1 //===-- AMDGPUAsmPrinter.cpp - AMDGPU assembly printer -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// 11 /// The AMDGPUAsmPrinter is used to print both assembly string and also binary 12 /// code. When passed an MCAsmStreamer it prints assembly and when passed 13 /// an MCObjectStreamer it outputs binary code. 14 // 15 //===----------------------------------------------------------------------===// 16 // 17 18 #include "AMDGPUAsmPrinter.h" 19 #include "AMDGPU.h" 20 #include "AMDGPUSubtarget.h" 21 #include "AMDGPUTargetMachine.h" 22 #include "InstPrinter/AMDGPUInstPrinter.h" 23 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 24 #include "MCTargetDesc/AMDGPUTargetStreamer.h" 25 #include "R600AsmPrinter.h" 26 #include "R600Defines.h" 27 #include "R600MachineFunctionInfo.h" 28 #include "R600RegisterInfo.h" 29 #include "SIDefines.h" 30 #include "SIInstrInfo.h" 31 #include "SIMachineFunctionInfo.h" 32 #include "SIRegisterInfo.h" 33 #include "Utils/AMDGPUBaseInfo.h" 34 #include "llvm/BinaryFormat/ELF.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/IR/DiagnosticInfo.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCSectionELF.h" 39 #include "llvm/MC/MCStreamer.h" 40 #include "llvm/Support/AMDGPUMetadata.h" 41 #include "llvm/Support/MathExtras.h" 42 #include "llvm/Support/TargetParser.h" 43 #include "llvm/Support/TargetRegistry.h" 44 #include "llvm/Target/TargetLoweringObjectFile.h" 45 46 using namespace llvm; 47 using namespace llvm::AMDGPU; 48 using namespace llvm::AMDGPU::HSAMD; 49 50 // TODO: This should get the default rounding mode from the kernel. We just set 51 // the default here, but this could change if the OpenCL rounding mode pragmas 52 // are used. 53 // 54 // The denormal mode here should match what is reported by the OpenCL runtime 55 // for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but 56 // can also be override to flush with the -cl-denorms-are-zero compiler flag. 57 // 58 // AMD OpenCL only sets flush none and reports CL_FP_DENORM for double 59 // precision, and leaves single precision to flush all and does not report 60 // CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports 61 // CL_FP_DENORM for both. 62 // 63 // FIXME: It seems some instructions do not support single precision denormals 64 // regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32, 65 // and sin_f32, cos_f32 on most parts). 66 67 // We want to use these instructions, and using fp32 denormals also causes 68 // instructions to run at the double precision rate for the device so it's 69 // probably best to just report no single precision denormals. 70 static uint32_t getFPMode(const MachineFunction &F) { 71 const GCNSubtarget& ST = F.getSubtarget<GCNSubtarget>(); 72 // TODO: Is there any real use for the flush in only / flush out only modes? 73 74 uint32_t FP32Denormals = 75 ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; 76 77 uint32_t FP64Denormals = 78 ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; 79 80 return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) | 81 FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) | 82 FP_DENORM_MODE_SP(FP32Denormals) | 83 FP_DENORM_MODE_DP(FP64Denormals); 84 } 85 86 static AsmPrinter * 87 createAMDGPUAsmPrinterPass(TargetMachine &tm, 88 std::unique_ptr<MCStreamer> &&Streamer) { 89 return new AMDGPUAsmPrinter(tm, std::move(Streamer)); 90 } 91 92 extern "C" void LLVMInitializeAMDGPUAsmPrinter() { 93 TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(), 94 llvm::createR600AsmPrinterPass); 95 TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(), 96 createAMDGPUAsmPrinterPass); 97 } 98 99 AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, 100 std::unique_ptr<MCStreamer> Streamer) 101 : AsmPrinter(TM, std::move(Streamer)) { 102 if (IsaInfo::hasCodeObjectV3(getGlobalSTI())) 103 HSAMetadataStream.reset(new MetadataStreamerV3()); 104 else 105 HSAMetadataStream.reset(new MetadataStreamerV2()); 106 } 107 108 StringRef AMDGPUAsmPrinter::getPassName() const { 109 return "AMDGPU Assembly Printer"; 110 } 111 112 const MCSubtargetInfo *AMDGPUAsmPrinter::getGlobalSTI() const { 113 return TM.getMCSubtargetInfo(); 114 } 115 116 AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const { 117 if (!OutStreamer) 118 return nullptr; 119 return static_cast<AMDGPUTargetStreamer*>(OutStreamer->getTargetStreamer()); 120 } 121 122 void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) { 123 if (IsaInfo::hasCodeObjectV3(getGlobalSTI())) { 124 std::string ExpectedTarget; 125 raw_string_ostream ExpectedTargetOS(ExpectedTarget); 126 IsaInfo::streamIsaVersion(getGlobalSTI(), ExpectedTargetOS); 127 128 getTargetStreamer()->EmitDirectiveAMDGCNTarget(ExpectedTarget); 129 } 130 131 if (TM.getTargetTriple().getOS() != Triple::AMDHSA && 132 TM.getTargetTriple().getOS() != Triple::AMDPAL) 133 return; 134 135 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) 136 HSAMetadataStream->begin(M); 137 138 if (TM.getTargetTriple().getOS() == Triple::AMDPAL) 139 readPALMetadata(M); 140 141 if (IsaInfo::hasCodeObjectV3(getGlobalSTI())) 142 return; 143 144 // HSA emits NT_AMDGPU_HSA_CODE_OBJECT_VERSION for code objects v2. 145 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) 146 getTargetStreamer()->EmitDirectiveHSACodeObjectVersion(2, 1); 147 148 // HSA and PAL emit NT_AMDGPU_HSA_ISA for code objects v2. 149 IsaVersion Version = getIsaVersion(getGlobalSTI()->getCPU()); 150 getTargetStreamer()->EmitDirectiveHSACodeObjectISA( 151 Version.Major, Version.Minor, Version.Stepping, "AMD", "AMDGPU"); 152 } 153 154 void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) { 155 // Following code requires TargetStreamer to be present. 156 if (!getTargetStreamer()) 157 return; 158 159 if (!IsaInfo::hasCodeObjectV3(getGlobalSTI())) { 160 // Emit ISA Version (NT_AMD_AMDGPU_ISA). 