1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AArch64TargetTransformInfo.h"
10 #include "AArch64ExpandImm.h"
11 #include "MCTargetDesc/AArch64AddressingModes.h"
12 #include "llvm/Analysis/LoopInfo.h"
13 #include "llvm/Analysis/TargetTransformInfo.h"
14 #include "llvm/CodeGen/BasicTTIImpl.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/TargetLowering.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/IntrinsicsAArch64.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/Debug.h"
21 #include <algorithm>
22 using namespace llvm;
23 using namespace llvm::PatternMatch;
24 
25 #define DEBUG_TYPE "aarch64tti"
26 
27 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
28                                                cl::init(true), cl::Hidden);
29 
30 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
31                                          const Function *Callee) const {
32   const TargetMachine &TM = getTLI()->getTargetMachine();
33 
34   const FeatureBitset &CallerBits =
35       TM.getSubtargetImpl(*Caller)->getFeatureBits();
36   const FeatureBitset &CalleeBits =
37       TM.getSubtargetImpl(*Callee)->getFeatureBits();
38 
39   // Inline a callee if its target-features are a subset of the callers
40   // target-features.
41   return (CallerBits & CalleeBits) == CalleeBits;
42 }
43 
44 /// Calculate the cost of materializing a 64-bit value. This helper
45 /// method might only calculate a fraction of a larger immediate. Therefore it
46 /// is valid to return a cost of ZERO.
47 int AArch64TTIImpl::getIntImmCost(int64_t Val) {
48   // Check if the immediate can be encoded within an instruction.
49   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
50     return 0;
51 
52   if (Val < 0)
53     Val = ~Val;
54 
55   // Calculate how many moves we will need to materialize this constant.
56   SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
57   AArch64_IMM::expandMOVImm(Val, 64, Insn);
58   return Insn.size();
59 }
60 
61 /// Calculate the cost of materializing the given constant.
62 int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
63                                   TTI::TargetCostKind CostKind) {
64   assert(Ty->isIntegerTy());
65 
66   unsigned BitSize = Ty->getPrimitiveSizeInBits();
67   if (BitSize == 0)
68     return ~0U;
69 
70   // Sign-extend all constants to a multiple of 64-bit.
71   APInt ImmVal = Imm;
72   if (BitSize & 0x3f)
73     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
74 
75   // Split the constant into 64-bit chunks and calculate the cost for each
76   // chunk.
77   int Cost = 0;
78   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
79     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
80     int64_t Val = Tmp.getSExtValue();
81     Cost += getIntImmCost(Val);
82   }
83   // We need at least one instruction to materialze the constant.
84   return std::max(1, Cost);
85 }
86 
87 int AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
88                                       const APInt &Imm, Type *Ty,
89                                       TTI::TargetCostKind CostKind,
90                                       Instruction *Inst) {
91   assert(Ty->isIntegerTy());
92 
93   unsigned BitSize = Ty->getPrimitiveSizeInBits();
94   // There is no cost model for constants with a bit size of 0. Return TCC_Free
95   // here, so that constant hoisting will ignore this constant.
96   if (BitSize == 0)
97     return TTI::TCC_Free;
98 
99   unsigned ImmIdx = ~0U;
100   switch (Opcode) {
101   default:
102     return TTI::TCC_Free;
103   case Instruction::GetElementPtr:
104     // Always hoist the base address of a GetElementPtr.
105     if (Idx == 0)
106       return 2 * TTI::TCC_Basic;
107     return TTI::TCC_Free;
108   case Instruction::Store:
109     ImmIdx = 0;
110     break;
111   case Instruction::Add:
112   case Instruction::Sub:
113   case Instruction::Mul:
114   case Instruction::UDiv:
115   case Instruction::SDiv:
116   case Instruction::URem:
117   case Instruction::SRem:
118   case Instruction::And:
119   case Instruction::Or:
120   case Instruction::Xor:
121   case Instruction::ICmp:
122     ImmIdx = 1;
123     break;
124   // Always return TCC_Free for the shift value of a shift instruction.
