1 //===-- AMDGPUAsmPrinter.cpp - AMDGPU assembly printer -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// 12 /// The AMDGPUAsmPrinter is used to print both assembly string and also binary 13 /// code. When passed an MCAsmStreamer it prints assembly and when passed 14 /// an MCObjectStreamer it outputs binary code. 15 // 16 //===----------------------------------------------------------------------===// 17 // 18 19 #include "AMDGPUAsmPrinter.h" 20 #include "AMDGPU.h" 21 #include "AMDGPUSubtarget.h" 22 #include "AMDGPUTargetMachine.h" 23 #include "InstPrinter/AMDGPUInstPrinter.h" 24 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 25 #include "MCTargetDesc/AMDGPUTargetStreamer.h" 26 #include "R600AsmPrinter.h" 27 #include "R600Defines.h" 28 #include "R600MachineFunctionInfo.h" 29 #include "R600RegisterInfo.h" 30 #include "SIDefines.h" 31 #include "SIInstrInfo.h" 32 #include "SIMachineFunctionInfo.h" 33 #include "SIRegisterInfo.h" 34 #include "Utils/AMDGPUBaseInfo.h" 35 #include "llvm/BinaryFormat/ELF.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/IR/DiagnosticInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/MC/MCSectionELF.h" 40 #include "llvm/MC/MCStreamer.h" 41 #include "llvm/Support/AMDGPUMetadata.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/TargetParser.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Target/TargetLoweringObjectFile.h" 46 47 using namespace llvm; 48 using namespace llvm::AMDGPU; 49 50 // TODO: This should get the default rounding mode from the kernel. We just set 51 // the default here, but this could change if the OpenCL rounding mode pragmas 52 // are used. 53 // 54 // The denormal mode here should match what is reported by the OpenCL runtime 55 // for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but 56 // can also be override to flush with the -cl-denorms-are-zero compiler flag. 57 // 58 // AMD OpenCL only sets flush none and reports CL_FP_DENORM for double 59 // precision, and leaves single precision to flush all and does not report 60 // CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports 61 // CL_FP_DENORM for both. 62 // 63 // FIXME: It seems some instructions do not support single precision denormals 64 // regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32, 65 // and sin_f32, cos_f32 on most parts). 66 67 // We want to use these instructions, and using fp32 denormals also causes 68 // instructions to run at the double precision rate for the device so it's 69 // probably best to just report no single precision denormals. 70 static uint32_t getFPMode(const MachineFunction &F) { 71 const GCNSubtarget& ST = F.getSubtarget<GCNSubtarget>(); 72 // TODO: Is there any real use for the flush in only / flush out only modes? 73 74 uint32_t FP32Denormals = 75 ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; 76 77 uint32_t FP64Denormals = 78 ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; 79 80 return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) | 81 FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) | 82 FP_DENORM_MODE_SP(FP32Denormals) | 83 FP_DENORM_MODE_DP(FP64Denormals); 84 } 85 86 static AsmPrinter * 87 createAMDGPUAsmPrinterPass(TargetMachine &tm, 88 std::unique_ptr<MCStreamer> &&Streamer) { 89 return new AMDGPUAsmPrinter(tm, std::move(Streamer)); 90 } 91 92 extern "C" void LLVMInitializeAMDGPUAsmPrinter() { 93 TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(), 94 llvm::createR600AsmPrinterPass); 95 TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(), 96 createAMDGPUAsmPrinterPass); 97 } 98 99 AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, 100 std::unique_ptr<MCStreamer> Streamer) 101 : AsmPrinter(TM, std::move(Streamer)) { 102 } 103 104 StringRef AMDGPUAsmPrinter::getPassName() const { 105 return "AMDGPU Assembly Printer"; 106 } 107 108 const MCSubtargetInfo* AMDGPUAsmPrinter::getSTI() const { 109 return TM.getMCSubtargetInfo(); 110 } 111 112 AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const { 113 if (!OutStreamer) 114 return nullptr; 115 return static_cast<AMDGPUTargetStreamer*>(OutStreamer->getTargetStreamer()); 116 } 117 118 void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) { 119 if (IsaInfo::hasCodeObjectV3(getSTI())) { 120 std::string ExpectedTarget; 121 raw_string_ostream ExpectedTargetOS(ExpectedTarget); 122 IsaInfo::streamIsaVersion(getSTI(), ExpectedTargetOS); 123 124 getTargetStreamer()->EmitDirectiveAMDGCNTarget(ExpectedTarget); 125 126 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) 127 return; 128 } 129 130 if (TM.getTargetTriple().getOS() != Triple::AMDHSA && 131 TM.getTargetTriple().getOS() != Triple::AMDPAL) 132 return; 133 134 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) 135 HSAMetadataStream.begin(M); 136 137 if (TM.getTargetTriple().getOS() == Triple::AMDPAL) 138 readPALMetadata(M); 139 140 // HSA emits NT_AMDGPU_HSA_CODE_OBJECT_VERSION for code objects v2. 141 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) 142 getTargetStreamer()->EmitDirectiveHSACodeObjectVersion(2, 1); 143 144 // HSA and PAL emit NT_AMDGPU_HSA_ISA for code objects v2. 145 IsaVersion Version = getIsaVersion(getSTI()->getCPU()); 146 getTargetStreamer()->EmitDirectiveHSACodeObjectISA( 147 Version.Major, Version.Minor, Version.Stepping, "AMD", "AMDGPU"); 148 } 149 150 void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) { 151 // TODO: Add metadata to code object v3. 152 if (IsaInfo::hasCodeObjectV3(getSTI()) && 153 TM.getTargetTriple().getOS() == Triple::AMDHSA) 154 return; 155 156 // Following code requires TargetStreamer to be present. 157 if (!getTargetStreamer()) 158 return; 159 160 // Emit ISA Version (NT_AMD_AMDGPU_ISA). 