1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AArch64ExpandImm.h" 10 #include "AArch64TargetTransformInfo.h" 11 #include "MCTargetDesc/AArch64AddressingModes.h" 12 #include "llvm/Analysis/LoopInfo.h" 13 #include "llvm/Analysis/TargetTransformInfo.h" 14 #include "llvm/CodeGen/BasicTTIImpl.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/TargetLowering.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/IntrinsicsAArch64.h" 19 #include "llvm/Support/Debug.h" 20 #include <algorithm> 21 using namespace llvm; 22 23 #define DEBUG_TYPE "aarch64tti" 24 25 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix", 26 cl::init(true), cl::Hidden); 27 28 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller, 29 const Function *Callee) const { 30 const TargetMachine &TM = getTLI()->getTargetMachine(); 31 32 const FeatureBitset &CallerBits = 33 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 34 const FeatureBitset &CalleeBits = 35 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 36 37 // Inline a callee if its target-features are a subset of the callers 38 // target-features. 39 return (CallerBits & CalleeBits) == CalleeBits; 40 } 41 42 /// Calculate the cost of materializing a 64-bit value. This helper 43 /// method might only calculate a fraction of a larger immediate. Therefore it 44 /// is valid to return a cost of ZERO. 45 int AArch64TTIImpl::getIntImmCost(int64_t Val) { 46 // Check if the immediate can be encoded within an instruction. 47 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64)) 48 return 0; 49 50 if (Val < 0) 51 Val = ~Val; 52 53 // Calculate how many moves we will need to materialize this constant. 54 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; 55 AArch64_IMM::expandMOVImm(Val, 64, Insn); 56 return Insn.size(); 57 } 58 59 /// Calculate the cost of materializing the given constant. 60 int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 61 TTI::TargetCostKind CostKind) { 62 assert(Ty->isIntegerTy()); 63 64 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 65 if (BitSize == 0) 66 return ~0U; 67 68 // Sign-extend all constants to a multiple of 64-bit. 69 APInt ImmVal = Imm; 70 if (BitSize & 0x3f) 71 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU); 72 73 // Split the constant into 64-bit chunks and calculate the cost for each 74 // chunk. 75 int Cost = 0; 76 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { 77 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); 78 int64_t Val = Tmp.getSExtValue(); 79 Cost += getIntImmCost(Val); 80 } 81 // We need at least one instruction to materialze the constant. 82 return std::max(1, Cost); 83 } 84 85 int AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 86 const APInt &Imm, Type *Ty, 87 TTI::TargetCostKind CostKind) { 88 assert(Ty->isIntegerTy()); 89 90 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 91 // There is no cost model for constants with a bit size of 0. Return TCC_Free 92 // here, so that constant hoisting will ignore this constant. 93 if (BitSize == 0) 94 return TTI::TCC_Free; 95 96 unsigned ImmIdx = ~0U; 97 switch (Opcode) { 98 default: 99 return TTI::TCC_Free; 100 case Instruction::GetElementPtr: 101 // Always hoist the base address of a GetElementPtr. 102 if (Idx == 0) 103 return 2 * TTI::TCC_Basic; 104 return TTI::TCC_Free; 105 case Instruction::Store: 106 ImmIdx = 0; 107 break; 108 case Instruction::Add: 109 case Instruction::Sub: 110 case Instruction::Mul: 111 case Instruction::UDiv: 112 case Instruction::SDiv: 113 case Instruction::URem: 114 case Instruction::SRem: 115 case Instruction::And: 116 case Instruction::Or: 117 case Instruction::Xor: 118 case Instruction::ICmp: 119 ImmIdx = 1; 120 break; 121 // Always return TCC_Free for the shift value of a shift instruction. 122 case Instruction::Shl: 123 case Instruction::LShr: 124 case Instruction::AShr: 125 if (Idx == 1) 126 return TTI::TCC_Free; 127 break; 128 case Instruction::Trunc: 129 case Instruction::ZExt: 130 case Instruction::SExt: 131 case Instruction::IntToPtr: 132 case Instruction::PtrToInt: 133 case Instruction::BitCast: 134 case Instruction::PHI: 135 case Instruction::Call: 136 case Instruction::Select: 137 case Instruction::Ret: 138 case Instruction::Load: 139 break; 140 } 141 142 if (Idx == ImmIdx) { 143 int NumConstants = (BitSize + 63) / 64; 144 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 145 return (Cost <= NumConstants * TTI::TCC_Basic) 146 ? static_cast<int>(TTI::TCC_Free) 147 : Cost; 148 } 149 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 150 } 151 152 int AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 153 const APInt &Imm, Type *Ty, 154 TTI::TargetCostKind CostKind) { 155 assert(Ty->isIntegerTy()); 156 157 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 158 // There is no cost model for constants with a bit size of 0. Return TCC_Free 159 // here, so that constant hoisting will ignore this constant. 