1 //===-- AMDGPUAsmPrinter.cpp - AMDGPU assembly printer  -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 ///
11 /// The AMDGPUAsmPrinter is used to print both assembly string and also binary
12 /// code.  When passed an MCAsmStreamer it prints assembly and when passed
13 /// an MCObjectStreamer it outputs binary code.
14 //
15 //===----------------------------------------------------------------------===//
16 //
17 
18 #include "AMDGPUAsmPrinter.h"
19 #include "AMDGPU.h"
20 #include "AMDGPUSubtarget.h"
21 #include "AMDGPUTargetMachine.h"
22 #include "InstPrinter/AMDGPUInstPrinter.h"
23 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
24 #include "MCTargetDesc/AMDGPUTargetStreamer.h"
25 #include "R600AsmPrinter.h"
26 #include "R600Defines.h"
27 #include "R600MachineFunctionInfo.h"
28 #include "R600RegisterInfo.h"
29 #include "SIDefines.h"
30 #include "SIInstrInfo.h"
31 #include "SIMachineFunctionInfo.h"
32 #include "SIRegisterInfo.h"
33 #include "Utils/AMDGPUBaseInfo.h"
34 #include "llvm/BinaryFormat/ELF.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/IR/DiagnosticInfo.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCSectionELF.h"
39 #include "llvm/MC/MCStreamer.h"
40 #include "llvm/Support/AMDGPUMetadata.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/TargetParser.h"
43 #include "llvm/Support/TargetRegistry.h"
44 #include "llvm/Target/TargetLoweringObjectFile.h"
45 
46 using namespace llvm;
47 using namespace llvm::AMDGPU;
48 using namespace llvm::AMDGPU::HSAMD;
49 
50 // TODO: This should get the default rounding mode from the kernel. We just set
51 // the default here, but this could change if the OpenCL rounding mode pragmas
52 // are used.
53 //
54 // The denormal mode here should match what is reported by the OpenCL runtime
55 // for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but
56 // can also be override to flush with the -cl-denorms-are-zero compiler flag.
57 //
58 // AMD OpenCL only sets flush none and reports CL_FP_DENORM for double
59 // precision, and leaves single precision to flush all and does not report
60 // CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports
61 // CL_FP_DENORM for both.
62 //
63 // FIXME: It seems some instructions do not support single precision denormals
64 // regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32,
65 // and sin_f32, cos_f32 on most parts).
66 
67 // We want to use these instructions, and using fp32 denormals also causes
68 // instructions to run at the double precision rate for the device so it's
69 // probably best to just report no single precision denormals.
70 static uint32_t getFPMode(const MachineFunction &F) {
71   const GCNSubtarget& ST = F.getSubtarget<GCNSubtarget>();
72   // TODO: Is there any real use for the flush in only / flush out only modes?
73 
74   uint32_t FP32Denormals =
75     ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
76 
77   uint32_t FP64Denormals =
78     ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
79 
80   return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) |
81          FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) |
82          FP_DENORM_MODE_SP(FP32Denormals) |
83          FP_DENORM_MODE_DP(FP64Denormals);
84 }
85 
86 static AsmPrinter *
87 createAMDGPUAsmPrinterPass(TargetMachine &tm,
88                            std::unique_ptr<MCStreamer> &&Streamer) {
89   return new AMDGPUAsmPrinter(tm, std::move(Streamer));
90 }
91 
92 extern "C" void LLVMInitializeAMDGPUAsmPrinter() {
93   TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(),
94                                      llvm::createR600AsmPrinterPass);
95   TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(),
96                                      createAMDGPUAsmPrinterPass);
97 }
98 
99 AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM,
100                                    std::unique_ptr<MCStreamer> Streamer)
101   : AsmPrinter(TM, std::move(Streamer)) {
102     if (IsaInfo::hasCodeObjectV3(getGlobalSTI()))
103       HSAMetadataStream.reset(new MetadataStreamerV3());
104     else
105       HSAMetadataStream.reset(new MetadataStreamerV2());
106 }
107 
108 StringRef AMDGPUAsmPrinter::getPassName() const {
109   return "AMDGPU Assembly Printer";
110 }
111 
112 const MCSubtargetInfo *AMDGPUAsmPrinter::getGlobalSTI() const {
113   return TM.getMCSubtargetInfo();
114 }
115 
116 AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const {
117   if (!OutStreamer)
118     return nullptr;
119   return static_cast<AMDGPUTargetStreamer*>(OutStreamer->getTargetStreamer());
120 }
121 
122 void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) {
123   if (IsaInfo::hasCodeObjectV3(getGlobalSTI())) {
124     std::string ExpectedTarget;
125     raw_string_ostream ExpectedTargetOS(ExpectedTarget);
126     IsaInfo::streamIsaVersion(getGlobalSTI(), ExpectedTargetOS);
127 
128     getTargetStreamer()->EmitDirectiveAMDGCNTarget(ExpectedTarget);
129   }
130 
131   if (TM.getTargetTriple().getOS() != Triple::AMDHSA &&
132       TM.getTargetTriple().getOS() != Triple::AMDPAL)
133     return;
134 
135   if (TM.getTargetTriple().getOS() == Triple::AMDHSA)
136     HSAMetadataStream->begin(M);
137 
138   if (TM.getTargetTriple().getOS() == Triple::AMDPAL)
139     readPALMetadata(M);
140 
141   if (IsaInfo::hasCodeObjectV3(getGlobalSTI()))
142     return;
143 
144   // HSA emits NT_AMDGPU_HSA_CODE_OBJECT_VERSION for code objects v2.
145   if (TM.getTargetTriple().getOS() == Triple::AMDHSA)
146     getTargetStreamer()->EmitDirectiveHSACodeObjectVersion(2, 1);
147 
148   // HSA and PAL emit NT_AMDGPU_HSA_ISA for code objects v2.
149   IsaVersion Version = getIsaVersion(getGlobalSTI()->getCPU());
150   getTargetStreamer()->EmitDirectiveHSACodeObjectISA(
151       Version.Major, Version.Minor, Version.Stepping, "AMD", "AMDGPU");
152 }
153 
154 void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) {
155   // Following code requires TargetStreamer to be present.
156   if (!getTargetStreamer())
157     return;
158 
159   if (!IsaInfo::hasCodeObjectV3(getGlobalSTI())) {
160     // Emit ISA Version (NT_AMD_AMDGPU_ISA).
