1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AArch64ExpandImm.h"
10 #include "AArch64TargetTransformInfo.h"
11 #include "MCTargetDesc/AArch64AddressingModes.h"
12 #include "llvm/Analysis/LoopInfo.h"
13 #include "llvm/Analysis/TargetTransformInfo.h"
14 #include "llvm/CodeGen/BasicTTIImpl.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/TargetLowering.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/IntrinsicsAArch64.h"
19 #include "llvm/Support/Debug.h"
20 #include <algorithm>
21 using namespace llvm;
22 
23 #define DEBUG_TYPE "aarch64tti"
24 
25 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
26                                                cl::init(true), cl::Hidden);
27 
28 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
29                                          const Function *Callee) const {
30   const TargetMachine &TM = getTLI()->getTargetMachine();
31 
32   const FeatureBitset &CallerBits =
33       TM.getSubtargetImpl(*Caller)->getFeatureBits();
34   const FeatureBitset &CalleeBits =
35       TM.getSubtargetImpl(*Callee)->getFeatureBits();
36 
37   // Inline a callee if its target-features are a subset of the callers
38   // target-features.
39   return (CallerBits & CalleeBits) == CalleeBits;
40 }
41 
42 /// Calculate the cost of materializing a 64-bit value. This helper
43 /// method might only calculate a fraction of a larger immediate. Therefore it
44 /// is valid to return a cost of ZERO.
45 int AArch64TTIImpl::getIntImmCost(int64_t Val) {
46   // Check if the immediate can be encoded within an instruction.
47   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
48     return 0;
49 
50   if (Val < 0)
51     Val = ~Val;
52 
53   // Calculate how many moves we will need to materialize this constant.
54   SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
55   AArch64_IMM::expandMOVImm(Val, 64, Insn);
56   return Insn.size();
57 }
58 
59 /// Calculate the cost of materializing the given constant.
60 int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
61                                   TTI::TargetCostKind CostKind) {
62   assert(Ty->isIntegerTy());
63 
64   unsigned BitSize = Ty->getPrimitiveSizeInBits();
65   if (BitSize == 0)
66     return ~0U;
67 
68   // Sign-extend all constants to a multiple of 64-bit.
69   APInt ImmVal = Imm;
70   if (BitSize & 0x3f)
71     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
72 
73   // Split the constant into 64-bit chunks and calculate the cost for each
74   // chunk.
75   int Cost = 0;
76   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
77     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
78     int64_t Val = Tmp.getSExtValue();
79     Cost += getIntImmCost(Val);
80   }
81   // We need at least one instruction to materialze the constant.
82   return std::max(1, Cost);
83 }
84 
85 int AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
86                                       const APInt &Imm, Type *Ty,
87                                       TTI::TargetCostKind CostKind,
88                                       Instruction *Inst) {
89   assert(Ty->isIntegerTy());
90 
91   unsigned BitSize = Ty->getPrimitiveSizeInBits();
92   // There is no cost model for constants with a bit size of 0. Return TCC_Free
93   // here, so that constant hoisting will ignore this constant.
94   if (BitSize == 0)
95     return TTI::TCC_Free;
96 
97   unsigned ImmIdx = ~0U;
98   switch (Opcode) {
99   default:
100     return TTI::TCC_Free;
101   case Instruction::GetElementPtr:
102     // Always hoist the base address of a GetElementPtr.
103     if (Idx == 0)
104       return 2 * TTI::TCC_Basic;
105     return TTI::TCC_Free;
106   case Instruction::Store:
107     ImmIdx = 0;
108     break;
109   case Instruction::Add:
110   case Instruction::Sub:
111   case Instruction::Mul:
112   case Instruction::UDiv:
113   case Instruction::SDiv:
114   case Instruction::URem:
115   case Instruction::SRem:
116   case Instruction::And:
117   case Instruction::Or:
118   case Instruction::Xor:
119   case Instruction::ICmp:
120     ImmIdx = 1;
121     break;
122   // Always return TCC_Free for the shift value of a shift instruction.