160 if (BitSize == 0) 161 return TTI::TCC_Free; 162 163 // Most (all?) AArch64 intrinsics do not support folding immediates into the 164 // selected instruction, so we compute the materialization cost for the 165 // immediate directly. 166 if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv) 167 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 168 169 switch (IID) { 170 default: 171 return TTI::TCC_Free; 172 case Intrinsic::sadd_with_overflow: 173 case Intrinsic::uadd_with_overflow: 174 case Intrinsic::ssub_with_overflow: 175 case Intrinsic::usub_with_overflow: 176 case Intrinsic::smul_with_overflow: 177 case Intrinsic::umul_with_overflow: 178 if (Idx == 1) { 179 int NumConstants = (BitSize + 63) / 64; 180 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 181 return (Cost <= NumConstants * TTI::TCC_Basic) 182 ? static_cast<int>(TTI::TCC_Free) 183 : Cost; 184 } 185 break; 186 case Intrinsic::experimental_stackmap: 187 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 188 return TTI::TCC_Free; 189 break; 190 case Intrinsic::experimental_patchpoint_void: 191 case Intrinsic::experimental_patchpoint_i64: 192 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 193 return TTI::TCC_Free; 194 break; 195 } 196 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 197 } 198 199 TargetTransformInfo::PopcntSupportKind 200 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) { 201 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 202 if (TyWidth == 32 || TyWidth == 64) 203 return TTI::PSK_FastHardware; 204 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount. 205 return TTI::PSK_Software; 206 } 207 208 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode, 209 ArrayRef<const Value *> Args) { 210 211 // A helper that returns a vector type from the given type. The number of 212 // elements in type Ty determine the vector width. 213 auto toVectorTy = [&](Type *ArgTy) { 214 return FixedVectorType::get(ArgTy->getScalarType(), 215 cast<VectorType>(DstTy)->getNumElements()); 216 }; 217 218 // Exit early if DstTy is not a vector type whose elements are at least 219 // 16-bits wide. 220 if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16) 221 return false; 222 223 // Determine if the operation has a widening variant. We consider both the 224 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the 225 // instructions. 226 // 227 // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we 228 // verify that their extending operands are eliminated during code 229 // generation. 230 switch (Opcode) { 231 case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2). 232 case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2). 233 break; 234 default: 235 return false; 236 } 237 238 // To be a widening instruction (either the "wide" or "long" versions), the 239 // second operand must be a sign- or zero extend having a single user. We 240 // only consider extends having a single user because they may otherwise not 241 // be eliminated. 242 if (Args.size() != 2 || 243 (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) || 244 !Args[1]->hasOneUse()) 245 return false; 246 auto *Extend = cast<CastInst>(Args[1]); 247 248 // Legalize the destination type and ensure it can be used in a widening 249 // operation. 250 auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy); 251 unsigned DstElTySize = DstTyL.second.getScalarSizeInBits(); 252 if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits()) 253 return false; 254 255 // Legalize the source type and ensure it can be used in a widening 256 // operation. 257 auto *SrcTy = toVectorTy(Extend->getSrcTy()); 258 auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy); 259 unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits(); 260 if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits()) 261 return false; 262 263 // Get the total number of vector elements in the legalized types. 264 unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorNumElements(); 265 unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorNumElements(); 266 267 // Return true if the legalized types have the same number of vector elements 268 // and the destination element type size is twice that of the source type. 269 return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize; 270 } 271 272 int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 273 TTI::TargetCostKind CostKind, 274 const Instruction *I) { 275 int ISD = TLI->InstructionOpcodeToISD(Opcode); 276 assert(ISD && "Invalid opcode"); 277 278 // If the cast is observable, and it is used by a widening instruction (e.g., 279 // uaddl, saddw, etc.), it may be free. 280 if (I && I->hasOneUse()) { 281 auto *SingleUser = cast<Instruction>(*I->user_begin()); 282 SmallVector<const Value *, 4> Operands(SingleUser->operand_values()); 283 if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) { 284 // If the cast is the second operand, it is free. We will generate either 285 // a "wide" or "long" version of the widening instruction. 