1 //===-- AMDGPUAsmPrinter.cpp - AMDGPU assembly printer --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// 11 /// The AMDGPUAsmPrinter is used to print both assembly string and also binary 12 /// code. When passed an MCAsmStreamer it prints assembly and when passed 13 /// an MCObjectStreamer it outputs binary code. 14 // 15 //===----------------------------------------------------------------------===// 16 // 17 18 #include "AMDGPUAsmPrinter.h" 19 #include "AMDGPU.h" 20 #include "AMDGPUHSAMetadataStreamer.h" 21 #include "AMDKernelCodeT.h" 22 #include "GCNSubtarget.h" 23 #include "MCTargetDesc/AMDGPUInstPrinter.h" 24 #include "MCTargetDesc/AMDGPUTargetStreamer.h" 25 #include "R600AsmPrinter.h" 26 #include "SIMachineFunctionInfo.h" 27 #include "TargetInfo/AMDGPUTargetInfo.h" 28 #include "Utils/AMDGPUBaseInfo.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/MC/MCAssembler.h" 31 #include "llvm/MC/MCContext.h" 32 #include "llvm/MC/MCSectionELF.h" 33 #include "llvm/MC/MCStreamer.h" 34 #include "llvm/Support/AMDHSAKernelDescriptor.h" 35 #include "llvm/Support/TargetRegistry.h" 36 #include "llvm/Target/TargetLoweringObjectFile.h" 37 #include "llvm/Target/TargetMachine.h" 38 39 using namespace llvm; 40 using namespace llvm::AMDGPU; 41 42 // We need to tell the runtime some amount ahead of time if we don't know the 43 // true stack size. Assume a smaller number if this is only due to dynamic / 44 // non-entry block allocas. 45 static cl::opt<uint32_t> AssumedStackSizeForExternalCall( 46 "amdgpu-assume-external-call-stack-size", 47 cl::desc("Assumed stack use of any external call (in bytes)"), 48 cl::Hidden, 49 cl::init(16384)); 50 51 static cl::opt<uint32_t> AssumedStackSizeForDynamicSizeObjects( 52 "amdgpu-assume-dynamic-stack-object-size", 53 cl::desc("Assumed extra stack use if there are any " 54 "variable sized objects (in bytes)"), 55 cl::Hidden, 56 cl::init(4096)); 57 58 // This should get the default rounding mode from the kernel. We just set the 59 // default here, but this could change if the OpenCL rounding mode pragmas are 60 // used. 61 // 62 // The denormal mode here should match what is reported by the OpenCL runtime 63 // for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but 64 // can also be override to flush with the -cl-denorms-are-zero compiler flag. 65 // 66 // AMD OpenCL only sets flush none and reports CL_FP_DENORM for double 67 // precision, and leaves single precision to flush all and does not report 68 // CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports 69 // CL_FP_DENORM for both. 70 // 71 // FIXME: It seems some instructions do not support single precision denormals 72 // regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32, 73 // and sin_f32, cos_f32 on most parts). 74 75 // We want to use these instructions, and using fp32 denormals also causes 76 // instructions to run at the double precision rate for the device so it's 77 // probably best to just report no single precision denormals. 78 static uint32_t getFPMode(AMDGPU::SIModeRegisterDefaults Mode) { 79 return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) | 80 FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) | 81 FP_DENORM_MODE_SP(Mode.fpDenormModeSPValue()) | 82 FP_DENORM_MODE_DP(Mode.fpDenormModeDPValue()); 83 } 84 85 static AsmPrinter * 86 createAMDGPUAsmPrinterPass(TargetMachine &tm, 87 std::unique_ptr<MCStreamer> &&Streamer) { 88 return new AMDGPUAsmPrinter(tm, std::move(Streamer)); 89 } 90 91 extern "C" void LLVM_EXTERNAL_VISIBILITY LLVMInitializeAMDGPUAsmPrinter() { 92 TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(), 93 llvm::createR600AsmPrinterPass); 94 TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(), 95 createAMDGPUAsmPrinterPass); 96 } 97 98 AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, 99 std::unique_ptr<MCStreamer> Streamer) 100 : AsmPrinter(TM, std::move(Streamer)) { 101 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) { 102 if (isHsaAbiVersion2(getGlobalSTI())) { 103 HSAMetadataStream.reset(new HSAMD::MetadataStreamerV2()); 104 } else if (isHsaAbiVersion3(getGlobalSTI())) { 105 HSAMetadataStream.reset(new HSAMD::MetadataStreamerV3()); 106 } else { 107 HSAMetadataStream.reset(new HSAMD::MetadataStreamerV4()); 108 } 109 } 110 } 111 112 StringRef AMDGPUAsmPrinter::getPassName() const { 113 return "AMDGPU Assembly Printer"; 114 } 115 116 const MCSubtargetInfo *AMDGPUAsmPrinter::getGlobalSTI() const { 117 return TM.getMCSubtargetInfo(); 118 } 119 120 AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const { 121 if (!OutStreamer) 122 return nullptr; 123 return static_cast<AMDGPUTargetStreamer*>(OutStreamer->getTargetStreamer()); 124 } 125 126 void AMDGPUAsmPrinter::emitStartOfAsmFile(Module &M) { 127 // TODO: Which one is called first, emitStartOfAsmFile or 128 // emitFunctionBodyStart? 129 if (getTargetStreamer() && !getTargetStreamer()->getTargetID()) 130 initializeTargetID(M); 131 132 if (TM.getTargetTriple().getOS() != Triple::AMDHSA && 133 TM.getTargetTriple().getOS() != Triple::AMDPAL) 134 return; 135 136 if (isHsaAbiVersion3Or4(getGlobalSTI())) 137 getTargetStreamer()->EmitDirectiveAMDGCNTarget(); 138 139 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) 140 HSAMetadataStream->begin(M, *getTargetStreamer()->getTargetID()); 141 142 if (TM.getTargetTriple().getOS() == Triple::AMDPAL) 143 getTargetStreamer()->getPALMetadata()->readFromIR(M); 144 145 if (isHsaAbiVersion3Or4(getGlobalSTI())) 146 return; 147 148 // HSA emits NT_AMD_HSA_CODE_OBJECT_VERSION for code objects v2. 149 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) 150 getTargetStreamer()->EmitDirectiveHSACodeObjectVersion(2, 1); 151 152 // HSA and PAL emit NT_AMD_HSA_ISA_VERSION for code objects v2. 153 IsaVersion Version = getIsaVersion(getGlobalSTI()->getCPU()); 154 getTargetStreamer()->EmitDirectiveHSACodeObjectISAV2( 155 Version.Major, Version.Minor, Version.Stepping, "AMD", "AMDGPU"); 156 } 157 158 void AMDGPUAsmPrinter::emitEndOfAsmFile(Module &M) { 159 // Following code requires TargetStreamer to be present. 160 if (!getTargetStreamer()) 161 return; 162 163 if (TM.getTargetTriple().getOS() != Triple::AMDHSA || 164 isHsaAbiVersion2(getGlobalSTI())) 165 getTargetStreamer()->EmitISAVersion(); 166 167 // Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA). 168 // Emit HSA Metadata (NT_AMD_HSA_METADATA). 169 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) { 170 HSAMetadataStream->end(); 171 bool Success = HSAMetadataStream->emitTo(*getTargetStreamer()); 172 (void)Success; 173 assert(Success && "Malformed HSA Metadata"); 174 } 175 } 176 177 bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough( 178 const MachineBasicBlock *MBB) const { 179 if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB)) 180 return false; 181 182 if (MBB->empty()) 183 return true; 184 185 // If this is a block implementing a long branch, an expression relative to 186 // the start of the block is needed. to the start of the block. 