161 std::string ISAVersionString; 162 raw_string_ostream ISAVersionStream(ISAVersionString); 163 IsaInfo::streamIsaVersion(getGlobalSTI(), ISAVersionStream); 164 getTargetStreamer()->EmitISAVersion(ISAVersionStream.str()); 165 } 166 167 // Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA). 168 if (TM.getTargetTriple().getOS() == Triple::AMDHSA) { 169 HSAMetadataStream->end(); 170 bool Success = HSAMetadataStream->emitTo(*getTargetStreamer()); 171 (void)Success; 172 assert(Success && "Malformed HSA Metadata"); 173 } 174 175 if (!IsaInfo::hasCodeObjectV3(getGlobalSTI())) { 176 // Emit PAL Metadata (NT_AMD_AMDGPU_PAL_METADATA). 177 if (TM.getTargetTriple().getOS() == Triple::AMDPAL) { 178 // Copy the PAL metadata from the map where we collected it into a vector, 179 // then write it as a .note. 180 PALMD::Metadata PALMetadataVector; 181 for (auto i : PALMetadataMap) { 182 PALMetadataVector.push_back(i.first); 183 PALMetadataVector.push_back(i.second); 184 } 185 getTargetStreamer()->EmitPALMetadata(PALMetadataVector); 186 } 187 } 188 } 189 190 bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough( 191 const MachineBasicBlock *MBB) const { 192 if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB)) 193 return false; 194 195 if (MBB->empty()) 196 return true; 197 198 // If this is a block implementing a long branch, an expression relative to 199 // the start of the block is needed. to the start of the block. 200 // XXX - Is there a smarter way to check this? 201 return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64); 202 } 203 204 void AMDGPUAsmPrinter::EmitFunctionBodyStart() { 205 const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>(); 206 if (!MFI.isEntryFunction()) 207 return; 208 209 const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>(); 210 const Function &F = MF->getFunction(); 211 if (!STM.hasCodeObjectV3() && STM.isAmdHsaOrMesa(F) && 212 (F.getCallingConv() == CallingConv::AMDGPU_KERNEL || 213 F.getCallingConv() == CallingConv::SPIR_KERNEL)) { 214 amd_kernel_code_t KernelCode; 215 getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF); 216 getTargetStreamer()->EmitAMDKernelCodeT(KernelCode); 217 } 218 219 if (STM.isAmdHsaOS()) 220 HSAMetadataStream->emitKernel(*MF, CurrentProgramInfo); 221 } 222 223 void AMDGPUAsmPrinter::EmitFunctionBodyEnd() { 224 const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>(); 225 if (!MFI.isEntryFunction()) 226 return; 227 228 if (!IsaInfo::hasCodeObjectV3(getGlobalSTI()) || 229 TM.getTargetTriple().getOS() != Triple::AMDHSA) 230 return; 231 232 auto &Streamer = getTargetStreamer()->getStreamer(); 233 auto &Context = Streamer.getContext(); 234 auto &ObjectFileInfo = *Context.getObjectFileInfo(); 235 auto &ReadOnlySection = *ObjectFileInfo.getReadOnlySection(); 236 237 Streamer.PushSection(); 238 Streamer.SwitchSection(&ReadOnlySection); 239 240 // CP microcode requires the kernel descriptor to be allocated on 64 byte 241 // alignment. 242 Streamer.EmitValueToAlignment(64, 0, 1, 0); 243 if (ReadOnlySection.getAlignment() < 64) 244 ReadOnlySection.setAlignment(64); 245 246 const MCSubtargetInfo &STI = MF->getSubtarget(); 247 248 SmallString<128> KernelName; 249 getNameWithPrefix(KernelName, &MF->getFunction()); 250 getTargetStreamer()->EmitAmdhsaKernelDescriptor( 251 STI, KernelName, getAmdhsaKernelDescriptor(*MF, CurrentProgramInfo), 252 CurrentProgramInfo.NumVGPRsForWavesPerEU, 253 CurrentProgramInfo.NumSGPRsForWavesPerEU - 254 IsaInfo::getNumExtraSGPRs(&STI, 255 CurrentProgramInfo.VCCUsed, 256 CurrentProgramInfo.FlatUsed), 257 CurrentProgramInfo.VCCUsed, CurrentProgramInfo.FlatUsed, 258 hasXNACK(STI)); 259 260 Streamer.PopSection(); 261 } 262 263 void AMDGPUAsmPrinter::EmitFunctionEntryLabel() { 264 if (IsaInfo::hasCodeObjectV3(getGlobalSTI()) && 265 TM.getTargetTriple().getOS() == Triple::AMDHSA) { 266 AsmPrinter::EmitFunctionEntryLabel(); 267 return; 268 } 269 270 const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 271 const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>(); 272 if (MFI->isEntryFunction() && STM.isAmdHsaOrMesa(MF->getFunction())) { 273 SmallString<128> SymbolName; 274 getNameWithPrefix(SymbolName, &MF->getFunction()), 275 getTargetStreamer()->EmitAMDGPUSymbolType( 276 SymbolName, ELF::STT_AMDGPU_HSA_KERNEL); 277 } 278 if (STM.dumpCode()) { 279 // Disassemble function name label to text. 280 DisasmLines.push_back(MF->getName().str() + ":"); 281 DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); 282 HexLines.push_back(""); 283 } 284 285 AsmPrinter::EmitFunctionEntryLabel(); 286 } 287 288 void AMDGPUAsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 289 const GCNSubtarget &STI = MBB.getParent()->getSubtarget<GCNSubtarget>(); 290 if (STI.dumpCode() && !isBlockOnlyReachableByFallthrough(&MBB)) { 291 // Write a line for the basic block label if it is not only fallthrough. 