1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AArch64ExpandImm.h" 10 #include "AArch64TargetTransformInfo.h" 11 #include "MCTargetDesc/AArch64AddressingModes.h" 12 #include "llvm/Analysis/LoopInfo.h" 13 #include "llvm/Analysis/TargetTransformInfo.h" 14 #include "llvm/CodeGen/BasicTTIImpl.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/TargetLowering.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/IntrinsicsAArch64.h" 19 #include "llvm/Support/Debug.h" 20 #include <algorithm> 21 using namespace llvm; 22 23 #define DEBUG_TYPE "aarch64tti" 24 25 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix", 26 cl::init(true), cl::Hidden); 27 28 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller, 29 const Function *Callee) const { 30 const TargetMachine &TM = getTLI()->getTargetMachine(); 31 32 const FeatureBitset &CallerBits = 33 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 34 const FeatureBitset &CalleeBits = 35 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 36 37 // Inline a callee if its target-features are a subset of the callers 38 // target-features. 39 return (CallerBits & CalleeBits) == CalleeBits; 40 } 41 42 /// Calculate the cost of materializing a 64-bit value. This helper 43 /// method might only calculate a fraction of a larger immediate. Therefore it 44 /// is valid to return a cost of ZERO. 45 int AArch64TTIImpl::getIntImmCost(int64_t Val) { 46 // Check if the immediate can be encoded within an instruction. 47 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64)) 48 return 0; 49 50 if (Val < 0) 51 Val = ~Val; 52 53 // Calculate how many moves we will need to materialize this constant. 54 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; 55 AArch64_IMM::expandMOVImm(Val, 64, Insn); 56 return Insn.size(); 57 } 58 59 /// Calculate the cost of materializing the given constant. 60 int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 61 TTI::TargetCostKind CostKind) { 62 assert(Ty->isIntegerTy()); 63 64 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 65 if (BitSize == 0) 66 return ~0U; 67 68 // Sign-extend all constants to a multiple of 64-bit. 69 APInt ImmVal = Imm; 70 if (BitSize & 0x3f) 71 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU); 72 73 // Split the constant into 64-bit chunks and calculate the cost for each 74 // chunk. 75 int Cost = 0; 76 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { 77 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); 78 int64_t Val = Tmp.getSExtValue(); 79 Cost += getIntImmCost(Val); 80 } 81 // We need at least one instruction to materialze the constant. 82 return std::max(1, Cost); 83 } 84 85 int AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 86 const APInt &Imm, Type *Ty, 87 TTI::TargetCostKind CostKind) { 88 assert(Ty->isIntegerTy()); 89 90 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 91 // There is no cost model for constants with a bit size of 0. Return TCC_Free 92 // here, so that constant hoisting will ignore this constant. 93 if (BitSize == 0) 94 return TTI::TCC_Free; 95 96 unsigned ImmIdx = ~0U; 97 switch (Opcode) { 98 default: 99 return TTI::TCC_Free; 100 case Instruction::GetElementPtr: 101 // Always hoist the base address of a GetElementPtr. 102 if (Idx == 0) 103 return 2 * TTI::TCC_Basic; 104 return TTI::TCC_Free; 105 case Instruction::Store: 106 ImmIdx = 0; 107 break; 108 case Instruction::Add: 109 case Instruction::Sub: 110 case Instruction::Mul: 111 case Instruction::UDiv: 112 case Instruction::SDiv: 113 case Instruction::URem: 114 case Instruction::SRem: 115 case Instruction::And: 116 case Instruction::Or: 117 case Instruction::Xor: 118 case Instruction::ICmp: 119 ImmIdx = 1; 120 break; 121 // Always return TCC_Free for the shift value of a shift instruction. 122 case Instruction::Shl: 123 case Instruction::LShr: 124 case Instruction::AShr: 125 if (Idx == 1) 126 return TTI::TCC_Free; 127 break; 128 case Instruction::Trunc: 129 case Instruction::ZExt: 130 case Instruction::SExt: 131 case Instruction::IntToPtr: 132 case Instruction::PtrToInt: 133 case Instruction::BitCast: 134 case Instruction::PHI: 135 case Instruction::Call: 136 case Instruction::Select: 137 case Instruction::Ret: 138 case Instruction::Load: 139 break; 140 } 141 142 if (Idx == ImmIdx) { 143 int NumConstants = (BitSize + 63) / 64; 144 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 145 return (Cost <= NumConstants * TTI::TCC_Basic) 146 ? static_cast<int>(TTI::TCC_Free) 147 : Cost; 148 } 149 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 150 } 151 152 int AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 153 const APInt &Imm, Type *Ty, 154 TTI::TargetCostKind CostKind) { 155 assert(Ty->isIntegerTy()); 156 157 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 158 // There is no cost model for constants with a bit size of 0. Return TCC_Free 159 // here, so that constant hoisting will ignore this constant. 