286 if (I == SingleUser->getOperand(1)) 287 return 0; 288 // If the cast is not the second operand, it will be free if it looks the 289 // same as the second operand. In this case, we will generate a "long" 290 // version of the widening instruction. 291 if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1))) 292 if (I->getOpcode() == unsigned(Cast->getOpcode()) && 293 cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy()) 294 return 0; 295 } 296 } 297 298 // TODO: Allow non-throughput costs that aren't binary. 299 auto AdjustCost = [&CostKind](int Cost) { 300 if (CostKind != TTI::TCK_RecipThroughput) 301 return Cost == 0 ? 0 : 1; 302 return Cost; 303 }; 304 305 EVT SrcTy = TLI->getValueType(DL, Src); 306 EVT DstTy = TLI->getValueType(DL, Dst); 307 308 if (!SrcTy.isSimple() || !DstTy.isSimple()) 309 return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I)); 310 311 static const TypeConversionCostTblEntry 312 ConversionTbl[] = { 313 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 314 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 315 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 316 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 317 318 // The number of shll instructions for the extension. 319 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 320 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 321 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 322 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 323 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 324 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 325 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 326 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 327 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 328 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 329 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 330 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 331 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 332 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 333 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 334 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 335 336 // LowerVectorINT_TO_FP: 337 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 338 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 339 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 340 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 341 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 342 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 343 344 // Complex: to v2f32 345 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 346 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 347 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 348 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 349 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 350 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 351 352 // Complex: to v4f32 353 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 }, 354 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 355 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 356 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 357 358 // Complex: to v8f32 359 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 360 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 361 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 362 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 363 364 // Complex: to v16f32 365 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 366 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 367 368 // Complex: to v2f64 369 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 370 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 371 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 372 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 373 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 374 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 375 376 377 // LowerVectorFP_TO_INT 378 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 }, 379 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 380 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, 381 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, 382 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 383 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, 384 385 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext). 