292 DisasmLines.push_back( 293 (Twine("BB") + Twine(getFunctionNumber()) 294 + "_" + Twine(MBB.getNumber()) + ":").str()); 295 DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size()); 296 HexLines.push_back(""); 297 } 298 AsmPrinter::EmitBasicBlockStart(MBB); 299 } 300 301 void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 302 303 // Group segment variables aren't emitted in HSA. 304 if (AMDGPU::isGroupSegment(GV)) 305 return; 306 307 AsmPrinter::EmitGlobalVariable(GV); 308 } 309 310 bool AMDGPUAsmPrinter::doFinalization(Module &M) { 311 CallGraphResourceInfo.clear(); 312 return AsmPrinter::doFinalization(M); 313 } 314 315 // For the amdpal OS type, read the amdgpu.pal.metadata supplied by the 316 // frontend into our PALMetadataMap, ready for per-function modification. It 317 // is a NamedMD containing an MDTuple containing a number of MDNodes each of 318 // which is an integer value, and each two integer values forms a key=value 319 // pair that we store as PALMetadataMap[key]=value in the map. 320 void AMDGPUAsmPrinter::readPALMetadata(Module &M) { 321 auto NamedMD = M.getNamedMetadata("amdgpu.pal.metadata"); 322 if (!NamedMD || !NamedMD->getNumOperands()) 323 return; 324 auto Tuple = dyn_cast<MDTuple>(NamedMD->getOperand(0)); 325 if (!Tuple) 326 return; 327 for (unsigned I = 0, E = Tuple->getNumOperands() & -2; I != E; I += 2) { 328 auto Key = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I)); 329 auto Val = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I + 1)); 330 if (!Key || !Val) 331 continue; 332 PALMetadataMap[Key->getZExtValue()] = Val->getZExtValue(); 333 } 334 } 335 336 // Print comments that apply to both callable functions and entry points. 337 void AMDGPUAsmPrinter::emitCommonFunctionComments( 338 uint32_t NumVGPR, 339 uint32_t NumSGPR, 340 uint64_t ScratchSize, 341 uint64_t CodeSize, 342 const AMDGPUMachineFunction *MFI) { 343 OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false); 344 OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false); 345 OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false); 346 OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false); 347 OutStreamer->emitRawComment(" MemoryBound: " + Twine(MFI->isMemoryBound()), 348 false); 349 } 350 351 uint16_t AMDGPUAsmPrinter::getAmdhsaKernelCodeProperties( 352 const MachineFunction &MF) const { 353 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 354 uint16_t KernelCodeProperties = 0; 355 356 if (MFI.hasPrivateSegmentBuffer()) { 357 KernelCodeProperties |= 358 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; 359 } 360 if (MFI.hasDispatchPtr()) { 361 KernelCodeProperties |= 362 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 363 } 364 if (MFI.hasQueuePtr()) { 365 KernelCodeProperties |= 366 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; 367 } 368 if (MFI.hasKernargSegmentPtr()) { 369 KernelCodeProperties |= 370 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; 371 } 372 if (MFI.hasDispatchID()) { 373 KernelCodeProperties |= 374 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; 375 } 376 if (MFI.hasFlatScratchInit()) { 377 KernelCodeProperties |= 378 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; 379 } 380 381 return KernelCodeProperties; 382 } 383 384 amdhsa::kernel_descriptor_t AMDGPUAsmPrinter::getAmdhsaKernelDescriptor( 385 const MachineFunction &MF, 386 const SIProgramInfo &PI) const { 387 amdhsa::kernel_descriptor_t KernelDescriptor; 388 memset(&KernelDescriptor, 0x0, sizeof(KernelDescriptor)); 389 390 assert(isUInt<32>(PI.ScratchSize)); 391 assert(isUInt<32>(PI.ComputePGMRSrc1)); 392 assert(isUInt<32>(PI.ComputePGMRSrc2)); 393 394 KernelDescriptor.group_segment_fixed_size = PI.LDSSize; 395 KernelDescriptor.private_segment_fixed_size = PI.ScratchSize; 396 KernelDescriptor.compute_pgm_rsrc1 = PI.ComputePGMRSrc1; 397 KernelDescriptor.compute_pgm_rsrc2 = PI.ComputePGMRSrc2; 398 KernelDescriptor.kernel_code_properties = getAmdhsaKernelCodeProperties(MF); 399 400 return KernelDescriptor; 401 } 402 403 bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 404 CurrentProgramInfo = SIProgramInfo(); 405 406 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); 407 408 // The starting address of all shader programs must be 256 bytes aligned. 409 // Regular functions just need the basic required instruction alignment. 410 MF.setAlignment(MFI->isEntryFunction() ? 8 : 2); 411 412 SetupMachineFunction(MF); 413 414 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 415 MCContext &Context = getObjFileLowering().getContext(); 416 // FIXME: This should be an explicit check for Mesa. 417 if (!STM.isAmdHsaOS() && !STM.isAmdPalOS()) { 418 MCSectionELF *ConfigSection = 419 Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0); 420 OutStreamer->SwitchSection(ConfigSection); 421 } 422 423 if (MFI->isEntryFunction()) { 424 getSIProgramInfo(CurrentProgramInfo, MF); 425 } else { 426 auto I = CallGraphResourceInfo.insert( 427 std::make_pair(&MF.getFunction(), SIFunctionResourceInfo())); 428 SIFunctionResourceInfo &Info = I.first->second; 429 assert(I.second && "should only be called once per function"); 430 Info = analyzeResourceUsage(MF); 431 } 432 433 if (STM.isAmdPalOS()) 434 EmitPALMetadata(MF, CurrentProgramInfo); 435 else if (!STM.isAmdHsaOS()) { 436 EmitProgramInfoSI(MF, CurrentProgramInfo); 437 } 438 439 DisasmLines.clear(); 440 HexLines.clear(); 441 DisasmLineMaxLen = 0; 442 443 EmitFunctionBody(); 444 445 if (isVerbose()) { 446 MCSectionELF *CommentSection = 447 Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0); 448 OutStreamer->SwitchSection(CommentSection); 449 450 if (!MFI->isEntryFunction()) { 451 OutStreamer->emitRawComment(" Function info:", false); 452 SIFunctionResourceInfo &Info = CallGraphResourceInfo[&MF.getFunction()]; 453 emitCommonFunctionComments( 454 Info.NumVGPR, 455 Info.getTotalNumSGPRs(MF.getSubtarget<GCNSubtarget>()), 456 Info.PrivateSegmentSize, 457 getFunctionCodeSize(MF), MFI); 458 return false; 459 } 460 461 OutStreamer->emitRawComment(" Kernel info:", false); 462 emitCommonFunctionComments(CurrentProgramInfo.NumVGPR, 463 CurrentProgramInfo.NumSGPR, 464 CurrentProgramInfo.ScratchSize, 465 getFunctionCodeSize(MF), MFI); 466 467 OutStreamer->emitRawComment( 468 " FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false); 469 OutStreamer->emitRawComment( 470 " IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false); 471 OutStreamer->emitRawComment( 472 " LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) + 473 " bytes/workgroup (compile time only)", false); 474 475 OutStreamer->emitRawComment( 476 " SGPRBlocks: " + Twine(CurrentProgramInfo.SGPRBlocks), false); 477 OutStreamer->emitRawComment( 478 " VGPRBlocks: " + Twine(CurrentProgramInfo.VGPRBlocks), false); 479 480 OutStreamer->emitRawComment( 481 " NumSGPRsForWavesPerEU: " + 482 Twine(CurrentProgramInfo.NumSGPRsForWavesPerEU), false); 483 OutStreamer->emitRawComment( 484 " NumVGPRsForWavesPerEU: " + 485 Twine(CurrentProgramInfo.NumVGPRsForWavesPerEU), false); 486 487 OutStreamer->emitRawComment( 488 " WaveLimiterHint : " + Twine(MFI->needsWaveLimiter()), false); 489 490 if (MF.getSubtarget<GCNSubtarget>().debuggerEmitPrologue()) { 491 OutStreamer->emitRawComment( 492 " DebuggerWavefrontPrivateSegmentOffsetSGPR: s" + 493 Twine(CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR), false); 494 OutStreamer->emitRawComment( 495 " DebuggerPrivateSegmentBufferSGPR: s" + 496 Twine(CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR), false); 497 } 498 499 OutStreamer->emitRawComment( 500 " COMPUTE_PGM_RSRC2:USER_SGPR: " + 501 Twine(G_00B84C_USER_SGPR(CurrentProgramInfo.ComputePGMRSrc2)), false); 502 OutStreamer->emitRawComment( 503 " COMPUTE_PGM_RSRC2:TRAP_HANDLER: " + 504 Twine(G_00B84C_TRAP_HANDLER(CurrentProgramInfo.ComputePGMRSrc2)), false); 505 OutStreamer->emitRawComment( 506 " COMPUTE_PGM_RSRC2:TGID_X_EN: " + 507 Twine(G_00B84C_TGID_X_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 508 OutStreamer->emitRawComment( 509 " COMPUTE_PGM_RSRC2:TGID_Y_EN: " + 510 Twine(G_00B84C_TGID_Y_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 511 OutStreamer->emitRawComment( 512 " COMPUTE_PGM_RSRC2:TGID_Z_EN: " + 513 Twine(G_00B84C_TGID_Z_EN(CurrentProgramInfo.ComputePGMRSrc2)), false); 514 OutStreamer->emitRawComment( 515 " COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " + 516 Twine(G_00B84C_TIDIG_COMP_CNT(CurrentProgramInfo.ComputePGMRSrc2)), 517 false); 518 } 519 520 if (STM.dumpCode()) { 521 522 OutStreamer->SwitchSection( 523 Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0)); 524 525 for (size_t i = 0; i < DisasmLines.size(); ++i) { 526 std::string Comment = "\n"; 527 if (!HexLines[i].empty()) { 528 Comment = std::string(DisasmLineMaxLen - DisasmLines[i].size(), ' '); 529 Comment += " ; " + HexLines[i] + "\n"; 530 } 531 532 OutStreamer->EmitBytes(StringRef(DisasmLines[i])); 533 OutStreamer->EmitBytes(StringRef(Comment)); 534 } 535 } 536 537 return false; 538 } 539 540 uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const { 541 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 542 const SIInstrInfo *TII = STM.getInstrInfo(); 543 544 uint64_t CodeSize = 0; 545 546 for (const MachineBasicBlock &MBB : MF) { 547 for (const MachineInstr &MI : MBB) { 548 // TODO: CodeSize should account for multiple functions. 549 550 // TODO: Should we count size of debug info? 551 if (MI.isDebugInstr()) 552 continue; 553 554 CodeSize += TII->getInstSizeInBytes(MI); 555 } 556 } 557 558 return CodeSize; 559 } 560 561 static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI, 562 const SIInstrInfo &TII, 563 unsigned Reg) { 564 for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) { 565 if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent())) 566 return true; 567 } 568 569 return false; 570 } 571 572 int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumSGPRs( 573 const GCNSubtarget &ST) const { 574 return NumExplicitSGPR + IsaInfo::getNumExtraSGPRs(&ST, 575 UsesVCC, UsesFlatScratch); 576 } 577 578 AMDGPUAsmPrinter::SIFunctionResourceInfo AMDGPUAsmPrinter::analyzeResourceUsage( 579 const MachineFunction &MF) const { 580 SIFunctionResourceInfo Info; 581 582 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 583 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 584 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 585 const MachineRegisterInfo &MRI = MF.getRegInfo(); 586 const SIInstrInfo *TII = ST.getInstrInfo(); 587 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 588 589 Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) || 590 MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI); 591 592 // Even if FLAT_SCRATCH is implicitly used, it has no effect if flat 593 // instructions aren't used to access the scratch buffer. Inline assembly may 594 // need it though. 595 // 596 // If we only have implicit uses of flat_scr on flat instructions, it is not 597 // really needed. 598 if (Info.UsesFlatScratch && !MFI->hasFlatScratchInit() && 599 (!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) && 600 !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) && 601 !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) { 602 Info.UsesFlatScratch = false; 603 } 604 605 Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects(); 606 Info.PrivateSegmentSize = FrameInfo.getStackSize(); 607 if (MFI->isStackRealigned()) 608 Info.PrivateSegmentSize += FrameInfo.getMaxAlignment(); 609 610 611 Info.UsesVCC = MRI.isPhysRegUsed(AMDGPU::VCC_LO) || 612 MRI.isPhysRegUsed(AMDGPU::VCC_HI); 613 614 // If there are no calls, MachineRegisterInfo can tell us the used register 615 // count easily. 616 // A tail call isn't considered a call for MachineFrameInfo's purposes. 617 if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) { 618 MCPhysReg HighestVGPRReg = AMDGPU::NoRegister; 619 for (MCPhysReg Reg : reverse(AMDGPU::VGPR_32RegClass.getRegisters())) { 620 if (MRI.isPhysRegUsed(Reg)) { 621 HighestVGPRReg = Reg; 622 break; 623 } 624 } 625 626 MCPhysReg HighestSGPRReg = AMDGPU::NoRegister; 627 for (MCPhysReg Reg : reverse(AMDGPU::SGPR_32RegClass.getRegisters())) { 628 if (MRI.isPhysRegUsed(Reg)) { 629 HighestSGPRReg = Reg; 630 break; 631 } 632 } 633 634 // We found the maximum register index. They start at 0, so add one to get the 635 // number of registers. 636 Info.NumVGPR = HighestVGPRReg == AMDGPU::NoRegister ? 