160 if (BitSize == 0) 161 return TTI::TCC_Free; 162 163 // Most (all?) AArch64 intrinsics do not support folding immediates into the 164 // selected instruction, so we compute the materialization cost for the 165 // immediate directly. 166 if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv) 167 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 168 169 switch (IID) { 170 default: 171 return TTI::TCC_Free; 172 case Intrinsic::sadd_with_overflow: 173 case Intrinsic::uadd_with_overflow: 174 case Intrinsic::ssub_with_overflow: 175 case Intrinsic::usub_with_overflow: 176 case Intrinsic::smul_with_overflow: 177 case Intrinsic::umul_with_overflow: 178 if (Idx == 1) { 179 int NumConstants = (BitSize + 63) / 64; 180 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 181 return (Cost <= NumConstants * TTI::TCC_Basic) 182 ? static_cast<int>(TTI::TCC_Free) 183 : Cost; 184 } 185 break; 186 case Intrinsic::experimental_stackmap: 187 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 188 return TTI::TCC_Free; 189 break; 190 case Intrinsic::experimental_patchpoint_void: 191 case Intrinsic::experimental_patchpoint_i64: 192 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 193 return TTI::TCC_Free; 194 break; 195 } 196 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 197 } 198 199 TargetTransformInfo::PopcntSupportKind 200 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) { 201 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 202 if (TyWidth == 32 || TyWidth == 64) 203 return TTI::PSK_FastHardware; 204 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount. 205 return TTI::PSK_Software; 206 } 207 208 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode, 209 ArrayRef<const Value *> Args) { 210 211 // A helper that returns a vector type from the given type. The number of 212 // elements in type Ty determine the vector width. 213 auto toVectorTy = [&](Type *ArgTy) { 214 return FixedVectorType::get(ArgTy->getScalarType(), 215 cast<VectorType>(DstTy)->getNumElements()); 216 }; 217 218 // Exit early if DstTy is not a vector type whose elements are at least 219 // 16-bits wide. 220 if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16) 221 return false; 222 223 // Determine if the operation has a widening variant. We consider both the 224 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the 225 // instructions. 226 // 227 // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we 228 // verify that their extending operands are eliminated during code 229 // generation. 230 switch (Opcode) { 231 case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2). 232 case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2). 233 break; 234 default: 235 return false; 236 } 237 238 // To be a widening instruction (either the "wide" or "long" versions), the 239 // second operand must be a sign- or zero extend having a single user. We 240 // only consider extends having a single user because they may otherwise not 241 // be eliminated. 242 if (Args.size() != 2 || 243 (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) || 244 !Args[1]->hasOneUse()) 245 return false; 246 auto *Extend = cast<CastInst>(Args[1]); 247 248 // Legalize the destination type and ensure it can be used in a widening 249 // operation. 250 auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy); 251 unsigned DstElTySize = DstTyL.second.getScalarSizeInBits(); 252 if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits()) 253 return false; 254 255 // Legalize the source type and ensure it can be used in a widening 256 // operation. 257 auto *SrcTy = toVectorTy(Extend->getSrcTy()); 258 auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy); 259 unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits(); 260 if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits()) 261 return false; 262 263 // Get the total number of vector elements in the legalized types. 264 unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorNumElements(); 265 unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorNumElements(); 266 267 // Return true if the legalized types have the same number of vector elements 268 // and the destination element type size is twice that of the source type. 269 return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize; 270 } 271 272 int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 273 TTI::TargetCostKind CostKind, 274 const Instruction *I) { 275 int ISD = TLI->InstructionOpcodeToISD(Opcode); 276 assert(ISD && "Invalid opcode"); 277 278 // If the cast is observable, and it is used by a widening instruction (e.g., 279 // uaddl, saddw, etc.), it may be free. 280 if (I && I->hasOneUse()) { 281 auto *SingleUser = cast<Instruction>(*I->user_begin()); 282 SmallVector<const Value *, 4> Operands(SingleUser->operand_values()); 283 if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) { 284 // If the cast is the second operand, it is free. We will generate either 285 // a "wide" or "long" version of the widening instruction. 