161 std::string ISAVersionString; 162 raw_string_ostream ISAVersionStream(ISAVersionString); 163 IsaInfo::streamIsaVersion(getSTI(), ISAVersionStream); 164 getTargetStreamer()->EmitISAVersion(ISAVersionStream.str()); 165 166 // Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA). 167 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) { 168 HSAMetadataStream.end(); 169 getTargetStreamer()->EmitHSAMetadata(HSAMetadataStream.getHSAMetadata()); 170 } 171 172 // Emit PAL Metadata (NT_AMD_AMDGPU_PAL_METADATA). 173 if (TM.getTargetTriple().getOS() == Triple::AMDPAL) { 174 // Copy the PAL metadata from the map where we collected it into a vector, 175 // then write it as a .note. 176 PALMD::Metadata PALMetadataVector; 177 for (auto i : PALMetadataMap) { 178 PALMetadataVector.push_back(i.first); 179 PALMetadataVector.push_back(i.second); 180 } 181 getTargetStreamer()->EmitPALMetadata(PALMetadataVector); 182 } 183 } 184 185 bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough( 186 const MachineBasicBlock *MBB) const { 187 if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB)) 188 return false; 189 190 if (MBB->empty()) 191 return true; 192 193 // If this is a block implementing a long branch, an expression relative to 194 // the start of the block is needed. to the start of the block. 195 // XXX - Is there a smarter way to check this? 196 return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64); 197 } 198 199 void AMDGPUAsmPrinter::EmitFunctionBodyStart() { 200 const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>(); 201 if (!MFI.isEntryFunction()) 202 return; 203 204 const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>(); 205 const Function &F = MF->getFunction(); 206 if (!STM.hasCodeObjectV3() && STM.isAmdHsaOrMesa(F) && 207 (F.getCallingConv() == CallingConv::AMDGPU_KERNEL || 208 F.getCallingConv() == CallingConv::SPIR_KERNEL)) { 209 amd_kernel_code_t KernelCode; 210 getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF); 211 getTargetStreamer()->EmitAMDKernelCodeT(KernelCode); 212 } 213 214 if (TM.getTargetTriple().getOS() != Triple::AMDHSA) 215 return; 216 217 if (!STM.hasCodeObjectV3() && STM.isAmdHsaOS()) 218 HSAMetadataStream.emitKernel(*MF, CurrentProgramInfo); 219 } 220 221 void AMDGPUAsmPrinter::EmitFunctionBodyEnd() { 222 const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>(); 223 if (!MFI.isEntryFunction()) 224 return; 225 if (!IsaInfo::hasCodeObjectV3(getSTI()) || 226 TM.getTargetTriple().getOS() != Triple::AMDHSA) 227 return; 228 229 auto &Streamer = getTargetStreamer()->getStreamer(); 230 auto &Context = Streamer.getContext(); 231 auto &ObjectFileInfo = *Context.getObjectFileInfo(); 232 auto &ReadOnlySection = *ObjectFileInfo.getReadOnlySection(); 233 234 Streamer.PushSection(); 235 Streamer.SwitchSection(&ReadOnlySection); 236 237 // CP microcode requires the kernel descriptor to be allocated on 64 byte 238 // alignment. 239 Streamer.EmitValueToAlignment(64, 0, 1, 0); 240 if (ReadOnlySection.getAlignment() < 64) 241 ReadOnlySection.setAlignment(64); 242 243 SmallString<128> KernelName; 244 getNameWithPrefix(KernelName, &MF->getFunction()); 245 getTargetStreamer()->EmitAmdhsaKernelDescriptor( 246 *getSTI(), KernelName, getAmdhsaKernelDescriptor(*MF, CurrentProgramInfo), 247 CurrentProgramInfo.NumVGPRsForWavesPerEU, 248 CurrentProgramInfo.NumSGPRsForWavesPerEU - 249 IsaInfo::getNumExtraSGPRs(getSTI(), 250 CurrentProgramInfo.VCCUsed, 251 CurrentProgramInfo.FlatUsed), 252 CurrentProgramInfo.VCCUsed, CurrentProgramInfo.FlatUsed, 253 hasXNACK(*getSTI())); 254 255 Streamer.PopSection(); 256 } 257 258 void AMDGPUAsmPrinter::EmitFunctionEntryLabel() { 259 if (IsaInfo::hasCodeObjectV3(getSTI()) && 260 TM.getTargetTriple().getOS() == Triple::AMDHSA) { 261 AsmPrinter::EmitFunctionEntryLabel(); 262 return; 263 } 264 265 const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 266 const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>(); 267 if (MFI->isEntryFunction() && STM.isAmdHsaOrMesa(MF->getFunction())) { 268 SmallString<128> SymbolName; 269 getNameWithPrefix(SymbolName, &MF->getFunction()), 270 getTargetStreamer()->EmitAMDGPUSymbolType( 271 SymbolName, ELF::STT_AMDGPU_HSA_KERNEL); 272 } 273 const GCNSubtarget &STI = MF->getSubtarget<GCNSubtarget>(); 274 if (STI.dumpCode()) { 275 // Disassemble function name label to text. 276 DisasmLines.push_back(MF->getName().str() + ":"); 277 DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); 278 HexLines.push_back(""); 279 } 280 281 AsmPrinter::EmitFunctionEntryLabel(); 282 } 283 284 void AMDGPUAsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 285 const GCNSubtarget &STI = MBB.getParent()->getSubtarget<GCNSubtarget>(); 286 if (STI.dumpCode() && !isBlockOnlyReachableByFallthrough(&MBB)) { 287 // Write a line for the basic block label if it is not only fallthrough. 288 DisasmLines.push_back( 289 (Twine("BB") + Twine(getFunctionNumber()) 290 + "_" + Twine(MBB.getNumber()) + ":").str()); 291 DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); 292 HexLines.push_back(""); 293 } 294 AsmPrinter::EmitBasicBlockStart(MBB); 295 } 296 297 void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 298 299 // Group segment variables aren't emitted in HSA. 300 if (AMDGPU::isGroupSegment(GV)) 301 return; 302 303 AsmPrinter::EmitGlobalVariable(GV); 304 } 305 306 bool AMDGPUAsmPrinter::doFinalization(Module &M) { 307 CallGraphResourceInfo.clear(); 308 return AsmPrinter::doFinalization(M); 309 } 310 311 // For the amdpal OS type, read the amdgpu.pal.metadata supplied by the 312 // frontend into our PALMetadataMap, ready for per-function modification. It 313 // is a NamedMD containing an MDTuple containing a number of MDNodes each of 314 // which is an integer value, and each two integer values forms a key=value 315 // pair that we store as PALMetadataMap[key]=value in the map. 316 void AMDGPUAsmPrinter::readPALMetadata(Module &M) { 317 auto NamedMD = M.getNamedMetadata("amdgpu.pal.metadata"); 318 if (!NamedMD || !NamedMD->getNumOperands()) 319 return; 320 auto Tuple = dyn_cast<MDTuple>(NamedMD->getOperand(0)); 321 if (!Tuple) 322 return; 323 for (unsigned I = 0, E = Tuple->getNumOperands() & -2; I != E; I += 2) { 324 auto Key = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I)); 325 auto Val = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I + 1)); 326 if (!Key || !Val) 327 continue; 328 PALMetadataMap[Key->getZExtValue()] = Val->getZExtValue(); 329 } 330 } 331 332 // Print comments that apply to both callable functions and entry points. 