0 : 637 TRI.getHWRegIndex(HighestVGPRReg) + 1; 638 Info.NumExplicitSGPR = HighestSGPRReg == AMDGPU::NoRegister ? 0 : 639 TRI.getHWRegIndex(HighestSGPRReg) + 1; 640 641 return Info; 642 } 643 644 int32_t MaxVGPR = -1; 645 int32_t MaxSGPR = -1; 646 uint64_t CalleeFrameSize = 0; 647 648 for (const MachineBasicBlock &MBB : MF) { 649 for (const MachineInstr &MI : MBB) { 650 // TODO: Check regmasks? Do they occur anywhere except calls? 651 for (const MachineOperand &MO : MI.operands()) { 652 unsigned Width = 0; 653 bool IsSGPR = false; 654 655 if (!MO.isReg()) 656 continue; 657 658 unsigned Reg = MO.getReg(); 659 switch (Reg) { 660 case AMDGPU::EXEC: 661 case AMDGPU::EXEC_LO: 662 case AMDGPU::EXEC_HI: 663 case AMDGPU::SCC: 664 case AMDGPU::M0: 665 case AMDGPU::SRC_SHARED_BASE: 666 case AMDGPU::SRC_SHARED_LIMIT: 667 case AMDGPU::SRC_PRIVATE_BASE: 668 case AMDGPU::SRC_PRIVATE_LIMIT: 669 continue; 670 671 case AMDGPU::NoRegister: 672 assert(MI.isDebugInstr()); 673 continue; 674 675 case AMDGPU::VCC: 676 case AMDGPU::VCC_LO: 677 case AMDGPU::VCC_HI: 678 Info.UsesVCC = true; 679 continue; 680 681 case AMDGPU::FLAT_SCR: 682 case AMDGPU::FLAT_SCR_LO: 683 case AMDGPU::FLAT_SCR_HI: 684 continue; 685 686 case AMDGPU::XNACK_MASK: 687 case AMDGPU::XNACK_MASK_LO: 688 case AMDGPU::XNACK_MASK_HI: 689 llvm_unreachable("xnack_mask registers should not be used"); 690 691 case AMDGPU::LDS_DIRECT: 692 llvm_unreachable("lds_direct register should not be used"); 693 694 case AMDGPU::TBA: 695 case AMDGPU::TBA_LO: 696 case AMDGPU::TBA_HI: 697 case AMDGPU::TMA: 698 case AMDGPU::TMA_LO: 699 case AMDGPU::TMA_HI: 700 llvm_unreachable("trap handler registers should not be used"); 701 702 default: 703 break; 704 } 705 706 if (AMDGPU::SReg_32RegClass.contains(Reg)) { 707 assert(!AMDGPU::TTMP_32RegClass.contains(Reg) && 708 "trap handler registers should not be used"); 709 IsSGPR = true; 710 Width = 1; 711 } else if (AMDGPU::VGPR_32RegClass.contains(Reg)) { 712 IsSGPR = false; 713 Width = 1; 714 } else if (AMDGPU::SReg_64RegClass.contains(Reg)) { 715 assert(!AMDGPU::TTMP_64RegClass.contains(Reg) && 716 "trap handler registers should not be used"); 717 IsSGPR = true; 718 Width = 2; 719 } else if (AMDGPU::VReg_64RegClass.contains(Reg)) { 720 IsSGPR = false; 721 Width = 2; 722 } else if (AMDGPU::VReg_96RegClass.contains(Reg)) { 723 IsSGPR = false; 724 Width = 3; 725 } else if (AMDGPU::SReg_128RegClass.contains(Reg)) { 726 assert(!AMDGPU::TTMP_128RegClass.contains(Reg) && 727 "trap handler registers should not be used"); 728 IsSGPR = true; 729 Width = 4; 730 } else if (AMDGPU::VReg_128RegClass.contains(Reg)) { 731 IsSGPR = false; 732 Width = 4; 733 } else if (AMDGPU::SReg_256RegClass.contains(Reg)) { 734 assert(!AMDGPU::TTMP_256RegClass.contains(Reg) && 735 "trap handler registers should not be used"); 736 IsSGPR = true; 737 Width = 8; 738 } else if (AMDGPU::VReg_256RegClass.contains(Reg)) { 739 IsSGPR = false; 740 Width = 8; 741 } else if (AMDGPU::SReg_512RegClass.contains(Reg)) { 742 assert(!AMDGPU::TTMP_512RegClass.contains(Reg) && 743 "trap handler registers should not be used"); 744 IsSGPR = true; 745 Width = 16; 746 } else if (AMDGPU::VReg_512RegClass.contains(Reg)) { 747 IsSGPR = false; 748 Width = 16; 749 } else { 750 llvm_unreachable("Unknown register class"); 751 } 752 unsigned HWReg = TRI.getHWRegIndex(Reg); 753 int MaxUsed = HWReg + Width - 1; 754 if (IsSGPR) { 755 MaxSGPR = MaxUsed > MaxSGPR ? MaxUsed : MaxSGPR; 756 } else { 757 MaxVGPR = MaxUsed > MaxVGPR ? MaxUsed : MaxVGPR; 758 } 759 } 760 761 if (MI.isCall()) { 762 // Pseudo used just to encode the underlying global. Is there a better 763 // way to track this? 764 765 const MachineOperand *CalleeOp 766 = TII->getNamedOperand(MI, AMDGPU::OpName::callee); 767 const Function *Callee = cast<Function>(CalleeOp->getGlobal()); 768 if (Callee->isDeclaration()) { 769 // If this is a call to an external function, we can't do much. Make 770 // conservative guesses. 771 772 // 48 SGPRs - vcc, - flat_scr, -xnack 773 int MaxSGPRGuess = 774 47 - IsaInfo::getNumExtraSGPRs(&ST, true, ST.hasFlatAddressSpace()); 775 MaxSGPR = std::max(MaxSGPR, MaxSGPRGuess); 776 MaxVGPR = std::max(MaxVGPR, 23); 777 778 CalleeFrameSize = std::max(CalleeFrameSize, UINT64_C(16384)); 779 Info.UsesVCC = true; 780 Info.UsesFlatScratch = ST.hasFlatAddressSpace(); 781 Info.HasDynamicallySizedStack = true; 782 } else { 783 // We force CodeGen to run in SCC order, so the callee's register 784 // usage etc. should be the cumulative usage of all callees. 785 auto I = CallGraphResourceInfo.find(Callee); 786 assert(I != CallGraphResourceInfo.end() && 787 "callee should have been handled before caller"); 788 789 MaxSGPR = std::max(I->second.NumExplicitSGPR - 1, MaxSGPR); 790 MaxVGPR = std::max(I->second.NumVGPR - 1, MaxVGPR); 791 CalleeFrameSize 792 = std::max(I->second.PrivateSegmentSize, CalleeFrameSize); 793 Info.UsesVCC |= I->second.UsesVCC; 794 Info.UsesFlatScratch |= I->second.UsesFlatScratch; 795 Info.HasDynamicallySizedStack |= I->second.HasDynamicallySizedStack; 796 Info.HasRecursion |= I->second.HasRecursion; 797 } 798 799 if (!Callee->doesNotRecurse()) 800 Info.HasRecursion = true; 801 } 802 } 803 } 804 805 Info.NumExplicitSGPR = MaxSGPR + 1; 806 Info.NumVGPR = MaxVGPR + 1; 807 Info.PrivateSegmentSize += CalleeFrameSize; 808 809 return Info; 810 } 811 812 void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo, 813 const MachineFunction &MF) { 814 SIFunctionResourceInfo Info = analyzeResourceUsage(MF); 815 816 ProgInfo.NumVGPR = Info.NumVGPR; 817 ProgInfo.NumSGPR = Info.NumExplicitSGPR; 818 ProgInfo.ScratchSize = Info.PrivateSegmentSize; 819 ProgInfo.VCCUsed = Info.UsesVCC; 820 ProgInfo.FlatUsed = Info.UsesFlatScratch; 821 ProgInfo.DynamicCallStack = Info.HasDynamicallySizedStack || Info.HasRecursion; 822 823 if (!isUInt<32>(ProgInfo.ScratchSize)) { 824 DiagnosticInfoStackSize DiagStackSize(MF.getFunction(), 825 ProgInfo.ScratchSize, DS_Error); 826 MF.getFunction().getContext().diagnose(DiagStackSize); 827 } 828 829 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 830 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 831 const SIInstrInfo *TII = STM.getInstrInfo(); 832 const SIRegisterInfo *RI = &TII->getRegisterInfo(); 833 834 // TODO(scott.linder): The calculations related to SGPR/VGPR blocks are 835 // duplicated in part in AMDGPUAsmParser::calculateGPRBlocks, and could be 836 // unified. 