125   case Instruction::Shl:
126   case Instruction::LShr:
127   case Instruction::AShr:
128     if (Idx == 1)
129       return TTI::TCC_Free;
130     break;
131   case Instruction::Trunc:
132   case Instruction::ZExt:
133   case Instruction::SExt:
134   case Instruction::IntToPtr:
135   case Instruction::PtrToInt:
136   case Instruction::BitCast:
137   case Instruction::PHI:
138   case Instruction::Call:
139   case Instruction::Select:
140   case Instruction::Ret:
141   case Instruction::Load:
142     break;
143   }
144 
145   if (Idx == ImmIdx) {
146     int NumConstants = (BitSize + 63) / 64;
147     int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
148     return (Cost <= NumConstants * TTI::TCC_Basic)
149                ? static_cast<int>(TTI::TCC_Free)
150                : Cost;
151   }
152   return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
153 }
154 
155 int AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
156                                         const APInt &Imm, Type *Ty,
157                                         TTI::TargetCostKind CostKind) {
158   assert(Ty->isIntegerTy());
159 
160   unsigned BitSize = Ty->getPrimitiveSizeInBits();
161   // There is no cost model for constants with a bit size of 0. Return TCC_Free
162   // here, so that constant hoisting will ignore this constant.
163   if (BitSize == 0)
164     return TTI::TCC_Free;
165 
166   // Most (all?) AArch64 intrinsics do not support folding immediates into the
167   // selected instruction, so we compute the materialization cost for the
168   // immediate directly.
169   if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
170     return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
171 
172   switch (IID) {
173   default:
174     return TTI::TCC_Free;
175   case Intrinsic::sadd_with_overflow:
176   case Intrinsic::uadd_with_overflow:
177   case Intrinsic::ssub_with_overflow:
178   case Intrinsic::usub_with_overflow:
179   case Intrinsic::smul_with_overflow:
180   case Intrinsic::umul_with_overflow:
181     if (Idx == 1) {
182       int NumConstants = (BitSize + 63) / 64;
183       int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
184       return (Cost <= NumConstants * TTI::TCC_Basic)
185                  ? static_cast<int>(TTI::TCC_Free)
186                  : Cost;
187     }
188     break;
189   case Intrinsic::experimental_stackmap:
190     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
191       return TTI::TCC_Free;
192     break;
193   case Intrinsic::experimental_patchpoint_void:
194   case Intrinsic::experimental_patchpoint_i64:
195     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
196       return TTI::TCC_Free;
197     break;
198   case Intrinsic::experimental_gc_statepoint:
199     if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
200       return TTI::TCC_Free;
201     break;
202   }
203   return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
204 }
205 
206 TargetTransformInfo::PopcntSupportKind
207 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
208   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
209   if (TyWidth == 32 || TyWidth == 64)
210     return TTI::PSK_FastHardware;
211   // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
212   return TTI::PSK_Software;
213 }
214 
215 unsigned
216 AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
217                                       TTI::TargetCostKind CostKind) {
218   auto *RetTy = ICA.getReturnType();
219   switch (ICA.getID()) {
220   case Intrinsic::umin:
221   case Intrinsic::umax: {
222     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
223     // umin(x,y) -> sub(x,usubsat(x,y))
224     // umax(x,y) -> add(x,usubsat(y,x))
225     if (LT.second == MVT::v2i64)
226       return LT.first * 2;
227     LLVM_FALLTHROUGH;
228   }
229   case Intrinsic::smin:
230   case Intrinsic::smax: {
231     static const auto ValidMinMaxTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
232                                         MVT::v8i16, MVT::v2i32, MVT::v4i32};
233     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
234     if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }))
235       return LT.first;
236     break;
237   }
238   case Intrinsic::sadd_sat:
239   case Intrinsic::ssub_sat:
240   case Intrinsic::uadd_sat:
241   case Intrinsic::usub_sat: {
242     static const auto ValidSatTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
243                                      MVT::v8i16, MVT::v2i32, MVT::v4i32,
244                                      MVT::v2i64};
245     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
246     // This is a base cost of 1 for the vadd, plus 3 extract shifts if we
247     // need to extend the type, as it uses shr(qadd(shl, shl)).