333 void AMDGPUAsmPrinter::emitCommonFunctionComments( 334 uint32_t NumVGPR, 335 uint32_t NumSGPR, 336 uint64_t ScratchSize, 337 uint64_t CodeSize, 338 const AMDGPUMachineFunction *MFI) { 339 OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false); 340 OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false); 341 OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false); 342 OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false); 343 OutStreamer->emitRawComment(" MemoryBound: " + Twine(MFI->isMemoryBound()), 344 false); 345 } 346 347 uint16_t AMDGPUAsmPrinter::getAmdhsaKernelCodeProperties( 348 const MachineFunction &MF) const { 349 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 350 uint16_t KernelCodeProperties = 0; 351 352 if (MFI.hasPrivateSegmentBuffer()) { 353 KernelCodeProperties |= 354 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; 355 } 356 if (MFI.hasDispatchPtr()) { 357 KernelCodeProperties |= 358 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 359 } 360 if (MFI.hasQueuePtr()) { 361 KernelCodeProperties |= 362 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; 363 } 364 if (MFI.hasKernargSegmentPtr()) { 365 KernelCodeProperties |= 366 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; 367 } 368 if (MFI.hasDispatchID()) { 369 KernelCodeProperties |= 370 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; 371 } 372 if (MFI.hasFlatScratchInit()) { 373 KernelCodeProperties |= 374 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; 375 } 376 377 return KernelCodeProperties; 378 } 379 380 amdhsa::kernel_descriptor_t AMDGPUAsmPrinter::getAmdhsaKernelDescriptor( 381 const MachineFunction &MF, 382 const SIProgramInfo &PI) const { 383 amdhsa::kernel_descriptor_t KernelDescriptor; 384 memset(&KernelDescriptor, 0x0, sizeof(KernelDescriptor)); 385 386 assert(isUInt<32>(PI.ScratchSize)); 387 assert(isUInt<32>(PI.ComputePGMRSrc1)); 388 assert(isUInt<32>(PI.ComputePGMRSrc2)); 389 390 KernelDescriptor.group_segment_fixed_size = PI.LDSSize; 391 KernelDescriptor.private_segment_fixed_size = PI.ScratchSize; 392 KernelDescriptor.compute_pgm_rsrc1 = PI.ComputePGMRSrc1; 393 KernelDescriptor.compute_pgm_rsrc2 = PI.ComputePGMRSrc2; 394 KernelDescriptor.kernel_code_properties = getAmdhsaKernelCodeProperties(MF); 395 396 return KernelDescriptor; 397 } 398 399 bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 400 CurrentProgramInfo = SIProgramInfo(); 401 402 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 403 404 // The starting address of all shader programs must be 256 bytes aligned. 405 // Regular functions just need the basic required instruction alignment. 406 MF.setAlignment(MFI->isEntryFunction() ? 8 : 2); 407 408 SetupMachineFunction(MF); 409 410 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 411 MCContext &Context = getObjFileLowering().getContext(); 412 // FIXME: This should be an explicit check for Mesa. 413 if (!STM.isAmdHsaOS() && !STM.isAmdPalOS()) { 414 MCSectionELF *ConfigSection = 415 Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0); 416 OutStreamer->SwitchSection(ConfigSection); 417 } 418 419 if (MFI->isEntryFunction()) { 420 getSIProgramInfo(CurrentProgramInfo, MF); 421 } else { 422 auto I = CallGraphResourceInfo.insert( 423 std::make_pair(&MF.getFunction(), SIFunctionResourceInfo())); 424 SIFunctionResourceInfo &Info = I.first->second; 425 assert(I.second && "should only be called once per function"); 426 Info = analyzeResourceUsage(MF); 427 } 428 429 if (STM.isAmdPalOS()) 430 EmitPALMetadata(MF, CurrentProgramInfo); 431 else if (!STM.isAmdHsaOS()) { 432 EmitProgramInfoSI(MF, CurrentProgramInfo); 433 } 434 435 DisasmLines.clear(); 436 HexLines.clear(); 437 DisasmLineMaxLen = 0; 438 439 EmitFunctionBody(); 440 441 if (isVerbose()) { 442 MCSectionELF *CommentSection = 443 Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0); 444 OutStreamer->SwitchSection(CommentSection); 445 446 if (!MFI->isEntryFunction()) { 447 OutStreamer->emitRawComment(" Function info:", false); 448 SIFunctionResourceInfo &Info = CallGraphResourceInfo[&MF.getFunction()]; 449 emitCommonFunctionComments( 450 Info.NumVGPR, 451 Info.getTotalNumSGPRs(MF.getSubtarget<GCNSubtarget>()), 452 Info.PrivateSegmentSize, 453 getFunctionCodeSize(MF), MFI); 454 return false; 455 } 456 457 OutStreamer->emitRawComment(" Kernel info:", false); 458 emitCommonFunctionComments(CurrentProgramInfo.NumVGPR, 459 CurrentProgramInfo.NumSGPR, 460 CurrentProgramInfo.ScratchSize, 461 getFunctionCodeSize(MF), MFI); 462 463 OutStreamer->emitRawComment( 464 " FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false); 465 OutStreamer->emitRawComment( 466 " IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false); 467 OutStreamer->emitRawComment( 468 " LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) + 469 " bytes/workgroup (compile time only)", false); 470 471 OutStreamer->emitRawComment( 472 " SGPRBlocks: " + Twine(CurrentProgramInfo.SGPRBlocks), false); 473 