123   case Instruction::Shl:
124   case Instruction::LShr:
125   case Instruction::AShr:
126     if (Idx == 1)
127       return TTI::TCC_Free;
128     break;
129   case Instruction::Trunc:
130   case Instruction::ZExt:
131   case Instruction::SExt:
132   case Instruction::IntToPtr:
133   case Instruction::PtrToInt:
134   case Instruction::BitCast:
135   case Instruction::PHI:
136   case Instruction::Call:
137   case Instruction::Select:
138   case Instruction::Ret:
139   case Instruction::Load:
140     break;
141   }
142 
143   if (Idx == ImmIdx) {
144     int NumConstants = (BitSize + 63) / 64;
145     int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
146     return (Cost <= NumConstants * TTI::TCC_Basic)
147                ? static_cast<int>(TTI::TCC_Free)
148                : Cost;
149   }
150   return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
151 }
152 
153 int AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
154                                         const APInt &Imm, Type *Ty,
155                                         TTI::TargetCostKind CostKind) {
156   assert(Ty->isIntegerTy());
157 
158   unsigned BitSize = Ty->getPrimitiveSizeInBits();
159   // There is no cost model for constants with a bit size of 0. Return TCC_Free
160   // here, so that constant hoisting will ignore this constant.
161   if (BitSize == 0)
162     return TTI::TCC_Free;
163 
164   // Most (all?) AArch64 intrinsics do not support folding immediates into the
165   // selected instruction, so we compute the materialization cost for the
166   // immediate directly.
167   if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
168     return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
169 
170   switch (IID) {
171   default:
172     return TTI::TCC_Free;
173   case Intrinsic::sadd_with_overflow:
174   case Intrinsic::uadd_with_overflow:
175   case Intrinsic::ssub_with_overflow:
176   case Intrinsic::usub_with_overflow:
177   case Intrinsic::smul_with_overflow:
178   case Intrinsic::umul_with_overflow:
179     if (Idx == 1) {
180       int NumConstants = (BitSize + 63) / 64;
181       int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
182       return (Cost <= NumConstants * TTI::TCC_Basic)
183                  ? static_cast<int>(TTI::TCC_Free)
184                  : Cost;
185     }
186     break;
187   case Intrinsic::experimental_stackmap:
188     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
189       return TTI::TCC_Free;
190     break;
191   case Intrinsic::experimental_patchpoint_void:
192   case Intrinsic::experimental_patchpoint_i64:
193     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
194       return TTI::TCC_Free;
195     break;
196   case Intrinsic::experimental_gc_statepoint:
197     if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
198       return TTI::TCC_Free;
199     break;
200   }
201   return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
202 }
203 
204 TargetTransformInfo::PopcntSupportKind
205 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
206   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
207   if (TyWidth == 32 || TyWidth == 64)
208     return TTI::PSK_FastHardware;
209   // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
210   return TTI::PSK_Software;
211 }
212 
213 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
214                                            ArrayRef<const Value *> Args) {
215 
216   // A helper that returns a vector type from the given type. The number of
217   // elements in type Ty determine the vector width.
218   auto toVectorTy = [&](Type *ArgTy) {
219     return FixedVectorType::get(ArgTy->getScalarType(),
220                                 cast<FixedVectorType>(DstTy)->getNumElements());
221   };
222 
223   // Exit early if DstTy is not a vector type whose elements are at least
224   // 16-bits wide.
225   if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16)
226     return false;
227 
228   // Determine if the operation has a widening variant. We consider both the
229   // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
230   // instructions.
231   //
232   // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
233   //       verify that their extending operands are eliminated during code
234   //       generation.
235   switch (Opcode) {
236   case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
237   case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
238     break;
239   default:
240     return false;
241   }
242 
243   // To be a widening instruction (either the "wide" or "long" versions), the
244   // second operand must be a sign- or zero extend having a single user. We
245   // only consider extends having a single user because they may otherwise not
246   // be eliminated.
247   if (Args.size() != 2 ||
248       (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) ||
249       !Args[1]->hasOneUse())
250     return false;
251   auto *Extend = cast<CastInst>(Args[1]);
252 
253   // Legalize the destination type and ensure it can be used in a widening
254   // operation.
255   auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy);
256   unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
257   if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
258     return false;
259 
260   // Legalize the source type and ensure it can be used in a widening
261   // operation.
262   auto *SrcTy = toVectorTy(Extend->getSrcTy());
263   auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy);
264   unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
265   if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
266     return false;
267 
268   // Get the total number of vector elements in the legalized types.
269   unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorNumElements();
270   unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorNumElements();
271 
272   // Return true if the legalized types have the same number of vector elements
273   // and the destination element type size is twice that of the source type.
274   return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
275 }
276 
277 int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
278                                      TTI::CastContextHint CCH,
279                                      TTI::TargetCostKind CostKind,
280                                      const Instruction *I) {
281   int ISD = TLI->InstructionOpcodeToISD(Opcode);
282   assert(ISD && "Invalid opcode");
283 
284   // If the cast is observable, and it is used by a widening instruction (e.g.,
285   // uaddl, saddw, etc.), it may be free.