161     std::string ISAVersionString;
162     raw_string_ostream ISAVersionStream(ISAVersionString);
163     IsaInfo::streamIsaVersion(getGlobalSTI(), ISAVersionStream);
164     getTargetStreamer()->EmitISAVersion(ISAVersionStream.str());
165   }
166 
167   // Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA).
168   if (TM.getTargetTriple().getOS() == Triple::AMDHSA) {
169     HSAMetadataStream->end();
170     bool Success = HSAMetadataStream->emitTo(*getTargetStreamer());
171     (void)Success;
172     assert(Success && "Malformed HSA Metadata");
173   }
174 
175   if (!IsaInfo::hasCodeObjectV3(getGlobalSTI())) {
176     // Emit PAL Metadata (NT_AMD_AMDGPU_PAL_METADATA).
177     if (TM.getTargetTriple().getOS() == Triple::AMDPAL) {
178       // Copy the PAL metadata from the map where we collected it into a vector,
179       // then write it as a .note.
180       PALMD::Metadata PALMetadataVector;
181       for (auto i : PALMetadataMap) {
182         PALMetadataVector.push_back(i.first);
183         PALMetadataVector.push_back(i.second);
184       }
185       getTargetStreamer()->EmitPALMetadata(PALMetadataVector);
186     }
187   }
188 }
189 
190 bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough(
191   const MachineBasicBlock *MBB) const {
192   if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB))
193     return false;
194 
195   if (MBB->empty())
196     return true;
197 
198   // If this is a block implementing a long branch, an expression relative to
199   // the start of the block is needed.  to the start of the block.
200   // XXX - Is there a smarter way to check this?
201   return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64);
202 }
203 
204 void AMDGPUAsmPrinter::EmitFunctionBodyStart() {
205   const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>();
206   if (!MFI.isEntryFunction())
207     return;
208 
209   const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>();
210   const Function &F = MF->getFunction();
211   if (!STM.hasCodeObjectV3() && STM.isAmdHsaOrMesa(F) &&
212       (F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
213        F.getCallingConv() == CallingConv::SPIR_KERNEL)) {
214     amd_kernel_code_t KernelCode;
215     getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF);
216     getTargetStreamer()->EmitAMDKernelCodeT(KernelCode);
217   }
218 
219   if (STM.isAmdHsaOS())
220     HSAMetadataStream->emitKernel(*MF, CurrentProgramInfo);
221 }
222 
223 void AMDGPUAsmPrinter::EmitFunctionBodyEnd() {
224   const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>();
225   if (!MFI.isEntryFunction())
226     return;
227 
228   if (!IsaInfo::hasCodeObjectV3(getGlobalSTI()) ||
229       TM.getTargetTriple().getOS() != Triple::AMDHSA)
230     return;
231 
232   auto &Streamer = getTargetStreamer()->getStreamer();
233   auto &Context = Streamer.getContext();
234   auto &ObjectFileInfo = *Context.getObjectFileInfo();
235   auto &ReadOnlySection = *ObjectFileInfo.getReadOnlySection();
236 
237   Streamer.PushSection();
238   Streamer.SwitchSection(&ReadOnlySection);
239 
240   // CP microcode requires the kernel descriptor to be allocated on 64 byte
241   // alignment.
242   Streamer.EmitValueToAlignment(64, 0, 1, 0);
243   if (ReadOnlySection.getAlignment() < 64)
244     ReadOnlySection.setAlignment(64);
245 
246   const MCSubtargetInfo &STI = MF->getSubtarget();
247 
248   SmallString<128> KernelName;
249   getNameWithPrefix(KernelName, &MF->getFunction());
250   getTargetStreamer()->EmitAmdhsaKernelDescriptor(
251       STI, KernelName, getAmdhsaKernelDescriptor(*MF, CurrentProgramInfo),
252       CurrentProgramInfo.NumVGPRsForWavesPerEU,
253       CurrentProgramInfo.NumSGPRsForWavesPerEU -
254           IsaInfo::getNumExtraSGPRs(&STI,
255                                     CurrentProgramInfo.VCCUsed,
256                                     CurrentProgramInfo.FlatUsed),
257       CurrentProgramInfo.VCCUsed, CurrentProgramInfo.FlatUsed,
258       hasXNACK(STI));
259 
260   Streamer.PopSection();
261 }
262 
263 void AMDGPUAsmPrinter::EmitFunctionEntryLabel() {
264   if (IsaInfo::hasCodeObjectV3(getGlobalSTI()) &&
265       TM.getTargetTriple().getOS() == Triple::AMDHSA) {
266     AsmPrinter::EmitFunctionEntryLabel();
267     return;
268   }
269 
270   const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
271   const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>();
272   if (MFI->isEntryFunction() && STM.isAmdHsaOrMesa(MF->getFunction())) {
273     SmallString<128> SymbolName;
274     getNameWithPrefix(SymbolName, &MF->getFunction()),
275     getTargetStreamer()->EmitAMDGPUSymbolType(
276         SymbolName, ELF::STT_AMDGPU_HSA_KERNEL);
277   }
278   if (STM.dumpCode()) {
279     // Disassemble function name label to text.
280     DisasmLines.push_back(MF->getName().str() + ":");
281     DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size());
282     HexLines.push_back("");
283   }
284 
285   AsmPrinter::EmitFunctionEntryLabel();
286 }
287 
288 void AMDGPUAsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
289   const GCNSubtarget &STI = MBB.getParent()->getSubtarget<GCNSubtarget>();
290   if (STI.dumpCode() && !isBlockOnlyReachableByFallthrough(&MBB)) {
291     // Write a line for the basic block label if it is not only fallthrough.
292     DisasmLines.push_back(
293         (Twine("BB") + Twine(getFunctionNumber())
294          + "_" + Twine(MBB.getNumber()) + ":").str());
295     DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size());
296     HexLines.push_back("");
297   }
298   AsmPrinter::EmitBasicBlockStart(MBB);
299 }
300 
301 void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
302 
303   // Group segment variables aren't emitted in HSA.
