EmitAmdhsaKernelDescriptor( 249 *getSTI(), KernelName, getAmdhsaKernelDescriptor(*MF, CurrentProgramInfo), 250 CurrentProgramInfo.NumVGPRsForWavesPerEU, 251 CurrentProgramInfo.NumSGPRsForWavesPerEU - 252 IsaInfo::getNumExtraSGPRs(getSTI(), 253 CurrentProgramInfo.VCCUsed, 254 CurrentProgramInfo.FlatUsed), 255 CurrentProgramInfo.VCCUsed, CurrentProgramInfo.FlatUsed, 256 hasXNACK(*getSTI())); 257 258 Streamer.PopSection(); 259 } 260 261 void AMDGPUAsmPrinter::EmitFunctionEntryLabel() { 262 if (IsaInfo::hasCodeObjectV3(getSTI()) && 263 TM.getTargetTriple().getOS() == Triple::AMDHSA) { 264 AsmPrinter::EmitFunctionEntryLabel(); 265 return; 266 } 267 268 const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 269 const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>(); 270 if (MFI->isEntryFunction() && STM.isAmdHsaOrMesa(MF->getFunction())) { 271 SmallString<128> SymbolName; 272 getNameWithPrefix(SymbolName, &MF->getFunction()), 273 getTargetStreamer()->EmitAMDGPUSymbolType( 274 SymbolName, ELF::STT_AMDGPU_HSA_KERNEL); 275 } 276 const GCNSubtarget &STI = MF->getSubtarget<GCNSubtarget>(); 277 if (STI.dumpCode()) { 278 // Disassemble function name label to text. 279 DisasmLines.push_back(MF->getName().str() + ":"); 280 DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); 281 HexLines.push_back(""); 282 } 283 284 AsmPrinter::EmitFunctionEntryLabel(); 285 } 286 287 void AMDGPUAsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 288 const GCNSubtarget &STI = MBB.getParent()->getSubtarget<GCNSubtarget>(); 289 if (STI.dumpCode() && !isBlockOnlyReachableByFallthrough(&MBB)) { 290 // Write a line for the basic block label if it is not only fallthrough. 291 DisasmLines.push_back( 292 (Twine("BB") + Twine(getFunctionNumber()) 293 + "_" + Twine(MBB.getNumber()) + ":").str()); 294 DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); 295 HexLines.push_back(""); 296 } 297 AsmPrinter::EmitBasicBlockStart(MBB); 298 } 299 300 void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 301 302 // Group segment variables aren't emitted in HSA. 303 if (AMDGPU::isGroupSegment(GV)) 304 return; 305 306 AsmPrinter::EmitGlobalVariable(GV); 307 } 308 309 bool AMDGPUAsmPrinter::doFinalization(Module &M) { 310 CallGraphResourceInfo.clear(); 311 return AsmPrinter::doFinalization(M); 312 } 313 314 // For the amdpal OS type, read the amdgpu.pal.metadata supplied by the 315 // frontend into our PALMetadataMap, ready for per-function modification. It 316 // is a NamedMD containing an MDTuple containing a number of MDNodes each of 317 // which is an integer value, and each two integer values forms a key=value 318 // pair that we store as PALMetadataMap[key]=value in the map. 319 void AMDGPUAsmPrinter::readPALMetadata(Module &M) { 320 auto NamedMD = M.getNamedMetadata("amdgpu.pal.metadata"); 321 if (!NamedMD || !NamedMD->getNumOperands()) 322 return; 323 auto Tuple = dyn_cast<MDTuple>(NamedMD->getOperand(0)); 324 if (!Tuple) 325 return; 326 for (unsigned I = 0, E = Tuple->getNumOperands() & -2; I != E; I += 2) { 327 auto Key = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I)); 328 auto Val = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I + 1)); 329 if (!Key || !Val) 330 continue; 331 PALMetadataMap[Key->getZExtValue()] = Val->getZExtValue(); 332 } 333 } 334 335 // Print comments that apply to both callable functions and entry points. 336 void AMDGPUAsmPrinter::emitCommonFunctionComments( 337 uint32_t NumVGPR, 338 uint32_t NumSGPR, 339 uint64_t ScratchSize, 340 uint64_t CodeSize, 341 const AMDGPUMachineFunction *MFI) { 342 OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false); 343 OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false); 344 OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false); 345 OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false); 346 OutStreamer->emitRawComment(" MemoryBound: " + Twine(MFI->isMemoryBound()), 347 false); 348 } 349 350 uint16_t AMDGPUAsmPrinter::getAmdhsaKernelCodeProperties( 351 const MachineFunction &MF) const { 352 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 353 uint16_t KernelCodeProperties = 0; 354 355 if (MFI.hasPrivateSegmentBuffer()) { 356 KernelCodeProperties |= 357 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; 358 } 359 if (MFI.hasDispatchPtr()) { 360 KernelCodeProperties |= 361 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 362 } 363 if (MFI.hasQueuePtr()) { 364 KernelCodeProperties |= 365 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; 366 } 367 if (MFI.hasKernargSegmentPtr()) { 368 KernelCodeProperties |= 369 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; 