286   if (I && I->hasOneUse()) {
287     auto *SingleUser = cast<Instruction>(*I->user_begin());
288     SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
289     if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
290       // If the cast is the second operand, it is free. We will generate either
291       // a "wide" or "long" version of the widening instruction.
292       if (I == SingleUser->getOperand(1))
293         return 0;
294       // If the cast is not the second operand, it will be free if it looks the
295       // same as the second operand. In this case, we will generate a "long"
296       // version of the widening instruction.
297       if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
298         if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
299             cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
300           return 0;
301     }
302   }
303 
304   // TODO: Allow non-throughput costs that aren't binary.
305   auto AdjustCost = [&CostKind](int Cost) {
306     if (CostKind != TTI::TCK_RecipThroughput)
307       return Cost == 0 ? 0 : 1;
308     return Cost;
309   };
310 
311   EVT SrcTy = TLI->getValueType(DL, Src);
312   EVT DstTy = TLI->getValueType(DL, Dst);
313 
314   if (!SrcTy.isSimple() || !DstTy.isSimple())
315     return AdjustCost(
316         BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
317 
318   static const TypeConversionCostTblEntry
319   ConversionTbl[] = {
320     { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32,  1 },
321     { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64,  0 },
322     { ISD::TRUNCATE, MVT::v8i8,  MVT::v8i32,  3 },
323     { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
324 
325     // The number of shll instructions for the extension.
326     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
327     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
328     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
329     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
330     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
331     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
332     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
333     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
334     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
335     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
336     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
337     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
338     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
339     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
340     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
341     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
342 
343     // LowerVectorINT_TO_FP:
344     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
345     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
346     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
347     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
348     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
349     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
350 
351     // Complex: to v2f32
352     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
353     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
354     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
355     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
356     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
357     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
358 
359     // Complex: to v4f32
360     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
361     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
362     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
363     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
364 
365     // Complex: to v8f32
366     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
367     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
368     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
369     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
370 
371     // Complex: to v16f32
372     { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
373     { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
374 
375     // Complex: to v2f64
376     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
377     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
378     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
379     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
380     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
381     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
382 
383 
384     // LowerVectorFP_TO_INT
385     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
386     { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
387     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
388     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
389     { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
390     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
391 
392     // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
393     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
394     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
395     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
396     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
397     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
398     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },
399 
400     // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
401     { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
402     { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
403     { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
404     { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },
405 
406     // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
407     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
408     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
409     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
410     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
411     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
412     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
413   };
414 
415   if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
416                                                  DstTy.getSimpleVT(),
417                                                  SrcTy.getSimpleVT()))
418     return AdjustCost(Entry->Cost);
419 
420   return AdjustCost(
421       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
422 }
423 
424 int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
425                                              VectorType *VecTy,
426                                              unsigned Index) {
427 
428   // Make sure we were given a valid extend opcode.
429   assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
430          "Invalid opcode");
431 
432   // We are extending an element we extract from a vector, so the source type
433   // of the extend is the element type of the vector.
434   auto *Src = VecTy->getElementType();
435 
436   // Sign- and zero-extends are for integer types only.
437   assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
438 
439   // Get the cost for the extract. We compute the cost (if any) for the extend
440   // below.
441   auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);
442 
443   // Legalize the types.
444   auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
445   auto DstVT = TLI->getValueType(DL, Dst);
446   auto SrcVT = TLI->getValueType(DL, Src);
447   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
448 
449   // If the resulting type is still a vector and the destination type is legal,
450   // we may get the extension for free. If not, get the default cost for the
451   // extend.
452   if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
453     return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
454                                    CostKind);
455 
456   // The destination type should be larger than the element type. If not, get
457   // the default cost for the extend.
458   if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits())
459     return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
460                                    CostKind);
461 
462   switch (Opcode) {
463   default:
464     llvm_unreachable("Opcode should be either SExt or ZExt");
465 
466   // For sign-extends, we only need a smov, which performs the extension
467   // automatically.
468   case Instruction::SExt:
469     return Cost;
470 
471   // For zero-extends, the extend is performed automatically by a umov unless
472   // the destination type is i64 and the element type is i8 or i16.
473   case Instruction::ZExt:
474     if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
475       return Cost;
476   }
477 
478   // If we are unable to perform the extend for free, get the default cost.