286 if (I == SingleUser->getOperand(1)) 287 return 0; 288 // If the cast is not the second operand, it will be free if it looks the 289 // same as the second operand. In this case, we will generate a "long" 290 // version of the widening instruction. 291 if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1))) 292 if (I->getOpcode() == unsigned(Cast->getOpcode()) && 293 cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy()) 294 return 0; 295 } 296 } 297 298 // TODO: Allow non-throughput costs that aren't binary. 299 auto AdjustCost = [&CostKind](int Cost) { 300 if (CostKind != TTI::TCK_RecipThroughput) 301 return Cost == 0 ? 0 : 1; 302 return Cost; 303 }; 304 305 EVT SrcTy = TLI->getValueType(DL, Src); 306 EVT DstTy = TLI->getValueType(DL, Dst); 307 308 if (!SrcTy.isSimple() || !DstTy.isSimple()) 309 return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I)); 310 311 static const TypeConversionCostTblEntry 312 ConversionTbl[] = { 313 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 314 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 315 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 316 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 317 318 // The number of shll instructions for the extension. 319 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 320 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 321 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 322 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 323 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 324 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 325 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 326 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 327 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 328 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 329 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 330 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 331 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 332 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 333 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 334 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 335 336 // LowerVectorINT_TO_FP: 337 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 338 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 339 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 340 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 341 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 342 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 343 344 // Complex: to v2f32 345 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 346 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 347 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 348 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 349 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 350 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 351 352 // Complex: to v4f32 353 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 }, 354 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 355 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 356 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 357 358 // Complex: to v8f32 359 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 360 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 361 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 362 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 363 364 // Complex: to v16f32 365 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 366 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 367 368 // Complex: to v2f64 369 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 370 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 371 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 372 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 373 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 374 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 375 376 377 // LowerVectorFP_TO_INT 378 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 }, 379 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 380 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, 381 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, 382 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 383 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, 384 385 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext). 386 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 }, 387 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 }, 388 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 }, 389 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 }, 390 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 }, 391 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 }, 392 393 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2 394 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 395 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 }, 396 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 397 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 }, 398 399 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2. 