1 //===-- AMDGPUAsmPrinter.cpp - AMDGPU assembly printer  -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 ///
11 /// The AMDGPUAsmPrinter is used to print both assembly string and also binary
12 /// code.  When passed an MCAsmStreamer it prints assembly and when passed
13 /// an MCObjectStreamer it outputs binary code.
14 //
15 //===----------------------------------------------------------------------===//
16 //
17 
18 #include "AMDGPUAsmPrinter.h"
19 #include "AMDGPU.h"
20 #include "AMDGPUSubtarget.h"
21 #include "AMDGPUTargetMachine.h"
22 #include "InstPrinter/AMDGPUInstPrinter.h"
23 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
24 #include "MCTargetDesc/AMDGPUTargetStreamer.h"
25 #include "R600AsmPrinter.h"
26 #include "R600Defines.h"
27 #include "R600MachineFunctionInfo.h"
28 #include "R600RegisterInfo.h"
29 #include "SIDefines.h"
30 #include "SIInstrInfo.h"
31 #include "SIMachineFunctionInfo.h"
32 #include "SIRegisterInfo.h"
33 #include "Utils/AMDGPUBaseInfo.h"
34 #include "llvm/BinaryFormat/ELF.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/IR/DiagnosticInfo.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCSectionELF.h"
39 #include "llvm/MC/MCStreamer.h"
40 #include "llvm/Support/AMDGPUMetadata.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/TargetParser.h"
43 #include "llvm/Support/TargetRegistry.h"
44 #include "llvm/Target/TargetLoweringObjectFile.h"
45 
46 using namespace llvm;
47 using namespace llvm::AMDGPU;
48 using namespace llvm::AMDGPU::HSAMD;
49 
50 // TODO: This should get the default rounding mode from the kernel. We just set
51 // the default here, but this could change if the OpenCL rounding mode pragmas
52 // are used.
53 //
54 // The denormal mode here should match what is reported by the OpenCL runtime
55 // for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but
56 // can also be override to flush with the -cl-denorms-are-zero compiler flag.
57 //
58 // AMD OpenCL only sets flush none and reports CL_FP_DENORM for double
59 // precision, and leaves single precision to flush all and does not report
60 // CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports
61 // CL_FP_DENORM for both.
62 //
63 // FIXME: It seems some instructions do not support single precision denormals
64 // regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32,
65 // and sin_f32, cos_f32 on most parts).
66 
67 // We want to use these instructions, and using fp32 denormals also causes
68 // instructions to run at the double precision rate for the device so it's
69 // probably best to just report no single precision denormals.
70 static uint32_t getFPMode(const MachineFunction &F) {
71   const GCNSubtarget& ST = F.getSubtarget<GCNSubtarget>();
72   // TODO: Is there any real use for the flush in only / flush out only modes?
73 
74   uint32_t FP32Denormals =
75     ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
76 
77   uint32_t FP64Denormals =
78     ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
79 
80   return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) |
81          FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) |
82          FP_DENORM_MODE_SP(FP32Denormals) |
83          FP_DENORM_MODE_DP(FP64Denormals);
84 }
85 
86 static AsmPrinter *
87 createAMDGPUAsmPrinterPass(TargetMachine &tm,
88                            std::unique_ptr<MCStreamer> &&Streamer) {
89   return new AMDGPUAsmPrinter(tm, std::move(Streamer));
90 }
91 
92 extern "C" void LLVMInitializeAMDGPUAsmPrinter() {
93   TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(),
94                                      llvm::createR600AsmPrinterPass);
95   TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(),
96                                      createAMDGPUAsmPrinterPass);
97 }
98 
99 AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM,
100                                    std::unique_ptr<MCStreamer> Streamer)
101   : AsmPrinter(TM, std::move(Streamer)) {
102     if (IsaInfo::hasCodeObjectV3(getGlobalSTI()))
103       HSAMetadataStream.reset(new MetadataStreamerV3());
104     else
105       HSAMetadataStream.reset(new MetadataStreamerV2());
106 }
107 
108 StringRef AMDGPUAsmPrinter::getPassName() const {
109   return "AMDGPU Assembly Printer";
110 }
111 
112 const MCSubtargetInfo *AMDGPUAsmPrinter::getGlobalSTI() const {
113   return TM.getMCSubtargetInfo();
114 }
115 
116 AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const {
117   if (!OutStreamer)
118     return nullptr;
119   return static_cast<AMDGPUTargetStreamer*>(OutStreamer->getTargetStreamer());
120 }
121 
122 void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) {
123   if (IsaInfo::hasCodeObjectV3(getGlobalSTI())) {
124     std::string ExpectedTarget;
125     raw_string_ostream ExpectedTargetOS(ExpectedTarget);
126     IsaInfo::streamIsaVersion(getGlobalSTI(), ExpectedTargetOS);
127 
128     getTargetStreamer()->EmitDirectiveAMDGCNTarget(ExpectedTarget);
129   }
130 
131   if (TM.getTargetTriple().getOS() != Triple::AMDHSA &&
132       TM.getTargetTriple().getOS() != Triple::AMDPAL)
133     return;
134 
135   if (TM.getTargetTriple().getOS() == Triple::AMDHSA)
136     HSAMetadataStream->begin(M);
137 
138   if (TM.getTargetTriple().getOS() == Triple::AMDPAL)
139     readPALMetadata(M);
140 
141   if (IsaInfo::hasCodeObjectV3(getGlobalSTI()))
142     return;
143 
144   // HSA emits NT_AMDGPU_HSA_CODE_OBJECT_VERSION for code objects v2.
145   if (TM.getTargetTriple().getOS() == Triple::AMDHSA)
146     getTargetStreamer()->EmitDirectiveHSACodeObjectVersion(2, 1);
147 
148   // HSA and PAL emit NT_AMDGPU_HSA_ISA for code objects v2.
149   IsaVersion Version = getIsaVersion(getGlobalSTI()->getCPU());
150   getTargetStreamer()->EmitDirectiveHSACodeObjectISA(
151       Version.Major, Version.Minor, Version.Stepping, "AMD", "AMDGPU");
152 }
153 
154 void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) {
155   // Following code requires TargetStreamer to be present.
156   if (!getTargetStreamer())
157     return;
158 
159   if (!IsaInfo::hasCodeObjectV3(getGlobalSTI())) {
160     // Emit ISA Version (NT_AMD_AMDGPU_ISA).
161     std::string ISAVersionString;
162     raw_string_ostream ISAVersionStream(ISAVersionString);
163     IsaInfo::streamIsaVersion(getGlobalSTI(), ISAVersionStream);
164     getTargetStreamer()->EmitISAVersion(ISAVersionStream.str());
165   }
166 
167   // Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA).