304   if (AMDGPU::isGroupSegment(GV))
305     return;
306 
307   AsmPrinter::EmitGlobalVariable(GV);
308 }
309 
310 bool AMDGPUAsmPrinter::doFinalization(Module &M) {
311   CallGraphResourceInfo.clear();
312   return AsmPrinter::doFinalization(M);
313 }
314 
315 // For the amdpal OS type, read the amdgpu.pal.metadata supplied by the
316 // frontend into our PALMetadataMap, ready for per-function modification.  It
317 // is a NamedMD containing an MDTuple containing a number of MDNodes each of
318 // which is an integer value, and each two integer values forms a key=value
319 // pair that we store as PALMetadataMap[key]=value in the map.
320 void AMDGPUAsmPrinter::readPALMetadata(Module &M) {
321   auto NamedMD = M.getNamedMetadata("amdgpu.pal.metadata");
322   if (!NamedMD || !NamedMD->getNumOperands())
323     return;
324   auto Tuple = dyn_cast<MDTuple>(NamedMD->getOperand(0));
325   if (!Tuple)
326     return;
327   for (unsigned I = 0, E = Tuple->getNumOperands() & -2; I != E; I += 2) {
328     auto Key = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I));
329     auto Val = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I + 1));
330     if (!Key || !Val)
331       continue;
332     PALMetadataMap[Key->getZExtValue()] = Val->getZExtValue();
333   }
334 }
335 
336 // Print comments that apply to both callable functions and entry points.
337 void AMDGPUAsmPrinter::emitCommonFunctionComments(
338   uint32_t NumVGPR,
339   uint32_t NumSGPR,
340   uint64_t ScratchSize,
341   uint64_t CodeSize,
342   const AMDGPUMachineFunction *MFI) {
343   OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false);
344   OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false);
345   OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false);
346   OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false);
347   OutStreamer->emitRawComment(" MemoryBound: " + Twine(MFI->isMemoryBound()),
348                               false);
349 }
350 
351 uint16_t AMDGPUAsmPrinter::getAmdhsaKernelCodeProperties(
352     const MachineFunction &MF) const {
353   const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
354   uint16_t KernelCodeProperties = 0;
355 
356   if (MFI.hasPrivateSegmentBuffer()) {
357     KernelCodeProperties |=
358         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER;
359   }
360   if (MFI.hasDispatchPtr()) {
361     KernelCodeProperties |=
362         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
363   }
364   if (MFI.hasQueuePtr()) {
365     KernelCodeProperties |=
366         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR;
367   }
368   if (MFI.hasKernargSegmentPtr()) {
369     KernelCodeProperties |=
370         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR;
371   }
372   if (MFI.hasDispatchID()) {
373     KernelCodeProperties |=
374         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID;
375   }
376   if (MFI.hasFlatScratchInit()) {
377     KernelCodeProperties |=
378         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT;
379   }
380 
381   return KernelCodeProperties;
382 }
383 
384 amdhsa::kernel_descriptor_t AMDGPUAsmPrinter::getAmdhsaKernelDescriptor(
385     const MachineFunction &MF,
386     const SIProgramInfo &PI) const {
387   amdhsa::kernel_descriptor_t KernelDescriptor;
388   memset(&KernelDescriptor, 0x0, sizeof(KernelDescriptor));
389 
390   assert(isUInt<32>(PI.ScratchSize));
391   assert(isUInt<32>(PI.ComputePGMRSrc1));
392   assert(isUInt<32>(PI.ComputePGMRSrc2));
393 
394   KernelDescriptor.group_segment_fixed_size = PI.LDSSize;
395   KernelDescriptor.private_segment_fixed_size = PI.ScratchSize;
396   KernelDescriptor.compute_pgm_rsrc1 = PI.ComputePGMRSrc1;
397   KernelDescriptor.compute_pgm_rsrc2 = PI.ComputePGMRSrc2;
398   KernelDescriptor.kernel_code_properties = getAmdhsaKernelCodeProperties(MF);
399 
400   return KernelDescriptor;
401 }
402 
403 bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
404   CurrentProgramInfo = SIProgramInfo();
405 
406   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
407 
408   // The starting address of all shader programs must be 256 bytes aligned.
409   // Regular functions just need the basic required instruction alignment.
410   MF.setAlignment(MFI->isEntryFunction() ? 8 : 2);
411 
412   SetupMachineFunction(MF);
413 
414   const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
415   MCContext &Context = getObjFileLowering().getContext();
416   // FIXME: This should be an explicit check for Mesa.
417   if (!STM.isAmdHsaOS() && !STM.isAmdPalOS()) {
418     MCSectionELF *ConfigSection =
419         Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0);
420     OutStreamer->SwitchSection(ConfigSection);
421   }
422 
423   if (MFI->isEntryFunction()) {
424     getSIProgramInfo(CurrentProgramInfo, MF);
425   } else {
426     auto I = CallGraphResourceInfo.insert(
427       std::make_pair(&MF.getFunction(), SIFunctionResourceInfo()));
428     SIFunctionResourceInfo &Info = I.first->second;
429     assert(I.second && "should only be called once per function");
430     Info = analyzeResourceUsage(MF);
431   }
432 
433   if (STM.isAmdPalOS())
434     EmitPALMetadata(MF, CurrentProgramInfo);
435   else if (!STM.isAmdHsaOS()) {
436     EmitProgramInfoSI(MF, CurrentProgramInfo);
437   }
438 
439   DisasmLines.clear();
440   HexLines.clear();
441   DisasmLineMaxLen = 0;
442 
443   EmitFunctionBody();
444 
445   if (isVerbose()) {
446     MCSectionELF *CommentSection =
447         Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0);
448     OutStreamer->SwitchSection(CommentSection);
449 
450     if (!MFI->isEntryFunction()) {
451       OutStreamer->emitRawComment(" Function info:", false);
452       SIFunctionResourceInfo &Info = CallGraphResourceInfo[&MF.getFunction()];
453       emitCommonFunctionComments(
454         Info.NumVGPR,
455         Info.getTotalNumSGPRs(MF.getSubtarget<GCNSubtarget>()),
456         Info.PrivateSegmentSize,
457         getFunctionCodeSize(MF), MFI);
458       return false;
459     }
460 
461     OutStreamer->emitRawComment(" Kernel info:", false);
462     emitCommonFunctionComments(CurrentProgramInfo.NumVGPR,
463                                CurrentProgramInfo.NumSGPR,
464                                CurrentProgramInfo.ScratchSize,
465                                getFunctionCodeSize(MF), MFI);
466 
467     OutStreamer->emitRawComment(