187 // XXX - Is there a smarter way to check this? 188 return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64); 189 } 190 191 void AMDGPUAsmPrinter::emitFunctionBodyStart() { 192 const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>(); 193 const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>(); 194 const Function &F = MF->getFunction(); 195 196 // TODO: Which one is called first, emitStartOfAsmFile or 197 // emitFunctionBodyStart? 198 if (getTargetStreamer() && !getTargetStreamer()->getTargetID()) 199 initializeTargetID(*F.getParent()); 200 201 const auto &FunctionTargetID = STM.getTargetID(); 202 // Make sure function's xnack settings are compatible with module's 203 // xnack settings. 204 if (FunctionTargetID.isXnackSupported() && 205 FunctionTargetID.getXnackSetting() != IsaInfo::TargetIDSetting::Any && 206 FunctionTargetID.getXnackSetting() != getTargetStreamer()->getTargetID()->getXnackSetting()) { 207 OutContext.reportError({}, "xnack setting of '" + Twine(MF->getName()) + 208 "' function does not match module xnack setting"); 209 return; 210 } 211 // Make sure function's sramecc settings are compatible with module's 212 // sramecc settings. 213 if (FunctionTargetID.isSramEccSupported() && 214 FunctionTargetID.getSramEccSetting() != IsaInfo::TargetIDSetting::Any && 215 FunctionTargetID.getSramEccSetting() != getTargetStreamer()->getTargetID()->getSramEccSetting()) { 216 OutContext.reportError({}, "sramecc setting of '" + Twine(MF->getName()) + 217 "' function does not match module sramecc setting"); 218 return; 219 } 220 221 if (!MFI.isEntryFunction()) 222 return; 223 224 if ((STM.isMesaKernel(F) || isHsaAbiVersion2(getGlobalSTI())) && 225 (F.getCallingConv() == CallingConv::AMDGPU_KERNEL || 226 F.getCallingConv() == CallingConv::SPIR_KERNEL)) { 227 amd_kernel_code_t KernelCode; 228 getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF); 229 getTargetStreamer()->EmitAMDKernelCodeT(KernelCode); 230 } 231 232 if (STM.isAmdHsaOS()) 233 HSAMetadataStream->emitKernel(*MF, CurrentProgramInfo); 234 } 235 236 void AMDGPUAsmPrinter::emitFunctionBodyEnd() { 237 const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>(); 238 if (!MFI.isEntryFunction()) 239 return; 240 241 if (TM.getTargetTriple().getOS() != Triple::AMDHSA || 242 isHsaAbiVersion2(getGlobalSTI())) 243 return; 244 245 auto &Streamer = getTargetStreamer()->getStreamer(); 246 auto &Context = Streamer.getContext(); 247 auto &ObjectFileInfo = *Context.getObjectFileInfo(); 248 auto &ReadOnlySection = *ObjectFileInfo.getReadOnlySection(); 249 250 Streamer.PushSection(); 251 Streamer.SwitchSection(&ReadOnlySection); 252 253 // CP microcode requires the kernel descriptor to be allocated on 64 byte 254 // alignment. 255 Streamer.emitValueToAlignment(64, 0, 1, 0); 256 if (ReadOnlySection.getAlignment() < 64) 257 ReadOnlySection.setAlignment(Align(64)); 258 259 const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>(); 260 261 SmallString<128> KernelName; 262 getNameWithPrefix(KernelName, &MF->getFunction()); 263 getTargetStreamer()->EmitAmdhsaKernelDescriptor( 264 STM, KernelName, getAmdhsaKernelDescriptor(*MF, CurrentProgramInfo), 265 CurrentProgramInfo.NumVGPRsForWavesPerEU, 266 CurrentProgramInfo.NumSGPRsForWavesPerEU - 267 IsaInfo::getNumExtraSGPRs(&STM, 268 CurrentProgramInfo.VCCUsed, 269 CurrentProgramInfo.FlatUsed), 270 CurrentProgramInfo.VCCUsed, CurrentProgramInfo.FlatUsed); 271 272 Streamer.PopSection(); 273 } 274 275 void AMDGPUAsmPrinter::emitFunctionEntryLabel() { 276 if (TM.getTargetTriple().getOS() == Triple::AMDHSA && 277 isHsaAbiVersion3Or4(getGlobalSTI())) { 278 AsmPrinter::emitFunctionEntryLabel(); 279 return; 280 } 281 282 const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 283 const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>(); 284 if (MFI->isEntryFunction() && STM.isAmdHsaOrMesa(MF->getFunction())) { 285 SmallString<128> SymbolName; 286 getNameWithPrefix(SymbolName, &MF->getFunction()), 287 getTargetStreamer()->EmitAMDGPUSymbolType( 288 SymbolName, ELF::STT_AMDGPU_HSA_KERNEL); 289 } 290 if (DumpCodeInstEmitter) { 291 // Disassemble function name label to text. 292 DisasmLines.push_back(MF->getName().str() + ":"); 293 DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); 294 HexLines.push_back(""); 295 } 296 297 AsmPrinter::emitFunctionEntryLabel(); 298 } 299 300 void AMDGPUAsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 301 if (DumpCodeInstEmitter && !isBlockOnlyReachableByFallthrough(&MBB)) { 302 // Write a line for the basic block label if it is not only fallthrough. 303 DisasmLines.push_back( 304 (Twine("BB") + Twine(getFunctionNumber()) 305 + "_" + Twine(MBB.getNumber()) + ":").str()); 306 DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); 307 HexLines.push_back(""); 308 } 309 AsmPrinter::emitBasicBlockStart(MBB); 310 } 311 312 void AMDGPUAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 313 if (GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 314 if (GV->hasInitializer() && !isa<UndefValue>(GV->getInitializer())) { 315 OutContext.reportError({}, 316 Twine(GV->getName()) + 317 ": unsupported initializer for address space"); 318 return; 319 } 320 321 // LDS variables aren't emitted in HSA or PAL yet. 322 const Triple::OSType OS = TM.getTargetTriple().getOS(); 323 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL) 324 return; 325 326 MCSymbol *GVSym = getSymbol(GV); 327 328 GVSym->redefineIfPossible(); 329 if (GVSym->isDefined() || GVSym->isVariable()) 330 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 331 "' is already defined"); 332 333 const DataLayout &DL = GV->getParent()->getDataLayout(); 334 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 335 Align Alignment = GV->getAlign().getValueOr(Align(4)); 336 337 emitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 338 emitLinkage(GV, GVSym); 339 if (auto TS = getTargetStreamer()) 340 TS->emitAMDGPULDS(GVSym, Size, Alignment); 341 return; 342 } 343 344 AsmPrinter::emitGlobalVariable(GV); 345 } 346 347 bool AMDGPUAsmPrinter::doFinalization(Module &M) { 348 CallGraphResourceInfo.clear(); 349 350 // Pad with s_code_end to help tools and guard against instruction prefetch 351 // causing stale data in caches. Arguably this should be done by the linker, 352 // which is why this isn't done for Mesa. 353 const MCSubtargetInfo &STI = *getGlobalSTI(); 354 if ((AMDGPU::isGFX10Plus(STI) || AMDGPU::isGFX90A(STI)) && 355 (STI.getTargetTriple().getOS() == Triple::AMDHSA || 356 STI.getTargetTriple().getOS() == Triple::AMDPAL)) { 357 OutStreamer->SwitchSection(getObjFileLowering().getTextSection()); 358 getTargetStreamer()->EmitCodeEnd(STI); 359 } 360 361 return AsmPrinter::doFinalization(M); 362 } 363 364 // Print comments that apply to both callable functions and entry points. 