370 } 371 if (MFI.hasDispatchID()) { 372 KernelCodeProperties |= 373 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; 374 } 375 if (MFI.hasFlatScratchInit()) { 376 KernelCodeProperties |= 377 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; 378 } 379 380 return KernelCodeProperties; 381 } 382 383 amdhsa::kernel_descriptor_t AMDGPUAsmPrinter::getAmdhsaKernelDescriptor( 384 const MachineFunction &MF, 385 const SIProgramInfo &PI) const { 386 amdhsa::kernel_descriptor_t KernelDescriptor; 387 memset(&KernelDescriptor, 0x0, sizeof(KernelDescriptor)); 388 389 assert(isUInt<32>(PI.ScratchSize)); 390 assert(isUInt<32>(PI.ComputePGMRSrc1)); 391 assert(isUInt<32>(PI.ComputePGMRSrc2)); 392 393 KernelDescriptor.group_segment_fixed_size = PI.LDSSize; 394 KernelDescriptor.private_segment_fixed_size = PI.ScratchSize; 395 KernelDescriptor.compute_pgm_rsrc1 = PI.ComputePGMRSrc1; 396 KernelDescriptor.compute_pgm_rsrc2 = PI.ComputePGMRSrc2; 397 KernelDescriptor.kernel_code_properties = getAmdhsaKernelCodeProperties(MF); 398 399 return KernelDescriptor; 400 } 401 402 bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 403 CurrentProgramInfo = SIProgramInfo(); 404 405 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 406 407 // The starting address of all shader programs must be 256 bytes aligned. 408 // Regular functions just need the basic required instruction alignment. 409 MF.setAlignment(MFI->isEntryFunction() ? 8 : 2); 410 411 SetupMachineFunction(MF); 412 413 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 414 MCContext &Context = getObjFileLowering().getContext(); 415 // FIXME: This should be an explicit check for Mesa. 416 if (!STM.isAmdHsaOS() && !STM.isAmdPalOS()) { 417 MCSectionELF *ConfigSection = 418 Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0); 419 OutStreamer->SwitchSection(ConfigSection); 420 } 421 422 if (MFI->isEntryFunction()) { 423 getSIProgramInfo(CurrentProgramInfo, MF); 424 } else { 425 auto I = CallGraphResourceInfo.insert( 426 std::make_pair(&MF.getFunction(), SIFunctionResourceInfo())); 427 SIFunctionResourceInfo &Info = I.first->second; 428 assert(I.second && "should only be called once per function"); 429 Info = analyzeResourceUsage(MF); 430 } 431 432 if (STM.isAmdPalOS()) 433 EmitPALMetadata(MF, CurrentProgramInfo); 434 else if (!STM.isAmdHsaOS()) { 435 EmitProgramInfoSI(MF, CurrentProgramInfo); 436 } 437 438 DisasmLines.clear(); 439 HexLines.clear(); 440 DisasmLineMaxLen = 0; 441 442 EmitFunctionBody(); 443 444 if (isVerbose()) { 445 MCSectionELF *CommentSection = 446 Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0); 447 OutStreamer->SwitchSection(CommentSection); 448 449 if (!MFI->isEntryFunction()) { 450 OutStreamer->emitRawComment(" Function info:", false); 451 SIFunctionResourceInfo &Info = CallGraphResourceInfo[&MF.getFunction()]; 452 emitCommonFunctionComments( 453 Info.NumVGPR, 454 Info.getTotalNumSGPRs(MF.getSubtarget<GCNSubtarget>()), 455 Info.PrivateSegmentSize, 456 getFunctionCodeSize(MF), MFI); 457 return false; 458 } 459 460 OutStreamer->emitRawComment(" Kernel info:", false); 461 emitCommonFunctionComments(CurrentProgramInfo.NumVGPR, 462 CurrentProgramInfo.NumSGPR, 463 CurrentProgramInfo.ScratchSize, 464 getFunctionCodeSize(MF), MFI); 465 466 OutStreamer->emitRawComment( 467 " FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false); 468 OutStreamer->emitRawComment( 469 " IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false); 470 OutStreamer->emitRawComment( 471 " LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) + 472 " bytes/workgroup (compile time only)", false); 473 474 OutStreamer->emitRawComment( 475 " SGPRBlocks: " + Twine(CurrentProgramInfo.SGPRBlocks), false); 476 OutStreamer->emitRawComment( 477 " VGPRBlocks: " + Twine(CurrentProgramInfo.VGPRBlocks), false); 478 479 OutStreamer->emitRawComment( 480 " NumSGPRsForWavesPerEU: " + 481 Twine(CurrentProgramInfo.NumSGPRsForWavesPerEU), false); 482 OutStreamer->emitRawComment( 483 " NumVGPRsForWavesPerEU: " + 484 Twine(CurrentProgramInfo.NumVGPRsForWavesPerEU), false); 485 486 OutStreamer->emitRawComment( 487 " WaveLimiterHint : " + Twine(MFI->needsWaveLimiter()), false); 488 489 if (MF.getSubtarget<GCNSubtarget>().debuggerEmitPrologue()) { 490 OutStreamer->emitRawComment( 491 " DebuggerWavefrontPrivateSegmentOffsetSGPR: s" + 492 Twine(CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR), false); 493 OutStreamer->emitRawComment( 494 " DebuggerPrivateSegmentBufferSGPR: s" + 495 Twine(CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR), false); 496 } 497 498 OutStreamer->emitRawComment( 499 " COMPUTE_PGM_RSRC2:USER_SGPR: " + 500 Twine(G_00B84C_USER_SGPR(CurrentProgramInfo.ComputePGMRSrc2)), false); 501 OutStreamer->emitRawComment( 502 " COMPUTE_PGM_RSRC2:TRAP_HANDLER: " + 503 Twine(G_00B84C_TRAP_HANDLER(CurrentProgramInfo.ComputePGMRSrc2)), false); 504 OutStreamer->emitRawComment( 505 " COMPUTE_PGM_RSRC2:TGID_X_EN: " + 506 Twine(G_00B84C_TGID_X_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 507 OutStreamer->emitRawComment( 508 " COMPUTE_PGM_RSRC2:TGID_Y_EN: " + 509 Twine(G_00B84C_TGID_Y_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 510 OutStreamer->emitRawComment( 511 " COMPUTE_PGM_RSRC2:TGID_Z_EN: " + 512 Twine(G_00B84C_TGID_Z_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 513 OutStreamer->emitRawComment( 514 " COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " + 515 Twine(G_00B84C_TIDIG_COMP_CNT(CurrentProgramInfo.ComputePGMRSrc2)), 516 false); 517 } 518 519 if (STM.dumpCode()) { 520 521 OutStreamer->SwitchSection( 522 Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0)); 523 524 for (size_t i = 0; i < DisasmLines.size(); ++i) { 525 std::string Comment = "\n"; 526 if (!HexLines[i].empty()) { 527 Comment = std::string(DisasmLineMaxLen - DisasmLines[i].size(), ' '); 528 Comment += " ; " + HexLines[i] + "\n"; 529 } 530 531 OutStreamer->EmitBytes(StringRef(DisasmLines[i])); 532 OutStreamer->EmitBytes(StringRef(Comment)); 533 } 534 } 535 536 return false; 537 } 538 539 uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const { 540 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 541 const SIInstrInfo *TII = STM.getInstrInfo(); 542 543 uint64_t CodeSize = 0; 544 545 for (const MachineBasicBlock &MBB : MF) { 546 for (const MachineInstr &MI : MBB) { 547 // TODO: CodeSize should account for multiple functions. 548 549 // TODO: Should we count size of debug info? 550 if (MI.isDebugInstr()) 551 continue; 552 553 CodeSize += TII->getInstSizeInBytes(MI); 554 } 555 } 556 557 return CodeSize; 558 } 559 560 static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI, 561 const SIInstrInfo &TII, 562 unsigned Reg) { 563 for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) { 564 if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent())) 565 return true; 566 } 567 568 return false; 569 } 570 571 int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumSGPRs( 572 const GCNSubtarget &ST) const { 573 return NumExplicitSGPR + IsaInfo::getNumExtraSGPRs(&ST, 574 UsesVCC, UsesFlatScratch); 575 } 576 577 AMDGPUAsmPrinter::SIFunctionResourceInfo AMDGPUAsmPrinter::analyzeResourceUsage( 578 const MachineFunction &MF) const { 579 SIFunctionResourceInfo Info; 580 581 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 582 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 583 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 584 const MachineRegisterInfo &MRI = MF.getRegInfo(); 585 const SIInstrInfo *TII = ST.getInstrInfo(); 586 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 587 588 Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) || 589 MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI); 590 591 // Even if FLAT_SCRATCH is implicitly used, it has no effect if flat 592 // instructions aren't used to access the scratch buffer. Inline assembly may 593 // need it though. 594 // 595 // If we only have implicit uses of flat_scr on flat instructions, it is not 596 // really needed. 597 if (Info.UsesFlatScratch && !MFI->hasFlatScratchInit() && 598 (!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) && 599 !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) && 600 !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) { 601 Info.UsesFlatScratch = false; 602 } 603 604 Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects(); 605 Info.PrivateSegmentSize = FrameInfo.getStackSize(); 606 if (MFI->isStackRealigned()) 607 Info.PrivateSegmentSize += FrameInfo.getMaxAlignment(); 608 609 610 Info.UsesVCC = MRI.isPhysRegUsed(AMDGPU::VCC_LO) || 611 MRI.isPhysRegUsed(AMDGPU::VCC_HI); 612 613 // If there are no calls, MachineRegisterInfo can tell us the used register 614 // count easily. 615 // A tail call isn't considered a call for MachineFrameInfo's purposes. 616 if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) { 617 MCPhysReg HighestVGPRReg = AMDGPU::NoRegister; 618 for (MCPhysReg Reg : reverse(AMDGPU::VGPR_32RegClass.getRegisters())) { 619 if (MRI.isPhysRegUsed(Reg)) { 620 HighestVGPRReg = Reg; 621 break; 622 } 623 } 624 625 MCPhysReg HighestSGPRReg = AMDGPU::NoRegister; 626 for (MCPhysReg Reg : reverse(AMDGPU::SGPR_32RegClass.getRegisters())) { 627 if (MRI.isPhysRegUsed(Reg)) { 628 HighestSGPRReg = Reg; 629 break; 630 } 631 } 632 633 // We found the maximum register index. They start at 0, so add one to get the 634 // number of registers. 