400 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 401 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 }, 402 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 }, 403 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 404 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 }, 405 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 }, 406 }; 407 408 if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD, 409 DstTy.getSimpleVT(), 410 SrcTy.getSimpleVT())) 411 return AdjustCost(Entry->Cost); 412 413 return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I)); 414 } 415 416 int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 417 VectorType *VecTy, 418 unsigned Index) { 419 420 // Make sure we were given a valid extend opcode. 421 assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) && 422 "Invalid opcode"); 423 424 // We are extending an element we extract from a vector, so the source type 425 // of the extend is the element type of the vector. 426 auto *Src = VecTy->getElementType(); 427 428 // Sign- and zero-extends are for integer types only. 429 assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type"); 430 431 // Get the cost for the extract. We compute the cost (if any) for the extend 432 // below. 433 auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index); 434 435 // Legalize the types. 436 auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy); 437 auto DstVT = TLI->getValueType(DL, Dst); 438 auto SrcVT = TLI->getValueType(DL, Src); 439 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 440 441 // If the resulting type is still a vector and the destination type is legal, 442 // we may get the extension for free. If not, get the default cost for the 443 // extend. 444 if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT)) 445 return Cost + getCastInstrCost(Opcode, Dst, Src, CostKind); 446 447 // The destination type should be larger than the element type. If not, get 448 // the default cost for the extend. 449 if (DstVT.getSizeInBits() < SrcVT.getSizeInBits()) 450 return Cost + getCastInstrCost(Opcode, Dst, Src, CostKind); 451 452 switch (Opcode) { 453 default: 454 llvm_unreachable("Opcode should be either SExt or ZExt"); 455 456 // For sign-extends, we only need a smov, which performs the extension 457 // automatically. 458 case Instruction::SExt: 459 return Cost; 460 461 // For zero-extends, the extend is performed automatically by a umov unless 462 // the destination type is i64 and the element type is i8 or i16. 463 case Instruction::ZExt: 464 if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u) 465 return Cost; 466 } 467 468 // If we are unable to perform the extend for free, get the default cost. 469 return Cost + getCastInstrCost(Opcode, Dst, Src, CostKind); 470 } 471 472 int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 473 unsigned Index) { 474 assert(Val->isVectorTy() && "This must be a vector type"); 475 476 if (Index != -1U) { 477 // Legalize the type. 478 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); 479 480 // This type is legalized to a scalar type. 481 if (!LT.second.isVector()) 482 return 0; 483 484 // The type may be split. Normalize the index to the new type. 485 unsigned Width = LT.second.getVectorNumElements(); 486 Index = Index % Width; 487 488 // The element at index zero is already inside the vector. 489 if (Index == 0) 490 return 0; 491 } 492 493 // All other insert/extracts cost this much. 494 return ST->getVectorInsertExtractBaseCost(); 495 } 496 497 int AArch64TTIImpl::getArithmeticInstrCost( 498 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 499 TTI::OperandValueKind Opd1Info, 500 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, 501 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 502 const Instruction *CxtI) { 503 // TODO: Handle more cost kinds. 504 if (CostKind != TTI::TCK_RecipThroughput) 505 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 506 Opd2Info, Opd1PropInfo, 507 Opd2PropInfo, Args, CxtI); 508 509 // Legalize the type. 510 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 511 512 // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.), 513 // add in the widening overhead specified by the sub-target. Since the 514 // extends feeding widening instructions are performed automatically, they 515 // aren't present in the generated code and have a zero cost. By adding a 516 // widening overhead here, we attach the total cost of the combined operation 517 // to the widening instruction. 