386 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 }, 387 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 }, 388 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 }, 389 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 }, 390 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 }, 391 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 }, 392 393 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2 394 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 395 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 }, 396 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 397 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 }, 398 399 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2. 400 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 401 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 }, 402 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 }, 403 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 404 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 }, 405 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 }, 406 }; 407 408 if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD, 409 DstTy.getSimpleVT(), 410 SrcTy.getSimpleVT())) 411 return AdjustCost(Entry->Cost); 412 413 return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I)); 414 } 415 416 int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 417 VectorType *VecTy, 418 unsigned Index) { 419 420 // Make sure we were given a valid extend opcode. 421 assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) && 422 "Invalid opcode"); 423 424 // We are extending an element we extract from a vector, so the source type 425 // of the extend is the element type of the vector. 426 auto *Src = VecTy->getElementType(); 427 428 // Sign- and zero-extends are for integer types only. 429 assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type"); 430 431 // Get the cost for the extract. We compute the cost (if any) for the extend 432 // below. 433 auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index); 434 435 // Legalize the types. 436 auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy); 437 auto DstVT = TLI->getValueType(DL, Dst); 438 auto SrcVT = TLI->getValueType(DL, Src); 439 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 440 441 // If the resulting type is still a vector and the destination type is legal, 442 // we may get the extension for free. If not, get the default cost for the 443 // extend. 444 if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT)) 445 return Cost + getCastInstrCost(Opcode, Dst, Src, CostKind); 446 447 // The destination type should be larger than the element type. If not, get 448 // the default cost for the extend. 449 if (DstVT.getSizeInBits() < SrcVT.getSizeInBits()) 450 return Cost + getCastInstrCost(Opcode, Dst, Src, CostKind); 451 452 switch (Opcode) { 453 default: 454 llvm_unreachable("Opcode should be either SExt or ZExt"); 455 456 // For sign-extends, we only need a smov, which performs the extension 457 // automatically. 458 case Instruction::SExt: 459 return Cost; 460 461 // For zero-extends, the extend is performed automatically by a umov unless 462 // the destination type is i64 and the element type is i8 or i16. 463 case Instruction::ZExt: 464 if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u) 465 return Cost; 466 } 467 468 // If we are unable to perform the extend for free, get the default cost. 469 return Cost + getCastInstrCost(Opcode, Dst, Src, CostKind); 470 } 471 472 int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 473 unsigned Index) { 474 assert(Val->isVectorTy() && "This must be a vector type"); 475 476 if (Index != -1U) { 477 // Legalize the type. 478 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); 479 480 // This type is legalized to a scalar type. 481 if (!LT.second.isVector()) 482 return 0; 483 484 // The type may be split. Normalize the index to the new type. 485 unsigned Width = LT.second.getVectorNumElements(); 486 Index = Index % Width; 487 488 // The element at index zero is already inside the vector. 489 if (Index == 0) 490 return 0; 491 } 492 493 // All other insert/extracts cost this much. 494 return ST->getVectorInsertExtractBaseCost(); 495 } 496 497 int AArch64TTIImpl::getArithmeticInstrCost( 498 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 499 TTI::OperandValueKind Opd1Info, 500 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, 501 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 502 const Instruction *CxtI) { 503 // Legalize the type. 504 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 505 506 // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.), 507 // add in the widening overhead specified by the sub-target. Since the 508 // extends feeding widening instructions are performed automatically, they 509 // aren't present in the generated code and have a zero cost. By adding a 510 // widening overhead here, we attach the total cost of the combined operation 511 // to the widening instruction. 