479   return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
480                                  CostKind);
481 }
482 
483 unsigned AArch64TTIImpl::getCFInstrCost(unsigned Opcode,
484                                         TTI::TargetCostKind CostKind) {
485   if (CostKind != TTI::TCK_RecipThroughput)
486     return Opcode == Instruction::PHI ? 0 : 1;
487   assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind");
488   // Branches are assumed to be predicted.
489   return 0;
490 }
491 
492 int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
493                                        unsigned Index) {
494   assert(Val->isVectorTy() && "This must be a vector type");
495 
496   if (Index != -1U) {
497     // Legalize the type.
498     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
499 
500     // This type is legalized to a scalar type.
501     if (!LT.second.isVector())
502       return 0;
503 
504     // The type may be split. Normalize the index to the new type.
505     unsigned Width = LT.second.getVectorNumElements();
506     Index = Index % Width;
507 
508     // The element at index zero is already inside the vector.
509     if (Index == 0)
510       return 0;
511   }
512 
513   // All other insert/extracts cost this much.
514   return ST->getVectorInsertExtractBaseCost();
515 }
516 
517 int AArch64TTIImpl::getArithmeticInstrCost(
518     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
519     TTI::OperandValueKind Opd1Info,
520     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
521     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
522     const Instruction *CxtI) {
523   // TODO: Handle more cost kinds.
524   if (CostKind != TTI::TCK_RecipThroughput)
525     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
526                                          Opd2Info, Opd1PropInfo,
527                                          Opd2PropInfo, Args, CxtI);
528 
529   // Legalize the type.
530   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
531 
532   // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
533   // add in the widening overhead specified by the sub-target. Since the
534   // extends feeding widening instructions are performed automatically, they
535   // aren't present in the generated code and have a zero cost. By adding a
536   // widening overhead here, we attach the total cost of the combined operation
537   // to the widening instruction.
538   int Cost = 0;
539   if (isWideningInstruction(Ty, Opcode, Args))
540     Cost += ST->getWideningBaseCost();
541 
542   int ISD = TLI->InstructionOpcodeToISD(Opcode);
543 
544   switch (ISD) {
545   default:
546     return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
547                                                 Opd2Info,
548                                                 Opd1PropInfo, Opd2PropInfo);
549   case ISD::SDIV:
550     if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
551         Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
552       // On AArch64, scalar signed division by constants power-of-two are
553       // normally expanded to the sequence ADD + CMP + SELECT + SRA.
554       // The OperandValue properties many not be same as that of previous
555       // operation; conservatively assume OP_None.
556       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind,
557                                      Opd1Info, Opd2Info,
558                                      TargetTransformInfo::OP_None,
559                                      TargetTransformInfo::OP_None);
560       Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind,
561                                      Opd1Info, Opd2Info,
562                                      TargetTransformInfo::OP_None,
563                                      TargetTransformInfo::OP_None);
564       Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind,
565                                      Opd1Info, Opd2Info,
566                                      TargetTransformInfo::OP_None,
567                                      TargetTransformInfo::OP_None);
568       Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
569                                      Opd1Info, Opd2Info,
570                                      TargetTransformInfo::OP_None,
571                                      TargetTransformInfo::OP_None);
572       return Cost;
573     }
574     LLVM_FALLTHROUGH;
575   case ISD::UDIV:
576     if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) {
577       auto VT = TLI->getValueType(DL, Ty);
578       if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
579         // Vector signed division by constant are expanded to the
580         // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
581         // to MULHS + SUB + SRL + ADD + SRL.
582         int MulCost = getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
583                                              Opd1Info, Opd2Info,
584                                              TargetTransformInfo::OP_None,
585                                              TargetTransformInfo::OP_None);
586         int AddCost = getArithmeticInstrCost(Instruction::Add, Ty, CostKind,
587                                              Opd1Info, Opd2Info,
588                                              TargetTransformInfo::OP_None,
589                                              TargetTransformInfo::OP_None);
590         int ShrCost = getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
591                                              Opd1Info, Opd2Info,
592                                              TargetTransformInfo::OP_None,
593                                              TargetTransformInfo::OP_None);
594         return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
595       }
596     }
597 
598     Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
599                                           Opd2Info,
600                                           Opd1PropInfo, Opd2PropInfo);
601     if (Ty->isVectorTy()) {
602       // On AArch64, vector divisions are not supported natively and are
603       // expanded into scalar divisions of each pair of elements.