OutStreamer->emitRawComment( 474 " VGPRBlocks: " + Twine(CurrentProgramInfo.VGPRBlocks), false); 475 476 OutStreamer->emitRawComment( 477 " NumSGPRsForWavesPerEU: " + 478 Twine(CurrentProgramInfo.NumSGPRsForWavesPerEU), false); 479 OutStreamer->emitRawComment( 480 " NumVGPRsForWavesPerEU: " + 481 Twine(CurrentProgramInfo.NumVGPRsForWavesPerEU), false); 482 483 OutStreamer->emitRawComment( 484 " WaveLimiterHint : " + Twine(MFI->needsWaveLimiter()), false); 485 486 if (MF.getSubtarget<GCNSubtarget>().debuggerEmitPrologue()) { 487 OutStreamer->emitRawComment( 488 " DebuggerWavefrontPrivateSegmentOffsetSGPR: s" + 489 Twine(CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR), false); 490 OutStreamer->emitRawComment( 491 " DebuggerPrivateSegmentBufferSGPR: s" + 492 Twine(CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR), false); 493 } 494 495 OutStreamer->emitRawComment( 496 " COMPUTE_PGM_RSRC2:USER_SGPR: " + 497 Twine(G_00B84C_USER_SGPR(CurrentProgramInfo.ComputePGMRSrc2)), false); 498 OutStreamer->emitRawComment( 499 " COMPUTE_PGM_RSRC2:TRAP_HANDLER: " + 500 Twine(G_00B84C_TRAP_HANDLER(CurrentProgramInfo.ComputePGMRSrc2)), false); 501 OutStreamer->emitRawComment( 502 " COMPUTE_PGM_RSRC2:TGID_X_EN: " + 503 Twine(G_00B84C_TGID_X_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 504 OutStreamer->emitRawComment( 505 " COMPUTE_PGM_RSRC2:TGID_Y_EN: " + 506 Twine(G_00B84C_TGID_Y_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 507 OutStreamer->emitRawComment( 508 " COMPUTE_PGM_RSRC2:TGID_Z_EN: " + 509 Twine(G_00B84C_TGID_Z_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 510 OutStreamer->emitRawComment( 511 " COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " + 512 Twine(G_00B84C_TIDIG_COMP_CNT(CurrentProgramInfo.ComputePGMRSrc2)), 513 false); 514 } 515 516 if (STM.dumpCode()) { 517 518 OutStreamer->SwitchSection( 519 Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0)); 520 521 for (size_t i = 0; i < DisasmLines.size(); ++i) { 522 std::string Comment = "\n"; 523 if (!HexLines[i].empty()) { 524 Comment = std::string(DisasmLineMaxLen - DisasmLines[i].size(), ' '); 525 Comment += " ; " + HexLines[i] + "\n"; 526 } 527 528 OutStreamer->EmitBytes(StringRef(DisasmLines[i])); 529 OutStreamer->EmitBytes(StringRef(Comment)); 530 } 531 } 532 533 return false; 534 } 535 536 uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const { 537 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 538 const SIInstrInfo *TII = STM.getInstrInfo(); 539 540 uint64_t CodeSize = 0; 541 542 for (const MachineBasicBlock &MBB : MF) { 543 for (const MachineInstr &MI : MBB) { 544 // TODO: CodeSize should account for multiple functions. 545 546 // TODO: Should we count size of debug info? 547 if (MI.isDebugInstr()) 548 continue; 549 550 CodeSize += TII->getInstSizeInBytes(MI); 551 } 552 } 553 554 return CodeSize; 555 } 556 557 static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI, 558 const SIInstrInfo &TII, 559 unsigned Reg) { 560 for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) { 561 if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent())) 562 return true; 563 } 564 565 return false; 566 } 567 568 int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumSGPRs( 569 const GCNSubtarget &ST) const { 570 return NumExplicitSGPR + IsaInfo::getNumExtraSGPRs(&ST, 571 UsesVCC, UsesFlatScratch); 572 } 573 574 AMDGPUAsmPrinter::SIFunctionResourceInfo AMDGPUAsmPrinter::analyzeResourceUsage( 575 const MachineFunction &MF) const { 576 SIFunctionResourceInfo Info; 577 578 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 579 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 580 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 581 const MachineRegisterInfo &MRI = MF.getRegInfo(); 582 const SIInstrInfo *TII = ST.getInstrInfo(); 583 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 584 585 Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) || 586 MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI); 587 588 // Even if FLAT_SCRATCH is implicitly used, it has no effect if flat 589 // instructions aren't used to access the scratch buffer. Inline assembly may 590 // need it though. 591 // 592 // If we only have implicit uses of flat_scr on flat instructions, it is not 593 // really needed. 594 if (Info.UsesFlatScratch && !MFI->hasFlatScratchInit() && 595 (!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) && 596 !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) && 597 !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) { 598 Info.UsesFlatScratch = false; 599 } 600 601 Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects(); 602 Info.PrivateSegmentSize = FrameInfo.getStackSize(); 603 if (MFI->isStackRealigned()) 604 Info.PrivateSegmentSize += FrameInfo.getMaxAlignment(); 605 606 607 Info.UsesVCC = MRI.isPhysRegUsed(AMDGPU::VCC_LO) || 608 MRI.isPhysRegUsed(AMDGPU::VCC_HI); 609 610 // If there are no calls, MachineRegisterInfo can tell us the used register 611 // count easily. 612 // A tail call isn't considered a call for MachineFrameInfo's purposes. 613 if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) { 614 MCPhysReg HighestVGPRReg = AMDGPU::NoRegister; 615 for (MCPhysReg Reg : reverse(AMDGPU::VGPR_32RegClass.getRegisters())) { 616 if (MRI.isPhysRegUsed(Reg)) { 617 HighestVGPRReg = Reg; 618 break; 619 } 620 } 621 622 MCPhysReg HighestSGPRReg = AMDGPU::NoRegister; 623 for (MCPhysReg Reg : reverse(AMDGPU::SGPR_32RegClass.getRegisters())) { 624 if (MRI.isPhysRegUsed(Reg)) { 625 HighestSGPRReg = Reg; 626 break; 627 } 628 } 629 630 // We found the maximum register index. They start at 0, so add one to get the 631 // number of registers. 632 Info.NumVGPR = HighestVGPRReg == AMDGPU::NoRegister ? 