635 Info.NumVGPR = HighestVGPRReg == AMDGPU::NoRegister ? 0 : 636 TRI.getHWRegIndex(HighestVGPRReg) + 1; 637 Info.NumExplicitSGPR = HighestSGPRReg == AMDGPU::NoRegister ? 0 : 638 TRI.getHWRegIndex(HighestSGPRReg) + 1; 639 640 return Info; 641 } 642 643 int32_t MaxVGPR = -1; 644 int32_t MaxSGPR = -1; 645 uint64_t CalleeFrameSize = 0; 646 647 for (const MachineBasicBlock &MBB : MF) { 648 for (const MachineInstr &MI : MBB) { 649 // TODO: Check regmasks? Do they occur anywhere except calls? 650 for (const MachineOperand &MO : MI.operands()) { 651 unsigned Width = 0; 652 bool IsSGPR = false; 653 654 if (!MO.isReg()) 655 continue; 656 657 unsigned Reg = MO.getReg(); 658 switch (Reg) { 659 case AMDGPU::EXEC: 660 case AMDGPU::EXEC_LO: 661 case AMDGPU::EXEC_HI: 662 case AMDGPU::SCC: 663 case AMDGPU::M0: 664 case AMDGPU::SRC_SHARED_BASE: 665 case AMDGPU::SRC_SHARED_LIMIT: 666 case AMDGPU::SRC_PRIVATE_BASE: 667 case AMDGPU::SRC_PRIVATE_LIMIT: 668 continue; 669 670 case AMDGPU::NoRegister: 671 assert(MI.isDebugInstr()); 672 continue; 673 674 case AMDGPU::VCC: 675 case AMDGPU::VCC_LO: 676 case AMDGPU::VCC_HI: 677 Info.UsesVCC = true; 678 continue; 679 680 case AMDGPU::FLAT_SCR: 681 case AMDGPU::FLAT_SCR_LO: 682 case AMDGPU::FLAT_SCR_HI: 683 continue; 684 685 case AMDGPU::XNACK_MASK: 686 case AMDGPU::XNACK_MASK_LO: 687 case AMDGPU::XNACK_MASK_HI: 688 llvm_unreachable("xnack_mask registers should not be used"); 689 690 case AMDGPU::TBA: 691 case AMDGPU::TBA_LO: 692 case AMDGPU::TBA_HI: 693 case AMDGPU::TMA: 694 case AMDGPU::TMA_LO: 695 case AMDGPU::TMA_HI: 696 llvm_unreachable("trap handler registers should not be used"); 697 698 default: 699 break; 700 } 701 702 if (AMDGPU::SReg_32RegClass.contains(Reg)) { 703 assert(!AMDGPU::TTMP_32RegClass.contains(Reg) && 704 "trap handler registers should not be used"); 705 IsSGPR = true; 706 Width = 1; 707 } else if (AMDGPU::VGPR_32RegClass.contains(Reg)) { 708 IsSGPR = false; 709 Width = 1; 710 } else if (AMDGPU::SReg_64RegClass.contains(Reg)) { 711 assert(!AMDGPU::TTMP_64RegClass.contains(Reg) && 712 "trap handler registers should not be used"); 713 IsSGPR = true; 714 Width = 2; 715 } else if (AMDGPU::VReg_64RegClass.contains(Reg)) { 716 IsSGPR = false; 717 Width = 2; 718 } else if (AMDGPU::VReg_96RegClass.contains(Reg)) { 719 IsSGPR = false; 720 Width = 3; 721 } else if (AMDGPU::SReg_128RegClass.contains(Reg)) { 722 assert(!AMDGPU::TTMP_128RegClass.contains(Reg) && 723 "trap handler registers should not be used"); 724 IsSGPR = true; 725 Width = 4; 726 } else if (AMDGPU::VReg_128RegClass.contains(Reg)) { 727 IsSGPR = false; 728 Width = 4; 729 } else if (AMDGPU::SReg_256RegClass.contains(Reg)) { 730 assert(!AMDGPU::TTMP_256RegClass.contains(Reg) && 731 "trap handler registers should not be used"); 732 IsSGPR = true; 733 Width = 8; 734 } else if (AMDGPU::VReg_256RegClass.contains(Reg)) { 735 IsSGPR = false; 736 Width = 8; 737 } else if (AMDGPU::SReg_512RegClass.contains(Reg)) { 738 assert(!AMDGPU::TTMP_512RegClass.contains(Reg) && 739 "trap handler registers should not be used"); 740 IsSGPR = true; 741 Width = 16; 742 } else if (AMDGPU::VReg_512RegClass.contains(Reg)) { 743 IsSGPR = false; 744 Width = 16; 745 } else { 746 llvm_unreachable("Unknown register class"); 747 } 748 unsigned HWReg = TRI.getHWRegIndex(Reg); 749 int MaxUsed = HWReg + Width - 1; 750 if (IsSGPR) { 751 MaxSGPR = MaxUsed > MaxSGPR ? MaxUsed : MaxSGPR; 752 } else { 753 MaxVGPR = MaxUsed > MaxVGPR ? MaxUsed : MaxVGPR; 754 } 755 } 756 757 if (MI.isCall()) { 758 // Pseudo used just to encode the underlying global. Is there a better 759 // way to track this? 760 761 const MachineOperand *CalleeOp 762 = TII->getNamedOperand(MI, AMDGPU::OpName::callee); 763 const Function *Callee = cast<Function>(CalleeOp->getGlobal()); 764 if (Callee->isDeclaration()) { 765 // If this is a call to an external function, we can't do much. Make 766 // conservative guesses. 767 768 // 48 SGPRs - vcc, - flat_scr, -xnack 769 int MaxSGPRGuess = 770 47 - IsaInfo::getNumExtraSGPRs(getSTI(), true, 771 ST.hasFlatAddressSpace()); 772 MaxSGPR = std::max(MaxSGPR, MaxSGPRGuess); 773 MaxVGPR = std::max(MaxVGPR, 23); 774 775 CalleeFrameSize = std::max(CalleeFrameSize, UINT64_C(16384)); 776 Info.UsesVCC = true; 777 Info.UsesFlatScratch = ST.hasFlatAddressSpace(); 778 Info.HasDynamicallySizedStack = true; 779 } else { 780 // We force CodeGen to run in SCC order, so the callee's register 781 // usage etc. should be the cumulative usage of all callees. 