518 int Cost = 0; 519 if (isWideningInstruction(Ty, Opcode, Args)) 520 Cost += ST->getWideningBaseCost(); 521 522 int ISD = TLI->InstructionOpcodeToISD(Opcode); 523 524 switch (ISD) { 525 default: 526 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 527 Opd2Info, 528 Opd1PropInfo, Opd2PropInfo); 529 case ISD::SDIV: 530 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue && 531 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 532 // On AArch64, scalar signed division by constants power-of-two are 533 // normally expanded to the sequence ADD + CMP + SELECT + SRA. 534 // The OperandValue properties many not be same as that of previous 535 // operation; conservatively assume OP_None. 536 Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, 537 Opd1Info, Opd2Info, 538 TargetTransformInfo::OP_None, 539 TargetTransformInfo::OP_None); 540 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, 541 Opd1Info, Opd2Info, 542 TargetTransformInfo::OP_None, 543 TargetTransformInfo::OP_None); 544 Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind, 545 Opd1Info, Opd2Info, 546 TargetTransformInfo::OP_None, 547 TargetTransformInfo::OP_None); 548 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, 549 Opd1Info, Opd2Info, 550 TargetTransformInfo::OP_None, 551 TargetTransformInfo::OP_None); 552 return Cost; 553 } 554 LLVM_FALLTHROUGH; 555 case ISD::UDIV: 556 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) { 557 auto VT = TLI->getValueType(DL, Ty); 558 if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) { 559 // Vector signed division by constant are expanded to the 560 // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division 561 // to MULHS + SUB + SRL + ADD + SRL. 562 int MulCost = getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, 563 Opd1Info, Opd2Info, 564 TargetTransformInfo::OP_None, 565 TargetTransformInfo::OP_None); 566 int AddCost = getArithmeticInstrCost(Instruction::Add, Ty, CostKind, 567 Opd1Info, Opd2Info, 568 TargetTransformInfo::OP_None, 569 TargetTransformInfo::OP_None); 570 int ShrCost = getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, 571 Opd1Info, Opd2Info, 572 TargetTransformInfo::OP_None, 573 TargetTransformInfo::OP_None); 574 return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1; 575 } 576 } 577 578 Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 579 Opd2Info, 580 Opd1PropInfo, Opd2PropInfo); 581 if (Ty->isVectorTy()) { 582 // On AArch64, vector divisions are not supported natively and are 583 // expanded into scalar divisions of each pair of elements. 584 Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind, 585 Opd1Info, Opd2Info, Opd1PropInfo, 586 Opd2PropInfo); 587 Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind, 588 Opd1Info, Opd2Info, Opd1PropInfo, 589 Opd2PropInfo); 590 // TODO: if one of the arguments is scalar, then it's not necessary to 591 // double the cost of handling the vector elements. 592 Cost += Cost; 593 } 594 return Cost; 595 596 case ISD::ADD: 597 case ISD::MUL: 598 case ISD::XOR: 599 case ISD::OR: 600 case ISD::AND: 601 // These nodes are marked as 'custom' for combining purposes only. 602 // We know that they are legal. See LowerAdd in ISelLowering. 603 return (Cost + 1) * LT.first; 604 } 605 } 606 607 int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, 608 const SCEV *Ptr) { 609 // Address computations in vectorized code with non-consecutive addresses will 610 // likely result in more instructions compared to scalar code where the 611 // computation can more often be merged into the index mode. The resulting 612 // extra micro-ops can significantly decrease throughput. 613 unsigned NumVectorInstToHideOverhead = 10; 614 int MaxMergeDistance = 64; 615 616 if (Ty->isVectorTy() && SE && 617 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 618 return NumVectorInstToHideOverhead; 619 620 // In many cases the address computation is not merged into the instruction 621 // addressing mode. 622 return 1; 623 } 624 625 int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 626 Type *CondTy, 627 TTI::TargetCostKind CostKind, 628 const Instruction *I) { 629 // TODO: Handle other cost kinds. 630 if (CostKind != TTI::TCK_RecipThroughput) 631 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I); 632 633 int ISD = TLI->InstructionOpcodeToISD(Opcode); 634 // We don't lower some vector selects well that are wider than the register 635 // width. 636 if (ValTy->isVectorTy() && ISD == ISD::SELECT) { 637 // We would need this many instructions to hide the scalarization happening. 638 const int AmortizationCost = 20; 639 static const TypeConversionCostTblEntry 640 VectorSelectTbl[] = { 641 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 }, 642 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 }, 643 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 }, 644 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost }, 645 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost }, 646 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost } 647 }; 648 649 EVT SelCondTy = TLI->getValueType(DL, CondTy); 650 EVT SelValTy = TLI->getValueType(DL, ValTy); 651 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 652 if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD, 653 SelCondTy.getSimpleVT(), 654 SelValTy.getSimpleVT())) 655 return Entry->Cost; 656 } 657 } 658 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I); 659 } 660 661 AArch64TTIImpl::TTI::MemCmpExpansionOptions 662 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 663 TTI::MemCmpExpansionOptions Options; 664 if (ST->requiresStrictAlign()) { 665 // TODO: Add cost modeling for strict align. Misaligned loads expand to 666 // a bunch of instructions when strict align is enabled. 