0 : 633 TRI.getHWRegIndex(HighestVGPRReg) + 1; 634 Info.NumExplicitSGPR = HighestSGPRReg == AMDGPU::NoRegister ? 0 : 635 TRI.getHWRegIndex(HighestSGPRReg) + 1; 636 637 return Info; 638 } 639 640 int32_t MaxVGPR = -1; 641 int32_t MaxSGPR = -1; 642 uint64_t CalleeFrameSize = 0; 643 644 for (const MachineBasicBlock &MBB : MF) { 645 for (const MachineInstr &MI : MBB) { 646 // TODO: Check regmasks? Do they occur anywhere except calls? 647 for (const MachineOperand &MO : MI.operands()) { 648 unsigned Width = 0; 649 bool IsSGPR = false; 650 651 if (!MO.isReg()) 652 continue; 653 654 unsigned Reg = MO.getReg(); 655 switch (Reg) { 656 case AMDGPU::EXEC: 657 case AMDGPU::EXEC_LO: 658 case AMDGPU::EXEC_HI: 659 case AMDGPU::SCC: 660 case AMDGPU::M0: 661 case AMDGPU::SRC_SHARED_BASE: 662 case AMDGPU::SRC_SHARED_LIMIT: 663 case AMDGPU::SRC_PRIVATE_BASE: 664 case AMDGPU::SRC_PRIVATE_LIMIT: 665 continue; 666 667 case AMDGPU::NoRegister: 668 assert(MI.isDebugInstr()); 669 continue; 670 671 case AMDGPU::VCC: 672 case AMDGPU::VCC_LO: 673 case AMDGPU::VCC_HI: 674 Info.UsesVCC = true; 675 continue; 676 677 case AMDGPU::FLAT_SCR: 678 case AMDGPU::FLAT_SCR_LO: 679 case AMDGPU::FLAT_SCR_HI: 680 continue; 681 682 case AMDGPU::XNACK_MASK: 683 case AMDGPU::XNACK_MASK_LO: 684 case AMDGPU::XNACK_MASK_HI: 685 llvm_unreachable("xnack_mask registers should not be used"); 686 687 case AMDGPU::TBA: 688 case AMDGPU::TBA_LO: 689 case AMDGPU::TBA_HI: 690 case AMDGPU::TMA: 691 case AMDGPU::TMA_LO: 692 case AMDGPU::TMA_HI: 693 llvm_unreachable("trap handler registers should not be used"); 694 695 default: 696 break; 697 } 698 699 if (AMDGPU::SReg_32RegClass.contains(Reg)) { 700 assert(!AMDGPU::TTMP_32RegClass.contains(Reg) && 701 "trap handler registers should not be used"); 702 IsSGPR = true; 703 Width = 1; 704 } else if (AMDGPU::VGPR_32RegClass.contains(Reg)) { 705 IsSGPR = false; 706 Width = 1; 707 } else if (AMDGPU::SReg_64RegClass.contains(Reg)) { 708 assert(!AMDGPU::TTMP_64RegClass.contains(Reg) && 709 "trap handler registers should not be used"); 710 IsSGPR = true; 711 Width = 2; 712 } else if (AMDGPU::VReg_64RegClass.contains(Reg)) { 713 IsSGPR = false; 714 Width = 2; 715 } else if (AMDGPU::VReg_96RegClass.contains(Reg)) { 716 IsSGPR = false; 717 Width = 3; 718 } else if (AMDGPU::SReg_128RegClass.contains(Reg)) { 719 assert(!AMDGPU::TTMP_128RegClass.contains(Reg) && 720 "trap handler registers should not be used"); 721 IsSGPR = true; 722 Width = 4; 723 } else if (AMDGPU::VReg_128RegClass.contains(Reg)) { 724 IsSGPR = false; 725 Width = 4; 726 } else if (AMDGPU::SReg_256RegClass.contains(Reg)) { 727 assert(!AMDGPU::TTMP_256RegClass.contains(Reg) && 728 "trap handler registers should not be used"); 729 IsSGPR = true; 730 Width = 8; 731 } else if (AMDGPU::VReg_256RegClass.contains(Reg)) { 732 IsSGPR = false; 733 Width = 8; 734 } else if (AMDGPU::SReg_512RegClass.contains(Reg)) { 735 assert(!AMDGPU::TTMP_512RegClass.contains(Reg) && 736 "trap handler registers should not be used"); 737 IsSGPR = true; 738 Width = 16; 739 } else if (AMDGPU::VReg_512RegClass.contains(Reg)) { 740 IsSGPR = false; 741 Width = 16; 742 } else { 743 llvm_unreachable("Unknown register class"); 744 } 745 unsigned HWReg = TRI.getHWRegIndex(Reg); 746 int MaxUsed = HWReg + Width - 1; 747 if (IsSGPR) { 748 MaxSGPR = MaxUsed > MaxSGPR ? MaxUsed : MaxSGPR; 749 } else { 750 MaxVGPR = MaxUsed > MaxVGPR ? MaxUsed : MaxVGPR; 751 } 752 } 753 754 if (MI.isCall()) { 755 // Pseudo used just to encode the underlying global. Is there a better 756 // way to track this? 757 758 const MachineOperand *CalleeOp 759 = TII->getNamedOperand(MI, AMDGPU::OpName::callee); 760 const Function *Callee = cast<Function>(CalleeOp->getGlobal()); 761 if (Callee->isDeclaration()) { 762 // If this is a call to an external function, we can't do much. Make 763 // conservative guesses. 764 765 // 48 SGPRs - vcc, - flat_scr, -xnack 766 int MaxSGPRGuess = 767 47 - IsaInfo::getNumExtraSGPRs(getSTI(), true, 768 ST.hasFlatAddressSpace()); 769 MaxSGPR = std::max(MaxSGPR, MaxSGPRGuess); 770 MaxVGPR = std::max(MaxVGPR, 23); 771 772 CalleeFrameSize = std::max(CalleeFrameSize, UINT64_C(16384)); 773 Info.UsesVCC = true; 774 Info.UsesFlatScratch = ST.hasFlatAddressSpace(); 775 Info.HasDynamicallySizedStack = true; 776 } else { 777 // We force CodeGen to run in SCC order, so the callee's register 778 // usage etc. should be the cumulative usage of all callees. 779 auto I = CallGraphResourceInfo.find(Callee); 780 assert(I != CallGraphResourceInfo.end() && 781 "callee should have been handled before caller"); 782 783 MaxSGPR = std::max(I->second.NumExplicitSGPR - 1, MaxSGPR); 784 MaxVGPR = std::max(I->second.NumVGPR - 1, MaxVGPR); 785 CalleeFrameSize 786 = std::max(I->second.PrivateSegmentSize, CalleeFrameSize); 787 Info.UsesVCC |= I->second.UsesVCC; 788 Info.UsesFlatScratch |= I->second.UsesFlatScratch; 789 Info.HasDynamicallySizedStack |= I->second.HasDynamicallySizedStack; 790 Info.HasRecursion |= I->second.HasRecursion; 791 } 792 793 if (!Callee->doesNotRecurse()) 794 Info.HasRecursion = true; 795 } 796 } 797 } 798 799 Info.NumExplicitSGPR = MaxSGPR + 1; 800 Info.NumVGPR = MaxVGPR + 1; 801 Info.PrivateSegmentSize += CalleeFrameSize; 802 803 return Info; 804 } 805 806 void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo, 807 const MachineFunction &MF) { 808 SIFunctionResourceInfo Info = analyzeResourceUsage(MF); 809 810 ProgInfo.NumVGPR = Info.NumVGPR; 811 ProgInfo.NumSGPR = Info.NumExplicitSGPR; 812 ProgInfo.ScratchSize = Info.PrivateSegmentSize; 813 ProgInfo.VCCUsed = Info.UsesVCC; 814 ProgInfo.FlatUsed = Info.UsesFlatScratch; 815 ProgInfo.DynamicCallStack = Info.HasDynamicallySizedStack || Info.HasRecursion; 816 817 if (!isUInt<32>(ProgInfo.ScratchSize)) { 818 DiagnosticInfoStackSize DiagStackSize(MF.getFunction(), 819 ProgInfo.ScratchSize, DS_Error); 820 MF.getFunction().getContext().diagnose(DiagStackSize); 821 } 822 823 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 824 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 825 const SIInstrInfo *TII = STM.getInstrInfo(); 826 const SIRegisterInfo *RI = &TII->getRegisterInfo(); 827 828 // TODO(scott.linder): The calculations related to SGPR/VGPR blocks are 829 // duplicated in part in AMDGPUAsmParser::calculateGPRBlocks, and could be 830 // unified. 