468       " FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false);
469     OutStreamer->emitRawComment(
470       " IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false);
471     OutStreamer->emitRawComment(
472       " LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) +
473       " bytes/workgroup (compile time only)", false);
474 
475     OutStreamer->emitRawComment(
476       " SGPRBlocks: " + Twine(CurrentProgramInfo.SGPRBlocks), false);
477     OutStreamer->emitRawComment(
478       " VGPRBlocks: " + Twine(CurrentProgramInfo.VGPRBlocks), false);
479 
480     OutStreamer->emitRawComment(
481       " NumSGPRsForWavesPerEU: " +
482       Twine(CurrentProgramInfo.NumSGPRsForWavesPerEU), false);
483     OutStreamer->emitRawComment(
484       " NumVGPRsForWavesPerEU: " +
485       Twine(CurrentProgramInfo.NumVGPRsForWavesPerEU), false);
486 
487     OutStreamer->emitRawComment(
488       " WaveLimiterHint : " + Twine(MFI->needsWaveLimiter()), false);
489 
490     OutStreamer->emitRawComment(
491       " COMPUTE_PGM_RSRC2:USER_SGPR: " +
492       Twine(G_00B84C_USER_SGPR(CurrentProgramInfo.ComputePGMRSrc2)), false);
493     OutStreamer->emitRawComment(
494       " COMPUTE_PGM_RSRC2:TRAP_HANDLER: " +
495       Twine(G_00B84C_TRAP_HANDLER(CurrentProgramInfo.ComputePGMRSrc2)), false);
496     OutStreamer->emitRawComment(
497       " COMPUTE_PGM_RSRC2:TGID_X_EN: " +
498       Twine(G_00B84C_TGID_X_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
499     OutStreamer->emitRawComment(
500       " COMPUTE_PGM_RSRC2:TGID_Y_EN: " +
501       Twine(G_00B84C_TGID_Y_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
502     OutStreamer->emitRawComment(
503       " COMPUTE_PGM_RSRC2:TGID_Z_EN: " +
504       Twine(G_00B84C_TGID_Z_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
505     OutStreamer->emitRawComment(
506       " COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " +
507       Twine(G_00B84C_TIDIG_COMP_CNT(CurrentProgramInfo.ComputePGMRSrc2)),
508       false);
509   }
510 
511   if (STM.dumpCode()) {
512 
513     OutStreamer->SwitchSection(
514         Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0));
515 
516     for (size_t i = 0; i < DisasmLines.size(); ++i) {
517       std::string Comment = "\n";
518       if (!HexLines[i].empty()) {
519         Comment = std::string(DisasmLineMaxLen - DisasmLines[i].size(), ' ');
520         Comment += " ; " + HexLines[i] + "\n";
521       }
522 
523       OutStreamer->EmitBytes(StringRef(DisasmLines[i]));
524       OutStreamer->EmitBytes(StringRef(Comment));
525     }
526   }
527 
528   return false;
529 }
530 
531 uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const {
532   const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
533   const SIInstrInfo *TII = STM.getInstrInfo();
534 
535   uint64_t CodeSize = 0;
536 
537   for (const MachineBasicBlock &MBB : MF) {
538     for (const MachineInstr &MI : MBB) {
539       // TODO: CodeSize should account for multiple functions.
540 
541       // TODO: Should we count size of debug info?
542       if (MI.isDebugInstr())
543         continue;
544 
545       CodeSize += TII->getInstSizeInBytes(MI);
546     }
547   }
548 
549   return CodeSize;
550 }
551 
552 static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI,
553                                   const SIInstrInfo &TII,
554                                   unsigned Reg) {
555   for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) {
556     if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent()))
557       return true;
558   }
559 
560   return false;
561 }
562 
563 int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumSGPRs(
564   const GCNSubtarget &ST) const {
565   return NumExplicitSGPR + IsaInfo::getNumExtraSGPRs(&ST,
566                                                      UsesVCC, UsesFlatScratch);
567 }
568 
569 AMDGPUAsmPrinter::SIFunctionResourceInfo AMDGPUAsmPrinter::analyzeResourceUsage(
570   const MachineFunction &MF) const {
571   SIFunctionResourceInfo Info;
572 
573   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
574   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
575   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
576   const MachineRegisterInfo &MRI = MF.getRegInfo();
577   const SIInstrInfo *TII = ST.getInstrInfo();
578   const SIRegisterInfo &TRI = TII->getRegisterInfo();
579 
580   Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) ||
581                          MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI);
582 
583   // Even if FLAT_SCRATCH is implicitly used, it has no effect if flat
584   // instructions aren't used to access the scratch buffer. Inline assembly may
585   // need it though.
586   //
587   // If we only have implicit uses of flat_scr on flat instructions, it is not
588   // really needed.
589   if (Info.UsesFlatScratch && !MFI->hasFlatScratchInit() &&
590       (!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) &&
591        !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) &&
592        !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) {
593     Info.UsesFlatScratch = false;
594   }
595 
596   Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects();
597   Info.PrivateSegmentSize = FrameInfo.getStackSize();
598   if (MFI->isStackRealigned())
599     Info.PrivateSegmentSize += FrameInfo.getMaxAlignment();
600 
601 
602   Info.UsesVCC = MRI.isPhysRegUsed(AMDGPU::VCC_LO) ||
603                  MRI.isPhysRegUsed(AMDGPU::VCC_HI);
604 
605   // If there are no calls, MachineRegisterInfo can tell us the used register
606   // count easily.
607   // A tail call isn't considered a call for MachineFrameInfo's purposes.
608   if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) {
609     MCPhysReg HighestVGPRReg = AMDGPU::NoRegister;
610     for (MCPhysReg Reg : reverse(AMDGPU::VGPR_32RegClass.getRegisters())) {
611       if (MRI.isPhysRegUsed(Reg)) {
612         HighestVGPRReg = Reg;
613         break;
614       }
615     }
616 
617     MCPhysReg HighestSGPRReg = AMDGPU::NoRegister;
618     for (MCPhysReg Reg : reverse(AMDGPU::SGPR_32RegClass.getRegisters())) {
619       if (MRI.isPhysRegUsed(Reg)) {
620         HighestSGPRReg = Reg;
621         break;
622       }
623     }
624 
625     // We found the maximum register index. They start at 0, so add one to get the
626     // number of registers.