512 int Cost = 0; 513 if (isWideningInstruction(Ty, Opcode, Args)) 514 Cost += ST->getWideningBaseCost(); 515 516 int ISD = TLI->InstructionOpcodeToISD(Opcode); 517 518 switch (ISD) { 519 default: 520 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 521 Opd2Info, 522 Opd1PropInfo, Opd2PropInfo); 523 case ISD::SDIV: 524 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue && 525 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 526 // On AArch64, scalar signed division by constants power-of-two are 527 // normally expanded to the sequence ADD + CMP + SELECT + SRA. 528 // The OperandValue properties many not be same as that of previous 529 // operation; conservatively assume OP_None. 530 Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, 531 Opd1Info, Opd2Info, 532 TargetTransformInfo::OP_None, 533 TargetTransformInfo::OP_None); 534 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, 535 Opd1Info, Opd2Info, 536 TargetTransformInfo::OP_None, 537 TargetTransformInfo::OP_None); 538 Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind, 539 Opd1Info, Opd2Info, 540 TargetTransformInfo::OP_None, 541 TargetTransformInfo::OP_None); 542 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, 543 Opd1Info, Opd2Info, 544 TargetTransformInfo::OP_None, 545 TargetTransformInfo::OP_None); 546 return Cost; 547 } 548 LLVM_FALLTHROUGH; 549 case ISD::UDIV: 550 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) { 551 auto VT = TLI->getValueType(DL, Ty); 552 if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) { 553 // Vector signed division by constant are expanded to the 554 // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division 555 // to MULHS + SUB + SRL + ADD + SRL. 556 int MulCost = getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, 557 Opd1Info, Opd2Info, 558 TargetTransformInfo::OP_None, 559 TargetTransformInfo::OP_None); 560 int AddCost = getArithmeticInstrCost(Instruction::Add, Ty, CostKind, 561 Opd1Info, Opd2Info, 562 TargetTransformInfo::OP_None, 563 TargetTransformInfo::OP_None); 564 int ShrCost = getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, 565 Opd1Info, Opd2Info, 566 TargetTransformInfo::OP_None, 567 TargetTransformInfo::OP_None); 568 return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1; 569 } 570 } 571 572 Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 573 Opd2Info, 574 Opd1PropInfo, Opd2PropInfo); 575 if (Ty->isVectorTy()) { 576 // On AArch64, vector divisions are not supported natively and are 577 // expanded into scalar divisions of each pair of elements. 578 Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind, 579 Opd1Info, Opd2Info, Opd1PropInfo, 580 Opd2PropInfo); 581 Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind, 582 Opd1Info, Opd2Info, Opd1PropInfo, 583 Opd2PropInfo); 584 // TODO: if one of the arguments is scalar, then it's not necessary to 585 // double the cost of handling the vector elements. 586 Cost += Cost; 587 } 588 return Cost; 589 590 case ISD::ADD: 591 case ISD::MUL: 592 case ISD::XOR: 593 case ISD::OR: 594 case ISD::AND: 595 // These nodes are marked as 'custom' for combining purposes only. 596 // We know that they are legal. See LowerAdd in ISelLowering. 597 return (Cost + 1) * LT.first; 598 } 599 } 600 601 int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, 602 const SCEV *Ptr) { 603 // Address computations in vectorized code with non-consecutive addresses will 604 // likely result in more instructions compared to scalar code where the 605 // computation can more often be merged into the index mode. The resulting 606 // extra micro-ops can significantly decrease throughput. 607 unsigned NumVectorInstToHideOverhead = 10; 608 int MaxMergeDistance = 64; 609 610 if (Ty->isVectorTy() && SE && 611 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 612 return NumVectorInstToHideOverhead; 613 614 // In many cases the address computation is not merged into the instruction 615 // addressing mode. 616 return 1; 617 } 618 619 int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 620 Type *CondTy, 621 TTI::TargetCostKind CostKind, 622 const Instruction *I) { 623 624 int ISD = TLI->InstructionOpcodeToISD(Opcode); 625 // We don't lower some vector selects well that are wider than the register 626 // width. 627 if (ValTy->isVectorTy() && ISD == ISD::SELECT) { 628 // We would need this many instructions to hide the scalarization happening. 629 const int AmortizationCost = 20; 630 static const TypeConversionCostTblEntry 631 VectorSelectTbl[] = { 632 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 }, 633 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 }, 634 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 }, 635 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost }, 636 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost }, 637 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost } 638 }; 639 640 EVT SelCondTy = TLI->getValueType(DL, CondTy); 641 EVT SelValTy = TLI->getValueType(DL, ValTy); 642 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 643 if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD, 644 SelCondTy.getSimpleVT(), 645 SelValTy.getSimpleVT())) 646 return Entry->Cost; 647 } 648 } 649 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I); 650 } 651 652 AArch64TTIImpl::TTI::MemCmpExpansionOptions 653 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 654 TTI::MemCmpExpansionOptions Options; 655 if (ST->requiresStrictAlign()) { 656 // TODO: Add cost modeling for strict align. Misaligned loads expand to 657 // a bunch of instructions when strict align is enabled. 