667 return Options; 668 } 669 Options.AllowOverlappingLoads = true; 670 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 671 Options.NumLoadsPerBlock = Options.MaxNumLoads; 672 // TODO: Though vector loads usually perform well on AArch64, in some targets 673 // they may wake up the FP unit, which raises the power consumption. Perhaps 674 // they could be used with no holds barred (-O3). 675 Options.LoadSizes = {8, 4, 2, 1}; 676 return Options; 677 } 678 679 int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty, 680 MaybeAlign Alignment, unsigned AddressSpace, 681 TTI::TargetCostKind CostKind, 682 const Instruction *I) { 683 // TODO: Handle other cost kinds. 684 if (CostKind != TTI::TCK_RecipThroughput) 685 return 1; 686 687 // Type legalization can't handle structs 688 if (TLI->getValueType(DL, Ty, true) == MVT::Other) 689 return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace, 690 CostKind); 691 692 auto LT = TLI->getTypeLegalizationCost(DL, Ty); 693 694 if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store && 695 LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) { 696 // Unaligned stores are extremely inefficient. We don't split all 697 // unaligned 128-bit stores because the negative impact that has shown in 698 // practice on inlined block copy code. 699 // We make such stores expensive so that we will only vectorize if there 700 // are 6 other instructions getting vectorized. 701 const int AmortizationCost = 6; 702 703 return LT.first * 2 * AmortizationCost; 704 } 705 706 if (Ty->isVectorTy() && 707 cast<VectorType>(Ty)->getElementType()->isIntegerTy(8)) { 708 unsigned ProfitableNumElements; 709 if (Opcode == Instruction::Store) 710 // We use a custom trunc store lowering so v.4b should be profitable. 711 ProfitableNumElements = 4; 712 else 713 // We scalarize the loads because there is not v.4b register and we 714 // have to promote the elements to v.2. 715 ProfitableNumElements = 8; 716 717 if (cast<VectorType>(Ty)->getNumElements() < ProfitableNumElements) { 718 unsigned NumVecElts = cast<VectorType>(Ty)->getNumElements(); 719 unsigned NumVectorizableInstsToAmortize = NumVecElts * 2; 720 // We generate 2 instructions per vector element. 721 return NumVectorizableInstsToAmortize * NumVecElts * 2; 722 } 723 } 724 725 return LT.first; 726 } 727 728 int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 729 unsigned Factor, 730 ArrayRef<unsigned> Indices, 731 unsigned Alignment, 732 unsigned AddressSpace, 733 TTI::TargetCostKind CostKind, 734 bool UseMaskForCond, 735 bool UseMaskForGaps) { 736 assert(Factor >= 2 && "Invalid interleave factor"); 737 auto *VecVTy = cast<VectorType>(VecTy); 738 739 if (!UseMaskForCond && !UseMaskForGaps && 740 Factor <= TLI->getMaxSupportedInterleaveFactor()) { 741 unsigned NumElts = VecVTy->getNumElements(); 742 auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor); 743 744 // ldN/stN only support legal vector types of size 64 or 128 in bits. 745 // Accesses having vector types that are a multiple of 128 bits can be 746 // matched to more than one ldN/stN instruction. 747 if (NumElts % Factor == 0 && 748 TLI->isLegalInterleavedAccessType(SubVecTy, DL)) 749 return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL); 750 } 751 752 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 753 Alignment, AddressSpace, CostKind, 754 UseMaskForCond, UseMaskForGaps); 755 } 756 757 int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { 758 int Cost = 0; 759 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 760 for (auto *I : Tys) { 761 if (!I->isVectorTy()) 762 continue; 763 if (I->getScalarSizeInBits() * cast<VectorType>(I)->getNumElements() == 128) 764 Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) + 765 getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind); 766 } 767 return Cost; 768 } 769 770 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) { 771 return ST->getMaxInterleaveFactor(); 772 } 773 774 // For Falkor, we want to avoid having too many strided loads in a loop since 775 // that can exhaust the HW prefetcher resources. We adjust the unroller 776 // MaxCount preference below to attempt to ensure unrolling doesn't create too 777 // many strided loads. 778 static void 779 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE, 780 TargetTransformInfo::UnrollingPreferences &UP) { 781 enum { MaxStridedLoads = 7 }; 782 auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) { 783 int StridedLoads = 0; 784 // FIXME? We could make this more precise by looking at the CFG and 785 // e.g. not counting loads in each side of an if-then-else diamond. 