168   if (TM.getTargetTriple().getOS() == Triple::AMDHSA) {
169     HSAMetadataStream->end();
170     bool Success = HSAMetadataStream->emitTo(*getTargetStreamer());
171     (void)Success;
172     assert(Success && "Malformed HSA Metadata");
173   }
174 
175   if (!IsaInfo::hasCodeObjectV3(getGlobalSTI())) {
176     // Emit PAL Metadata (NT_AMD_AMDGPU_PAL_METADATA).
177     if (TM.getTargetTriple().getOS() == Triple::AMDPAL) {
178       // Copy the PAL metadata from the map where we collected it into a vector,
179       // then write it as a .note.
180       PALMD::Metadata PALMetadataVector;
181       for (auto i : PALMetadataMap) {
182         PALMetadataVector.push_back(i.first);
183         PALMetadataVector.push_back(i.second);
184       }
185       getTargetStreamer()->EmitPALMetadata(PALMetadataVector);
186     }
187   }
188 }
189 
190 bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough(
191   const MachineBasicBlock *MBB) const {
192   if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB))
193     return false;
194 
195   if (MBB->empty())
196     return true;
197 
198   // If this is a block implementing a long branch, an expression relative to
199   // the start of the block is needed.  to the start of the block.
200   // XXX - Is there a smarter way to check this?
201   return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64);
202 }
203 
204 void AMDGPUAsmPrinter::EmitFunctionBodyStart() {
205   const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>();
206   if (!MFI.isEntryFunction())
207     return;
208 
209   const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>();
210   const Function &F = MF->getFunction();
211   if (!STM.hasCodeObjectV3() && STM.isAmdHsaOrMesa(F) &&
212       (F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
213        F.getCallingConv() == CallingConv::SPIR_KERNEL)) {
214     amd_kernel_code_t KernelCode;
215     getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF);
216     getTargetStreamer()->EmitAMDKernelCodeT(KernelCode);
217   }
218 
219   if (STM.isAmdHsaOS())
220     HSAMetadataStream->emitKernel(*MF, CurrentProgramInfo);
221 }
222 
223 void AMDGPUAsmPrinter::EmitFunctionBodyEnd() {
224   const SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>();
225   if (!MFI.isEntryFunction())
226     return;
227 
228   if (!IsaInfo::hasCodeObjectV3(getGlobalSTI()) ||
229       TM.getTargetTriple().getOS() != Triple::AMDHSA)
230     return;
231 
232   auto &Streamer = getTargetStreamer()->getStreamer();
233   auto &Context = Streamer.getContext();
234   auto &ObjectFileInfo = *Context.getObjectFileInfo();
235   auto &ReadOnlySection = *ObjectFileInfo.getReadOnlySection();
236 
237   Streamer.PushSection();
238   Streamer.SwitchSection(&ReadOnlySection);
239 
240   // CP microcode requires the kernel descriptor to be allocated on 64 byte
241   // alignment.
242   Streamer.EmitValueToAlignment(64, 0, 1, 0);
243   if (ReadOnlySection.getAlignment() < 64)
244     ReadOnlySection.setAlignment(64);
245 
246   const MCSubtargetInfo &STI = MF->getSubtarget();
247 
248   SmallString<128> KernelName;
249   getNameWithPrefix(KernelName, &MF->getFunction());
250   getTargetStreamer()->EmitAmdhsaKernelDescriptor(
251       STI, KernelName, getAmdhsaKernelDescriptor(*MF, CurrentProgramInfo),
252       CurrentProgramInfo.NumVGPRsForWavesPerEU,
253       CurrentProgramInfo.NumSGPRsForWavesPerEU -
254           IsaInfo::getNumExtraSGPRs(&STI,
255                                     CurrentProgramInfo.VCCUsed,
256                                     CurrentProgramInfo.FlatUsed),
257       CurrentProgramInfo.VCCUsed, CurrentProgramInfo.FlatUsed,
258       hasXNACK(STI));
259 
260   Streamer.PopSection();
261 }
262 
263 void AMDGPUAsmPrinter::EmitFunctionEntryLabel() {
264   if (IsaInfo::hasCodeObjectV3(getGlobalSTI()) &&
265       TM.getTargetTriple().getOS() == Triple::AMDHSA) {
266     AsmPrinter::EmitFunctionEntryLabel();
267     return;
268   }
269 
270   const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
271   const GCNSubtarget &STM = MF->getSubtarget<GCNSubtarget>();
272   if (MFI->isEntryFunction() && STM.isAmdHsaOrMesa(MF->getFunction())) {
273     SmallString<128> SymbolName;
274     getNameWithPrefix(SymbolName, &MF->getFunction()),
275     getTargetStreamer()->EmitAMDGPUSymbolType(
276         SymbolName, ELF::STT_AMDGPU_HSA_KERNEL);
277   }
278   if (STM.dumpCode()) {
279     // Disassemble function name label to text.
280     DisasmLines.push_back(MF->getName().str() + ":");
281     DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size());
282     HexLines.push_back("");
283   }
284 
285   AsmPrinter::EmitFunctionEntryLabel();
286 }
287 
288 void AMDGPUAsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
289   const GCNSubtarget &STI = MBB.getParent()->getSubtarget<GCNSubtarget>();
290   if (STI.dumpCode() && !isBlockOnlyReachableByFallthrough(&MBB)) {
291     // Write a line for the basic block label if it is not only fallthrough.
292     DisasmLines.push_back(
293         (Twine("BB") + Twine(getFunctionNumber())
294          + "_" + Twine(MBB.getNumber()) + ":").str());
295     DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size());
296     HexLines.push_back("");
297   }
298   AsmPrinter::EmitBasicBlockStart(MBB);
299 }
300 
301 void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
302 
303   // Group segment variables aren't emitted in HSA.
304   if (AMDGPU::isGroupSegment(GV))
305     return;
306 
307   AsmPrinter::EmitGlobalVariable(GV);
308 }
309 
310 bool AMDGPUAsmPrinter::doFinalization(Module &M) {
311   CallGraphResourceInfo.clear();
312   return AsmPrinter::doFinalization(M);
313 }
314 
315 // For the amdpal OS type, read the amdgpu.pal.metadata supplied by the
316 // frontend into our PALMetadataMap, ready for per-function modification.  It
317 // is a NamedMD containing an MDTuple containing a number of MDNodes each of
318 // which is an integer value, and each two integer values forms a key=value
319 // pair that we store as PALMetadataMap[key]=value in the map.