837 unsigned ExtraSGPRs = IsaInfo::getNumExtraSGPRs( 838 &STM, ProgInfo.VCCUsed, ProgInfo.FlatUsed); 839 840 // Check the addressable register limit before we add ExtraSGPRs. 841 if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && 842 !STM.hasSGPRInitBug()) { 843 unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); 844 if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { 845 // This can happen due to a compiler bug or when using inline asm. 846 LLVMContext &Ctx = MF.getFunction().getContext(); 847 DiagnosticInfoResourceLimit Diag(MF.getFunction(), 848 "addressable scalar registers", 849 ProgInfo.NumSGPR, DS_Error, 850 DK_ResourceLimit, 851 MaxAddressableNumSGPRs); 852 Ctx.diagnose(Diag); 853 ProgInfo.NumSGPR = MaxAddressableNumSGPRs - 1; 854 } 855 } 856 857 // Account for extra SGPRs and VGPRs reserved for debugger use. 858 ProgInfo.NumSGPR += ExtraSGPRs; 859 860 // Ensure there are enough SGPRs and VGPRs for wave dispatch, where wave 861 // dispatch registers are function args. 862 unsigned WaveDispatchNumSGPR = 0, WaveDispatchNumVGPR = 0; 863 for (auto &Arg : MF.getFunction().args()) { 864 unsigned NumRegs = (Arg.getType()->getPrimitiveSizeInBits() + 31) / 32; 865 if (Arg.hasAttribute(Attribute::InReg)) 866 WaveDispatchNumSGPR += NumRegs; 867 else 868 WaveDispatchNumVGPR += NumRegs; 869 } 870 ProgInfo.NumSGPR = std::max(ProgInfo.NumSGPR, WaveDispatchNumSGPR); 871 ProgInfo.NumVGPR = std::max(ProgInfo.NumVGPR, WaveDispatchNumVGPR); 872 873 // Adjust number of registers used to meet default/requested minimum/maximum 874 // number of waves per execution unit request. 875 ProgInfo.NumSGPRsForWavesPerEU = std::max( 876 std::max(ProgInfo.NumSGPR, 1u), STM.getMinNumSGPRs(MFI->getMaxWavesPerEU())); 877 ProgInfo.NumVGPRsForWavesPerEU = std::max( 878 std::max(ProgInfo.NumVGPR, 1u), STM.getMinNumVGPRs(MFI->getMaxWavesPerEU())); 879 880 if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS || 881 STM.hasSGPRInitBug()) { 882 unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs(); 883 if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) { 884 // This can happen due to a compiler bug or when using inline asm to use 885 // the registers which are usually reserved for vcc etc. 886 LLVMContext &Ctx = MF.getFunction().getContext(); 887 DiagnosticInfoResourceLimit Diag(MF.getFunction(), 888 "scalar registers", 889 ProgInfo.NumSGPR, DS_Error, 890 DK_ResourceLimit, 891 MaxAddressableNumSGPRs); 892 Ctx.diagnose(Diag); 893 ProgInfo.NumSGPR = MaxAddressableNumSGPRs; 894 ProgInfo.NumSGPRsForWavesPerEU = MaxAddressableNumSGPRs; 895 } 896 } 897 898 if (STM.hasSGPRInitBug()) { 899 ProgInfo.NumSGPR = 900 AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 901 ProgInfo.NumSGPRsForWavesPerEU = 902 AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 903 } 904 905 if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) { 906 LLVMContext &Ctx = MF.getFunction().getContext(); 907 DiagnosticInfoResourceLimit Diag(MF.getFunction(), "user SGPRs", 908 MFI->getNumUserSGPRs(), DS_Error); 909 Ctx.diagnose(Diag); 910 } 911 912 if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) { 913 LLVMContext &Ctx = MF.getFunction().getContext(); 914 DiagnosticInfoResourceLimit Diag(MF.getFunction(), "local memory", 915 MFI->getLDSSize(), DS_Error); 916 Ctx.diagnose(Diag); 917 } 918 919 ProgInfo.SGPRBlocks = IsaInfo::getNumSGPRBlocks( 920 &STM, ProgInfo.NumSGPRsForWavesPerEU); 921 ProgInfo.VGPRBlocks = IsaInfo::getNumVGPRBlocks( 922 &STM, ProgInfo.NumVGPRsForWavesPerEU); 923 924 // Update DebuggerWavefrontPrivateSegmentOffsetSGPR and 925 // DebuggerPrivateSegmentBufferSGPR fields if "amdgpu-debugger-emit-prologue" 926 // attribute was requested. 927 if (STM.debuggerEmitPrologue()) { 928 ProgInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR = 929 RI->getHWRegIndex(MFI->getScratchWaveOffsetReg()); 930 ProgInfo.DebuggerPrivateSegmentBufferSGPR = 931 RI->getHWRegIndex(MFI->getScratchRSrcReg()); 932 } 933 934 // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode 935 // register. 936 ProgInfo.FloatMode = getFPMode(MF); 937 938 ProgInfo.IEEEMode = STM.enableIEEEBit(MF); 939 940 // Make clamp modifier on NaN input returns 0. 941 ProgInfo.DX10Clamp = STM.enableDX10Clamp(); 942 943 unsigned LDSAlignShift; 944 if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 945 // LDS is allocated in 64 dword blocks. 946 LDSAlignShift = 8; 947 } else { 948 // LDS is allocated in 128 dword blocks. 949 LDSAlignShift = 9; 950 } 951 952 unsigned LDSSpillSize = 953 MFI->getLDSWaveSpillSize() * MFI->getMaxFlatWorkGroupSize(); 954 955 ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize; 956 ProgInfo.LDSBlocks = 957 alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift; 958 959 // Scratch is allocated in 256 dword blocks. 960 unsigned ScratchAlignShift = 10; 961 // We need to program the hardware with the amount of scratch memory that 962 // is used by the entire wave. ProgInfo.ScratchSize is the amount of 963 // scratch memory used per thread. 