365 void AMDGPUAsmPrinter::emitCommonFunctionComments( 366 uint32_t NumVGPR, 367 Optional<uint32_t> NumAGPR, 368 uint32_t TotalNumVGPR, 369 uint32_t NumSGPR, 370 uint64_t ScratchSize, 371 uint64_t CodeSize, 372 const AMDGPUMachineFunction *MFI) { 373 OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false); 374 OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false); 375 OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false); 376 if (NumAGPR) { 377 OutStreamer->emitRawComment(" NumAgprs: " + Twine(*NumAGPR), false); 378 OutStreamer->emitRawComment(" TotalNumVgprs: " + Twine(TotalNumVGPR), 379 false); 380 } 381 OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false); 382 OutStreamer->emitRawComment(" MemoryBound: " + Twine(MFI->isMemoryBound()), 383 false); 384 } 385 386 uint16_t AMDGPUAsmPrinter::getAmdhsaKernelCodeProperties( 387 const MachineFunction &MF) const { 388 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 389 uint16_t KernelCodeProperties = 0; 390 391 if (MFI.hasPrivateSegmentBuffer()) { 392 KernelCodeProperties |= 393 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; 394 } 395 if (MFI.hasDispatchPtr()) { 396 KernelCodeProperties |= 397 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 398 } 399 if (MFI.hasQueuePtr()) { 400 KernelCodeProperties |= 401 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; 402 } 403 if (MFI.hasKernargSegmentPtr()) { 404 KernelCodeProperties |= 405 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; 406 } 407 if (MFI.hasDispatchID()) { 408 KernelCodeProperties |= 409 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; 410 } 411 if (MFI.hasFlatScratchInit()) { 412 KernelCodeProperties |= 413 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; 414 } 415 if (MF.getSubtarget<GCNSubtarget>().isWave32()) { 416 KernelCodeProperties |= 417 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; 418 } 419 420 return KernelCodeProperties; 421 } 422 423 amdhsa::kernel_descriptor_t AMDGPUAsmPrinter::getAmdhsaKernelDescriptor( 424 const MachineFunction &MF, 425 const SIProgramInfo &PI) const { 426 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 427 const Function &F = MF.getFunction(); 428 429 amdhsa::kernel_descriptor_t KernelDescriptor; 430 memset(&KernelDescriptor, 0x0, sizeof(KernelDescriptor)); 431 432 assert(isUInt<32>(PI.ScratchSize)); 433 assert(isUInt<32>(PI.getComputePGMRSrc1())); 434 assert(isUInt<32>(PI.ComputePGMRSrc2)); 435 436 KernelDescriptor.group_segment_fixed_size = PI.LDSSize; 437 KernelDescriptor.private_segment_fixed_size = PI.ScratchSize; 438 439 Align MaxKernArgAlign; 440 KernelDescriptor.kernarg_size = STM.getKernArgSegmentSize(F, MaxKernArgAlign); 441 442 KernelDescriptor.compute_pgm_rsrc1 = PI.getComputePGMRSrc1(); 443 KernelDescriptor.compute_pgm_rsrc2 = PI.ComputePGMRSrc2; 444 KernelDescriptor.kernel_code_properties = getAmdhsaKernelCodeProperties(MF); 445 446 assert(STM.hasGFX90AInsts() || CurrentProgramInfo.ComputePGMRSrc3GFX90A == 0); 447 if (STM.hasGFX90AInsts()) 448 KernelDescriptor.compute_pgm_rsrc3 = 449 CurrentProgramInfo.ComputePGMRSrc3GFX90A; 450 451 return KernelDescriptor; 452 } 453 454 bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 455 CurrentProgramInfo = SIProgramInfo(); 456 457 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 458 459 // The starting address of all shader programs must be 256 bytes aligned. 460 // Regular functions just need the basic required instruction alignment. 461 MF.setAlignment(MFI->isEntryFunction() ? Align(256) : Align(4)); 462 463 SetupMachineFunction(MF); 464 465 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 466 MCContext &Context = getObjFileLowering().getContext(); 467 // FIXME: This should be an explicit check for Mesa. 468 if (!STM.isAmdHsaOS() && !STM.isAmdPalOS()) { 469 MCSectionELF *ConfigSection = 470 Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0); 471 OutStreamer->SwitchSection(ConfigSection); 472 } 473 474 if (MFI->isModuleEntryFunction()) { 475 getSIProgramInfo(CurrentProgramInfo, MF); 476 } else { 477 auto I = CallGraphResourceInfo.insert( 478 std::make_pair(&MF.getFunction(), SIFunctionResourceInfo())); 479 SIFunctionResourceInfo &Info = I.first->second; 480 assert(I.second && "should only be called once per function"); 481 Info = analyzeResourceUsage(MF); 482 } 483 484 if (STM.isAmdPalOS()) { 485 if (MFI->isEntryFunction()) 486 EmitPALMetadata(MF, CurrentProgramInfo); 487 else if (MFI->isModuleEntryFunction()) 488 emitPALFunctionMetadata(MF); 489 } else if (!STM.isAmdHsaOS()) { 490 EmitProgramInfoSI(MF, CurrentProgramInfo); 491 } 492 493 DumpCodeInstEmitter = nullptr; 494 if (STM.dumpCode()) { 495 // For -dumpcode, get the assembler out of the streamer, even if it does 496 // not really want to let us have it. This only works with -filetype=obj. 497 bool SaveFlag = OutStreamer->getUseAssemblerInfoForParsing(); 498 OutStreamer->setUseAssemblerInfoForParsing(true); 499 MCAssembler *Assembler = OutStreamer->getAssemblerPtr(); 500 OutStreamer->setUseAssemblerInfoForParsing(SaveFlag); 501 if (Assembler) 502 DumpCodeInstEmitter = Assembler->getEmitterPtr(); 503 } 504 505 DisasmLines.clear(); 506 HexLines.clear(); 507 DisasmLineMaxLen = 0; 508 509 emitFunctionBody(); 510 511 if (isVerbose()) { 512 MCSectionELF *CommentSection = 513 Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0); 514 OutStreamer->SwitchSection(CommentSection); 515 516 if (!MFI->isEntryFunction()) { 517 OutStreamer->emitRawComment(" Function info:", false); 518 SIFunctionResourceInfo &Info = CallGraphResourceInfo[&MF.getFunction()]; 519 emitCommonFunctionComments( 520 Info.NumVGPR, 521 STM.hasMAIInsts() ? Info.NumAGPR : Optional<uint32_t>(), 522 Info.getTotalNumVGPRs(STM), 523 Info.getTotalNumSGPRs(MF.getSubtarget<GCNSubtarget>()), 524 Info.PrivateSegmentSize, 525 getFunctionCodeSize(MF), MFI); 526 return false; 527 } 528 529 OutStreamer->emitRawComment(" Kernel info:", false); 530 emitCommonFunctionComments(CurrentProgramInfo.NumArchVGPR, 531 STM.hasMAIInsts() 532 ? CurrentProgramInfo.NumAccVGPR 533 : Optional<uint32_t>(), 534 CurrentProgramInfo.NumVGPR, 535 CurrentProgramInfo.NumSGPR, 536 CurrentProgramInfo.ScratchSize, 537 getFunctionCodeSize(MF), MFI); 538 539 OutStreamer->emitRawComment( 540 " FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false); 541 OutStreamer->emitRawComment( 542 " IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false); 543 OutStreamer->emitRawComment( 544 " LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) + 545 " bytes/workgroup (compile time only)", false); 546 547 OutStreamer->emitRawComment( 548 " SGPRBlocks: " + Twine(CurrentProgramInfo.SGPRBlocks), false); 549 OutStreamer->emitRawComment( 550 " VGPRBlocks: " + Twine(CurrentProgramInfo.VGPRBlocks), false); 551 552 OutStreamer->emitRawComment( 553 " NumSGPRsForWavesPerEU: " + 554 Twine(CurrentProgramInfo.NumSGPRsForWavesPerEU), false); 555 OutStreamer->emitRawComment( 556 " NumVGPRsForWavesPerEU: " + 557 Twine(CurrentProgramInfo.NumVGPRsForWavesPerEU), false); 558 559 if (STM.hasGFX90AInsts()) 560 OutStreamer->emitRawComment( 561 " AccumOffset: " + 562 Twine((CurrentProgramInfo.AccumOffset + 1) * 4), false); 563 564 OutStreamer->emitRawComment( 565 " Occupancy: " + 566 Twine(CurrentProgramInfo.Occupancy), false); 567 568 OutStreamer->emitRawComment( 569 " WaveLimiterHint : " + Twine(MFI->needsWaveLimiter()), false); 570 571 OutStreamer->emitRawComment( 572 " COMPUTE_PGM_RSRC2:SCRATCH_EN: " + 573 Twine(G_00B84C_SCRATCH_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 574 OutStreamer->emitRawComment( 575 " COMPUTE_PGM_RSRC2:USER_SGPR: " + 576 Twine(G_00B84C_USER_SGPR(CurrentProgramInfo.ComputePGMRSrc2)), false); 577 OutStreamer->emitRawComment( 578 " COMPUTE_PGM_RSRC2:TRAP_HANDLER: " + 579 Twine(G_00B84C_TRAP_HANDLER(CurrentProgramInfo.ComputePGMRSrc2)), false); 580 OutStreamer->emitRawComment( 581 " COMPUTE_PGM_RSRC2:TGID_X_EN: " + 582 Twine(G_00B84C_TGID_X_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 583 OutStreamer->emitRawComment( 584 " COMPUTE_PGM_RSRC2:TGID_Y_EN: " + 585 Twine(G_00B84C_TGID_Y_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 586 OutStreamer->emitRawComment( 587 " COMPUTE_PGM_RSRC2:TGID_Z_EN: " + 588 Twine(G_00B84C_TGID_Z_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 589 OutStreamer->emitRawComment( 590 " COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " + 591 Twine(G_00B84C_TIDIG_COMP_CNT(CurrentProgramInfo.ComputePGMRSrc2)), 592 false); 593 594 assert(STM.hasGFX90AInsts() || 595 CurrentProgramInfo.ComputePGMRSrc3GFX90A == 0); 596 if (STM.hasGFX90AInsts()) { 597 OutStreamer->emitRawComment( 598 " COMPUTE_PGM_RSRC3_GFX90A:ACCUM_OFFSET: " + 599 Twine((AMDHSA_BITS_GET(CurrentProgramInfo.ComputePGMRSrc3GFX90A, 600 amdhsa::COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET))), 601 false); 602 OutStreamer->emitRawComment( 603 " COMPUTE_PGM_RSRC3_GFX90A:TG_SPLIT: " + 604 Twine((AMDHSA_BITS_GET(CurrentProgramInfo.ComputePGMRSrc3GFX90A, 605 amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT))), 606 false); 607 } 608 } 609 610 if (DumpCodeInstEmitter) { 611 612 OutStreamer->SwitchSection( 613 Context.getELFSection(".AMDGPU.disasm", ELF::SHT_PROGBITS, 0)); 614 615 for (size_t i = 0; i < DisasmLines.size(); ++i) { 616 std::string Comment = "\n"; 617 if (!HexLines[i].empty()) { 618 Comment = std::string(DisasmLineMaxLen - DisasmLines[i].size(), ' '); 619 Comment += " ; " + HexLines[i] + "\n"; 620 } 621 622 OutStreamer->emitBytes(StringRef(DisasmLines[i])); 623 OutStreamer->emitBytes(StringRef(Comment)); 624 } 625 } 626 627 return false; 628 } 629 630 // TODO: Fold this into emitFunctionBodyStart. 631 void AMDGPUAsmPrinter::initializeTargetID(const Module &M) { 632 // In the beginning all features are either 'Any' or 'NotSupported', 633 // depending on global target features. This will cover empty modules. 634 getTargetStreamer()->initializeTargetID( 635 *getGlobalSTI(), getGlobalSTI()->getFeatureString()); 636 637 // If module is empty, we are done. 638 if (M.empty()) 639 return; 640 641 // If module is not empty, need to find first 'Off' or 'On' feature 642 // setting per feature from functions in module. 643 for (auto &F : M) { 644 auto &TSTargetID = getTargetStreamer()->getTargetID(); 645 if ((!TSTargetID->isXnackSupported() || TSTargetID->isXnackOnOrOff()) && 646 (!TSTargetID->isSramEccSupported() || TSTargetID->isSramEccOnOrOff())) 647 break; 648 649 const GCNSubtarget &STM = TM.getSubtarget<GCNSubtarget>(F); 650 const IsaInfo::AMDGPUTargetID &STMTargetID = STM.getTargetID(); 651 if (TSTargetID->isXnackSupported()) 652 if (TSTargetID->getXnackSetting() == IsaInfo::TargetIDSetting::Any) 653 TSTargetID->setXnackSetting(STMTargetID.getXnackSetting()); 654 if (TSTargetID->isSramEccSupported()) 655 if (TSTargetID->getSramEccSetting() == IsaInfo::TargetIDSetting::Any) 656 TSTargetID->setSramEccSetting(STMTargetID.getSramEccSetting()); 657 } 658 } 659 660 uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const { 661 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 662 const SIInstrInfo *TII = STM.getInstrInfo(); 663 664 uint64_t CodeSize = 0; 665 666 for (const MachineBasicBlock &MBB : MF) { 667 for (const MachineInstr &MI : MBB) { 668 // TODO: CodeSize should account for multiple functions. 669 670 // TODO: Should we count size of debug info? 671 if (MI.isDebugInstr()) 672 continue; 673 674 CodeSize += TII->getInstSizeInBytes(MI); 675 } 676 } 677 678 return CodeSize; 679 } 680 681 static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI, 682 const SIInstrInfo &TII, 683 unsigned Reg) { 684 for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) { 685 if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent())) 686 return true; 687 } 688 689 return false; 690 } 691 692 int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumSGPRs( 693 const GCNSubtarget &ST) const { 694 return NumExplicitSGPR + IsaInfo::getNumExtraSGPRs( 695 &ST, UsesVCC, UsesFlatScratch, ST.getTargetID().isXnackOnOrAny()); 696 } 697 698 int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumVGPRs( 699 const GCNSubtarget &ST) const { 700 if (ST.hasGFX90AInsts() && NumAGPR) 701 return alignTo(NumVGPR, 4) + NumAGPR; 702 return std::max(NumVGPR, NumAGPR); 703 } 704 705 static const Function *getCalleeFunction(const MachineOperand &Op) { 706 if (Op.isImm()) { 707 assert(Op.getImm() == 0); 708 return nullptr; 709 } 710 711 return cast<Function>(Op.getGlobal()); 712 } 713 714 AMDGPUAsmPrinter::SIFunctionResourceInfo AMDGPUAsmPrinter::analyzeResourceUsage( 715 const MachineFunction &MF) const { 716 SIFunctionResourceInfo Info; 717 718 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 719 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 720 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 721 const MachineRegisterInfo &MRI = MF.getRegInfo(); 722 const SIInstrInfo *TII = ST.getInstrInfo(); 723 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 724 725 Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) || 726 MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI); 727 728 // Even if FLAT_SCRATCH is implicitly used, it has no effect if flat 729 // instructions aren't used to access the scratch buffer. Inline assembly may 730 // need it though. 731 // 732 // If we only have implicit uses of flat_scr on flat instructions, it is not 733 // really needed. 734 if (Info.UsesFlatScratch && !MFI->hasFlatScratchInit() && 735 (!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) && 736 !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) && 737 !