320 void AMDGPUAsmPrinter::readPALMetadata(Module &M) {
321   auto NamedMD = M.getNamedMetadata("amdgpu.pal.metadata");
322   if (!NamedMD || !NamedMD->getNumOperands())
323     return;
324   auto Tuple = dyn_cast<MDTuple>(NamedMD->getOperand(0));
325   if (!Tuple)
326     return;
327   for (unsigned I = 0, E = Tuple->getNumOperands() & -2; I != E; I += 2) {
328     auto Key = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I));
329     auto Val = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I + 1));
330     if (!Key || !Val)
331       continue;
332     PALMetadataMap[Key->getZExtValue()] = Val->getZExtValue();
333   }
334 }
335 
336 // Print comments that apply to both callable functions and entry points.
337 void AMDGPUAsmPrinter::emitCommonFunctionComments(
338   uint32_t NumVGPR,
339   uint32_t NumSGPR,
340   uint64_t ScratchSize,
341   uint64_t CodeSize,
342   const AMDGPUMachineFunction *MFI) {
343   OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false);
344   OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false);
345   OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false);
346   OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false);
347   OutStreamer->emitRawComment(" MemoryBound: " + Twine(MFI->isMemoryBound()),
348                               false);
349 }
350 
351 uint16_t AMDGPUAsmPrinter::getAmdhsaKernelCodeProperties(
352     const MachineFunction &MF) const {
353   const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
354   uint16_t KernelCodeProperties = 0;
355 
356   if (MFI.hasPrivateSegmentBuffer()) {
357     KernelCodeProperties |=
358         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER;
359   }
360   if (MFI.hasDispatchPtr()) {
361     KernelCodeProperties |=
362         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
363   }
364   if (MFI.hasQueuePtr()) {
365     KernelCodeProperties |=
366         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR;
367   }
368   if (MFI.hasKernargSegmentPtr()) {
369     KernelCodeProperties |=
370         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR;
371   }
372   if (MFI.hasDispatchID()) {
373     KernelCodeProperties |=
374         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID;
375   }
376   if (MFI.hasFlatScratchInit()) {
377     KernelCodeProperties |=
378         amdhsa::KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT;
379   }
380 
381   return KernelCodeProperties;
382 }
383 
384 amdhsa::kernel_descriptor_t AMDGPUAsmPrinter::getAmdhsaKernelDescriptor(
385     const MachineFunction &MF,
386     const SIProgramInfo &PI) const {
387   amdhsa::kernel_descriptor_t KernelDescriptor;
388   memset(&KernelDescriptor, 0x0, sizeof(KernelDescriptor));
389 
390   assert(isUInt<32>(PI.ScratchSize));
391   assert(isUInt<32>(PI.ComputePGMRSrc1));
392   assert(isUInt<32>(PI.ComputePGMRSrc2));
393 
394   KernelDescriptor.group_segment_fixed_size = PI.LDSSize;
395   KernelDescriptor.private_segment_fixed_size = PI.ScratchSize;
396   KernelDescriptor.compute_pgm_rsrc1 = PI.ComputePGMRSrc1;
397   KernelDescriptor.compute_pgm_rsrc2 = PI.ComputePGMRSrc2;
398   KernelDescriptor.kernel_code_properties = getAmdhsaKernelCodeProperties(MF);
399 
400   return KernelDescriptor;
401 }
402 
403 bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
404   CurrentProgramInfo = SIProgramInfo();
405 
406   const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
407 
408   // The starting address of all shader programs must be 256 bytes aligned.
409   // Regular functions just need the basic required instruction alignment.
410   MF.setAlignment(MFI->isEntryFunction() ? 8 : 2);
411 
412   SetupMachineFunction(MF);
413 
414   const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
415   MCContext &Context = getObjFileLowering().getContext();
416   // FIXME: This should be an explicit check for Mesa.
417   if (!STM.isAmdHsaOS() && !STM.isAmdPalOS()) {
418     MCSectionELF *ConfigSection =
419         Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0);
420     OutStreamer->SwitchSection(ConfigSection);
421   }
422 
423   if (MFI->isEntryFunction()) {
424     getSIProgramInfo(CurrentProgramInfo, MF);
425   } else {
426     auto I = CallGraphResourceInfo.insert(
427       std::make_pair(&MF.getFunction(), SIFunctionResourceInfo()));
428     SIFunctionResourceInfo &Info = I.first->second;
429     assert(I.second && "should only be called once per function");
430     Info = analyzeResourceUsage(MF);
431   }
432 
433   if (STM.isAmdPalOS())
434     EmitPALMetadata(MF, CurrentProgramInfo);
435   else if (!STM.isAmdHsaOS()) {
436     EmitProgramInfoSI(MF, CurrentProgramInfo);
437   }
438 
439   DisasmLines.clear();
440   HexLines.clear();
441   DisasmLineMaxLen = 0;
442 
443   EmitFunctionBody();
444 
445   if (isVerbose()) {
446     MCSectionELF *CommentSection =
447         Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0);
448     OutStreamer->SwitchSection(CommentSection);
449 
450     if (!MFI->isEntryFunction()) {
451       OutStreamer->emitRawComment(" Function info:", false);
452       SIFunctionResourceInfo &Info = CallGraphResourceInfo[&MF.getFunction()];
453       emitCommonFunctionComments(
454         Info.NumVGPR,
455         Info.getTotalNumSGPRs(MF.getSubtarget<GCNSubtarget>()),
456         Info.PrivateSegmentSize,
457         getFunctionCodeSize(MF), MFI);
458       return false;
459     }
460 
461     OutStreamer->emitRawComment(" Kernel info:", false);
462     emitCommonFunctionComments(CurrentProgramInfo.NumVGPR,
463                                CurrentProgramInfo.NumSGPR,
464                                CurrentProgramInfo.ScratchSize,
465                                getFunctionCodeSize(MF), MFI);
466 
467     OutStreamer->emitRawComment(
468       " FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false);
469     OutStreamer->emitRawComment(
470       " IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false);
471     OutStreamer->emitRawComment(
472       " LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) +
473       " bytes/workgroup (compile time only)", false);
474 
475     OutStreamer->emitRawComment(
476       " SGPRBlocks: " + Twine(CurrentProgramInfo.SGPRBlocks), false);
477     OutStreamer->emitRawComment(
478       " VGPRBlocks: " + Twine(CurrentProgramInfo.VGPRBlocks), false);
479 
480     OutStreamer->emitRawComment(
481       " NumSGPRsForWavesPerEU: " +
482       Twine(CurrentProgramInfo.NumSGPRsForWavesPerEU), false);
483     OutStreamer->emitRawComment(
484       " NumVGPRsForWavesPerEU: " +