627     Info.NumVGPR = HighestVGPRReg == AMDGPU::NoRegister ? 0 :
628       TRI.getHWRegIndex(HighestVGPRReg) + 1;
629     Info.NumExplicitSGPR = HighestSGPRReg == AMDGPU::NoRegister ? 0 :
630       TRI.getHWRegIndex(HighestSGPRReg) + 1;
631 
632     return Info;
633   }
634 
635   int32_t MaxVGPR = -1;
636   int32_t MaxSGPR = -1;
637   uint64_t CalleeFrameSize = 0;
638 
639   for (const MachineBasicBlock &MBB : MF) {
640     for (const MachineInstr &MI : MBB) {
641       // TODO: Check regmasks? Do they occur anywhere except calls?
642       for (const MachineOperand &MO : MI.operands()) {
643         unsigned Width = 0;
644         bool IsSGPR = false;
645 
646         if (!MO.isReg())
647           continue;
648 
649         unsigned Reg = MO.getReg();
650         switch (Reg) {
651         case AMDGPU::EXEC:
652         case AMDGPU::EXEC_LO:
653         case AMDGPU::EXEC_HI:
654         case AMDGPU::SCC:
655         case AMDGPU::M0:
656         case AMDGPU::SRC_SHARED_BASE:
657         case AMDGPU::SRC_SHARED_LIMIT:
658         case AMDGPU::SRC_PRIVATE_BASE:
659         case AMDGPU::SRC_PRIVATE_LIMIT:
660           continue;
661 
662         case AMDGPU::NoRegister:
663           assert(MI.isDebugInstr());
664           continue;
665 
666         case AMDGPU::VCC:
667         case AMDGPU::VCC_LO:
668         case AMDGPU::VCC_HI:
669           Info.UsesVCC = true;
670           continue;
671 
672         case AMDGPU::FLAT_SCR:
673         case AMDGPU::FLAT_SCR_LO:
674         case AMDGPU::FLAT_SCR_HI:
675           continue;
676 
677         case AMDGPU::XNACK_MASK:
678         case AMDGPU::XNACK_MASK_LO:
679         case AMDGPU::XNACK_MASK_HI:
680           llvm_unreachable("xnack_mask registers should not be used");
681 
682         case AMDGPU::LDS_DIRECT:
683           llvm_unreachable("lds_direct register should not be used");
684 
685         case AMDGPU::TBA:
686         case AMDGPU::TBA_LO:
687         case AMDGPU::TBA_HI:
688         case AMDGPU::TMA:
689         case AMDGPU::TMA_LO:
690         case AMDGPU::TMA_HI:
691           llvm_unreachable("trap handler registers should not be used");
692 
693         default:
694           break;
695         }
696 
697         if (AMDGPU::SReg_32RegClass.contains(Reg)) {
698           assert(!AMDGPU::TTMP_32RegClass.contains(Reg) &&
699                  "trap handler registers should not be used");
700           IsSGPR = true;
701           Width = 1;
702         } else if (AMDGPU::VGPR_32RegClass.contains(Reg)) {
703           IsSGPR = false;
704           Width = 1;
705         } else if (AMDGPU::SReg_64RegClass.contains(Reg)) {
706           assert(!AMDGPU::TTMP_64RegClass.contains(Reg) &&
707                  "trap handler registers should not be used");
708           IsSGPR = true;
709           Width = 2;
710         } else if (AMDGPU::VReg_64RegClass.contains(Reg)) {
711           IsSGPR = false;
712           Width = 2;
713         } else if (AMDGPU::VReg_96RegClass.contains(Reg)) {
714           IsSGPR = false;
715           Width = 3;
716         } else if (AMDGPU::SReg_128RegClass.contains(Reg)) {
717           assert(!AMDGPU::TTMP_128RegClass.contains(Reg) &&
718             "trap handler registers should not be used");
719           IsSGPR = true;
720           Width = 4;
721         } else if (AMDGPU::VReg_128RegClass.contains(Reg)) {
722           IsSGPR = false;
723           Width = 4;
724         } else if (AMDGPU::SReg_256RegClass.contains(Reg)) {
725           assert(!AMDGPU::TTMP_256RegClass.contains(Reg) &&
726             "trap handler registers should not be used");
727           IsSGPR = true;
728           Width = 8;
729         } else if (AMDGPU::VReg_256RegClass.contains(Reg)) {
730           IsSGPR = false;
731           Width = 8;
732         } else if (AMDGPU::SReg_512RegClass.contains(Reg)) {
733           assert(!AMDGPU::TTMP_512RegClass.contains(Reg) &&
734             "trap handler registers should not be used");
735           IsSGPR = true;
736           Width = 16;
737         } else if (AMDGPU::VReg_512RegClass.contains(Reg)) {
738           IsSGPR = false;
739           Width = 16;
740         } else {
741           llvm_unreachable("Unknown register class");
742         }
743         unsigned HWReg = TRI.getHWRegIndex(Reg);
744         int MaxUsed = HWReg + Width - 1;
745         if (IsSGPR) {
746           MaxSGPR = MaxUsed > MaxSGPR ? MaxUsed : MaxSGPR;
747         } else {
748           MaxVGPR = MaxUsed > MaxVGPR ? MaxUsed : MaxVGPR;
749         }
750       }
751 
752       if (MI.isCall()) {
753         // Pseudo used just to encode the underlying global. Is there a better
754         // way to track this?
755 
756         const MachineOperand *CalleeOp
757           = TII->getNamedOperand(MI, AMDGPU::OpName::callee);
758         const Function *Callee = cast<Function>(CalleeOp->getGlobal());
759         if (Callee->isDeclaration()) {
760           // If this is a call to an external function, we can't do much. Make
761           // conservative guesses.
762 
763           // 48 SGPRs - vcc, - flat_scr, -xnack
764           int MaxSGPRGuess =
765             47 - IsaInfo::getNumExtraSGPRs(&ST, true, ST.hasFlatAddressSpace());
766           MaxSGPR = std::max(MaxSGPR, MaxSGPRGuess);
767           MaxVGPR = std::max(MaxVGPR, 23);
768 
769           CalleeFrameSize = std::max(CalleeFrameSize, UINT64_C(16384));
770           Info.UsesVCC = true;
771           Info.UsesFlatScratch = ST.hasFlatAddressSpace();
772           Info.HasDynamicallySizedStack = true;
773         } else {
774           // We force CodeGen to run in SCC order, so the callee's register
775           // usage etc. should be the cumulative usage of all callees.