782 auto I = CallGraphResourceInfo.find(Callee); 783 assert(I != CallGraphResourceInfo.end() && 784 "callee should have been handled before caller"); 785 786 MaxSGPR = std::max(I->second.NumExplicitSGPR - 1, MaxSGPR); 787 MaxVGPR = std::max(I->second.NumVGPR - 1, MaxVGPR); 788 CalleeFrameSize 789 = std::max(I->second.PrivateSegmentSize, CalleeFrameSize); 790 Info.UsesVCC |= I->second.UsesVCC; 791 Info.UsesFlatScratch |= I->second.UsesFlatScratch; 792 Info.HasDynamicallySizedStack |= I->second.HasDynamicallySizedStack; 793 Info.HasRecursion |= I->second.HasRecursion; 794 } 795 796 if (!Callee->doesNotRecurse()) 797 Info.HasRecursion = true; 798 } 799 } 800 } 801 802 Info.NumExplicitSGPR = MaxSGPR + 1; 803 Info.NumVGPR = MaxVGPR + 1; 804 Info.PrivateSegmentSize += CalleeFrameSize; 805 806 return Info; 807 } 808 809 void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo, 810 const MachineFunction &MF) { 811 SIFunctionResourceInfo Info = analyzeResourceUsage(MF); 812 813 ProgInfo.NumVGPR = Info.NumVGPR; 814 ProgInfo.NumSGPR = Info.NumExplicitSGPR; 815 ProgInfo.ScratchSize = Info.PrivateSegmentSize; 816 ProgInfo.VCCUsed = Info.UsesVCC; 817 ProgInfo.FlatUsed = Info.UsesFlatScratch; 818 ProgInfo.DynamicCallStack = Info.HasDynamicallySizedStack || Info.HasRecursion; 819 820 if (!isUInt<32>(ProgInfo.ScratchSize)) { 821 DiagnosticInfoStackSize DiagStackSize(MF.getFunction(), 822 ProgInfo.ScratchSize, DS_Error); 823 MF.getFunction().getContext().diagnose(DiagStackSize); 824 } 825 826 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 827 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 828 const SIInstrInfo *TII = STM.getInstrInfo(); 829 const SIRegisterInfo *RI = &TII->getRegisterInfo(); 830 831 // TODO(scott.linder): The calculations related to SGPR/VGPR blocks are 832 // duplicated in part in AMDGPUAsmParser::calculateGPRBlocks, and could be 833 // unified. 834 unsigned ExtraSGPRs = IsaInfo::getNumExtraSGPRs( 835 getSTI(), ProgInfo.VCCUsed, ProgInfo.FlatUsed); 836 837 // Check the addressable register limit before we add ExtraSGPRs. 838 if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && 839 !STM.hasSGPRInitBug()) { 840 unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); 841 if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { 842 // This can happen due to a compiler bug or when using inline asm. 843 LLVMContext &Ctx = MF.getFunction().getContext(); 844 DiagnosticInfoResourceLimit Diag(MF.getFunction(), 845 "addressable scalar registers", 846 ProgInfo.NumSGPR, DS_Error, 847 DK_ResourceLimit, 848 MaxAddressableNumSGPRs); 849 Ctx.diagnose(Diag); 850 ProgInfo.NumSGPR = MaxAddressableNumSGPRs - 1; 851 } 852 } 853 854 // Account for extra SGPRs and VGPRs reserved for debugger use. 855 ProgInfo.NumSGPR += ExtraSGPRs; 856 857 // Ensure there are enough SGPRs and VGPRs for wave dispatch, where wave 858 // dispatch registers are function args. 859 unsigned WaveDispatchNumSGPR = 0, WaveDispatchNumVGPR = 0; 860 for (auto &Arg : MF.getFunction().args()) { 861 unsigned NumRegs = (Arg.getType()->getPrimitiveSizeInBits() + 31) / 32; 862 if (Arg.hasAttribute(Attribute::InReg)) 863 WaveDispatchNumSGPR += NumRegs; 864 else 865 WaveDispatchNumVGPR += NumRegs; 866 } 867 ProgInfo.NumSGPR = std::max(ProgInfo.NumSGPR, WaveDispatchNumSGPR); 868 ProgInfo.NumVGPR = std::max(ProgInfo.NumVGPR, WaveDispatchNumVGPR); 869 870 // Adjust number of registers used to meet default/requested minimum/maximum 871 // number of waves per execution unit request. 872 ProgInfo.NumSGPRsForWavesPerEU = std::max( 873 std::max(ProgInfo.NumSGPR, 1u), STM.getMinNumSGPRs(MFI->getMaxWavesPerEU())); 874 ProgInfo.NumVGPRsForWavesPerEU = std::max( 875 std::max(ProgInfo.NumVGPR, 1u), STM.getMinNumVGPRs(MFI->getMaxWavesPerEU())); 876 877 if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS || 878 STM.hasSGPRInitBug()) { 879 unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); 880 if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { 881 // This can happen due to a compiler bug or when using inline asm to use 882 // the registers which are usually reserved for vcc etc. 883 LLVMContext &Ctx = MF.getFunction().getContext(); 884 DiagnosticInfoResourceLimit Diag(MF.getFunction(), 885 "scalar registers", 886 ProgInfo.NumSGPR, DS_Error, 887 DK_ResourceLimit, 888 MaxAddressableNumSGPRs); 889 Ctx.diagnose(Diag); 890 ProgInfo.NumSGPR = MaxAddressableNumSGPRs; 891 ProgInfo.NumSGPRsForWavesPerEU = MaxAddressableNumSGPRs; 892 } 893 } 894 895 if (STM.hasSGPRInitBug()) { 896 ProgInfo.NumSGPR = 897 AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 898 ProgInfo.NumSGPRsForWavesPerEU = 899 AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 900 } 901 902 if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) { 903 LLVMContext &Ctx = MF.getFunction().getContext(); 904 DiagnosticInfoResourceLimit Diag(MF.getFunction(), "user SGPRs", 905 MFI->getNumUserSGPRs(), DS_Error); 906 Ctx.diagnose(Diag); 907 } 908 909 if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) { 910 LLVMContext &Ctx = MF.getFunction().getContext(); 911 DiagnosticInfoResourceLimit Diag(MF.getFunction(), "local memory", 912 MFI->getLDSSize(), DS_Error); 913 Ctx.diagnose(Diag); 914 } 915 916 ProgInfo.SGPRBlocks = IsaInfo::getNumSGPRBlocks( 917 &STM, ProgInfo.NumSGPRsForWavesPerEU); 918 ProgInfo.VGPRBlocks = IsaInfo::getNumVGPRBlocks( 919 &STM, ProgInfo.NumVGPRsForWavesPerEU); 920 921 // Update DebuggerWavefrontPrivateSegmentOffsetSGPR and 922 // DebuggerPrivateSegmentBufferSGPR fields if "amdgpu-debugger-emit-prologue" 923 // attribute was requested. 924 if (STM.debuggerEmitPrologue()) { 925 ProgInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR = 926 RI->getHWRegIndex(MFI->getScratchWaveOffsetReg()); 927 ProgInfo.DebuggerPrivateSegmentBufferSGPR = 928 RI->getHWRegIndex(MFI->getScratchRSrcReg()); 929 } 930 931 // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode 932 // register. 933 ProgInfo.FloatMode = getFPMode(MF); 934 935 ProgInfo.IEEEMode = STM.enableIEEEBit(MF); 936 937 // Make clamp modifier on NaN input returns 0. 938 ProgInfo.DX10Clamp = STM.enableDX10Clamp(); 939 940 unsigned LDSAlignShift; 941 if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 942 // LDS is allocated in 64 dword blocks. 943 LDSAlignShift = 8; 944 } else { 945 // LDS is allocated in 128 dword blocks. 946 LDSAlignShift = 9; 947 } 948 949 unsigned LDSSpillSize = 950 MFI->getLDSWaveSpillSize() * MFI->getMaxFlatWorkGroupSize(); 951 952 ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize; 953 ProgInfo.LDSBlocks = 954 alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift; 955 956 // Scratch is allocated in 256 dword blocks. 957 unsigned ScratchAlignShift = 10; 958 // We need to program the hardware with the amount of scratch memory that 959 // is used by the entire wave. ProgInfo.ScratchSize is the amount of 960 // scratch memory used per thread. 961 ProgInfo.ScratchBlocks = 962 alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(), 963 1ULL << ScratchAlignShift) >> 964 ScratchAlignShift; 965 966 ProgInfo.ComputePGMRSrc1 = 967 S_00B848_VGPRS(ProgInfo.VGPRBlocks) | 968 S_00B848_SGPRS(ProgInfo.SGPRBlocks) | 969 S_00B848_PRIORITY(ProgInfo.Priority) | 970 S_00B848_FLOAT_MODE(ProgInfo.FloatMode) | 971 S_00B848_PRIV(ProgInfo.Priv) | 972 S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) | 973 S_00B848_DEBUG_MODE(ProgInfo.DebugMode) | 974 S_00B848_IEEE_MODE(ProgInfo.IEEEMode); 975 976 // 0 = X, 1 = XY, 2 = XYZ 977 unsigned TIDIGCompCnt = 0; 978 if (MFI->hasWorkItemIDZ()) 979 TIDIGCompCnt = 2; 980 else if (MFI->hasWorkItemIDY()) 981 TIDIGCompCnt = 1; 982 983 ProgInfo.ComputePGMRSrc2 = 984 S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) | 985 S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) | 986 // For AMDHSA, TRAP_HANDLER must be zero, as it is populated by the CP. 987 S_00B84C_TRAP_HANDLER(STM.isAmdHsaOS() ? 0 : STM.isTrapHandlerEnabled()) | 988 S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) | 989 S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) | 990 S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) | 991 S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) | 992 S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) | 993 S_00B84C_EXCP_EN_MSB(0) | 994 // For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP. 995 S_00B84C_LDS_SIZE(STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks) | 996 S_00B84C_EXCP_EN(0); 997 } 998 999 static unsigned getRsrcReg(CallingConv::ID CallConv) { 1000 switch (CallConv) { 1001 default: LLVM_FALLTHROUGH; 1002 case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1; 1003 case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS; 1004 case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS; 1005 case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES; 1006 case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS; 1007 case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS; 1008 case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS; 1009 } 1010 } 1011 1012 void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF, 1013 const SIProgramInfo &CurrentProgramInfo) { 1014 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1015 unsigned RsrcReg = getRsrcReg(MF.getFunction().getCallingConv()); 