604       Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind,
605                                      Opd1Info, Opd2Info, Opd1PropInfo,
606                                      Opd2PropInfo);
607       Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind,
608                                      Opd1Info, Opd2Info, Opd1PropInfo,
609                                      Opd2PropInfo);
610       // TODO: if one of the arguments is scalar, then it's not necessary to
611       // double the cost of handling the vector elements.
612       Cost += Cost;
613     }
614     return Cost;
615 
616   case ISD::ADD:
617   case ISD::MUL:
618   case ISD::XOR:
619   case ISD::OR:
620   case ISD::AND:
621     // These nodes are marked as 'custom' for combining purposes only.
622     // We know that they are legal. See LowerAdd in ISelLowering.
623     return (Cost + 1) * LT.first;
624 
625   case ISD::FADD:
626     // These nodes are marked as 'custom' just to lower them to SVE.
627     // We know said lowering will incur no additional cost.
628     if (isa<FixedVectorType>(Ty) && !Ty->getScalarType()->isFP128Ty())
629       return (Cost + 2) * LT.first;
630 
631     return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
632                                                 Opd2Info,
633                                                 Opd1PropInfo, Opd2PropInfo);
634   }
635 }
636 
637 int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
638                                               const SCEV *Ptr) {
639   // Address computations in vectorized code with non-consecutive addresses will
640   // likely result in more instructions compared to scalar code where the
641   // computation can more often be merged into the index mode. The resulting
642   // extra micro-ops can significantly decrease throughput.
643   unsigned NumVectorInstToHideOverhead = 10;
644   int MaxMergeDistance = 64;
645 
646   if (Ty->isVectorTy() && SE &&
647       !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
648     return NumVectorInstToHideOverhead;
649 
650   // In many cases the address computation is not merged into the instruction
651   // addressing mode.
652   return 1;
653 }
654 
655 int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
656                                        Type *CondTy,
657                                        TTI::TargetCostKind CostKind,
658                                        const Instruction *I) {
659   // TODO: Handle other cost kinds.
660   if (CostKind != TTI::TCK_RecipThroughput)
661     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
662 
663   int ISD = TLI->InstructionOpcodeToISD(Opcode);
664   // We don't lower some vector selects well that are wider than the register
665   // width.
666   if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
667     // We would need this many instructions to hide the scalarization happening.
668     const int AmortizationCost = 20;
669     static const TypeConversionCostTblEntry
670     VectorSelectTbl[] = {
671       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
672       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
673       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
674       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
675       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
676       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
677     };
678 
679     EVT SelCondTy = TLI->getValueType(DL, CondTy);
680     EVT SelValTy = TLI->getValueType(DL, ValTy);
681     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
682       if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
683                                                      SelCondTy.getSimpleVT(),
684                                                      SelValTy.getSimpleVT()))
685         return Entry->Cost;
686     }
687   }
688   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
689 }
690 
691 AArch64TTIImpl::TTI::MemCmpExpansionOptions
692 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
693   TTI::MemCmpExpansionOptions Options;
694   if (ST->requiresStrictAlign()) {
695     // TODO: Add cost modeling for strict align. Misaligned loads expand to
696     // a bunch of instructions when strict align is enabled.
697     return Options;
698   }
699   Options.AllowOverlappingLoads = true;
700   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
701   Options.NumLoadsPerBlock = Options.MaxNumLoads;
702   // TODO: Though vector loads usually perform well on AArch64, in some targets
703   // they may wake up the FP unit, which raises the power consumption.  Perhaps
704   // they could be used with no holds barred (-O3).
705   Options.LoadSizes = {8, 4, 2, 1};
706   return Options;
707 }
708 
709 int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
710                                     MaybeAlign Alignment, unsigned AddressSpace,
711                                     TTI::TargetCostKind CostKind,
712                                     const Instruction *I) {
713   // TODO: Handle other cost kinds.
714   if (CostKind != TTI::TCK_RecipThroughput)
715     return 1;
716 
717   // Type legalization can't handle structs
718   if (TLI->getValueType(DL, Ty,  true) == MVT::Other)
719     return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
720                                   CostKind);
721 
722   auto LT = TLI->getTypeLegalizationCost(DL, Ty);
723 
724   if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
725       LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
726     // Unaligned stores are extremely inefficient. We don't split all
727     // unaligned 128-bit stores because the negative impact that has shown in
728     // practice on inlined block copy code.
729     // We make such stores expensive so that we will only vectorize if there
730     // are 6 other instructions getting vectorized.