485       Twine(CurrentProgramInfo.NumVGPRsForWavesPerEU), false);
486 
487     OutStreamer->emitRawComment(
488       " WaveLimiterHint : " + Twine(MFI->needsWaveLimiter()), false);
489 
490     if (MF.getSubtarget<GCNSubtarget>().debuggerEmitPrologue()) {
491       OutStreamer->emitRawComment(
492         " DebuggerWavefrontPrivateSegmentOffsetSGPR: s" +
493         Twine(CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR), false);
494       OutStreamer->emitRawComment(
495         " DebuggerPrivateSegmentBufferSGPR: s" +
496         Twine(CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR), false);
497     }
498 
499     OutStreamer->emitRawComment(
500       " COMPUTE_PGM_RSRC2:USER_SGPR: " +
501       Twine(G_00B84C_USER_SGPR(CurrentProgramInfo.ComputePGMRSrc2)), false);
502     OutStreamer->emitRawComment(
503       " COMPUTE_PGM_RSRC2:TRAP_HANDLER: " +
504       Twine(G_00B84C_TRAP_HANDLER(CurrentProgramInfo.ComputePGMRSrc2)), false);
505     OutStreamer->emitRawComment(
506       " COMPUTE_PGM_RSRC2:TGID_X_EN: " +
507       Twine(G_00B84C_TGID_X_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
508     OutStreamer->emitRawComment(
509       " COMPUTE_PGM_RSRC2:TGID_Y_EN: " +
510       Twine(G_00B84C_TGID_Y_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
511     OutStreamer->emitRawComment(
512       " COMPUTE_PGM_RSRC2:TGID_Z_EN: " +
513       Twine(G_00B84C_TGID_Z_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
514     OutStreamer->emitRawComment(
515       " COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " +
516       Twine(G_00B84C_TIDIG_COMP_CNT(CurrentProgramInfo.ComputePGMRSrc2)),
517       false);
518   }
519 
520   if (STM.dumpCode()) {
521 
522     OutStreamer->SwitchSection(
523         Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0));
524 
525     for (size_t i = 0; i < DisasmLines.size(); ++i) {
526       std::string Comment = "\n";
527       if (!HexLines[i].empty()) {
528         Comment = std::string(DisasmLineMaxLen - DisasmLines[i].size(), ' ');
529         Comment += " ; " + HexLines[i] + "\n";
530       }
531 
532       OutStreamer->EmitBytes(StringRef(DisasmLines[i]));
533       OutStreamer->EmitBytes(StringRef(Comment));
534     }
535   }
536 
537   return false;
538 }
539 
540 uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const {
541   const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
542   const SIInstrInfo *TII = STM.getInstrInfo();
543 
544   uint64_t CodeSize = 0;
545 
546   for (const MachineBasicBlock &MBB : MF) {
547     for (const MachineInstr &MI : MBB) {
548       // TODO: CodeSize should account for multiple functions.
549 
550       // TODO: Should we count size of debug info?
551       if (MI.isDebugInstr())
552         continue;
553 
554       CodeSize += TII->getInstSizeInBytes(MI);
555     }
556   }
557 
558   return CodeSize;
559 }
560 
561 static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI,
562                                   const SIInstrInfo &TII,
563                                   unsigned Reg) {
564   for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) {
565     if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent()))
566       return true;
567   }
568 
569   return false;
570 }
571 
572 int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumSGPRs(
573   const GCNSubtarget &ST) const {
574   return NumExplicitSGPR + IsaInfo::getNumExtraSGPRs(&ST,
575                                                      UsesVCC, UsesFlatScratch);
576 }
577 
578 AMDGPUAsmPrinter::SIFunctionResourceInfo AMDGPUAsmPrinter::analyzeResourceUsage(
579   const MachineFunction &MF) const {
580   SIFunctionResourceInfo Info;
581 
582   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
583   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
584   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
585   const MachineRegisterInfo &MRI = MF.getRegInfo();
586   const SIInstrInfo *TII = ST.getInstrInfo();
587   const SIRegisterInfo &TRI = TII->getRegisterInfo();
588 
589   Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) ||
590                          MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI);
591 
592   // Even if FLAT_SCRATCH is implicitly used, it has no effect if flat
593   // instructions aren't used to access the scratch buffer. Inline assembly may
594   // need it though.
595   //
596   // If we only have implicit uses of flat_scr on flat instructions, it is not
597   // really needed.
598   if (Info.UsesFlatScratch && !MFI->hasFlatScratchInit() &&
599       (!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) &&
600        !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) &&
601        !hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) {
602     Info.UsesFlatScratch = false;
603   }
604 
605   Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects();
606   Info.PrivateSegmentSize = FrameInfo.getStackSize();
607   if (MFI->isStackRealigned())
608     Info.PrivateSegmentSize += FrameInfo.getMaxAlignment();
609 
610 
611   Info.UsesVCC = MRI.isPhysRegUsed(AMDGPU::VCC_LO) ||
612                  MRI.isPhysRegUsed(AMDGPU::VCC_HI);
613 
614   // If there are no calls, MachineRegisterInfo can tell us the used register
615   // count easily.
616   // A tail call isn't considered a call for MachineFrameInfo's purposes.
617   if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) {
618     MCPhysReg HighestVGPRReg = AMDGPU::NoRegister;
619     for (MCPhysReg Reg : reverse(AMDGPU::VGPR_32RegClass.getRegisters())) {
620       if (MRI.isPhysRegUsed(Reg)) {
621         HighestVGPRReg = Reg;
622         break;
623       }
624     }
625 
626     MCPhysReg HighestSGPRReg = AMDGPU::NoRegister;
627     for (MCPhysReg Reg : reverse(AMDGPU::SGPR_32RegClass.getRegisters())) {
628       if (MRI.isPhysRegUsed(Reg)) {
629         HighestSGPRReg = Reg;
630         break;
631       }
632     }
633 
634     // We found the maximum register index. They start at 0, so add one to get the
635     // number of registers.
636     Info.NumVGPR = HighestVGPRReg == AMDGPU::NoRegister ? 0 :
637       TRI.getHWRegIndex(HighestVGPRReg) + 1;
638     Info.NumExplicitSGPR = HighestSGPRReg == AMDGPU::NoRegister ? 0 :
639       TRI.getHWRegIndex(HighestSGPRReg) + 1;
640 
641     return Info;
642   }
643 
644   int32_t MaxVGPR = -1;
645   int32_t MaxSGPR = -1;
646   uint64_t CalleeFrameSize = 0;
647 
648   for (const MachineBasicBlock &MBB : MF) {
649     for (const MachineInstr &MI : MBB) {
650       // TODO: Check regmasks? Do they occur anywhere except calls?