964 ProgInfo.ScratchBlocks = 965 alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(), 966 1ULL << ScratchAlignShift) >> 967 ScratchAlignShift; 968 969 ProgInfo.ComputePGMRSrc1 = 970 S_00B848_VGPRS(ProgInfo.VGPRBlocks) | 971 S_00B848_SGPRS(ProgInfo.SGPRBlocks) | 972 S_00B848_PRIORITY(ProgInfo.Priority) | 973 S_00B848_FLOAT_MODE(ProgInfo.FloatMode) | 974 S_00B848_PRIV(ProgInfo.Priv) | 975 S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) | 976 S_00B848_DEBUG_MODE(ProgInfo.DebugMode) | 977 S_00B848_IEEE_MODE(ProgInfo.IEEEMode); 978 979 // 0 = X, 1 = XY, 2 = XYZ 980 unsigned TIDIGCompCnt = 0; 981 if (MFI->hasWorkItemIDZ()) 982 TIDIGCompCnt = 2; 983 else if (MFI->hasWorkItemIDY()) 984 TIDIGCompCnt = 1; 985 986 ProgInfo.ComputePGMRSrc2 = 987 S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) | 988 S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) | 989 // For AMDHSA, TRAP_HANDLER must be zero, as it is populated by the CP. 990 S_00B84C_TRAP_HANDLER(STM.isAmdHsaOS() ? 0 : STM.isTrapHandlerEnabled()) | 991 S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) | 992 S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) | 993 S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) | 994 S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) | 995 S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) | 996 S_00B84C_EXCP_EN_MSB(0) | 997 // For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP. 998 S_00B84C_LDS_SIZE(STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks) | 999 S_00B84C_EXCP_EN(0); 1000 } 1001 1002 static unsigned getRsrcReg(CallingConv::ID CallConv) { 1003 switch (CallConv) { 1004 default: LLVM_FALLTHROUGH; 1005 case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1; 1006 case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS; 1007 case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS; 1008 case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES; 1009 case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS; 1010 case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS; 1011 case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS; 1012 } 1013 } 1014 1015 void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF, 1016 const SIProgramInfo &CurrentProgramInfo) { 1017 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1018 unsigned RsrcReg = getRsrcReg(MF.getFunction().getCallingConv()); 1019 1020 if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { 1021 OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4); 1022 1023 OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc1, 4); 1024 1025 OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4); 1026 OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc2, 4); 1027 1028 OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4); 1029 OutStreamer->EmitIntValue(S_00B860_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); 1030 1031 // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 = 1032 // 0" comment but I don't see a corresponding field in the register spec. 1033 } else { 1034 OutStreamer->EmitIntValue(RsrcReg, 4); 1035 OutStreamer->EmitIntValue(S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | 1036 S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks), 4); 1037 OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4); 1038 OutStreamer->EmitIntValue( 1039 S_0286E8_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4); 1040 } 1041 1042 if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { 1043 OutStreamer->EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4); 1044 OutStreamer->EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks), 4); 1045 OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4); 1046 OutStreamer->EmitIntValue(MFI->getPSInputEnable(), 4); 1047 OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4); 1048 OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4); 1049 } 1050 1051 OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4); 1052 OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4); 1053 OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4); 1054 OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4); 1055 } 1056 1057 // This is the equivalent of EmitProgramInfoSI above, but for when the OS type 1058 // is AMDPAL. It stores each compute/SPI register setting and other PAL 1059 // metadata items into the PALMetadataMap, combining with any provided by the 1060 // frontend as LLVM metadata. Once all functions are written, PALMetadataMap is 1061 // then written as a single block in the .note section. 1062 void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF, 1063 const SIProgramInfo &CurrentProgramInfo) { 1064 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1065 // Given the calling convention, calculate the register number for rsrc1. In 1066 // principle the register number could change in future hardware, but we know 1067 // it is the same for gfx6-9 (except that LS and ES don't exist on gfx9), so 1068 // we can use the same fixed value that .AMDGPU.config has for Mesa. Note 1069 // that we use a register number rather than a byte offset, so we need to 1070 // divide by 4. 