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) { 738 Info.UsesFlatScratch = false; 739 } 740 741 Info.PrivateSegmentSize = FrameInfo.getStackSize(); 742 743 // Assume a big number if there are any unknown sized objects. 744 Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects(); 745 if (Info.HasDynamicallySizedStack) 746 Info.PrivateSegmentSize += AssumedStackSizeForDynamicSizeObjects; 747 748 if (MFI->isStackRealigned()) 749 Info.PrivateSegmentSize += FrameInfo.getMaxAlign().value(); 750 751 Info.UsesVCC = MRI.isPhysRegUsed(AMDGPU::VCC_LO) || 752 MRI.isPhysRegUsed(AMDGPU::VCC_HI); 753 754 // If there are no calls, MachineRegisterInfo can tell us the used register 755 // count easily. 756 // A tail call isn't considered a call for MachineFrameInfo's purposes. 757 if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) { 758 MCPhysReg HighestVGPRReg = AMDGPU::NoRegister; 759 for (MCPhysReg Reg : reverse(AMDGPU::VGPR_32RegClass.getRegisters())) { 760 if (MRI.isPhysRegUsed(Reg)) { 761 HighestVGPRReg = Reg; 762 break; 763 } 764 } 765 766 if (ST.hasMAIInsts()) { 767 MCPhysReg HighestAGPRReg = AMDGPU::NoRegister; 768 for (MCPhysReg Reg : reverse(AMDGPU::AGPR_32RegClass.getRegisters())) { 769 if (MRI.isPhysRegUsed(Reg)) { 770 HighestAGPRReg = Reg; 771 break; 772 } 773 } 774 Info.NumAGPR = HighestAGPRReg == AMDGPU::NoRegister ? 0 : 775 TRI.getHWRegIndex(HighestAGPRReg) + 1; 776 } 777 778 MCPhysReg HighestSGPRReg = AMDGPU::NoRegister; 779 for (MCPhysReg Reg : reverse(AMDGPU::SGPR_32RegClass.getRegisters())) { 780 if (MRI.isPhysRegUsed(Reg)) { 781 HighestSGPRReg = Reg; 782 break; 783 } 784 } 785 786 // We found the maximum register index. They start at 0, so add one to get the 787 // number of registers. 788 Info.NumVGPR = HighestVGPRReg == AMDGPU::NoRegister ? 0 : 789 TRI.getHWRegIndex(HighestVGPRReg) + 1; 790 Info.NumExplicitSGPR = HighestSGPRReg == AMDGPU::NoRegister ? 0 : 791 TRI.getHWRegIndex(HighestSGPRReg) + 1; 792 793 return Info; 794 } 795 796 int32_t MaxVGPR = -1; 797 int32_t MaxAGPR = -1; 798 int32_t MaxSGPR = -1; 799 uint64_t CalleeFrameSize = 0; 800 801 for (const MachineBasicBlock &MBB : MF) { 802 for (const MachineInstr &MI : MBB) { 803 // TODO: Check regmasks? Do they occur anywhere except calls? 804 for (const MachineOperand &MO : MI.operands()) { 805 unsigned Width = 0; 806 bool IsSGPR = false; 807 bool IsAGPR = false; 808 809 if (!MO.isReg()) 810 continue; 811 812 Register Reg = MO.getReg(); 813 switch (Reg) { 814 case AMDGPU::EXEC: 815 case AMDGPU::EXEC_LO: 816 case AMDGPU::EXEC_HI: 817 case AMDGPU::SCC: 818 case AMDGPU::M0: 819 case AMDGPU::SRC_SHARED_BASE: 820 case AMDGPU::SRC_SHARED_LIMIT: 821 case AMDGPU::SRC_PRIVATE_BASE: 822 case AMDGPU::SRC_PRIVATE_LIMIT: 823 case AMDGPU::SGPR_NULL: 824 case AMDGPU::MODE: 825 continue; 826 827 case AMDGPU::SRC_POPS_EXITING_WAVE_ID: 828 llvm_unreachable("src_pops_exiting_wave_id should not be used"); 829 830 case AMDGPU::NoRegister: 831 assert(MI.isDebugInstr() && "Instruction uses invalid noreg register"); 832 continue; 833 834 case AMDGPU::VCC: 835 case AMDGPU::VCC_LO: 836 case AMDGPU::VCC_HI: 837 case AMDGPU::VCC_LO_LO16: 838 case AMDGPU::VCC_LO_HI16: 839 case AMDGPU::VCC_HI_LO16: 840 case AMDGPU::VCC_HI_HI16: 841 Info.UsesVCC = true; 842 continue; 843 844 case AMDGPU::FLAT_SCR: 845 case AMDGPU::FLAT_SCR_LO: 846 case AMDGPU::FLAT_SCR_HI: 847 continue; 848 849 case AMDGPU::XNACK_MASK: 850 case AMDGPU::XNACK_MASK_LO: 851 case AMDGPU::XNACK_MASK_HI: 852 llvm_unreachable("xnack_mask registers should not be used"); 853 854 case AMDGPU::LDS_DIRECT: 855 llvm_unreachable("lds_direct register should not be used"); 856 857 case AMDGPU::TBA: 858 case AMDGPU::TBA_LO: 859 case AMDGPU::TBA_HI: 860 case AMDGPU::TMA: 861 case AMDGPU::TMA_LO: 862 case AMDGPU::TMA_HI: 863 llvm_unreachable("trap handler registers should not be used"); 864 865 case AMDGPU::SRC_VCCZ: 866 llvm_unreachable("src_vccz register should not be used"); 867 868 case AMDGPU::SRC_EXECZ: 869 llvm_unreachable("src_execz register should not be used"); 870 871 case AMDGPU::SRC_SCC: 872 llvm_unreachable("src_scc register should not be used"); 873 874 default: 875 break; 876 } 877 878 if (AMDGPU::SReg_32RegClass.contains(Reg) || 879 AMDGPU::SReg_LO16RegClass.contains(Reg) || 880 AMDGPU::SGPR_HI16RegClass.contains(Reg)) { 881 assert(!AMDGPU::TTMP_32RegClass.contains(Reg) && 882 "trap handler registers should not be used"); 883 IsSGPR = true; 884 Width = 1; 885 } else if (AMDGPU::VGPR_32RegClass.contains(Reg) || 886 AMDGPU::VGPR_LO16RegClass.contains(Reg) || 887 AMDGPU::VGPR_HI16RegClass.contains(Reg)) { 888 IsSGPR = false; 889 Width = 1; 890 } else if (AMDGPU::AGPR_32RegClass.contains(Reg) || 891 AMDGPU::AGPR_LO16RegClass.contains(Reg)) { 892 IsSGPR = false; 893 IsAGPR = true; 894 Width = 1; 895 } else if (AMDGPU::SReg_64RegClass.contains(Reg)) { 896 assert(!AMDGPU::TTMP_64RegClass.contains(Reg) && 897 "trap handler registers should not be used"); 898 IsSGPR = true; 899 Width = 2; 900 } else if (AMDGPU::VReg_64RegClass.contains(Reg)) { 901 IsSGPR = false; 902 Width = 2; 903 } else if (AMDGPU::AReg_64RegClass.contains(Reg)) { 904 IsSGPR = false; 905 IsAGPR = true; 906 Width = 2; 907 } else if (AMDGPU::VReg_96RegClass.contains(Reg)) { 908 IsSGPR = false; 909 Width = 3; 910 } else if (AMDGPU::SReg_96RegClass.contains(Reg)) { 911 IsSGPR = true; 912 Width = 3; 913 } else if (AMDGPU::AReg_96RegClass.contains(Reg)) { 914 IsSGPR = false; 915 IsAGPR = true; 916 Width = 3; 917 } else if (AMDGPU::SReg_128RegClass.contains(Reg)) { 918 assert(!AMDGPU::TTMP_128RegClass.contains(Reg) && 919 "trap handler registers should not be used"); 920 IsSGPR = true; 921 Width = 4; 922 } else if (AMDGPU::VReg_128RegClass.contains(Reg)) { 923 IsSGPR = false; 924 Width = 4; 925 } else if (AMDGPU::AReg_128RegClass.contains(Reg)) { 926 IsSGPR = false; 927 IsAGPR = true; 928 Width = 4; 929 } else if (AMDGPU::VReg_160RegClass.contains(Reg)) { 930 IsSGPR = false; 931 Width = 5; 932 } else if (AMDGPU::SReg_160RegClass.contains(Reg)) { 933 IsSGPR = true; 934 Width = 5; 935 } else if (AMDGPU::AReg_160RegClass.contains(Reg)) { 936 IsSGPR = false; 937 IsAGPR = true; 938 Width = 5; 939 } else if (AMDGPU::VReg_192RegClass.contains(Reg)) { 940 IsSGPR = false; 941 Width = 6; 942 } else if (AMDGPU::SReg_192RegClass.contains(Reg)) { 943 IsSGPR = true; 944 Width = 6; 945 } else if (AMDGPU::AReg_192RegClass.contains(Reg)) { 946 IsSGPR = false; 947 IsAGPR = true; 948 Width = 6; 949 } else if (AMDGPU::SReg_256RegClass.contains(Reg)) { 950 assert(!AMDGPU::TTMP_256RegClass.contains(Reg) && 951 "trap handler registers should not be used"); 952 IsSGPR = true; 953 Width = 8; 954 } else if (AMDGPU::VReg_256RegClass.contains(Reg)) { 955 IsSGPR = false; 956 Width = 8; 957 } else if (AMDGPU::AReg_256RegClass.contains(Reg)) { 958 IsSGPR = false; 959 IsAGPR = true; 