1016 1017 if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { 1018 OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4); 1019 1020 OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc1, 4); 1021 1022 OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4); 1023 OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc2, 4); 1024 1025 OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4); 1026 OutStreamer->EmitIntValue(S_00B860_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); 1027 1028 // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 = 1029 // 0" comment but I don't see a corresponding field in the register spec. 1030 } else { 1031 OutStreamer->EmitIntValue(RsrcReg, 4); 1032 OutStreamer->EmitIntValue(S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | 1033 S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks), 4); 1034 OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4); 1035 OutStreamer->EmitIntValue( 1036 S_0286E8_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); 1037 } 1038 1039 if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { 1040 OutStreamer->EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4); 1041 OutStreamer->EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks), 4); 1042 OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4); 1043 OutStreamer->EmitIntValue(MFI->getPSInputEnable(), 4); 1044 OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4); 1045 OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4); 1046 } 1047 1048 OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4); 1049 OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4); 1050 OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4); 1051 OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4); 1052 } 1053 1054 // This is the equivalent of EmitProgramInfoSI above, but for when the OS type 1055 // is AMDPAL. It stores each compute/SPI register setting and other PAL 1056 // metadata items into the PALMetadataMap, combining with any provided by the 1057 // frontend as LLVM metadata. Once all functions are written, PALMetadataMap is 1058 // then written as a single block in the .note section. 1059 void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF, 1060 const SIProgramInfo &CurrentProgramInfo) { 1061 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1062 // Given the calling convention, calculate the register number for rsrc1. In 1063 // principle the register number could change in future hardware, but we know 1064 // it is the same for gfx6-9 (except that LS and ES don't exist on gfx9), so 1065 // we can use the same fixed value that .AMDGPU.config has for Mesa. Note 1066 // that we use a register number rather than a byte offset, so we need to 1067 // divide by 4. 1068 unsigned Rsrc1Reg = getRsrcReg(MF.getFunction().getCallingConv()) / 4; 1069 unsigned Rsrc2Reg = Rsrc1Reg + 1; 1070 // Also calculate the PAL metadata key for *S_SCRATCH_SIZE. It can be used 1071 // with a constant offset to access any non-register shader-specific PAL 1072 // metadata key. 1073 unsigned ScratchSizeKey = PALMD::Key::CS_SCRATCH_SIZE; 1074 switch (MF.getFunction().getCallingConv()) { 1075 case CallingConv::AMDGPU_PS: 1076 ScratchSizeKey = PALMD::Key::PS_SCRATCH_SIZE; 1077 break; 1078 case CallingConv::AMDGPU_VS: 1079 ScratchSizeKey = PALMD::Key::VS_SCRATCH_SIZE; 1080 break; 1081 case CallingConv::AMDGPU_GS: 1082 ScratchSizeKey = PALMD::Key::GS_SCRATCH_SIZE; 1083 break; 1084 case CallingConv::AMDGPU_ES: 1085 ScratchSizeKey = PALMD::Key::ES_SCRATCH_SIZE; 1086 break; 1087 case CallingConv::AMDGPU_HS: 1088 ScratchSizeKey = PALMD::Key::HS_SCRATCH_SIZE; 1089 break; 1090 case CallingConv::AMDGPU_LS: 1091 ScratchSizeKey = PALMD::Key::LS_SCRATCH_SIZE; 1092 break; 1093 } 1094 unsigned NumUsedVgprsKey = ScratchSizeKey + 1095 PALMD::Key::VS_NUM_USED_VGPRS - PALMD::Key::VS_SCRATCH_SIZE; 1096 unsigned NumUsedSgprsKey = ScratchSizeKey + 1097 PALMD::Key::VS_NUM_USED_SGPRS - PALMD::Key::VS_SCRATCH_SIZE; 1098 PALMetadataMap[NumUsedVgprsKey] = CurrentProgramInfo.NumVGPRsForWavesPerEU; 1099 PALMetadataMap[NumUsedSgprsKey] = CurrentProgramInfo.NumSGPRsForWavesPerEU; 1100 if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { 1101 PALMetadataMap[Rsrc1Reg] |= CurrentProgramInfo.ComputePGMRSrc1; 1102 PALMetadataMap[Rsrc2Reg] |= CurrentProgramInfo.ComputePGMRSrc2; 1103 // ScratchSize is in bytes, 16 aligned. 1104 PALMetadataMap[ScratchSizeKey] |= 1105 alignTo(CurrentProgramInfo.ScratchSize, 16); 1106 } else { 1107 PALMetadataMap[Rsrc1Reg] |= S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | 1108 S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks); 1109 if (CurrentProgramInfo.ScratchBlocks > 0) 1110 PALMetadataMap[Rsrc2Reg] |= S_00B84C_SCRATCH_EN(1); 1111 // ScratchSize is in bytes, 16 aligned. 