651       for (const MachineOperand &MO : MI.operands()) {
652         unsigned Width = 0;
653         bool IsSGPR = false;
654 
655         if (!MO.isReg())
656           continue;
657 
658         unsigned Reg = MO.getReg();
659         switch (Reg) {
660         case AMDGPU::EXEC:
661         case AMDGPU::EXEC_LO:
662         case AMDGPU::EXEC_HI:
663         case AMDGPU::SCC:
664         case AMDGPU::M0:
665         case AMDGPU::SRC_SHARED_BASE:
666         case AMDGPU::SRC_SHARED_LIMIT:
667         case AMDGPU::SRC_PRIVATE_BASE:
668         case AMDGPU::SRC_PRIVATE_LIMIT:
669           continue;
670 
671         case AMDGPU::NoRegister:
672           assert(MI.isDebugInstr());
673           continue;
674 
675         case AMDGPU::VCC:
676         case AMDGPU::VCC_LO:
677         case AMDGPU::VCC_HI:
678           Info.UsesVCC = true;
679           continue;
680 
681         case AMDGPU::FLAT_SCR:
682         case AMDGPU::FLAT_SCR_LO:
683         case AMDGPU::FLAT_SCR_HI:
684           continue;
685 
686         case AMDGPU::XNACK_MASK:
687         case AMDGPU::XNACK_MASK_LO:
688         case AMDGPU::XNACK_MASK_HI:
689           llvm_unreachable("xnack_mask registers should not be used");
690 
691         case AMDGPU::LDS_DIRECT:
692           llvm_unreachable("lds_direct register should not be used");
693 
694         case AMDGPU::TBA:
695         case AMDGPU::TBA_LO:
696         case AMDGPU::TBA_HI:
697         case AMDGPU::TMA:
698         case AMDGPU::TMA_LO:
699         case AMDGPU::TMA_HI:
700           llvm_unreachable("trap handler registers should not be used");
701 
702         default:
703           break;
704         }
705 
706         if (AMDGPU::SReg_32RegClass.contains(Reg)) {
707           assert(!AMDGPU::TTMP_32RegClass.contains(Reg) &&
708                  "trap handler registers should not be used");
709           IsSGPR = true;
710           Width = 1;
711         } else if (AMDGPU::VGPR_32RegClass.contains(Reg)) {
712           IsSGPR = false;
713           Width = 1;
714         } else if (AMDGPU::SReg_64RegClass.contains(Reg)) {
715           assert(!AMDGPU::TTMP_64RegClass.contains(Reg) &&
716                  "trap handler registers should not be used");
717           IsSGPR = true;
718           Width = 2;
719         } else if (AMDGPU::VReg_64RegClass.contains(Reg)) {
720           IsSGPR = false;
721           Width = 2;
722         } else if (AMDGPU::VReg_96RegClass.contains(Reg)) {
723           IsSGPR = false;
724           Width = 3;
725         } else if (AMDGPU::SReg_128RegClass.contains(Reg)) {
726           assert(!AMDGPU::TTMP_128RegClass.contains(Reg) &&
727             "trap handler registers should not be used");
728           IsSGPR = true;
729           Width = 4;
730         } else if (AMDGPU::VReg_128RegClass.contains(Reg)) {
731           IsSGPR = false;
732           Width = 4;
733         } else if (AMDGPU::SReg_256RegClass.contains(Reg)) {
734           assert(!AMDGPU::TTMP_256RegClass.contains(Reg) &&
735             "trap handler registers should not be used");
736           IsSGPR = true;
737           Width = 8;
738         } else if (AMDGPU::VReg_256RegClass.contains(Reg)) {
739           IsSGPR = false;
740           Width = 8;
741         } else if (AMDGPU::SReg_512RegClass.contains(Reg)) {
742           assert(!AMDGPU::TTMP_512RegClass.contains(Reg) &&
743             "trap handler registers should not be used");
744           IsSGPR = true;
745           Width = 16;
746         } else if (AMDGPU::VReg_512RegClass.contains(Reg)) {
747           IsSGPR = false;
748           Width = 16;
749         } else {
750           llvm_unreachable("Unknown register class");
751         }
752         unsigned HWReg = TRI.getHWRegIndex(Reg);
753         int MaxUsed = HWReg + Width - 1;
754         if (IsSGPR) {
755           MaxSGPR = MaxUsed > MaxSGPR ? MaxUsed : MaxSGPR;
756         } else {
757           MaxVGPR = MaxUsed > MaxVGPR ? MaxUsed : MaxVGPR;
758         }
759       }
760 
761       if (MI.isCall()) {
762         // Pseudo used just to encode the underlying global. Is there a better
763         // way to track this?
764 
765         const MachineOperand *CalleeOp
766           = TII->getNamedOperand(MI, AMDGPU::OpName::callee);
767         const Function *Callee = cast<Function>(CalleeOp->getGlobal());
768         if (Callee->isDeclaration()) {
769           // If this is a call to an external function, we can't do much. Make
770           // conservative guesses.
771 
772           // 48 SGPRs - vcc, - flat_scr, -xnack
773           int MaxSGPRGuess =
774             47 - IsaInfo::getNumExtraSGPRs(&ST, true, ST.hasFlatAddressSpace());
775           MaxSGPR = std::max(MaxSGPR, MaxSGPRGuess);
776           MaxVGPR = std::max(MaxVGPR, 23);
777 
778           CalleeFrameSize = std::max(CalleeFrameSize, UINT64_C(16384));
779           Info.UsesVCC = true;
780           Info.UsesFlatScratch = ST.hasFlatAddressSpace();
781           Info.HasDynamicallySizedStack = true;
782         } else {
783           // We force CodeGen to run in SCC order, so the callee's register
784           // usage etc. should be the cumulative usage of all callees.