658 return Options; 659 } 660 Options.AllowOverlappingLoads = true; 661 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 662 Options.NumLoadsPerBlock = Options.MaxNumLoads; 663 // TODO: Though vector loads usually perform well on AArch64, in some targets 664 // they may wake up the FP unit, which raises the power consumption. Perhaps 665 // they could be used with no holds barred (-O3). 666 Options.LoadSizes = {8, 4, 2, 1}; 667 return Options; 668 } 669 670 int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty, 671 MaybeAlign Alignment, unsigned AddressSpace, 672 TTI::TargetCostKind CostKind, 673 const Instruction *I) { 674 auto LT = TLI->getTypeLegalizationCost(DL, Ty); 675 676 if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store && 677 LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) { 678 // Unaligned stores are extremely inefficient. We don't split all 679 // unaligned 128-bit stores because the negative impact that has shown in 680 // practice on inlined block copy code. 681 // We make such stores expensive so that we will only vectorize if there 682 // are 6 other instructions getting vectorized. 683 const int AmortizationCost = 6; 684 685 return LT.first * 2 * AmortizationCost; 686 } 687 688 if (Ty->isVectorTy() && 689 cast<VectorType>(Ty)->getElementType()->isIntegerTy(8)) { 690 unsigned ProfitableNumElements; 691 if (Opcode == Instruction::Store) 692 // We use a custom trunc store lowering so v.4b should be profitable. 693 ProfitableNumElements = 4; 694 else 695 // We scalarize the loads because there is not v.4b register and we 696 // have to promote the elements to v.2. 697 ProfitableNumElements = 8; 698 699 if (cast<VectorType>(Ty)->getNumElements() < ProfitableNumElements) { 700 unsigned NumVecElts = cast<VectorType>(Ty)->getNumElements(); 701 unsigned NumVectorizableInstsToAmortize = NumVecElts * 2; 702 // We generate 2 instructions per vector element. 703 return NumVectorizableInstsToAmortize * NumVecElts * 2; 704 } 705 } 706 707 return LT.first; 708 } 709 710 int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 711 unsigned Factor, 712 ArrayRef<unsigned> Indices, 713 unsigned Alignment, 714 unsigned AddressSpace, 715 TTI::TargetCostKind CostKind, 716 bool UseMaskForCond, 717 bool UseMaskForGaps) { 718 assert(Factor >= 2 && "Invalid interleave factor"); 719 auto *VecVTy = cast<VectorType>(VecTy); 720 721 if (!UseMaskForCond && !UseMaskForGaps && 722 Factor <= TLI->getMaxSupportedInterleaveFactor()) { 723 unsigned NumElts = VecVTy->getNumElements(); 724 auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor); 725 726 // ldN/stN only support legal vector types of size 64 or 128 in bits. 727 // Accesses having vector types that are a multiple of 128 bits can be 728 // matched to more than one ldN/stN instruction. 729 if (NumElts % Factor == 0 && 730 TLI->isLegalInterleavedAccessType(SubVecTy, DL)) 731 return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL); 732 } 733 734 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 735 Alignment, AddressSpace, CostKind, 736 UseMaskForCond, UseMaskForGaps); 737 } 738 739 int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { 740 int Cost = 0; 741 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 742 for (auto *I : Tys) { 743 if (!I->isVectorTy()) 744 continue; 745 if (I->getScalarSizeInBits() * cast<VectorType>(I)->getNumElements() == 128) 746 Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) + 747 getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind); 748 } 749 return Cost; 750 } 751 752 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) { 753 return ST->getMaxInterleaveFactor(); 754 } 755 756 // For Falkor, we want to avoid having too many strided loads in a loop since 757 // that can exhaust the HW prefetcher resources. We adjust the unroller 758 // MaxCount preference below to attempt to ensure unrolling doesn't create too 759 // many strided loads. 760 static void 761 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE, 762 TargetTransformInfo::UnrollingPreferences &UP) { 763 enum { MaxStridedLoads = 7 }; 764 auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) { 765 int StridedLoads = 0; 766 // FIXME? We could make this more precise by looking at the CFG and 767 // e.g. not counting loads in each side of an if-then-else diamond. 