786 for (const auto BB : L->blocks()) { 787 for (auto &I : *BB) { 788 LoadInst *LMemI = dyn_cast<LoadInst>(&I); 789 if (!LMemI) 790 continue; 791 792 Value *PtrValue = LMemI->getPointerOperand(); 793 if (L->isLoopInvariant(PtrValue)) 794 continue; 795 796 const SCEV *LSCEV = SE.getSCEV(PtrValue); 797 const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV); 798 if (!LSCEVAddRec || !LSCEVAddRec->isAffine()) 799 continue; 800 801 // FIXME? We could take pairing of unrolled load copies into account 802 // by looking at the AddRec, but we would probably have to limit this 803 // to loops with no stores or other memory optimization barriers. 804 ++StridedLoads; 805 // We've seen enough strided loads that seeing more won't make a 806 // difference. 807 if (StridedLoads > MaxStridedLoads / 2) 808 return StridedLoads; 809 } 810 } 811 return StridedLoads; 812 }; 813 814 int StridedLoads = countStridedLoads(L, SE); 815 LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads 816 << " strided loads\n"); 817 // Pick the largest power of 2 unroll count that won't result in too many 818 // strided loads. 819 if (StridedLoads) { 820 UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads); 821 LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to " 822 << UP.MaxCount << '\n'); 823 } 824 } 825 826 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 827 TTI::UnrollingPreferences &UP) { 828 // Enable partial unrolling and runtime unrolling. 829 BaseT::getUnrollingPreferences(L, SE, UP); 830 831 // For inner loop, it is more likely to be a hot one, and the runtime check 832 // can be promoted out from LICM pass, so the overhead is less, let's try 833 // a larger threshold to unroll more loops. 834 if (L->getLoopDepth() > 1) 835 UP.PartialThreshold *= 2; 836 837 // Disable partial & runtime unrolling on -Os. 838 UP.PartialOptSizeThreshold = 0; 839 840 if (ST->getProcFamily() == AArch64Subtarget::Falkor && 841 EnableFalkorHWPFUnrollFix) 842 getFalkorUnrollingPreferences(L, SE, UP); 843 } 844 845 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 846 Type *ExpectedType) { 847 switch (Inst->getIntrinsicID()) { 848 default: 849 return nullptr; 850 case Intrinsic::aarch64_neon_st2: 851 case Intrinsic::aarch64_neon_st3: 852 case Intrinsic::aarch64_neon_st4: { 853 // Create a struct type 854 StructType *ST = dyn_cast<StructType>(ExpectedType); 855 if (!ST) 856 return nullptr; 857 unsigned NumElts = Inst->getNumArgOperands() - 1; 858 if (ST->getNumElements() != NumElts) 859 return nullptr; 860 for (unsigned i = 0, e = NumElts; i != e; ++i) { 861 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i)) 862 return nullptr; 863 } 864 Value *Res = UndefValue::get(ExpectedType); 865 IRBuilder<> Builder(Inst); 866 for (unsigned i = 0, e = NumElts; i != e; ++i) { 867 Value *L = Inst->getArgOperand(i); 868 Res = Builder.CreateInsertValue(Res, L, i); 869 } 870 return Res; 871 } 872 case Intrinsic::aarch64_neon_ld2: 873 case Intrinsic::aarch64_neon_ld3: 874 case Intrinsic::aarch64_neon_ld4: 875 if (Inst->getType() == ExpectedType) 876 return Inst; 877 return nullptr; 878 } 879 } 880 881 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 882 MemIntrinsicInfo &Info) { 883 switch (Inst->getIntrinsicID()) { 884 default: 885 break; 886 case Intrinsic::aarch64_neon_ld2: 887 case Intrinsic::aarch64_neon_ld3: 888 case Intrinsic::aarch64_neon_ld4: 889 Info.ReadMem = true; 890 Info.WriteMem = false; 891 Info.PtrVal = Inst->getArgOperand(0); 892 break; 893 case Intrinsic::aarch64_neon_st2: 894 case Intrinsic::aarch64_neon_st3: 895 case Intrinsic::aarch64_neon_st4: 896 Info.ReadMem = false; 897 Info.WriteMem = true; 898 Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1); 899 break; 900 } 901 902 switch (Inst->getIntrinsicID()) { 903 default: 904 return false; 905 case Intrinsic::aarch64_neon_ld2: 906 case Intrinsic::aarch64_neon_st2: 907 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS; 908 break; 909 case Intrinsic::aarch64_neon_ld3: 910 case Intrinsic::aarch64_neon_st3: 911 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS; 912 break; 913 case Intrinsic::aarch64_neon_ld4: 914 case Intrinsic::aarch64_neon_st4: 915 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS; 916 break; 917 } 918 return true; 919 } 920 921 /// See if \p I should be considered for address type promotion. We check if \p 922 /// I is a sext with right type and used in memory accesses. If it used in a 923 /// "complex" getelementptr, we allow it to be promoted without finding other 924 /// sext instructions that sign extended the same initial value. A getelementptr 925 /// is considered as "complex" if it has more than 2 operands. 