776           auto I = CallGraphResourceInfo.find(Callee);
777           assert(I != CallGraphResourceInfo.end() &&
778                  "callee should have been handled before caller");
779 
780           MaxSGPR = std::max(I->second.NumExplicitSGPR - 1, MaxSGPR);
781           MaxVGPR = std::max(I->second.NumVGPR - 1, MaxVGPR);
782           CalleeFrameSize
783             = std::max(I->second.PrivateSegmentSize, CalleeFrameSize);
784           Info.UsesVCC |= I->second.UsesVCC;
785           Info.UsesFlatScratch |= I->second.UsesFlatScratch;
786           Info.HasDynamicallySizedStack |= I->second.HasDynamicallySizedStack;
787           Info.HasRecursion |= I->second.HasRecursion;
788         }
789 
790         if (!Callee->doesNotRecurse())
791           Info.HasRecursion = true;
792       }
793     }
794   }
795 
796   Info.NumExplicitSGPR = MaxSGPR + 1;
797   Info.NumVGPR = MaxVGPR + 1;
798   Info.PrivateSegmentSize += CalleeFrameSize;
799 
800   return Info;
801 }
802 
803 void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
804                                         const MachineFunction &MF) {
805   SIFunctionResourceInfo Info = analyzeResourceUsage(MF);
806 
807   ProgInfo.NumVGPR = Info.NumVGPR;
808   ProgInfo.NumSGPR = Info.NumExplicitSGPR;
809   ProgInfo.ScratchSize = Info.PrivateSegmentSize;
810   ProgInfo.VCCUsed = Info.UsesVCC;
811   ProgInfo.FlatUsed = Info.UsesFlatScratch;
812   ProgInfo.DynamicCallStack = Info.HasDynamicallySizedStack || Info.HasRecursion;
813 
814   if (!isUInt<32>(ProgInfo.ScratchSize)) {
815     DiagnosticInfoStackSize DiagStackSize(MF.getFunction(),
816                                           ProgInfo.ScratchSize, DS_Error);
817     MF.getFunction().getContext().diagnose(DiagStackSize);
818   }
819 
820   const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
821   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
822 
823   // TODO(scott.linder): The calculations related to SGPR/VGPR blocks are
824   // duplicated in part in AMDGPUAsmParser::calculateGPRBlocks, and could be
825   // unified.
826   unsigned ExtraSGPRs = IsaInfo::getNumExtraSGPRs(
827       &STM, ProgInfo.VCCUsed, ProgInfo.FlatUsed);
828 
829   // Check the addressable register limit before we add ExtraSGPRs.
830   if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS &&
831       !STM.hasSGPRInitBug()) {
832     unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs();
833     if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) {
834       // This can happen due to a compiler bug or when using inline asm.
835       LLVMContext &Ctx = MF.getFunction().getContext();
836       DiagnosticInfoResourceLimit Diag(MF.getFunction(),
837                                        "addressable scalar registers",
838                                        ProgInfo.NumSGPR, DS_Error,
839                                        DK_ResourceLimit,
840                                        MaxAddressableNumSGPRs);
841       Ctx.diagnose(Diag);
842       ProgInfo.NumSGPR = MaxAddressableNumSGPRs - 1;
843     }
844   }
845 
846   // Account for extra SGPRs and VGPRs reserved for debugger use.
847   ProgInfo.NumSGPR += ExtraSGPRs;
848 
849   // Ensure there are enough SGPRs and VGPRs for wave dispatch, where wave
850   // dispatch registers are function args.
851   unsigned WaveDispatchNumSGPR = 0, WaveDispatchNumVGPR = 0;
852   for (auto &Arg : MF.getFunction().args()) {
853     unsigned NumRegs = (Arg.getType()->getPrimitiveSizeInBits() + 31) / 32;
854     if (Arg.hasAttribute(Attribute::InReg))
855       WaveDispatchNumSGPR += NumRegs;
856     else
857       WaveDispatchNumVGPR += NumRegs;
858   }
859   ProgInfo.NumSGPR = std::max(ProgInfo.NumSGPR, WaveDispatchNumSGPR);
860   ProgInfo.NumVGPR = std::max(ProgInfo.NumVGPR, WaveDispatchNumVGPR);
861 
862   // Adjust number of registers used to meet default/requested minimum/maximum
863   // number of waves per execution unit request.
864   ProgInfo.NumSGPRsForWavesPerEU = std::max(
865     std::max(ProgInfo.NumSGPR, 1u), STM.getMinNumSGPRs(MFI->getMaxWavesPerEU()));
866   ProgInfo.NumVGPRsForWavesPerEU = std::max(
867     std::max(ProgInfo.NumVGPR, 1u), STM.getMinNumVGPRs(MFI->getMaxWavesPerEU()));
868 
869   if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ||
870       STM.hasSGPRInitBug()) {
871     unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs();
872     if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) {
873       // This can happen due to a compiler bug or when using inline asm to use
874       // the registers which are usually reserved for vcc etc.
875       LLVMContext &Ctx = MF.getFunction().getContext();
876       DiagnosticInfoResourceLimit Diag(MF.getFunction(),
877                                        "scalar registers",
878                                        ProgInfo.NumSGPR, DS_Error,
879                                        DK_ResourceLimit,
880                                        MaxAddressableNumSGPRs);
881       Ctx.diagnose(Diag);
882       ProgInfo.NumSGPR = MaxAddressableNumSGPRs;
883       ProgInfo.NumSGPRsForWavesPerEU = MaxAddressableNumSGPRs;
884     }
885   }
886 
887   if (STM.hasSGPRInitBug()) {
888     ProgInfo.NumSGPR =
889         AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
890     ProgInfo.NumSGPRsForWavesPerEU =
891         AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
892   }
893 
894   if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) {
895     LLVMContext &Ctx = MF.getFunction().getContext();
896     DiagnosticInfoResourceLimit Diag(MF.getFunction(), "user SGPRs",
897                                      MFI->getNumUserSGPRs(), DS_Error);
898     Ctx.diagnose(Diag);
899   }
900 
901   if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) {
902     LLVMContext &Ctx = MF.getFunction().getContext();
903     DiagnosticInfoResourceLimit Diag(MF.getFunction(), "local memory",
904                                      MFI->getLDSSize(), DS_Error);
905     Ctx.diagnose(Diag);
906   }
907 
908   ProgInfo.SGPRBlocks = IsaInfo::getNumSGPRBlocks(
909       &STM, ProgInfo.NumSGPRsForWavesPerEU);
910   ProgInfo.VGPRBlocks = IsaInfo::getNumVGPRBlocks(
911       &STM, ProgInfo.NumVGPRsForWavesPerEU);
912 
913   // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode
914   // register.