768 for (const auto BB : L->blocks()) { 769 for (auto &I : *BB) { 770 LoadInst *LMemI = dyn_cast<LoadInst>(&I); 771 if (!LMemI) 772 continue; 773 774 Value *PtrValue = LMemI->getPointerOperand(); 775 if (L->isLoopInvariant(PtrValue)) 776 continue; 777 778 const SCEV *LSCEV = SE.getSCEV(PtrValue); 779 const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV); 780 if (!LSCEVAddRec || !LSCEVAddRec->isAffine()) 781 continue; 782 783 // FIXME? We could take pairing of unrolled load copies into account 784 // by looking at the AddRec, but we would probably have to limit this 785 // to loops with no stores or other memory optimization barriers. 786 ++StridedLoads; 787 // We've seen enough strided loads that seeing more won't make a 788 // difference. 789 if (StridedLoads > MaxStridedLoads / 2) 790 return StridedLoads; 791 } 792 } 793 return StridedLoads; 794 }; 795 796 int StridedLoads = countStridedLoads(L, SE); 797 LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads 798 << " strided loads\n"); 799 // Pick the largest power of 2 unroll count that won't result in too many 800 // strided loads. 801 if (StridedLoads) { 802 UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads); 803 LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to " 804 << UP.MaxCount << '\n'); 805 } 806 } 807 808 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 809 TTI::UnrollingPreferences &UP) { 810 // Enable partial unrolling and runtime unrolling. 811 BaseT::getUnrollingPreferences(L, SE, UP); 812 813 // For inner loop, it is more likely to be a hot one, and the runtime check 814 // can be promoted out from LICM pass, so the overhead is less, let's try 815 // a larger threshold to unroll more loops. 816 if (L->getLoopDepth() > 1) 817 UP.PartialThreshold *= 2; 818 819 // Disable partial & runtime unrolling on -Os. 820 UP.PartialOptSizeThreshold = 0; 821 822 if (ST->getProcFamily() == AArch64Subtarget::Falkor && 823 EnableFalkorHWPFUnrollFix) 824 getFalkorUnrollingPreferences(L, SE, UP); 825 } 826 827 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 828 Type *ExpectedType) { 829 switch (Inst->getIntrinsicID()) { 830 default: 831 return nullptr; 832 case Intrinsic::aarch64_neon_st2: 833 case Intrinsic::aarch64_neon_st3: 834 case Intrinsic::aarch64_neon_st4: { 835 // Create a struct type 836 StructType *ST = dyn_cast<StructType>(ExpectedType); 837 if (!ST) 838 return nullptr; 839 unsigned NumElts = Inst->getNumArgOperands() - 1; 840 if (ST->getNumElements() != NumElts) 841 return nullptr; 842 for (unsigned i = 0, e = NumElts; i != e; ++i) { 843 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i)) 844 return nullptr; 845 } 846 Value *Res = UndefValue::get(ExpectedType); 847 IRBuilder<> Builder(Inst); 848 for (unsigned i = 0, e = NumElts; i != e; ++i) { 849 Value *L = Inst->getArgOperand(i); 850 Res = Builder.CreateInsertValue(Res, L, i); 851 } 852 return Res; 853 } 854 case Intrinsic::aarch64_neon_ld2: 855 case Intrinsic::aarch64_neon_ld3: 856 case Intrinsic::aarch64_neon_ld4: 857 if (Inst->getType() == ExpectedType) 858 return Inst; 859 return nullptr; 860 } 861 } 862 863 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 864 MemIntrinsicInfo &Info) { 865 switch (Inst->getIntrinsicID()) { 866 default: 867 break; 868 case Intrinsic::aarch64_neon_ld2: 869 case Intrinsic::aarch64_neon_ld3: 870 case Intrinsic::aarch64_neon_ld4: 871 Info.ReadMem = true; 872 Info.WriteMem = false; 873 Info.PtrVal = Inst->getArgOperand(0); 874 break; 875 case Intrinsic::aarch64_neon_st2: 876 case Intrinsic::aarch64_neon_st3: 877 case Intrinsic::aarch64_neon_st4: 878 Info.ReadMem = false; 879 Info.WriteMem = true; 880 Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1); 881 break; 882 } 883 884 switch (Inst->getIntrinsicID()) { 885 default: 886 return false; 887 case Intrinsic::aarch64_neon_ld2: 888 case Intrinsic::aarch64_neon_st2: 889 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS; 890 break; 891 case Intrinsic::aarch64_neon_ld3: 892 case Intrinsic::aarch64_neon_st3: 893 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS; 894 break; 895 case Intrinsic::aarch64_neon_ld4: 896 case Intrinsic::aarch64_neon_st4: 897 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS; 898 break; 899 } 900 return true; 901 } 902 903 /// See if \p I should be considered for address type promotion. We check if \p 904 /// I is a sext with right type and used in memory accesses. If it used in a 905 /// "complex" getelementptr, we allow it to be promoted without finding other 906 /// sext instructions that sign extended the same initial value. A getelementptr 907 /// is considered as "complex" if it has more than 2 operands. 908 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion( 909 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) { 910 bool Considerable = false; 911 AllowPromotionWithoutCommonHeader = false; 912 if (!isa<SExtInst>(&I)) 913 return false; 914 Type *ConsideredSExtType = 915 Type::getInt64Ty(I.getParent()->getParent()->getContext()); 916 if (I.getType() != ConsideredSExtType) 917 return false; 918 // See if the sext is the one with the right type and used in at least one 919 // GetElementPtrInst. 