731     const int AmortizationCost = 6;
732 
733     return LT.first * 2 * AmortizationCost;
734   }
735 
736   if (Ty->isVectorTy() &&
737       cast<VectorType>(Ty)->getElementType()->isIntegerTy(8)) {
738     unsigned ProfitableNumElements;
739     if (Opcode == Instruction::Store)
740       // We use a custom trunc store lowering so v.4b should be profitable.
741       ProfitableNumElements = 4;
742     else
743       // We scalarize the loads because there is not v.4b register and we
744       // have to promote the elements to v.2.
745       ProfitableNumElements = 8;
746 
747     if (cast<FixedVectorType>(Ty)->getNumElements() < ProfitableNumElements) {
748       unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
749       unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
750       // We generate 2 instructions per vector element.
751       return NumVectorizableInstsToAmortize * NumVecElts * 2;
752     }
753   }
754 
755   return LT.first;
756 }
757 
758 int AArch64TTIImpl::getInterleavedMemoryOpCost(
759     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
760     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
761     bool UseMaskForCond, bool UseMaskForGaps) {
762   assert(Factor >= 2 && "Invalid interleave factor");
763   auto *VecVTy = cast<FixedVectorType>(VecTy);
764 
765   if (!UseMaskForCond && !UseMaskForGaps &&
766       Factor <= TLI->getMaxSupportedInterleaveFactor()) {
767     unsigned NumElts = VecVTy->getNumElements();
768     auto *SubVecTy =
769         FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
770 
771     // ldN/stN only support legal vector types of size 64 or 128 in bits.
772     // Accesses having vector types that are a multiple of 128 bits can be
773     // matched to more than one ldN/stN instruction.
774     if (NumElts % Factor == 0 &&
775         TLI->isLegalInterleavedAccessType(SubVecTy, DL))
776       return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
777   }
778 
779   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
780                                            Alignment, AddressSpace, CostKind,
781                                            UseMaskForCond, UseMaskForGaps);
782 }
783 
784 int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
785   int Cost = 0;
786   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
787   for (auto *I : Tys) {
788     if (!I->isVectorTy())
789       continue;
790     if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() ==
791         128)
792       Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) +
793               getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind);
794   }
795   return Cost;
796 }
797 
798 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
799   return ST->getMaxInterleaveFactor();
800 }
801 
802 // For Falkor, we want to avoid having too many strided loads in a loop since
803 // that can exhaust the HW prefetcher resources.  We adjust the unroller
804 // MaxCount preference below to attempt to ensure unrolling doesn't create too
805 // many strided loads.
806 static void
807 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
808                               TargetTransformInfo::UnrollingPreferences &UP) {
809   enum { MaxStridedLoads = 7 };
810   auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
811     int StridedLoads = 0;
812     // FIXME? We could make this more precise by looking at the CFG and
813     // e.g. not counting loads in each side of an if-then-else diamond.
814     for (const auto BB : L->blocks()) {
815       for (auto &I : *BB) {
816         LoadInst *LMemI = dyn_cast<LoadInst>(&I);
817         if (!LMemI)
818           continue;
819 
820         Value *PtrValue = LMemI->getPointerOperand();
821         if (L->isLoopInvariant(PtrValue))
822           continue;
823 
824         const SCEV *LSCEV = SE.getSCEV(PtrValue);
825         const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
826         if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
827           continue;
828 
829         // FIXME? We could take pairing of unrolled load copies into account
830         // by looking at the AddRec, but we would probably have to limit this
831         // to loops with no stores or other memory optimization barriers.
832         ++StridedLoads;
833         // We've seen enough strided loads that seeing more won't make a
834         // difference.
835         if (StridedLoads > MaxStridedLoads / 2)
836           return StridedLoads;
837       }
838     }
839     return StridedLoads;
840   };
841 
842   int StridedLoads = countStridedLoads(L, SE);
843   LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
844                     << " strided loads\n");
845   // Pick the largest power of 2 unroll count that won't result in too many
846   // strided loads.
847   if (StridedLoads) {
848     UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
849     LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
850                       << UP.MaxCount << '\n');
851   }
852 }
853 
854 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
855                                              TTI::UnrollingPreferences &UP) {
856   // Enable partial unrolling and runtime unrolling.
857   BaseT::getUnrollingPreferences(L, SE, UP);
858 
859   // For inner loop, it is more likely to be a hot one, and the runtime check
860   // can be promoted out from LICM pass, so the overhead is less, let's try
861   // a larger threshold to unroll more loops.
862   if (L->getLoopDepth() > 1)
863     UP.PartialThreshold *= 2;
864 
865   // Disable partial & runtime unrolling on -Os.