960 Width = 8; 961 } else if (AMDGPU::SReg_512RegClass.contains(Reg)) { 962 assert(!AMDGPU::TTMP_512RegClass.contains(Reg) && 963 "trap handler registers should not be used"); 964 IsSGPR = true; 965 Width = 16; 966 } else if (AMDGPU::VReg_512RegClass.contains(Reg)) { 967 IsSGPR = false; 968 Width = 16; 969 } else if (AMDGPU::AReg_512RegClass.contains(Reg)) { 970 IsSGPR = false; 971 IsAGPR = true; 972 Width = 16; 973 } else if (AMDGPU::SReg_1024RegClass.contains(Reg)) { 974 IsSGPR = true; 975 Width = 32; 976 } else if (AMDGPU::VReg_1024RegClass.contains(Reg)) { 977 IsSGPR = false; 978 Width = 32; 979 } else if (AMDGPU::AReg_1024RegClass.contains(Reg)) { 980 IsSGPR = false; 981 IsAGPR = true; 982 Width = 32; 983 } else { 984 llvm_unreachable("Unknown register class"); 985 } 986 unsigned HWReg = TRI.getHWRegIndex(Reg); 987 int MaxUsed = HWReg + Width - 1; 988 if (IsSGPR) { 989 MaxSGPR = MaxUsed > MaxSGPR ? MaxUsed : MaxSGPR; 990 } else if (IsAGPR) { 991 MaxAGPR = MaxUsed > MaxAGPR ? MaxUsed : MaxAGPR; 992 } else { 993 MaxVGPR = MaxUsed > MaxVGPR ? MaxUsed : MaxVGPR; 994 } 995 } 996 997 if (MI.isCall()) { 998 // Pseudo used just to encode the underlying global. Is there a better 999 // way to track this? 1000 1001 const MachineOperand *CalleeOp 1002 = TII->getNamedOperand(MI, AMDGPU::OpName::callee); 1003 1004 const Function *Callee = getCalleeFunction(*CalleeOp); 1005 DenseMap<const Function *, SIFunctionResourceInfo>::const_iterator I = 1006 CallGraphResourceInfo.end(); 1007 bool IsExternal = !Callee || Callee->isDeclaration(); 1008 if (!IsExternal) 1009 I = CallGraphResourceInfo.find(Callee); 1010 1011 if (IsExternal || I == CallGraphResourceInfo.end()) { 1012 // Avoid crashing on undefined behavior with an illegal call to a 1013 // kernel. If a callsite's calling convention doesn't match the 1014 // function's, it's undefined behavior. If the callsite calling 1015 // convention does match, that would have errored earlier. 1016 // FIXME: The verifier shouldn't allow this. 1017 if (!IsExternal && 1018 AMDGPU::isEntryFunctionCC(Callee->getCallingConv())) 1019 report_fatal_error("invalid call to entry function"); 1020 1021 // If this is a call to an external function, we can't do much. Make 1022 // conservative guesses. 1023 1024 // 48 SGPRs - vcc, - flat_scr, -xnack 1025 int MaxSGPRGuess = 1026 47 - IsaInfo::getNumExtraSGPRs(&ST, true, ST.hasFlatAddressSpace()); 1027 MaxSGPR = std::max(MaxSGPR, MaxSGPRGuess); 1028 MaxVGPR = std::max(MaxVGPR, 23); 1029 MaxAGPR = std::max(MaxAGPR, 23); 1030 1031 CalleeFrameSize = std::max(CalleeFrameSize, 1032 static_cast<uint64_t>(AssumedStackSizeForExternalCall)); 1033 1034 Info.UsesVCC = true; 1035 Info.UsesFlatScratch = ST.hasFlatAddressSpace(); 1036 Info.HasDynamicallySizedStack = true; 1037 } else { 1038 // We force CodeGen to run in SCC order, so the callee's register 1039 // usage etc. should be the cumulative usage of all callees. 1040 1041 MaxSGPR = std::max(I->second.NumExplicitSGPR - 1, MaxSGPR); 1042 MaxVGPR = std::max(I->second.NumVGPR - 1, MaxVGPR); 1043 MaxAGPR = std::max(I->second.NumAGPR - 1, MaxAGPR); 1044 CalleeFrameSize 1045 = std::max(I->second.PrivateSegmentSize, CalleeFrameSize); 1046 Info.UsesVCC |= I->second.UsesVCC; 1047 Info.UsesFlatScratch |= I->second.UsesFlatScratch; 1048 Info.HasDynamicallySizedStack |= I->second.HasDynamicallySizedStack; 1049 Info.HasRecursion |= I->second.HasRecursion; 1050 } 1051 1052 // FIXME: Call site could have norecurse on it 1053 if (!Callee || !Callee->doesNotRecurse()) 1054 Info.HasRecursion = true; 1055 } 1056 } 1057 } 1058 1059 Info.NumExplicitSGPR = MaxSGPR + 1; 1060 Info.NumVGPR = MaxVGPR + 1; 1061 Info.NumAGPR = MaxAGPR + 1; 1062 Info.PrivateSegmentSize += CalleeFrameSize; 1063 1064 return Info; 1065 } 1066 1067 void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo, 1068 const MachineFunction &MF) { 1069 SIFunctionResourceInfo Info = analyzeResourceUsage(MF); 1070 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 1071 1072 ProgInfo.NumArchVGPR = Info.NumVGPR; 1073 ProgInfo.NumAccVGPR = Info.NumAGPR; 1074 ProgInfo.NumVGPR = Info.getTotalNumVGPRs(STM); 1075 ProgInfo.AccumOffset = alignTo(std::max(1, Info.NumVGPR), 4) / 4 - 1; 1076 ProgInfo.TgSplit = STM.isTgSplitEnabled(); 1077 ProgInfo.NumSGPR = Info.NumExplicitSGPR; 1078 ProgInfo.ScratchSize = Info.PrivateSegmentSize; 1079 ProgInfo.VCCUsed = Info.UsesVCC; 1080 ProgInfo.FlatUsed = Info.UsesFlatScratch; 1081 ProgInfo.DynamicCallStack = Info.HasDynamicallySizedStack || Info.HasRecursion; 1082 1083 const uint64_t MaxScratchPerWorkitem = 1084 GCNSubtarget::MaxWaveScratchSize / STM.getWavefrontSize(); 1085 if (ProgInfo.ScratchSize > MaxScratchPerWorkitem) { 1086 DiagnosticInfoStackSize DiagStackSize(MF.getFunction(), 1087 ProgInfo.ScratchSize, DS_Error); 1088 MF.getFunction().getContext().diagnose(DiagStackSize); 1089 } 1090 1091 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1092 1093 // TODO(scott.linder): The calculations related to SGPR/VGPR blocks are 1094 // duplicated in part in AMDGPUAsmParser::calculateGPRBlocks, and could be 1095 // unified. 1096 unsigned ExtraSGPRs = IsaInfo::getNumExtraSGPRs( 1097 &STM, ProgInfo.VCCUsed, ProgInfo.FlatUsed); 1098 1099 // Check the addressable register limit before we add ExtraSGPRs. 1100 if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && 1101 !STM.hasSGPRInitBug()) { 1102 unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); 1103 if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { 1104 // This can happen due to a compiler bug or when using inline asm. 1105 LLVMContext &Ctx = MF.getFunction().getContext(); 1106 DiagnosticInfoResourceLimit Diag(MF.getFunction(), 1107 "addressable scalar registers", 1108 ProgInfo.NumSGPR, DS_Error, 1109 DK_ResourceLimit, 1110 MaxAddressableNumSGPRs); 1111 Ctx.diagnose(Diag); 1112 ProgInfo.NumSGPR = MaxAddressableNumSGPRs - 1; 1113 } 1114 } 1115 1116 // Account for extra SGPRs and VGPRs reserved for debugger use. 1117 ProgInfo.NumSGPR += ExtraSGPRs; 1118 1119 const Function &F = MF.getFunction(); 1120 1121 // Ensure there are enough SGPRs and VGPRs for wave dispatch, where wave 1122 // dispatch registers are function args. 1123 unsigned WaveDispatchNumSGPR = 0, WaveDispatchNumVGPR = 0; 1124 1125 if (isShader(F.getCallingConv())) { 1126 // FIXME: We should be using the number of registers determined during 1127 // calling convention lowering to legalize the types. 1128 const DataLayout &DL = F.getParent()->getDataLayout(); 1129 for (auto &Arg : F.args()) { 1130 unsigned NumRegs = (DL.getTypeSizeInBits(Arg.getType()) + 31) / 32; 1131 if (Arg.hasAttribute(Attribute::InReg)) 1132 WaveDispatchNumSGPR += NumRegs; 1133 else 1134 WaveDispatchNumVGPR += NumRegs; 1135 } 1136 ProgInfo.NumSGPR = std::max(ProgInfo.NumSGPR, WaveDispatchNumSGPR); 1137 ProgInfo.NumVGPR = std::max(ProgInfo.NumVGPR, WaveDispatchNumVGPR); 1138 } 1139 1140 // Adjust number of registers used to meet default/requested minimum/maximum 1141 // number of waves per execution unit request. 