915   ProgInfo.FloatMode = getFPMode(MF);
916 
917   ProgInfo.IEEEMode = STM.enableIEEEBit(MF);
918 
919   // Make clamp modifier on NaN input returns 0.
920   ProgInfo.DX10Clamp = STM.enableDX10Clamp();
921 
922   unsigned LDSAlignShift;
923   if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
924     // LDS is allocated in 64 dword blocks.
925     LDSAlignShift = 8;
926   } else {
927     // LDS is allocated in 128 dword blocks.
928     LDSAlignShift = 9;
929   }
930 
931   unsigned LDSSpillSize =
932     MFI->getLDSWaveSpillSize() * MFI->getMaxFlatWorkGroupSize();
933 
934   ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize;
935   ProgInfo.LDSBlocks =
936       alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift;
937 
938   // Scratch is allocated in 256 dword blocks.
939   unsigned ScratchAlignShift = 10;
940   // We need to program the hardware with the amount of scratch memory that
941   // is used by the entire wave.  ProgInfo.ScratchSize is the amount of
942   // scratch memory used per thread.
943   ProgInfo.ScratchBlocks =
944       alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(),
945               1ULL << ScratchAlignShift) >>
946       ScratchAlignShift;
947 
948   ProgInfo.ComputePGMRSrc1 =
949       S_00B848_VGPRS(ProgInfo.VGPRBlocks) |
950       S_00B848_SGPRS(ProgInfo.SGPRBlocks) |
951       S_00B848_PRIORITY(ProgInfo.Priority) |
952       S_00B848_FLOAT_MODE(ProgInfo.FloatMode) |
953       S_00B848_PRIV(ProgInfo.Priv) |
954       S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) |
955       S_00B848_DEBUG_MODE(ProgInfo.DebugMode) |
956       S_00B848_IEEE_MODE(ProgInfo.IEEEMode);
957 
958   // 0 = X, 1 = XY, 2 = XYZ
959   unsigned TIDIGCompCnt = 0;
960   if (MFI->hasWorkItemIDZ())
961     TIDIGCompCnt = 2;
962   else if (MFI->hasWorkItemIDY())
963     TIDIGCompCnt = 1;
964 
965   ProgInfo.ComputePGMRSrc2 =
966       S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) |
967       S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) |
968       // For AMDHSA, TRAP_HANDLER must be zero, as it is populated by the CP.
969       S_00B84C_TRAP_HANDLER(STM.isAmdHsaOS() ? 0 : STM.isTrapHandlerEnabled()) |
970       S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) |
971       S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) |
972       S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) |
973       S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) |
974       S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) |
975       S_00B84C_EXCP_EN_MSB(0) |
976       // For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP.
977       S_00B84C_LDS_SIZE(STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks) |
978       S_00B84C_EXCP_EN(0);
979 }
980 
981 static unsigned getRsrcReg(CallingConv::ID CallConv) {
982   switch (CallConv) {
983   default: LLVM_FALLTHROUGH;
984   case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1;
985   case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS;
986   case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS;
987   case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES;
988   case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS;
989   case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS;
990   case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS;
991   }
992 }
993 
994 void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF,
995                                          const SIProgramInfo &CurrentProgramInfo) {
996   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
997   unsigned RsrcReg = getRsrcReg(MF.getFunction().getCallingConv());
998 
999   if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) {
1000     OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4);
1001 
1002     OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc1, 4);
1003 
1004     OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4);
1005     OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc2, 4);
1006 
1007     OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4);
1008     OutStreamer->EmitIntValue(S_00B860_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4);
1009 
1010     // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 =
1011     // 0" comment but I don't see a corresponding field in the register spec.
1012   } else {
1013     OutStreamer->EmitIntValue(RsrcReg, 4);
1014     OutStreamer->EmitIntValue(S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) |
1015                               S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks), 4);
1016     OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4);
1017     OutStreamer->EmitIntValue(
1018         S_0286E8_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4);
1019   }
1020 
1021   if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) {
1022     OutStreamer->EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4);
1023     OutStreamer->EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks), 4);
1024     OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4);
1025     OutStreamer->EmitIntValue(MFI->getPSInputEnable(), 4);
1026     OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4);
1027     OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4);
1028   }
1029 
1030   OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4);
1031   OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4);
1032   OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4);
1033   OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4);
1034 }
1035 
1036 // This is the equivalent of EmitProgramInfoSI above, but for when the OS type
1037 // is AMDPAL.  It stores each compute/SPI register setting and other PAL
1038 // metadata items into the PALMetadataMap, combining with any provided by the
1039 // frontend as LLVM metadata. Once all functions are written, PALMetadataMap is
1040 // then written as a single block in the .note section.
1041 void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF,
1042        const SIProgramInfo &CurrentProgramInfo) {
1043   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1044   // Given the calling convention, calculate the register number for rsrc1. In
1045   // principle the register number could change in future hardware, but we know
1046   // it is the same for gfx6-9 (except that LS and ES don't exist on gfx9), so
1047   // we can use the same fixed value that .AMDGPU.config has for Mesa. Note
1048   // that we use a register number rather than a byte offset, so we need to
1049   // divide by 4.
1050   unsigned Rsrc1Reg = getRsrcReg(MF.getFunction().getCallingConv()) / 4;
1051   unsigned Rsrc2Reg = Rsrc1Reg + 1;
1052   // Also calculate the PAL metadata key for *S_SCRATCH_SIZE. It can be used
1053   // with a constant offset to access any non-register shader-specific PAL
1054   // metadata key.