866   UP.PartialOptSizeThreshold = 0;
867 
868   if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
869       EnableFalkorHWPFUnrollFix)
870     getFalkorUnrollingPreferences(L, SE, UP);
871 }
872 
873 void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
874                                            TTI::PeelingPreferences &PP) {
875   BaseT::getPeelingPreferences(L, SE, PP);
876 }
877 
878 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
879                                                          Type *ExpectedType) {
880   switch (Inst->getIntrinsicID()) {
881   default:
882     return nullptr;
883   case Intrinsic::aarch64_neon_st2:
884   case Intrinsic::aarch64_neon_st3:
885   case Intrinsic::aarch64_neon_st4: {
886     // Create a struct type
887     StructType *ST = dyn_cast<StructType>(ExpectedType);
888     if (!ST)
889       return nullptr;
890     unsigned NumElts = Inst->getNumArgOperands() - 1;
891     if (ST->getNumElements() != NumElts)
892       return nullptr;
893     for (unsigned i = 0, e = NumElts; i != e; ++i) {
894       if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
895         return nullptr;
896     }
897     Value *Res = UndefValue::get(ExpectedType);
898     IRBuilder<> Builder(Inst);
899     for (unsigned i = 0, e = NumElts; i != e; ++i) {
900       Value *L = Inst->getArgOperand(i);
901       Res = Builder.CreateInsertValue(Res, L, i);
902     }
903     return Res;
904   }
905   case Intrinsic::aarch64_neon_ld2:
906   case Intrinsic::aarch64_neon_ld3:
907   case Intrinsic::aarch64_neon_ld4:
908     if (Inst->getType() == ExpectedType)
909       return Inst;
910     return nullptr;
911   }
912 }
913 
914 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
915                                         MemIntrinsicInfo &Info) {
916   switch (Inst->getIntrinsicID()) {
917   default:
918     break;
919   case Intrinsic::aarch64_neon_ld2:
920   case Intrinsic::aarch64_neon_ld3:
921   case Intrinsic::aarch64_neon_ld4:
922     Info.ReadMem = true;
923     Info.WriteMem = false;
924     Info.PtrVal = Inst->getArgOperand(0);
925     break;
926   case Intrinsic::aarch64_neon_st2:
927   case Intrinsic::aarch64_neon_st3:
928   case Intrinsic::aarch64_neon_st4:
929     Info.ReadMem = false;
930     Info.WriteMem = true;
931     Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
932     break;
933   }
934 
935   switch (Inst->getIntrinsicID()) {
936   default:
937     return false;
938   case Intrinsic::aarch64_neon_ld2:
939   case Intrinsic::aarch64_neon_st2:
940     Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
941     break;
942   case Intrinsic::aarch64_neon_ld3:
943   case Intrinsic::aarch64_neon_st3:
944     Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
945     break;
946   case Intrinsic::aarch64_neon_ld4:
947   case Intrinsic::aarch64_neon_st4:
948     Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
949     break;
950   }
951   return true;
952 }
953 
954 /// See if \p I should be considered for address type promotion. We check if \p
955 /// I is a sext with right type and used in memory accesses. If it used in a
956 /// "complex" getelementptr, we allow it to be promoted without finding other
957 /// sext instructions that sign extended the same initial value. A getelementptr
958 /// is considered as "complex" if it has more than 2 operands.
959 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
960     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
961   bool Considerable = false;
962   AllowPromotionWithoutCommonHeader = false;
963   if (!isa<SExtInst>(&I))
964     return false;
965   Type *ConsideredSExtType =
966       Type::getInt64Ty(I.getParent()->getParent()->getContext());
967   if (I.getType() != ConsideredSExtType)
968     return false;
969   // See if the sext is the one with the right type and used in at least one
970   // GetElementPtrInst.
971   for (const User *U : I.users()) {
972     if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
973       Considerable = true;
974       // A getelementptr is considered as "complex" if it has more than 2
975       // operands. We will promote a SExt used in such complex GEP as we
976       // expect some computation to be merged if they are done on 64 bits.