831 unsigned ExtraSGPRs = IsaInfo::getNumExtraSGPRs( 832 getSTI(), ProgInfo.VCCUsed, ProgInfo.FlatUsed); 833 834 // Check the addressable register limit before we add ExtraSGPRs. 835 if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && 836 !STM.hasSGPRInitBug()) { 837 unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); 838 if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { 839 // This can happen due to a compiler bug or when using inline asm. 840 LLVMContext &Ctx = MF.getFunction().getContext(); 841 DiagnosticInfoResourceLimit Diag(MF.getFunction(), 842 "addressable scalar registers", 843 ProgInfo.NumSGPR, DS_Error, 844 DK_ResourceLimit, 845 MaxAddressableNumSGPRs); 846 Ctx.diagnose(Diag); 847 ProgInfo.NumSGPR = MaxAddressableNumSGPRs - 1; 848 } 849 } 850 851 // Account for extra SGPRs and VGPRs reserved for debugger use. 852 ProgInfo.NumSGPR += ExtraSGPRs; 853 854 // Ensure there are enough SGPRs and VGPRs for wave dispatch, where wave 855 // dispatch registers are function args. 856 unsigned WaveDispatchNumSGPR = 0, WaveDispatchNumVGPR = 0; 857 for (auto &Arg : MF.getFunction().args()) { 858 unsigned NumRegs = (Arg.getType()->getPrimitiveSizeInBits() + 31) / 32; 859 if (Arg.hasAttribute(Attribute::InReg)) 860 WaveDispatchNumSGPR += NumRegs; 861 else 862 WaveDispatchNumVGPR += NumRegs; 863 } 864 ProgInfo.NumSGPR = std::max(ProgInfo.NumSGPR, WaveDispatchNumSGPR); 865 ProgInfo.NumVGPR = std::max(ProgInfo.NumVGPR, WaveDispatchNumVGPR); 866 867 // Adjust number of registers used to meet default/requested minimum/maximum 868 // number of waves per execution unit request. 869 ProgInfo.NumSGPRsForWavesPerEU = std::max( 870 std::max(ProgInfo.NumSGPR, 1u), STM.getMinNumSGPRs(MFI->getMaxWavesPerEU())); 871 ProgInfo.NumVGPRsForWavesPerEU = std::max( 872 std::max(ProgInfo.NumVGPR, 1u), STM.getMinNumVGPRs(MFI->getMaxWavesPerEU())); 873 874 if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS || 875 STM.hasSGPRInitBug()) { 876 unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); 877 if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { 878 // This can happen due to a compiler bug or when using inline asm to use 879 // the registers which are usually reserved for vcc etc. 880 LLVMContext &Ctx = MF.getFunction().getContext(); 881 DiagnosticInfoResourceLimit Diag(MF.getFunction(), 882 "scalar registers", 883 ProgInfo.NumSGPR, DS_Error, 884 DK_ResourceLimit, 885 MaxAddressableNumSGPRs); 886 Ctx.diagnose(Diag); 887 ProgInfo.NumSGPR = MaxAddressableNumSGPRs; 888 ProgInfo.NumSGPRsForWavesPerEU = MaxAddressableNumSGPRs; 889 } 890 } 891 892 if (STM.hasSGPRInitBug()) { 893 ProgInfo.NumSGPR = 894 AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 895 ProgInfo.NumSGPRsForWavesPerEU = 896 AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 897 } 898 899 if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) { 900 LLVMContext &Ctx = MF.getFunction().getContext(); 901 DiagnosticInfoResourceLimit Diag(MF.getFunction(), "user SGPRs", 902 MFI->getNumUserSGPRs(), DS_Error); 903 Ctx.diagnose(Diag); 904 } 905 906 if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) { 907 LLVMContext &Ctx = MF.getFunction().getContext(); 908 DiagnosticInfoResourceLimit Diag(MF.getFunction(), "local memory", 909 MFI->getLDSSize(), DS_Error); 910 Ctx.diagnose(Diag); 911 } 912 913 ProgInfo.SGPRBlocks = IsaInfo::getNumSGPRBlocks( 914 &STM, ProgInfo.NumSGPRsForWavesPerEU); 915 ProgInfo.VGPRBlocks = IsaInfo::getNumVGPRBlocks( 916 &STM, ProgInfo.NumVGPRsForWavesPerEU); 917 918 // Update DebuggerWavefrontPrivateSegmentOffsetSGPR and 919 // DebuggerPrivateSegmentBufferSGPR fields if "amdgpu-debugger-emit-prologue" 920 // attribute was requested. 921 if (STM.debuggerEmitPrologue()) { 922 ProgInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR = 923 RI->getHWRegIndex(MFI->getScratchWaveOffsetReg()); 924 ProgInfo.DebuggerPrivateSegmentBufferSGPR = 925 RI->getHWRegIndex(MFI->getScratchRSrcReg()); 926 } 927 928 // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode 929 // register. 930 ProgInfo.FloatMode = getFPMode(MF); 931 932 ProgInfo.IEEEMode = STM.enableIEEEBit(MF); 933 934 // Make clamp modifier on NaN input returns 0. 935 ProgInfo.DX10Clamp = STM.enableDX10Clamp(); 936 937 unsigned LDSAlignShift; 938 if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 939 // LDS is allocated in 64 dword blocks. 940 LDSAlignShift = 8; 941 } else { 942 // LDS is allocated in 128 dword blocks. 943 LDSAlignShift = 9; 944 } 945 946 unsigned LDSSpillSize = 947 MFI->getLDSWaveSpillSize() * MFI->getMaxFlatWorkGroupSize(); 948 949 ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize; 950 ProgInfo.LDSBlocks = 951 alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift; 952 953 // Scratch is allocated in 256 dword blocks. 954 unsigned ScratchAlignShift = 10; 955 // We need to program the hardware with the amount of scratch memory that 956 // is used by the entire wave. ProgInfo.ScratchSize is the amount of 957 // scratch memory used per thread. 