785           auto I = CallGraphResourceInfo.find(Callee);
786           assert(I != CallGraphResourceInfo.end() &&
787                  "callee should have been handled before caller");
788 
789           MaxSGPR = std::max(I->second.NumExplicitSGPR - 1, MaxSGPR);
790           MaxVGPR = std::max(I->second.NumVGPR - 1, MaxVGPR);
791           CalleeFrameSize
792             = std::max(I->second.PrivateSegmentSize, CalleeFrameSize);
793           Info.UsesVCC |= I->second.UsesVCC;
794           Info.UsesFlatScratch |= I->second.UsesFlatScratch;
795           Info.HasDynamicallySizedStack |= I->second.HasDynamicallySizedStack;
796           Info.HasRecursion |= I->second.HasRecursion;
797         }
798 
799         if (!Callee->doesNotRecurse())
800           Info.HasRecursion = true;
801       }
802     }
803   }
804 
805   Info.NumExplicitSGPR = MaxSGPR + 1;
806   Info.NumVGPR = MaxVGPR + 1;
807   Info.PrivateSegmentSize += CalleeFrameSize;
808 
809   return Info;
810 }
811 
812 void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
813                                         const MachineFunction &MF) {
814   SIFunctionResourceInfo Info = analyzeResourceUsage(MF);
815 
816   ProgInfo.NumVGPR = Info.NumVGPR;
817   ProgInfo.NumSGPR = Info.NumExplicitSGPR;
818   ProgInfo.ScratchSize = Info.PrivateSegmentSize;
819   ProgInfo.VCCUsed = Info.UsesVCC;
820   ProgInfo.FlatUsed = Info.UsesFlatScratch;
821   ProgInfo.DynamicCallStack = Info.HasDynamicallySizedStack || Info.HasRecursion;
822 
823   if (!isUInt<32>(ProgInfo.ScratchSize)) {
824     DiagnosticInfoStackSize DiagStackSize(MF.getFunction(),
825                                           ProgInfo.ScratchSize, DS_Error);
826     MF.getFunction().getContext().diagnose(DiagStackSize);
827   }
828 
829   const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
830   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
831   const SIInstrInfo *TII = STM.getInstrInfo();
832   const SIRegisterInfo *RI = &TII->getRegisterInfo();
833 
834   // TODO(scott.linder): The calculations related to SGPR/VGPR blocks are
835   // duplicated in part in AMDGPUAsmParser::calculateGPRBlocks, and could be
836   // unified.
837   unsigned ExtraSGPRs = IsaInfo::getNumExtraSGPRs(
838       &STM, ProgInfo.VCCUsed, ProgInfo.FlatUsed);
839 
840   // Check the addressable register limit before we add ExtraSGPRs.
841   if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS &&
842       !STM.hasSGPRInitBug()) {
843     unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs();
844     if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) {
845       // This can happen due to a compiler bug or when using inline asm.
846       LLVMContext &Ctx = MF.getFunction().getContext();
847       DiagnosticInfoResourceLimit Diag(MF.getFunction(),
848                                        "addressable scalar registers",
849                                        ProgInfo.NumSGPR, DS_Error,
850                                        DK_ResourceLimit,
851                                        MaxAddressableNumSGPRs);
852       Ctx.diagnose(Diag);
853       ProgInfo.NumSGPR = MaxAddressableNumSGPRs - 1;
854     }
855   }
856 
857   // Account for extra SGPRs and VGPRs reserved for debugger use.
858   ProgInfo.NumSGPR += ExtraSGPRs;
859 
860   // Ensure there are enough SGPRs and VGPRs for wave dispatch, where wave
861   // dispatch registers are function args.
862   unsigned WaveDispatchNumSGPR = 0, WaveDispatchNumVGPR = 0;
863   for (auto &Arg : MF.getFunction().args()) {
864     unsigned NumRegs = (Arg.getType()->getPrimitiveSizeInBits() + 31) / 32;
865     if (Arg.hasAttribute(Attribute::InReg))
866       WaveDispatchNumSGPR += NumRegs;
867     else
868       WaveDispatchNumVGPR += NumRegs;
869   }
870   ProgInfo.NumSGPR = std::max(ProgInfo.NumSGPR, WaveDispatchNumSGPR);
871   ProgInfo.NumVGPR = std::max(ProgInfo.NumVGPR, WaveDispatchNumVGPR);
872 
873   // Adjust number of registers used to meet default/requested minimum/maximum
874   // number of waves per execution unit request.
875   ProgInfo.NumSGPRsForWavesPerEU = std::max(
876     std::max(ProgInfo.NumSGPR, 1u), STM.getMinNumSGPRs(MFI->getMaxWavesPerEU()));
877   ProgInfo.NumVGPRsForWavesPerEU = std::max(
878     std::max(ProgInfo.NumVGPR, 1u), STM.getMinNumVGPRs(MFI->getMaxWavesPerEU()));
879 
880   if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ||
881       STM.hasSGPRInitBug()) {
882     unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs();
883     if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) {
884       // This can happen due to a compiler bug or when using inline asm to use
885       // the registers which are usually reserved for vcc etc.
886       LLVMContext &Ctx = MF.getFunction().getContext();
887       DiagnosticInfoResourceLimit Diag(MF.getFunction(),
888                                        "scalar registers",
889                                        ProgInfo.NumSGPR, DS_Error,
890                                        DK_ResourceLimit,
891                                        MaxAddressableNumSGPRs);
892       Ctx.diagnose(Diag);
893       ProgInfo.NumSGPR = MaxAddressableNumSGPRs;
894       ProgInfo.NumSGPRsForWavesPerEU = MaxAddressableNumSGPRs;
895     }
896   }
897 
898   if (STM.hasSGPRInitBug()) {
899     ProgInfo.NumSGPR =
900         AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
901     ProgInfo.NumSGPRsForWavesPerEU =
902         AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
903   }
904 
905   if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) {
906     LLVMContext &Ctx = MF.getFunction().getContext();
907     DiagnosticInfoResourceLimit Diag(MF.getFunction(), "user SGPRs",
908                                      MFI->getNumUserSGPRs(), DS_Error);
909     Ctx.diagnose(Diag);
910   }
911 
912   if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) {
913     LLVMContext &Ctx = MF.getFunction().getContext();
914     DiagnosticInfoResourceLimit Diag(MF.getFunction(), "local memory",
915                                      MFI->getLDSSize(), DS_Error);
916     Ctx.diagnose(Diag);
917   }
918 
919   ProgInfo.SGPRBlocks = IsaInfo::getNumSGPRBlocks(
920       &STM, ProgInfo.NumSGPRsForWavesPerEU);
921   ProgInfo.VGPRBlocks = IsaInfo::getNumVGPRBlocks(
922       &STM, ProgInfo.NumVGPRsForWavesPerEU);
923 
924   // Update DebuggerWavefrontPrivateSegmentOffsetSGPR and
925   // DebuggerPrivateSegmentBufferSGPR fields if "amdgpu-debugger-emit-prologue"
926   // attribute was requested.