1142 ProgInfo.NumSGPRsForWavesPerEU = std::max( 1143 std::max(ProgInfo.NumSGPR, 1u), STM.getMinNumSGPRs(MFI->getMaxWavesPerEU())); 1144 ProgInfo.NumVGPRsForWavesPerEU = std::max( 1145 std::max(ProgInfo.NumVGPR, 1u), STM.getMinNumVGPRs(MFI->getMaxWavesPerEU())); 1146 1147 if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS || 1148 STM.hasSGPRInitBug()) { 1149 unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); 1150 if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { 1151 // This can happen due to a compiler bug or when using inline asm to use 1152 // the registers which are usually reserved for vcc etc. 1153 LLVMContext &Ctx = MF.getFunction().getContext(); 1154 DiagnosticInfoResourceLimit Diag(MF.getFunction(), 1155 "scalar registers", 1156 ProgInfo.NumSGPR, DS_Error, 1157 DK_ResourceLimit, 1158 MaxAddressableNumSGPRs); 1159 Ctx.diagnose(Diag); 1160 ProgInfo.NumSGPR = MaxAddressableNumSGPRs; 1161 ProgInfo.NumSGPRsForWavesPerEU = MaxAddressableNumSGPRs; 1162 } 1163 } 1164 1165 if (STM.hasSGPRInitBug()) { 1166 ProgInfo.NumSGPR = 1167 AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 1168 ProgInfo.NumSGPRsForWavesPerEU = 1169 AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 1170 } 1171 1172 if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) { 1173 LLVMContext &Ctx = MF.getFunction().getContext(); 1174 DiagnosticInfoResourceLimit Diag(MF.getFunction(), "user SGPRs", 1175 MFI->getNumUserSGPRs(), DS_Error); 1176 Ctx.diagnose(Diag); 1177 } 1178 1179 if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) { 1180 LLVMContext &Ctx = MF.getFunction().getContext(); 1181 DiagnosticInfoResourceLimit Diag(MF.getFunction(), "local memory", 1182 MFI->getLDSSize(), DS_Error); 1183 Ctx.diagnose(Diag); 1184 } 1185 1186 ProgInfo.SGPRBlocks = IsaInfo::getNumSGPRBlocks( 1187 &STM, ProgInfo.NumSGPRsForWavesPerEU); 1188 ProgInfo.VGPRBlocks = IsaInfo::getNumVGPRBlocks( 1189 &STM, ProgInfo.NumVGPRsForWavesPerEU); 1190 1191 const SIModeRegisterDefaults Mode = MFI->getMode(); 1192 1193 // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode 1194 // register. 1195 ProgInfo.FloatMode = getFPMode(Mode); 1196 1197 ProgInfo.IEEEMode = Mode.IEEE; 1198 1199 // Make clamp modifier on NaN input returns 0. 1200 ProgInfo.DX10Clamp = Mode.DX10Clamp; 1201 1202 unsigned LDSAlignShift; 1203 if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 1204 // LDS is allocated in 64 dword blocks. 1205 LDSAlignShift = 8; 1206 } else { 1207 // LDS is allocated in 128 dword blocks. 1208 LDSAlignShift = 9; 1209 } 1210 1211 unsigned LDSSpillSize = 1212 MFI->getLDSWaveSpillSize() * MFI->getMaxFlatWorkGroupSize(); 1213 1214 ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize; 1215 ProgInfo.LDSBlocks = 1216 alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift; 1217 1218 // Scratch is allocated in 256 dword blocks. 1219 unsigned ScratchAlignShift = 10; 1220 // We need to program the hardware with the amount of scratch memory that 1221 // is used by the entire wave. ProgInfo.ScratchSize is the amount of 1222 // scratch memory used per thread. 1223 ProgInfo.ScratchBlocks = 1224 alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(), 1225 1ULL << ScratchAlignShift) >> 1226 ScratchAlignShift; 1227 1228 if (getIsaVersion(getGlobalSTI()->getCPU()).Major >= 10) { 1229 ProgInfo.WgpMode = STM.isCuModeEnabled() ? 0 : 1; 1230 ProgInfo.MemOrdered = 1; 1231 } 1232 1233 // 0 = X, 1 = XY, 2 = XYZ 1234 unsigned TIDIGCompCnt = 0; 1235 if (MFI->hasWorkItemIDZ()) 1236 TIDIGCompCnt = 2; 1237 else if (MFI->hasWorkItemIDY()) 1238 TIDIGCompCnt = 1; 1239 1240 ProgInfo.ComputePGMRSrc2 = 1241 S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) | 1242 S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) | 1243 // For AMDHSA, TRAP_HANDLER must be zero, as it is populated by the CP. 1244 S_00B84C_TRAP_HANDLER(STM.isAmdHsaOS() ? 0 : STM.isTrapHandlerEnabled()) | 1245 S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) | 1246 S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) | 1247 S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) | 1248 S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) | 1249 S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) | 1250 S_00B84C_EXCP_EN_MSB(0) | 1251 // For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP. 1252 S_00B84C_LDS_SIZE(STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks) | 1253 S_00B84C_EXCP_EN(0); 1254 1255 if (STM.hasGFX90AInsts()) { 1256 AMDHSA_BITS_SET(ProgInfo.ComputePGMRSrc3GFX90A, 1257 amdhsa::COMPUTE_PGM_RSRC3_GFX90A_ACCUM_OFFSET, 1258 ProgInfo.AccumOffset); 1259 AMDHSA_BITS_SET(ProgInfo.ComputePGMRSrc3GFX90A, 1260 amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT, 1261 ProgInfo.TgSplit); 1262 } 1263 1264 ProgInfo.Occupancy = STM.computeOccupancy(MF.getFunction(), ProgInfo.LDSSize, 1265 ProgInfo.NumSGPRsForWavesPerEU, 1266 ProgInfo.NumVGPRsForWavesPerEU); 1267 } 1268 1269 static unsigned getRsrcReg(CallingConv::ID CallConv) { 1270 switch (CallConv) { 1271 default: LLVM_FALLTHROUGH; 1272 case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1; 1273 case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS; 1274 case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS; 1275 case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES; 1276 case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS; 1277 case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS; 1278 case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS; 1279 } 1280 } 1281 1282 void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF, 1283 const SIProgramInfo &CurrentProgramInfo) { 1284 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1285 unsigned RsrcReg = getRsrcReg(MF.getFunction().getCallingConv()); 1286 1287 if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { 1288 OutStreamer->emitInt32(R_00B848_COMPUTE_PGM_RSRC1); 1289 1290 OutStreamer->emitInt32(CurrentProgramInfo.getComputePGMRSrc1()); 1291 1292 OutStreamer->emitInt32(R_00B84C_COMPUTE_PGM_RSRC2); 1293 OutStreamer->emitInt32(CurrentProgramInfo.ComputePGMRSrc2); 1294 1295 OutStreamer->emitInt32(R_00B860_COMPUTE_TMPRING_SIZE); 1296 OutStreamer->emitInt32(S_00B860_WAVESIZE(CurrentProgramInfo.ScratchBlocks)); 1297 1298 // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 = 1299 // 0" comment but I don't see a corresponding field in the register spec. 1300 } else { 1301 OutStreamer->emitInt32(RsrcReg); 1302 OutStreamer->emitIntValue(S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | 1303 S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks), 4); 1304 OutStreamer->emitInt32(R_0286E8_SPI_TMPRING_SIZE); 1305 OutStreamer->emitIntValue( 1306 