1055   unsigned ScratchSizeKey = PALMD::Key::CS_SCRATCH_SIZE;
1056   switch (MF.getFunction().getCallingConv()) {
1057     case CallingConv::AMDGPU_PS:
1058       ScratchSizeKey = PALMD::Key::PS_SCRATCH_SIZE;
1059       break;
1060     case CallingConv::AMDGPU_VS:
1061       ScratchSizeKey = PALMD::Key::VS_SCRATCH_SIZE;
1062       break;
1063     case CallingConv::AMDGPU_GS:
1064       ScratchSizeKey = PALMD::Key::GS_SCRATCH_SIZE;
1065       break;
1066     case CallingConv::AMDGPU_ES:
1067       ScratchSizeKey = PALMD::Key::ES_SCRATCH_SIZE;
1068       break;
1069     case CallingConv::AMDGPU_HS:
1070       ScratchSizeKey = PALMD::Key::HS_SCRATCH_SIZE;
1071       break;
1072     case CallingConv::AMDGPU_LS:
1073       ScratchSizeKey = PALMD::Key::LS_SCRATCH_SIZE;
1074       break;
1075   }
1076   unsigned NumUsedVgprsKey = ScratchSizeKey +
1077       PALMD::Key::VS_NUM_USED_VGPRS - PALMD::Key::VS_SCRATCH_SIZE;
1078   unsigned NumUsedSgprsKey = ScratchSizeKey +
1079       PALMD::Key::VS_NUM_USED_SGPRS - PALMD::Key::VS_SCRATCH_SIZE;
1080   PALMetadataMap[NumUsedVgprsKey] = CurrentProgramInfo.NumVGPRsForWavesPerEU;
1081   PALMetadataMap[NumUsedSgprsKey] = CurrentProgramInfo.NumSGPRsForWavesPerEU;
1082   if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) {
1083     PALMetadataMap[Rsrc1Reg] |= CurrentProgramInfo.ComputePGMRSrc1;
1084     PALMetadataMap[Rsrc2Reg] |= CurrentProgramInfo.ComputePGMRSrc2;
1085     // ScratchSize is in bytes, 16 aligned.
1086     PALMetadataMap[ScratchSizeKey] |=
1087         alignTo(CurrentProgramInfo.ScratchSize, 16);
1088   } else {
1089     PALMetadataMap[Rsrc1Reg] |= S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) |
1090         S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks);
1091     if (CurrentProgramInfo.ScratchBlocks > 0)
1092       PALMetadataMap[Rsrc2Reg] |= S_00B84C_SCRATCH_EN(1);
1093     // ScratchSize is in bytes, 16 aligned.
1094     PALMetadataMap[ScratchSizeKey] |=
1095         alignTo(CurrentProgramInfo.ScratchSize, 16);
1096   }
1097   if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) {
1098     PALMetadataMap[Rsrc2Reg] |=
1099         S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks);
1100     PALMetadataMap[R_0286CC_SPI_PS_INPUT_ENA / 4] |= MFI->getPSInputEnable();
1101     PALMetadataMap[R_0286D0_SPI_PS_INPUT_ADDR / 4] |= MFI->getPSInputAddr();
1102   }
1103 }
1104 
1105 // This is supposed to be log2(Size)
1106 static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) {
1107   switch (Size) {
1108   case 4:
1109     return AMD_ELEMENT_4_BYTES;
1110   case 8:
1111     return AMD_ELEMENT_8_BYTES;
1112   case 16:
1113     return AMD_ELEMENT_16_BYTES;
1114   default:
1115     llvm_unreachable("invalid private_element_size");
1116   }
1117 }
1118 
1119 void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out,
1120                                         const SIProgramInfo &CurrentProgramInfo,
1121                                         const MachineFunction &MF) const {
1122   const Function &F = MF.getFunction();
1123   assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
1124          F.getCallingConv() == CallingConv::SPIR_KERNEL);
1125 
1126   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1127   const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
1128 
1129   AMDGPU::initDefaultAMDKernelCodeT(Out, &STM);
1130 
1131   Out.compute_pgm_resource_registers =
1132       CurrentProgramInfo.ComputePGMRSrc1 |
1133       (CurrentProgramInfo.ComputePGMRSrc2 << 32);
1134   Out.code_properties = AMD_CODE_PROPERTY_IS_PTR64;
1135 
1136   if (CurrentProgramInfo.DynamicCallStack)
1137     Out.code_properties |= AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK;
1138 
1139   AMD_HSA_BITS_SET(Out.code_properties,
1140                    AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE,
1141                    getElementByteSizeValue(STM.getMaxPrivateElementSize()));
1142 
1143   if (MFI->hasPrivateSegmentBuffer()) {
1144     Out.code_properties |=
1145       AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER;
1146   }
1147 
1148   if (MFI->hasDispatchPtr())
1149     Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
1150 
1151   if (MFI->hasQueuePtr())
1152     Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR;
1153 
1154   if (MFI->hasKernargSegmentPtr())
1155     Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR;
1156 
1157   if (MFI->hasDispatchID())
1158     Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID;
1159 
1160   if (MFI->hasFlatScratchInit())
1161     Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT;
1162 
1163   if (MFI->hasDispatchPtr())
1164     Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
1165 
1166   if (STM.isXNACKEnabled())
1167     Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED;
1168 
1169   unsigned MaxKernArgAlign;
1170   Out.kernarg_segment_byte_size = STM.getKernArgSegmentSize(F, MaxKernArgAlign);
1171   Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR;
1172   Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR;
1173   Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize;
1174   Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize;
1175 
1176   // These alignment values are specified in powers of two, so alignment =
1177   // 2^n.  The minimum alignment is 2^4 = 16.
1178   Out.kernarg_segment_alignment = std::max((size_t)4,
1179       countTrailingZeros(MaxKernArgAlign));
1180 }
1181 
1182 bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1183                                        unsigned AsmVariant,
1184                                        const char *ExtraCode, raw_ostream &O) {
1185   // First try the generic code, which knows about modifiers like 'c' and 'n'.
1186   if (!AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O))
1187     return false;
1188 
1189   if (ExtraCode && ExtraCode[0]) {
1190     if (ExtraCode[1] != 0)
1191       return true; // Unknown modifier.
1192 
1193     switch (ExtraCode[0]) {
1194     case 'r':
1195       break;
1196     default:
1197       return true;
1198     }
1199   }
1200 
1201   // TODO: Should be able to support other operand types like globals.
1202   const MachineOperand &MO = MI->getOperand(OpNo);
1203   if (MO.isReg()) {
1204     AMDGPUInstPrinter::printRegOperand(MO.getReg(), O,
1205                                        *MF->getSubtarget().getRegisterInfo());
1206     return false;
1207   }
1208 
1209   return true;
1210 }
1211