927   if (STM.debuggerEmitPrologue()) {
928     ProgInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR =
929       RI->getHWRegIndex(MFI->getScratchWaveOffsetReg());
930     ProgInfo.DebuggerPrivateSegmentBufferSGPR =
931       RI->getHWRegIndex(MFI->getScratchRSrcReg());
932   }
933 
934   // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode
935   // register.
936   ProgInfo.FloatMode = getFPMode(MF);
937 
938   ProgInfo.IEEEMode = STM.enableIEEEBit(MF);
939 
940   // Make clamp modifier on NaN input returns 0.
941   ProgInfo.DX10Clamp = STM.enableDX10Clamp();
942 
943   unsigned LDSAlignShift;
944   if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
945     // LDS is allocated in 64 dword blocks.
946     LDSAlignShift = 8;
947   } else {
948     // LDS is allocated in 128 dword blocks.
949     LDSAlignShift = 9;
950   }
951 
952   unsigned LDSSpillSize =
953     MFI->getLDSWaveSpillSize() * MFI->getMaxFlatWorkGroupSize();
954 
955   ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize;
956   ProgInfo.LDSBlocks =
957       alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift;
958 
959   // Scratch is allocated in 256 dword blocks.
960   unsigned ScratchAlignShift = 10;
961   // We need to program the hardware with the amount of scratch memory that
962   // is used by the entire wave.  ProgInfo.ScratchSize is the amount of
963   // scratch memory used per thread.
964   ProgInfo.ScratchBlocks =
965       alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(),
966               1ULL << ScratchAlignShift) >>
967       ScratchAlignShift;
968 
969   ProgInfo.ComputePGMRSrc1 =
970       S_00B848_VGPRS(ProgInfo.VGPRBlocks) |
971       S_00B848_SGPRS(ProgInfo.SGPRBlocks) |
972       S_00B848_PRIORITY(ProgInfo.Priority) |
973       S_00B848_FLOAT_MODE(ProgInfo.FloatMode) |
974       S_00B848_PRIV(ProgInfo.Priv) |
975       S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) |
976       S_00B848_DEBUG_MODE(ProgInfo.DebugMode) |
977       S_00B848_IEEE_MODE(ProgInfo.IEEEMode);
978 
979   // 0 = X, 1 = XY, 2 = XYZ
980   unsigned TIDIGCompCnt = 0;
981   if (MFI->hasWorkItemIDZ())
982     TIDIGCompCnt = 2;
983   else if (MFI->hasWorkItemIDY())
984     TIDIGCompCnt = 1;
985 
986   ProgInfo.ComputePGMRSrc2 =
987       S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) |
988       S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) |
989       // For AMDHSA, TRAP_HANDLER must be zero, as it is populated by the CP.
990       S_00B84C_TRAP_HANDLER(STM.isAmdHsaOS() ? 0 : STM.isTrapHandlerEnabled()) |
991       S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) |
992       S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) |
993       S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) |
994       S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) |
995       S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) |
996       S_00B84C_EXCP_EN_MSB(0) |
997       // For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP.
998       S_00B84C_LDS_SIZE(STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks) |
999       S_00B84C_EXCP_EN(0);
1000 }
1001 
1002 static unsigned getRsrcReg(CallingConv::ID CallConv) {
1003   switch (CallConv) {
1004   default: LLVM_FALLTHROUGH;
1005   case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1;
1006   case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS;
1007   case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS;
1008   case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES;
1009   case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS;
1010   case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS;
1011   case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS;
1012   }
1013 }
1014 
1015 void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF,
1016                                          const SIProgramInfo &CurrentProgramInfo) {
1017   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1018   unsigned RsrcReg = getRsrcReg(MF.getFunction().getCallingConv());
1019 
1020   if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) {
1021     OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4);
1022 
1023     OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc1, 4);
1024 
1025     OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4);
1026     OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc2, 4);
1027 
1028     OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4);
1029     OutStreamer->EmitIntValue(S_00B860_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4);
1030 
1031     // TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 =
1032     // 0" comment but I don't see a corresponding field in the register spec.
1033   } else {
1034     OutStreamer->EmitIntValue(RsrcReg, 4);
1035     OutStreamer->EmitIntValue(S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) |
1036                               S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks), 4);
1037     OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4);
1038     OutStreamer->EmitIntValue(
1039         S_0286E8_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4);
1040   }
1041 
1042   if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) {
1043     OutStreamer->EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4);
1044     OutStreamer->EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks), 4);
1045     OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4);
1046     OutStreamer->EmitIntValue(MFI->getPSInputEnable(), 4);
1047     OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4);
1048     OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4);
1049   }
1050 
1051   OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4);
1052   OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4);
1053   OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4);
1054   OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4);
1055 }
1056 
1057 // This is the equivalent of EmitProgramInfoSI above, but for when the OS type
1058 // is AMDPAL.  It stores each compute/SPI register setting and other PAL
1059 // metadata items into the PALMetadataMap, combining with any provided by the
1060 // frontend as LLVM metadata. Once all functions are written, PALMetadataMap is
1061 // then written as a single block in the .note section.
1062 void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF,
1063        const SIProgramInfo &CurrentProgramInfo) {
1064   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1065   // Given the calling convention, calculate the register number for rsrc1. In
1066   // principle the register number could change in future hardware, but we know
1067   // it is the same for gfx6-9 (except that LS and ES don't exist on gfx9), so
1068   // we can use the same fixed value that .AMDGPU.config has for Mesa. Note
1069   // that we use a register number rather than a byte offset, so we need to
1070   // divide by 4.
1071   unsigned Rsrc1Reg = getRsrcReg(MF.getFunction().getCallingConv()) / 4;
1072   unsigned Rsrc2Reg = Rsrc1Reg + 1;
1073   // Also calculate the PAL metadata key for *S_SCRATCH_SIZE. It can be used
1074   // with a constant offset to access any non-register shader-specific PAL
1075   // metadata key.