S_0286E8_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); 1307 } 1308 1309 if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { 1310 OutStreamer->emitInt32(R_00B02C_SPI_SHADER_PGM_RSRC2_PS); 1311 OutStreamer->emitInt32( 1312 S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks)); 1313 OutStreamer->emitInt32(R_0286CC_SPI_PS_INPUT_ENA); 1314 OutStreamer->emitInt32(MFI->getPSInputEnable()); 1315 OutStreamer->emitInt32(R_0286D0_SPI_PS_INPUT_ADDR); 1316 OutStreamer->emitInt32(MFI->getPSInputAddr()); 1317 } 1318 1319 OutStreamer->emitInt32(R_SPILLED_SGPRS); 1320 OutStreamer->emitInt32(MFI->getNumSpilledSGPRs()); 1321 OutStreamer->emitInt32(R_SPILLED_VGPRS); 1322 OutStreamer->emitInt32(MFI->getNumSpilledVGPRs()); 1323 } 1324 1325 // This is the equivalent of EmitProgramInfoSI above, but for when the OS type 1326 // is AMDPAL. It stores each compute/SPI register setting and other PAL 1327 // metadata items into the PALMD::Metadata, combining with any provided by the 1328 // frontend as LLVM metadata. Once all functions are written, the PAL metadata 1329 // is then written as a single block in the .note section. 1330 void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF, 1331 const SIProgramInfo &CurrentProgramInfo) { 1332 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1333 auto CC = MF.getFunction().getCallingConv(); 1334 auto MD = getTargetStreamer()->getPALMetadata(); 1335 1336 MD->setEntryPoint(CC, MF.getFunction().getName()); 1337 MD->setNumUsedVgprs(CC, CurrentProgramInfo.NumVGPRsForWavesPerEU); 1338 MD->setNumUsedSgprs(CC, CurrentProgramInfo.NumSGPRsForWavesPerEU); 1339 MD->setRsrc1(CC, CurrentProgramInfo.getPGMRSrc1(CC)); 1340 if (AMDGPU::isCompute(CC)) { 1341 MD->setRsrc2(CC, CurrentProgramInfo.ComputePGMRSrc2); 1342 } else { 1343 if (CurrentProgramInfo.ScratchBlocks > 0) 1344 MD->setRsrc2(CC, S_00B84C_SCRATCH_EN(1)); 1345 } 1346 // ScratchSize is in bytes, 16 aligned. 1347 MD->setScratchSize(CC, alignTo(CurrentProgramInfo.ScratchSize, 16)); 1348 if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { 1349 MD->setRsrc2(CC, S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks)); 1350 MD->setSpiPsInputEna(MFI->getPSInputEnable()); 1351 MD->setSpiPsInputAddr(MFI->getPSInputAddr()); 1352 } 1353 1354 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 1355 if (STM.isWave32()) 1356 MD->setWave32(MF.getFunction().getCallingConv()); 1357 } 1358 1359 void AMDGPUAsmPrinter::emitPALFunctionMetadata(const MachineFunction &MF) { 1360 auto *MD = getTargetStreamer()->getPALMetadata(); 1361 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1362 MD->setFunctionScratchSize(MF, MFI.getStackSize()); 1363 // Set compute registers 1364 MD->setRsrc1(CallingConv::AMDGPU_CS, 1365 CurrentProgramInfo.getPGMRSrc1(CallingConv::AMDGPU_CS)); 1366 MD->setRsrc2(CallingConv::AMDGPU_CS, CurrentProgramInfo.ComputePGMRSrc2); 1367 } 1368 1369 // This is supposed to be log2(Size) 1370 static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) { 1371 switch (Size) { 1372 case 4: 1373 return AMD_ELEMENT_4_BYTES; 1374 case 8: 1375 return AMD_ELEMENT_8_BYTES; 1376 case 16: 1377 return AMD_ELEMENT_16_BYTES; 1378 default: 1379 llvm_unreachable("invalid private_element_size"); 1380 } 1381 } 1382 1383 void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out, 1384 const SIProgramInfo &CurrentProgramInfo, 1385 const MachineFunction &MF) const { 1386 const Function &F = MF.getFunction(); 1387 assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || 1388 F.getCallingConv() == CallingConv::SPIR_KERNEL); 1389 1390 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1391 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 1392 1393 AMDGPU::initDefaultAMDKernelCodeT(Out, &STM); 1394 1395 Out.compute_pgm_resource_registers = 1396 CurrentProgramInfo.getComputePGMRSrc1() | 1397 (CurrentProgramInfo.ComputePGMRSrc2 << 32); 1398 Out.code_properties |= AMD_CODE_PROPERTY_IS_PTR64; 1399 1400 if (CurrentProgramInfo.DynamicCallStack) 1401 Out.code_properties |= AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK; 1402 1403 AMD_HSA_BITS_SET(Out.code_properties, 1404 AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE, 1405 getElementByteSizeValue(STM.getMaxPrivateElementSize(true))); 1406 1407 if (MFI->hasPrivateSegmentBuffer()) { 1408 Out.code_properties |= 1409 AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; 1410 } 1411 1412 if (MFI->hasDispatchPtr()) 1413 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 1414 1415 if (MFI->hasQueuePtr()) 1416 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; 1417 1418 if (MFI->hasKernargSegmentPtr()) 1419 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; 1420 1421 if (MFI->hasDispatchID()) 1422 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; 1423 1424 if (MFI->hasFlatScratchInit()) 1425 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; 1426 1427 if (MFI->hasDispatchPtr()) 1428 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 1429 1430 if (STM.isXNACKEnabled()) 1431 Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED; 1432 1433 Align MaxKernArgAlign; 1434 Out.kernarg_segment_byte_size = STM.getKernArgSegmentSize(F, MaxKernArgAlign); 1435 Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR; 1436 Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR; 1437 Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize; 1438 Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize; 1439 1440 // kernarg_segment_alignment is specified as log of the alignment. 1441 // The minimum alignment is 16. 1442 Out.kernarg_segment_alignment = Log2(std::max(Align(16), MaxKernArgAlign)); 1443 } 1444 1445 bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1446 const char *ExtraCode, raw_ostream &O) { 1447 // First try the generic code, which knows about modifiers like 'c' and 'n'. 1448 if (!AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O)) 1449 return false; 1450 1451 if (ExtraCode && ExtraCode[0]) { 1452 if (ExtraCode[1] != 0) 1453 return true; // Unknown modifier. 1454 1455 switch (ExtraCode[0]) { 1456 case 'r': 1457 break; 1458 default: 1459 return true; 1460 } 1461 } 1462 1463 // TODO: Should be able to support other operand types like globals. 1464 const MachineOperand &MO = MI->getOperand(OpNo); 1465 if (MO.isReg()) { 1466 AMDGPUInstPrinter::printRegOperand(MO.getReg(), O, 1467 *MF->getSubtarget().getRegisterInfo()); 1468 return false; 1469 } else if (MO.isImm()) { 1470 int64_t Val = MO.getImm(); 1471 if (AMDGPU::isInlinableIntLiteral(Val)) { 1472 O << Val; 1473 } else if (isUInt<16>(Val)) { 1474 O << format("0x%" PRIx16, static_cast<uint16_t>(Val)); 1475 } else if (isUInt<32>(Val)) { 1476 O << format("0x%" PRIx32, static_cast<uint32_t>(Val)); 1477 } else { 1478 O << format("0x%" PRIx64, static_cast<uint64_t>(Val)); 1479 } 1480 return false; 1481 } 1482 return true; 1483 } 1484