977       if (GEPInst->getNumOperands() > 2) {
978         AllowPromotionWithoutCommonHeader = true;
979         break;
980       }
981     }
982   }
983   return Considerable;
984 }
985 
986 bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
987                                            TTI::ReductionFlags Flags) const {
988   auto *VTy = cast<VectorType>(Ty);
989   unsigned ScalarBits = Ty->getScalarSizeInBits();
990   switch (Opcode) {
991   case Instruction::FAdd:
992   case Instruction::FMul:
993   case Instruction::And:
994   case Instruction::Or:
995   case Instruction::Xor:
996   case Instruction::Mul:
997     return false;
998   case Instruction::Add:
999     return ScalarBits * cast<FixedVectorType>(VTy)->getNumElements() >= 128;
1000   case Instruction::ICmp:
1001     return (ScalarBits < 64) &&
1002            (ScalarBits * cast<FixedVectorType>(VTy)->getNumElements() >= 128);
1003   case Instruction::FCmp:
1004     return Flags.NoNaN;
1005   default:
1006     llvm_unreachable("Unhandled reduction opcode");
1007   }
1008   return false;
1009 }
1010 
1011 int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode,
1012                                                VectorType *ValTy,
1013                                                bool IsPairwiseForm,
1014                                                TTI::TargetCostKind CostKind) {
1015 
1016   if (IsPairwiseForm)
1017     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm,
1018                                              CostKind);
1019 
1020   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
1021   MVT MTy = LT.second;
1022   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1023   assert(ISD && "Invalid opcode");
1024 
1025   // Horizontal adds can use the 'addv' instruction. We model the cost of these
1026   // instructions as normal vector adds. This is the only arithmetic vector
1027   // reduction operation for which we have an instruction.
1028   static const CostTblEntry CostTblNoPairwise[]{
1029       {ISD::ADD, MVT::v8i8,  1},
1030       {ISD::ADD, MVT::v16i8, 1},
1031       {ISD::ADD, MVT::v4i16, 1},
1032       {ISD::ADD, MVT::v8i16, 1},
1033       {ISD::ADD, MVT::v4i32, 1},
1034   };
1035 
1036   if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
1037     return LT.first * Entry->Cost;
1038 
1039   return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm,
1040                                            CostKind);
1041 }
1042 
1043 int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
1044                                    int Index, VectorType *SubTp) {
1045   if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
1046       Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc) {
1047     static const CostTblEntry ShuffleTbl[] = {
1048       // Broadcast shuffle kinds can be performed with 'dup'.
1049       { TTI::SK_Broadcast, MVT::v8i8,  1 },
1050       { TTI::SK_Broadcast, MVT::v16i8, 1 },
1051       { TTI::SK_Broadcast, MVT::v4i16, 1 },
1052       { TTI::SK_Broadcast, MVT::v8i16, 1 },
1053       { TTI::SK_Broadcast, MVT::v2i32, 1 },
1054       { TTI::SK_Broadcast, MVT::v4i32, 1 },
1055       { TTI::SK_Broadcast, MVT::v2i64, 1 },
1056       { TTI::SK_Broadcast, MVT::v2f32, 1 },
1057       { TTI::SK_Broadcast, MVT::v4f32, 1 },
1058       { TTI::SK_Broadcast, MVT::v2f64, 1 },
1059       // Transpose shuffle kinds can be performed with 'trn1/trn2' and
1060       // 'zip1/zip2' instructions.
1061       { TTI::SK_Transpose, MVT::v8i8,  1 },
1062       { TTI::SK_Transpose, MVT::v16i8, 1 },
1063       { TTI::SK_Transpose, MVT::v4i16, 1 },
1064       { TTI::SK_Transpose, MVT::v8i16, 1 },
1065       { TTI::SK_Transpose, MVT::v2i32, 1 },
1066       { TTI::SK_Transpose, MVT::v4i32, 1 },
1067       { TTI::SK_Transpose, MVT::v2i64, 1 },
1068       { TTI::SK_Transpose, MVT::v2f32, 1 },
1069       { TTI::SK_Transpose, MVT::v4f32, 1 },
1070       { TTI::SK_Transpose, MVT::v2f64, 1 },
1071       // Select shuffle kinds.
1072       // TODO: handle vXi8/vXi16.
1073       { TTI::SK_Select, MVT::v2i32, 1 }, // mov.
1074       { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar).
1075       { TTI::SK_Select, MVT::v2i64, 1 }, // mov.
1076       { TTI::SK_Select, MVT::v2f32, 1 }, // mov.
1077       { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar).
1078       { TTI::SK_Select, MVT::v2f64, 1 }, // mov.
1079       // PermuteSingleSrc shuffle kinds.
1080       // TODO: handle vXi8/vXi16.
1081       { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov.
1082       { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case.
1083       { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov.
1084       { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov.
1085       { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case.
1086       { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov.
1087     };
1088     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1089     if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
1090       return LT.first * Entry->Cost;
1091   }
1092 
1093   return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
1094 }
1095