1076   unsigned ScratchSizeKey = PALMD::Key::CS_SCRATCH_SIZE;
1077   switch (MF.getFunction().getCallingConv()) {
1078     case CallingConv::AMDGPU_PS:
1079       ScratchSizeKey = PALMD::Key::PS_SCRATCH_SIZE;
1080       break;
1081     case CallingConv::AMDGPU_VS:
1082       ScratchSizeKey = PALMD::Key::VS_SCRATCH_SIZE;
1083       break;
1084     case CallingConv::AMDGPU_GS:
1085       ScratchSizeKey = PALMD::Key::GS_SCRATCH_SIZE;
1086       break;
1087     case CallingConv::AMDGPU_ES:
1088       ScratchSizeKey = PALMD::Key::ES_SCRATCH_SIZE;
1089       break;
1090     case CallingConv::AMDGPU_HS:
1091       ScratchSizeKey = PALMD::Key::HS_SCRATCH_SIZE;
1092       break;
1093     case CallingConv::AMDGPU_LS:
1094       ScratchSizeKey = PALMD::Key::LS_SCRATCH_SIZE;
1095       break;
1096   }
1097   unsigned NumUsedVgprsKey = ScratchSizeKey +
1098       PALMD::Key::VS_NUM_USED_VGPRS - PALMD::Key::VS_SCRATCH_SIZE;
1099   unsigned NumUsedSgprsKey = ScratchSizeKey +
1100       PALMD::Key::VS_NUM_USED_SGPRS - PALMD::Key::VS_SCRATCH_SIZE;
1101   PALMetadataMap[NumUsedVgprsKey] = CurrentProgramInfo.NumVGPRsForWavesPerEU;
1102   PALMetadataMap[NumUsedSgprsKey] = CurrentProgramInfo.NumSGPRsForWavesPerEU;
1103   if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) {
1104     PALMetadataMap[Rsrc1Reg] |= CurrentProgramInfo.ComputePGMRSrc1;
1105     PALMetadataMap[Rsrc2Reg] |= CurrentProgramInfo.ComputePGMRSrc2;
1106     // ScratchSize is in bytes, 16 aligned.
1107     PALMetadataMap[ScratchSizeKey] |=
1108         alignTo(CurrentProgramInfo.ScratchSize, 16);
1109   } else {
1110     PALMetadataMap[Rsrc1Reg] |= S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) |
1111         S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks);
1112     if (CurrentProgramInfo.ScratchBlocks > 0)
1113       PALMetadataMap[Rsrc2Reg] |= S_00B84C_SCRATCH_EN(1);
1114     // ScratchSize is in bytes, 16 aligned.
1115     PALMetadataMap[ScratchSizeKey] |=
1116         alignTo(CurrentProgramInfo.ScratchSize, 16);
1117   }
1118   if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) {
1119     PALMetadataMap[Rsrc2Reg] |=
1120         S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks);
1121     PALMetadataMap[R_0286CC_SPI_PS_INPUT_ENA / 4] |= MFI->getPSInputEnable();
1122     PALMetadataMap[R_0286D0_SPI_PS_INPUT_ADDR / 4] |= MFI->getPSInputAddr();
1123   }
1124 }
1125 
1126 // This is supposed to be log2(Size)
1127 static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) {
1128   switch (Size) {
1129   case 4:
1130     return AMD_ELEMENT_4_BYTES;
1131   case 8:
1132     return AMD_ELEMENT_8_BYTES;
1133   case 16:
1134     return AMD_ELEMENT_16_BYTES;
1135   default:
1136     llvm_unreachable("invalid private_element_size");
1137   }
1138 }
1139 
1140 void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out,
1141                                         const SIProgramInfo &CurrentProgramInfo,
1142                                         const MachineFunction &MF) const {
1143   const Function &F = MF.getFunction();
1144   assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
1145          F.getCallingConv() == CallingConv::SPIR_KERNEL);
1146 
1147   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1148   const GCNSubtarget &STM = MF.getSubtarget<GCNSubtarget>();
1149 
1150   AMDGPU::initDefaultAMDKernelCodeT(Out, &STM);
1151 
1152   Out.compute_pgm_resource_registers =
1153       CurrentProgramInfo.ComputePGMRSrc1 |
1154       (CurrentProgramInfo.ComputePGMRSrc2 << 32);
1155   Out.code_properties = AMD_CODE_PROPERTY_IS_PTR64;
1156 
1157   if (CurrentProgramInfo.DynamicCallStack)
1158     Out.code_properties |= AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK;
1159 
1160   AMD_HSA_BITS_SET(Out.code_properties,
1161                    AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE,
1162                    getElementByteSizeValue(STM.getMaxPrivateElementSize()));
1163 
1164   if (MFI->hasPrivateSegmentBuffer()) {
1165     Out.code_properties |=
1166       AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER;
1167   }
1168 
1169   if (MFI->hasDispatchPtr())
1170     Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
1171 
1172   if (MFI->hasQueuePtr())
1173     Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR;
1174 
1175   if (MFI->hasKernargSegmentPtr())
1176     Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR;
1177 
1178   if (MFI->hasDispatchID())
1179     Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID;
1180 
1181   if (MFI->hasFlatScratchInit())
1182     Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT;
1183 
1184   if (MFI->hasDispatchPtr())
1185     Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
1186 
1187   if (STM.debuggerSupported())
1188     Out.code_properties |= AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED;
1189 
1190   if (STM.isXNACKEnabled())
1191     Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED;
1192 
1193   unsigned MaxKernArgAlign;
1194   Out.kernarg_segment_byte_size = STM.getKernArgSegmentSize(F, MaxKernArgAlign);
1195   Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR;
1196   Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR;
1197   Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize;
1198   Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize;
1199 
1200   // These alignment values are specified in powers of two, so alignment =
1201   // 2^n.  The minimum alignment is 2^4 = 16.
1202   Out.kernarg_segment_alignment = std::max((size_t)4,
1203       countTrailingZeros(MaxKernArgAlign));
1204 
1205   if (STM.debuggerEmitPrologue()) {
1206     Out.debug_wavefront_private_segment_offset_sgpr =
1207       CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR;
1208     Out.debug_private_segment_buffer_sgpr =
1209       CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR;
1210   }
1211 }
1212 
1213 bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
1214                                        unsigned AsmVariant,
1215                                        const char *ExtraCode, raw_ostream &O) {
1216   // First try the generic code, which knows about modifiers like 'c' and 'n'.
1217   if (!AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O))
1218     return false;
1219 
1220   if (ExtraCode && ExtraCode[0]) {
1221     if (ExtraCode[1] != 0)
1222       return true; // Unknown modifier.
1223 
1224     switch (ExtraCode[0]) {
1225     case 'r':
1226       break;
1227     default:
1228       return true;
1229     }
1230   }
1231 
1232   // TODO: Should be able to support other operand types like globals.
1233   const MachineOperand &MO = MI->getOperand(OpNo);
1234   if (MO.isReg()) {
1235     AMDGPUInstPrinter::printRegOperand(MO.getReg(), O,
1236                                        *MF->getSubtarget().getRegisterInfo());
1237     return false;
1238   }
1239 
1240   return true;
1241 }
1242