958 ProgInfo.ScratchBlocks = 959 alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(), 960 1ULL << ScratchAlignShift) >> 961 ScratchAlignShift; 962 963 ProgInfo.ComputePGMRSrc1 = 964 S_00B848_VGPRS(ProgInfo.VGPRBlocks) | 965 S_00B848_SGPRS(ProgInfo.SGPRBlocks) | 966 S_00B848_PRIORITY(ProgInfo.Priority) | 967 S_00B848_FLOAT_MODE(ProgInfo.FloatMode) | 968 S_00B848_PRIV(ProgInfo.Priv) | 969 S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) | 970 S_00B848_DEBUG_MODE(ProgInfo.DebugMode) | 971 S_00B848_IEEE_MODE(ProgInfo.IEEEMode); 972 973 // 0 = X, 1 = XY, 2 = XYZ 974 unsigned TIDIGCompCnt = 0; 975 if (MFI->hasWorkItemIDZ()) 976 TIDIGCompCnt = 2; 977 else if (MFI->hasWorkItemIDY()) 978 TIDIGCompCnt = 1; 979 980 ProgInfo.ComputePGMRSrc2 = 981 S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) | 982 S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) | 983 // For AMDHSA, TRAP_HANDLER must be zero, as it is populated by the CP. 984 S_00B84C_TRAP_HANDLER(STM.isAmdHsaOS() ? 0 : STM.isTrapHandlerEnabled()) | 985 S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) | 986 S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) | 987 S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) | 988 S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) | 989 S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) | 990 S_00B84C_EXCP_EN_MSB(0) | 991 // For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP. 992 S_00B84C_LDS_SIZE(STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks) | 993 S_00B84C_EXCP_EN(0); 994 } 995 996 static unsigned getRsrcReg(CallingConv::ID CallConv) { 997 switch (CallConv) { 998 default: LLVM_FALLTHROUGH; 999 case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1; 1000 case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS; 1001 case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS; 1002 case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES; 1003 case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS; 1004 case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS; 1005 case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS; 1006 } 1007 } 1008 1009 void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF, 1010 const SIProgramInfo &CurrentProgramInfo) { 1011 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1012 unsigned RsrcReg = getRsrcReg(MF.getFunction().getCallingConv()); 1013 1014 if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { 1015 OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4); 1016 1017 OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc1, 4); 1018 1019 OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4); 1020 OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc2, 4); 1021 1022 OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4); 1023 OutStreamer->EmitIntValue(S_00B860_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); 1024 1025 // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 = 1026 // 0" comment but I don't see a corresponding field in the register spec. 1027 } else { 1028 OutStreamer->EmitIntValue(RsrcReg, 4); 1029 OutStreamer->EmitIntValue(S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | 1030 S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks), 4); 1031 OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4); 1032 OutStreamer->EmitIntValue( 1033 S_0286E8_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); 1034 } 1035 1036 if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { 1037 OutStreamer->EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4); 1038 OutStreamer->EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks), 4); 1039 OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4); 1040 OutStreamer->EmitIntValue(MFI->getPSInputEnable(), 4); 1041 OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4); 1042 OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4); 1043 } 1044 1045 OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4); 1046 OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4); 1047 OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4); 1048 OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4); 1049 } 1050 1051 // This is the equivalent of EmitProgramInfoSI above, but for when the OS type 1052 // is AMDPAL. It stores each compute/SPI register setting and other PAL 1053 // metadata items into the PALMetadataMap, combining with any provided by the 1054 // frontend as LLVM metadata. Once all functions are written, PALMetadataMap is 1055 // then written as a single block in the .note section. 1056 void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF, 1057 const SIProgramInfo &CurrentProgramInfo) { 1058 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1059 // Given the calling convention, calculate the register number for rsrc1. In 1060 // principle the register number could change in future hardware, but we know 1061 // it is the same for gfx6-9 (except that LS and ES don't exist on gfx9), so 1062 // we can use the same fixed value that .AMDGPU.config has for Mesa. Note 1063 // that we use a register number rather than a byte offset, so we need to 1064 // divide by 4. 