1112 PALMetadataMap[ScratchSizeKey] |= 1113 alignTo(CurrentProgramInfo.ScratchSize, 16); 1114 } 1115 if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { 1116 PALMetadataMap[Rsrc2Reg] |= 1117 S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks); 1118 PALMetadataMap[R_0286CC_SPI_PS_INPUT_ENA / 4] |= MFI->getPSInputEnable(); 1119 PALMetadataMap[R_0286D0_SPI_PS_INPUT_ADDR / 4] |= MFI->getPSInputAddr(); 1120 } 1121 } 1122 1123 // This is supposed to be log2(Size) 1124 static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) { 1125 switch (Size) { 1126 case 4: 1127 return AMD_ELEMENT_4_BYTES; 1128 case 8: 1129 return AMD_ELEMENT_8_BYTES; 1130 case 16: 1131 return AMD_ELEMENT_16_BYTES; 1132 default: 1133 llvm_unreachable("invalid private_element_size"); 1134 } 1135 } 1136 1137 void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out, 1138 const SIProgramInfo &CurrentProgramInfo, 1139 const MachineFunction &MF) const { 1140 const Function &F = MF.getFunction(); 1141 assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || 1142 F.getCallingConv() == CallingConv::SPIR_KERNEL); 1143 1144 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1145 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 1146 1147 AMDGPU::initDefaultAMDKernelCodeT(Out, getSTI()); 1148 1149 Out.compute_pgm_resource_registers = 1150 CurrentProgramInfo.ComputePGMRSrc1 | 1151 (CurrentProgramInfo.ComputePGMRSrc2 << 32); 1152 Out.code_properties = AMD_CODE_PROPERTY_IS_PTR64; 1153 1154 if (CurrentProgramInfo.DynamicCallStack) 1155 Out.code_properties |= AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK; 1156 1157 AMD_HSA_BITS_SET(Out.code_properties, 1158 AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE, 1159 getElementByteSizeValue(STM.getMaxPrivateElementSize())); 1160 1161 if (MFI->hasPrivateSegmentBuffer()) { 1162 Out.code_properties |= 1163 AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; 1164 } 1165 1166 if (MFI->hasDispatchPtr()) 1167 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 1168 1169 if (MFI->hasQueuePtr()) 1170 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; 1171 1172 if (MFI->hasKernargSegmentPtr()) 1173 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; 1174 1175 if (MFI->hasDispatchID()) 1176 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; 1177 1178 if (MFI->hasFlatScratchInit()) 1179 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; 1180 1181 if (MFI->hasDispatchPtr()) 1182 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 1183 1184 if (STM.debuggerSupported()) 1185 Out.code_properties |= AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED; 1186 1187 if (STM.isXNACKEnabled()) 1188 Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED; 1189 1190 unsigned MaxKernArgAlign; 1191 Out.kernarg_segment_byte_size = STM.getKernArgSegmentSize(F, MaxKernArgAlign); 1192 Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR; 1193 Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR; 1194 Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize; 1195 Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize; 1196 1197 // These alignment values are specified in powers of two, so alignment = 1198 // 2^n. The minimum alignment is 2^4 = 16. 1199 Out.kernarg_segment_alignment = std::max((size_t)4, 1200 countTrailingZeros(MaxKernArgAlign)); 1201 1202 if (STM.debuggerEmitPrologue()) { 1203 Out.debug_wavefront_private_segment_offset_sgpr = 1204 CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR; 1205 Out.debug_private_segment_buffer_sgpr = 1206 CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR; 1207 } 1208 } 1209 1210 bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1211 unsigned AsmVariant, 1212 const char *ExtraCode, raw_ostream &O) { 1213 // First try the generic code, which knows about modifiers like 'c' and 'n'. 1214 if (!AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O)) 1215 return false; 1216 1217 if (ExtraCode && ExtraCode[0]) { 1218 if (ExtraCode[1] != 0) 1219 return true; // Unknown modifier. 1220 1221 switch (ExtraCode[0]) { 1222 case 'r': 1223 break; 1224 default: 1225 return true; 1226 } 1227 } 1228 1229 // TODO: Should be able to support other operand types like globals. 1230 const MachineOperand &MO = MI->getOperand(OpNo); 1231 if (MO.isReg()) { 1232 AMDGPUInstPrinter::printRegOperand(MO.getReg(), O, 1233 *MF->getSubtarget().getRegisterInfo()); 1234 return false; 1235 } 1236 1237 return true; 1238 } 1239