920 for (const User *U : I.users()) { 921 if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) { 922 Considerable = true; 923 // A getelementptr is considered as "complex" if it has more than 2 924 // operands. We will promote a SExt used in such complex GEP as we 925 // expect some computation to be merged if they are done on 64 bits. 926 if (GEPInst->getNumOperands() > 2) { 927 AllowPromotionWithoutCommonHeader = true; 928 break; 929 } 930 } 931 } 932 return Considerable; 933 } 934 935 bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty, 936 TTI::ReductionFlags Flags) const { 937 auto *VTy = cast<VectorType>(Ty); 938 unsigned ScalarBits = Ty->getScalarSizeInBits(); 939 switch (Opcode) { 940 case Instruction::FAdd: 941 case Instruction::FMul: 942 case Instruction::And: 943 case Instruction::Or: 944 case Instruction::Xor: 945 case Instruction::Mul: 946 return false; 947 case Instruction::Add: 948 return ScalarBits * VTy->getNumElements() >= 128; 949 case Instruction::ICmp: 950 return (ScalarBits < 64) && (ScalarBits * VTy->getNumElements() >= 128); 951 case Instruction::FCmp: 952 return Flags.NoNaN; 953 default: 954 llvm_unreachable("Unhandled reduction opcode"); 955 } 956 return false; 957 } 958 959 int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, 960 VectorType *ValTy, 961 bool IsPairwiseForm, 962 TTI::TargetCostKind CostKind) { 963 964 if (IsPairwiseForm) 965 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm, 966 CostKind); 967 968 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 969 MVT MTy = LT.second; 970 int ISD = TLI->InstructionOpcodeToISD(Opcode); 971 assert(ISD && "Invalid opcode"); 972 973 // Horizontal adds can use the 'addv' instruction. We model the cost of these 974 // instructions as normal vector adds. This is the only arithmetic vector 975 // reduction operation for which we have an instruction. 976 static const CostTblEntry CostTblNoPairwise[]{ 977 {ISD::ADD, MVT::v8i8, 1}, 978 {ISD::ADD, MVT::v16i8, 1}, 979 {ISD::ADD, MVT::v4i16, 1}, 980 {ISD::ADD, MVT::v8i16, 1}, 981 {ISD::ADD, MVT::v4i32, 1}, 982 }; 983 984 if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy)) 985 return LT.first * Entry->Cost; 986 987 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm, 988 CostKind); 989 } 990 991 int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, 992 int Index, VectorType *SubTp) { 993 if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose || 994 Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc) { 995 static const CostTblEntry ShuffleTbl[] = { 996 // Broadcast shuffle kinds can be performed with 'dup'. 997 { TTI::SK_Broadcast, MVT::v8i8, 1 }, 998 { TTI::SK_Broadcast, MVT::v16i8, 1 }, 999 { TTI::SK_Broadcast, MVT::v4i16, 1 }, 1000 { TTI::SK_Broadcast, MVT::v8i16, 1 }, 1001 { TTI::SK_Broadcast, MVT::v2i32, 1 }, 1002 { TTI::SK_Broadcast, MVT::v4i32, 1 }, 1003 { TTI::SK_Broadcast, MVT::v2i64, 1 }, 1004 { TTI::SK_Broadcast, MVT::v2f32, 1 }, 1005 { TTI::SK_Broadcast, MVT::v4f32, 1 }, 1006 { TTI::SK_Broadcast, MVT::v2f64, 1 }, 1007 // Transpose shuffle kinds can be performed with 'trn1/trn2' and 1008 // 'zip1/zip2' instructions. 1009 { TTI::SK_Transpose, MVT::v8i8, 1 }, 1010 { TTI::SK_Transpose, MVT::v16i8, 1 }, 1011 { TTI::SK_Transpose, MVT::v4i16, 1 }, 1012 { TTI::SK_Transpose, MVT::v8i16, 1 }, 1013 { TTI::SK_Transpose, MVT::v2i32, 1 }, 1014 { TTI::SK_Transpose, MVT::v4i32, 1 }, 1015 { TTI::SK_Transpose, MVT::v2i64, 1 }, 1016 { TTI::SK_Transpose, MVT::v2f32, 1 }, 1017 { TTI::SK_Transpose, MVT::v4f32, 1 }, 1018 { TTI::SK_Transpose, MVT::v2f64, 1 }, 1019 // Select shuffle kinds. 1020 // TODO: handle vXi8/vXi16. 1021 { TTI::SK_Select, MVT::v2i32, 1 }, // mov. 1022 { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar). 1023 { TTI::SK_Select, MVT::v2i64, 1 }, // mov. 1024 { TTI::SK_Select, MVT::v2f32, 1 }, // mov. 1025 { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar). 1026 { TTI::SK_Select, MVT::v2f64, 1 }, // mov. 1027 // PermuteSingleSrc shuffle kinds. 1028 // TODO: handle vXi8/vXi16. 1029 { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov. 1030 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case. 1031 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov. 1032 { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov. 1033 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case. 1034 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov. 1035 }; 1036 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1037 if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second)) 1038 return LT.first * Entry->Cost; 1039 } 1040 1041 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 1042 } 1043