926 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion( 927 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) { 928 bool Considerable = false; 929 AllowPromotionWithoutCommonHeader = false; 930 if (!isa<SExtInst>(&I)) 931 return false; 932 Type *ConsideredSExtType = 933 Type::getInt64Ty(I.getParent()->getParent()->getContext()); 934 if (I.getType() != ConsideredSExtType) 935 return false; 936 // See if the sext is the one with the right type and used in at least one 937 // GetElementPtrInst. 938 for (const User *U : I.users()) { 939 if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) { 940 Considerable = true; 941 // A getelementptr is considered as "complex" if it has more than 2 942 // operands. We will promote a SExt used in such complex GEP as we 943 // expect some computation to be merged if they are done on 64 bits. 944 if (GEPInst->getNumOperands() > 2) { 945 AllowPromotionWithoutCommonHeader = true; 946 break; 947 } 948 } 949 } 950 return Considerable; 951 } 952 953 bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty, 954 TTI::ReductionFlags Flags) const { 955 auto *VTy = cast<VectorType>(Ty); 956 unsigned ScalarBits = Ty->getScalarSizeInBits(); 957 switch (Opcode) { 958 case Instruction::FAdd: 959 case Instruction::FMul: 960 case Instruction::And: 961 case Instruction::Or: 962 case Instruction::Xor: 963 case Instruction::Mul: 964 return false; 965 case Instruction::Add: 966 return ScalarBits * VTy->getNumElements() >= 128; 967 case Instruction::ICmp: 968 return (ScalarBits < 64) && (ScalarBits * VTy->getNumElements() >= 128); 969 case Instruction::FCmp: 970 return Flags.NoNaN; 971 default: 972 llvm_unreachable("Unhandled reduction opcode"); 973 } 974 return false; 975 } 976 977 int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, 978 VectorType *ValTy, 979 bool IsPairwiseForm, 980 TTI::TargetCostKind CostKind) { 981 982 if (IsPairwiseForm) 983 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm, 984 CostKind); 985 986 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 987 MVT MTy = LT.second; 988 int ISD = TLI->InstructionOpcodeToISD(Opcode); 989 assert(ISD && "Invalid opcode"); 990 991 // Horizontal adds can use the 'addv' instruction. We model the cost of these 992 // instructions as normal vector adds. This is the only arithmetic vector 993 // reduction operation for which we have an instruction. 994 static const CostTblEntry CostTblNoPairwise[]{ 995 {ISD::ADD, MVT::v8i8, 1}, 996 {ISD::ADD, MVT::v16i8, 1}, 997 {ISD::ADD, MVT::v4i16, 1}, 998 {ISD::ADD, MVT::v8i16, 1}, 999 {ISD::ADD, MVT::v4i32, 1}, 1000 }; 1001 1002 if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy)) 1003 return LT.first * Entry->Cost; 1004 1005 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm, 1006 CostKind); 1007 } 1008 1009 int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, 1010 int Index, VectorType *SubTp) { 1011 if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose || 1012 Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc) { 1013 static const CostTblEntry ShuffleTbl[] = { 1014 // Broadcast shuffle kinds can be performed with 'dup'. 1015 { TTI::SK_Broadcast, MVT::v8i8, 1 }, 1016 { TTI::SK_Broadcast, MVT::v16i8, 1 }, 1017 { TTI::SK_Broadcast, MVT::v4i16, 1 }, 1018 { TTI::SK_Broadcast, MVT::v8i16, 1 }, 1019 { TTI::SK_Broadcast, MVT::v2i32, 1 }, 1020 { TTI::SK_Broadcast, MVT::v4i32, 1 }, 1021 { TTI::SK_Broadcast, MVT::v2i64, 1 }, 1022 { TTI::SK_Broadcast, MVT::v2f32, 1 }, 1023 { TTI::SK_Broadcast, MVT::v4f32, 1 }, 1024 { TTI::SK_Broadcast, MVT::v2f64, 1 }, 1025 // Transpose shuffle kinds can be performed with 'trn1/trn2' and 1026 // 'zip1/zip2' instructions. 1027 { TTI::SK_Transpose, MVT::v8i8, 1 }, 1028 { TTI::SK_Transpose, MVT::v16i8, 1 }, 1029 { TTI::SK_Transpose, MVT::v4i16, 1 }, 1030 { TTI::SK_Transpose, MVT::v8i16, 1 }, 1031 { TTI::SK_Transpose, MVT::v2i32, 1 }, 1032 { TTI::SK_Transpose, MVT::v4i32, 1 }, 1033 { TTI::SK_Transpose, MVT::v2i64, 1 }, 1034 { TTI::SK_Transpose, MVT::v2f32, 1 }, 1035 { TTI::SK_Transpose, MVT::v4f32, 1 }, 1036 { TTI::SK_Transpose, MVT::v2f64, 1 }, 1037 // Select shuffle kinds. 1038 // TODO: handle vXi8/vXi16. 1039 { TTI::SK_Select, MVT::v2i32, 1 }, // mov. 1040 { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar). 1041 { TTI::SK_Select, MVT::v2i64, 1 }, // mov. 1042 { TTI::SK_Select, MVT::v2f32, 1 }, // mov. 1043 { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar). 1044 { TTI::SK_Select, MVT::v2f64, 1 }, // mov. 1045 // PermuteSingleSrc shuffle kinds. 1046 // TODO: handle vXi8/vXi16. 1047 { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov. 1048 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case. 1049 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov. 1050 { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov. 1051 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case. 1052 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov. 1053 }; 1054 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1055 if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second)) 1056 return LT.first * Entry->Cost; 1057 } 1058 1059 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 1060 } 1061