1071 unsigned Rsrc1Reg = getRsrcReg(MF.getFunction().getCallingConv()) / 4; 1072 unsigned Rsrc2Reg = Rsrc1Reg + 1; 1073 // Also calculate the PAL metadata key for *S_SCRATCH_SIZE. It can be used 1074 // with a constant offset to access any non-register shader-specific PAL 1075 // metadata key. 1076 unsigned ScratchSizeKey = PALMD::Key::CS_SCRATCH_SIZE; 1077 switch (MF.getFunction().getCallingConv()) { 1078 case CallingConv::AMDGPU_PS: 1079 ScratchSizeKey = PALMD::Key::PS_SCRATCH_SIZE; 1080 break; 1081 case CallingConv::AMDGPU_VS: 1082 ScratchSizeKey = PALMD::Key::VS_SCRATCH_SIZE; 1083 break; 1084 case CallingConv::AMDGPU_GS: 1085 ScratchSizeKey = PALMD::Key::GS_SCRATCH_SIZE; 1086 break; 1087 case CallingConv::AMDGPU_ES: 1088 ScratchSizeKey = PALMD::Key::ES_SCRATCH_SIZE; 1089 break; 1090 case CallingConv::AMDGPU_HS: 1091 ScratchSizeKey = PALMD::Key::HS_SCRATCH_SIZE; 1092 break; 1093 case CallingConv::AMDGPU_LS: 1094 ScratchSizeKey = PALMD::Key::LS_SCRATCH_SIZE; 1095 break; 1096 } 1097 unsigned NumUsedVgprsKey = ScratchSizeKey + 1098 PALMD::Key::VS_NUM_USED_VGPRS - PALMD::Key::VS_SCRATCH_SIZE; 1099 unsigned NumUsedSgprsKey = ScratchSizeKey + 1100 PALMD::Key::VS_NUM_USED_SGPRS - PALMD::Key::VS_SCRATCH_SIZE; 1101 PALMetadataMap[NumUsedVgprsKey] = CurrentProgramInfo.NumVGPRsForWavesPerEU; 1102 PALMetadataMap[NumUsedSgprsKey] = CurrentProgramInfo.NumSGPRsForWavesPerEU; 1103 if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) { 1104 PALMetadataMap[Rsrc1Reg] |= CurrentProgramInfo.ComputePGMRSrc1; 1105 PALMetadataMap[Rsrc2Reg] |= CurrentProgramInfo.ComputePGMRSrc2; 1106 // ScratchSize is in bytes, 16 aligned. 1107 PALMetadataMap[ScratchSizeKey] |= 1108 alignTo(CurrentProgramInfo.ScratchSize, 16); 1109 } else { 1110 PALMetadataMap[Rsrc1Reg] |= S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) | 1111 S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks); 1112 if (CurrentProgramInfo.ScratchBlocks > 0) 1113 PALMetadataMap[Rsrc2Reg] |= S_00B84C_SCRATCH_EN(1); 1114 // ScratchSize is in bytes, 16 aligned. 1115 PALMetadataMap[ScratchSizeKey] |= 1116 alignTo(CurrentProgramInfo.ScratchSize, 16); 1117 } 1118 if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) { 1119 PALMetadataMap[Rsrc2Reg] |= 1120 S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks); 1121 PALMetadataMap[R_0286CC_SPI_PS_INPUT_ENA / 4] |= MFI->getPSInputEnable(); 1122 PALMetadataMap[R_0286D0_SPI_PS_INPUT_ADDR / 4] |= MFI->getPSInputAddr(); 1123 } 1124 } 1125 1126 // This is supposed to be log2(Size) 1127 static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) { 1128 switch (Size) { 1129 case 4: 1130 return AMD_ELEMENT_4_BYTES; 1131 case 8: 1132 return AMD_ELEMENT_8_BYTES; 1133 case 16: 1134 return AMD_ELEMENT_16_BYTES; 1135 default: 1136 llvm_unreachable("invalid private_element_size"); 1137 } 1138 } 1139 1140 void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out, 1141 const SIProgramInfo &CurrentProgramInfo, 1142 const MachineFunction &MF) const { 1143 const Function &F = MF.getFunction(); 1144 assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || 1145 F.getCallingConv() == CallingConv::SPIR_KERNEL); 1146 1147 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1148 const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>(); 1149 1150 AMDGPU::initDefaultAMDKernelCodeT(Out, &STM); 1151 1152 Out.compute_pgm_resource_registers = 1153 CurrentProgramInfo.ComputePGMRSrc1 | 1154 (CurrentProgramInfo.ComputePGMRSrc2 << 32); 1155 Out.code_properties = AMD_CODE_PROPERTY_IS_PTR64; 1156 1157 if (CurrentProgramInfo.DynamicCallStack) 1158 Out.code_properties |= AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK; 1159 1160 AMD_HSA_BITS_SET(Out.code_properties, 1161 AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE, 1162 getElementByteSizeValue(STM.getMaxPrivateElementSize())); 1163 1164 if (MFI->hasPrivateSegmentBuffer()) { 1165 Out.code_properties |= 1166 AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER; 1167 } 1168 1169 if (MFI->hasDispatchPtr()) 1170 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 1171 1172 if (MFI->hasQueuePtr()) 1173 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR; 1174 1175 if (MFI->hasKernargSegmentPtr()) 1176 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR; 1177 1178 if (MFI->hasDispatchID()) 1179 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID; 1180 1181 if (MFI->hasFlatScratchInit()) 1182 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT; 1183 1184 if (MFI->hasDispatchPtr()) 1185 Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR; 1186 1187 if (STM.debuggerSupported()) 1188 Out.code_properties |= AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED; 1189 1190 if (STM.isXNACKEnabled()) 1191 Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED; 1192 1193 unsigned MaxKernArgAlign; 1194 Out.kernarg_segment_byte_size = STM.getKernArgSegmentSize(F, MaxKernArgAlign); 1195 Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR; 1196 Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR; 1197 Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize; 1198 Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize; 1199 1200 // These alignment values are specified in powers of two, so alignment = 1201 // 2^n. The minimum alignment is 2^4 = 16. 1202 Out.kernarg_segment_alignment = std::max((size_t)4, 1203 countTrailingZeros(MaxKernArgAlign)); 1204 1205 if (STM.debuggerEmitPrologue()) { 1206 Out.debug_wavefront_private_segment_offset_sgpr = 1207 CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR; 1208 Out.debug_private_segment_buffer_sgpr = 1209 CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR; 1210 } 1211 } 1212 1213 bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, 1214 unsigned AsmVariant, 1215 const char *ExtraCode, raw_ostream &O) { 1216 // First try the generic code, which knows about modifiers like 'c' and 'n'. 1217 if (!AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O)) 1218 return false; 1219 1220 if (ExtraCode && ExtraCode[0]) { 1221 if (ExtraCode[1] != 0) 1222 return true; // Unknown modifier. 1223 1224 switch (ExtraCode[0]) { 1225 case 'r': 1226 break; 1227 default: 1228 return true; 1229 } 1230 } 1231 1232 // TODO: Should be able to support other operand types like globals. 1233 const MachineOperand &MO = MI->getOperand(OpNo); 1234 if (MO.isReg()) { 1235 AMDGPUInstPrinter::printRegOperand(MO.getReg(), O, 1236 *MF->getSubtarget().getRegisterInfo()); 1237 return false; 1238 } 1239 1240 return true; 1241 } 1242