1065 unsigned Rsrc1Reg = getRsrcReg(MF.getFunction().getCallingConv()) / 4; 1066 unsigned Rsrc2Reg = Rsrc1Reg + 1; 1067 // Also calculate the PAL metadata key for *S_SCRATCH_SIZE. It can be used 1068 // with a constant offset to access any non-register shader-specific PAL 1069 // metadata key. 1070 unsigned ScratchSizeKey = PALMD::Key::CS_SCRATCH_SIZE; 1071 switch (MF.getFunction().getCallingConv()) { 1072 case CallingConv::AMDGPU_PS: 1073 ScratchSizeKey = PALMD::Key::PS_SCRATCH_SIZE; 1074 break; 1075 case CallingConv::AMDGPU_VS: 1076 ScratchSizeKey = PALMD::Key::VS_SCRATCH_SIZE; 1077 break; 1078 case CallingConv::AMDGPU_GS: 1079 ScratchSizeKey = PALMD::Key::GS_SCRATCH_SIZE; 1080 break; 1081 case CallingConv::AMDGPU_ES: 1082 ScratchSizeKey = PALMD::Key::ES_SCRATCH_SIZE; 1083 break; 1084 case CallingConv::AMDGPU_HS: 1085 ScratchSizeKey = PALMD::Key::HS_SCRATCH_SIZE; 1086 break; 1087 case CallingConv::AMDGPU_LS: 1088 ScratchSizeKey = PALMD::Key::LS_SCRATCH_SIZE; 1089 break; 1090 } 1091 unsigned NumUsedVgprsKey = ScratchSizeKey + 1092 PALMD::Key::VS_NUM_USED_VGPRS - PALMD::Key::VS_SCRATCH_SIZE; 1093 unsigned NumUsedSgprsKey = ScratchSizeKey + 1094 PALMD::Key::VS_NUM_USED_SGPRS - PALMD::Key::VS_SCRATCH_SIZE; 1095 PALMetadataMap[NumUsedVgprsKey] = CurrentProgramInfo.NumVGPRsForWavesPerEU; 1096 PALMetadataMap[NumUsedSgprsKey] = CurrentProgramInfo.NumSGPRsForWavesPerEU; 1097 if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { 1098 PALMetadataMap[Rsrc1Reg] |= CurrentProgramInfo.ComputePGMRSrc1; 1099 PALMetadataMap[Rsrc2Reg] |= CurrentProgramInfo.ComputePGMRSrc2; 1100 // ScratchSize is in bytes, 16 aligned. 1101 PALMetadataMap[ScratchSizeKey] |= 1102 alignTo(CurrentProgramInfo.ScratchSize, 16); 1103 } else { 1104 PALMetadataMap[Rsrc1Reg] |= S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | 1105 S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks); 1106 if (CurrentProgramInfo.ScratchBlocks > 0) 1107 PALMetadataMap[Rsrc2Reg] |= S_00B84C_SCRATCH_EN(1); 1108 // ScratchSize is in bytes, 16 aligned. 1109 PALMetadataMap[ScratchSizeKey] |= 1110 alignTo(CurrentProgramInfo.ScratchSize, 16); 1111 } 1112 if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { 1113 PALMetadataMap[Rsrc2Reg] |= 1114 S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks); 1115 PALMetadataMap[R_0286CC_SPI_PS_INPUT_ENA / 4] |= MFI->getPSInputEnable(); 1116 PALMetadataMap[R_0286D0_SPI_PS_INPUT_ADDR / 4] |= MFI->getPSInputAddr(); 1117 } 1118 } 1119 1120 // This is supposed to be log2(Size) 1121 static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) { 1122 switch (Size) { 1123 case 4: 1124 return AMD_ELEMENT_4_BYTES; 1125 case 8: 1126 return AMD_ELEMENT_8_BYTES; 1127 case 16: 1128 return AMD_ELEMENT_16_BYTES; 1129 default: 1130 llvm_unreachable("invalid private_element_size"); 1131 } 1132 } 1133 1134 void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out, 1135 const SIProgramInfo &CurrentProgramInfo, 1136 const MachineFunction &MF) const { 1137 const Function &F = MF.getFunction(); 1138 assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || 1139 F.getCallingConv() == CallingConv::SPIR_KERNEL); 1140 1141 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1142 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 1143 1144 AMDGPU::initDefaultAMDKernelCodeT(Out, getSTI()); 1145 1146 Out.compute_pgm_resource_registers = 1147 CurrentProgramInfo.ComputePGMRSrc1 | 1148 (CurrentProgramInfo.ComputePGMRSrc2 << 32); 1149 Out.code_properties = AMD_CODE_PROPERTY_IS_PTR64; 1150 1151 if (CurrentProgramInfo.DynamicCallStack) 1152 Out.code_properties |= AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK; 1153 1154 AMD_HSA_BITS_SET(Out.code_properties, 1155 AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE, 1156 getElementByteSizeValue(STM.getMaxPrivateElementSize())); 1157 1158 if (MFI->hasPrivateSegmentBuffer()) { 1159 Out.code_properties |= 1160 AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; 1161 } 1162 1163 if (MFI->hasDispatchPtr()) 1164 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 1165 1166 if (MFI->hasQueuePtr()) 1167 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; 1168 1169 if (MFI->hasKernargSegmentPtr()) 1170 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; 1171 1172 if (MFI->hasDispatchID()) 1173 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; 1174 1175 if (MFI->hasFlatScratchInit()) 1176 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; 1177 1178 if (MFI->hasDispatchPtr()) 1179 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 1180 1181 if (STM.debuggerSupported()) 1182 Out.code_properties |= AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED; 1183 1184 if (STM.isXNACKEnabled()) 1185 Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED; 1186 1187 unsigned MaxKernArgAlign; 1188 Out.kernarg_segment_byte_size = STM.getKernArgSegmentSize(F, MaxKernArgAlign); 1189 Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR; 1190 Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR; 1191 Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize; 1192 Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize; 1193 1194 // These alignment values are specified in powers of two, so alignment = 1195 // 2^n. The minimum alignment is 2^4 = 16. 1196 Out.kernarg_segment_alignment = std::max((size_t)4, 1197 countTrailingZeros(MaxKernArgAlign)); 1198 1199 if (STM.debuggerEmitPrologue()) { 1200 Out.debug_wavefront_private_segment_offset_sgpr = 1201 CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR; 1202 Out.debug_private_segment_buffer_sgpr = 1203 CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR; 1204 } 1205 } 1206 1207 bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1208 unsigned AsmVariant, 1209 const char *ExtraCode, raw_ostream &O) { 1210 // First try the generic code, which knows about modifiers like 'c' and 'n'. 1211 if (!AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O)) 1212 return false; 1213 1214 if (ExtraCode && ExtraCode[0]) { 1215 if (ExtraCode[1] != 0) 1216 return true; // Unknown modifier. 1217 1218 switch (ExtraCode[0]) { 1219 case 'r': 1220 break; 1221 default: 1222 return true; 1223 } 1224 } 1225 1226 // TODO: Should be able to support other operand types like globals. 1227 const MachineOperand &MO = MI->getOperand(OpNo); 1228 if (MO.isReg()) { 1229 AMDGPUInstPrinter::printRegOperand(MO.getReg(), O, 1230 *MF->getSubtarget().getRegisterInfo()); 1231 return false; 1232 } 1233 1234 return true; 1235 } 1236