248     unsigned Instrs =
249         LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4;
250     if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
251       return LT.first * Instrs;
252     break;
253   }
254   case Intrinsic::abs: {
255     static const auto ValidAbsTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
256                                      MVT::v8i16, MVT::v2i32, MVT::v4i32,
257                                      MVT::v2i64};
258     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
259     if (any_of(ValidAbsTys, [&LT](MVT M) { return M == LT.second; }))
260       return LT.first;
261     break;
262   }
263   default:
264     break;
265   }
266   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
267 }
268 
269 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
270                                            ArrayRef<const Value *> Args) {
271 
272   // A helper that returns a vector type from the given type. The number of
273   // elements in type Ty determine the vector width.
274   auto toVectorTy = [&](Type *ArgTy) {
275     return VectorType::get(ArgTy->getScalarType(),
276                            cast<VectorType>(DstTy)->getElementCount());
277   };
278 
279   // Exit early if DstTy is not a vector type whose elements are at least
280   // 16-bits wide.
281   if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16)
282     return false;
283 
284   // Determine if the operation has a widening variant. We consider both the
285   // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
286   // instructions.
287   //
288   // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
289   //       verify that their extending operands are eliminated during code
290   //       generation.
291   switch (Opcode) {
292   case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
293   case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
294     break;
295   default:
296     return false;
297   }
298 
299   // To be a widening instruction (either the "wide" or "long" versions), the
300   // second operand must be a sign- or zero extend having a single user. We
301   // only consider extends having a single user because they may otherwise not
302   // be eliminated.
303   if (Args.size() != 2 ||
304       (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) ||
305       !Args[1]->hasOneUse())
306     return false;
307   auto *Extend = cast<CastInst>(Args[1]);
308 
309   // Legalize the destination type and ensure it can be used in a widening
310   // operation.
311   auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy);
312   unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
313   if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
314     return false;
315 
316   // Legalize the source type and ensure it can be used in a widening
317   // operation.
318   auto *SrcTy = toVectorTy(Extend->getSrcTy());
319   auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy);
320   unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
321   if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
322     return false;
323 
324   // Get the total number of vector elements in the legalized types.
325   unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorMinNumElements();
326   unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorMinNumElements();
327 
328   // Return true if the legalized types have the same number of vector elements
329   // and the destination element type size is twice that of the source type.
330   return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
331 }
332 
333 int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
334                                      TTI::CastContextHint CCH,
335                                      TTI::TargetCostKind CostKind,
336                                      const Instruction *I) {
337   int ISD = TLI->InstructionOpcodeToISD(Opcode);
338   assert(ISD && "Invalid opcode");
339 
340   // If the cast is observable, and it is used by a widening instruction (e.g.,
341   // uaddl, saddw, etc.), it may be free.
342   if (I && I->hasOneUse()) {
343     auto *SingleUser = cast<Instruction>(*I->user_begin());
344     SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
345     if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
346       // If the cast is the second operand, it is free. We will generate either
347       // a "wide" or "long" version of the widening instruction.
348       if (I == SingleUser->getOperand(1))
349         return 0;
350       // If the cast is not the second operand, it will be free if it looks the
351       // same as the second operand. In this case, we will generate a "long"
352       // version of the widening instruction.
353       if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
354         if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
355             cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
356           return 0;
357     }
358   }
359 
360   // TODO: Allow non-throughput costs that aren't binary.
361   auto AdjustCost = [&CostKind](int Cost) {
362     if (CostKind != TTI::TCK_RecipThroughput)
363       return Cost == 0 ? 0 : 1;
364     return Cost;
365   };
366 
367   EVT SrcTy = TLI->getValueType(DL, Src);
368   EVT DstTy = TLI->getValueType(DL, Dst);
369 
370   if (!SrcTy.isSimple() || !DstTy.isSimple())
371     return AdjustCost(
372         BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
373 
374   static const TypeConversionCostTblEntry
375   ConversionTbl[] = {
376     { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32,  1 },
377     { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64,  0 },
378     { ISD::TRUNCATE, MVT::v8i8,  MVT::v8i32,  3 },
379     { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
380 
381     // The number of shll instructions for the extension.
382     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
383     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
384     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
385     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
386     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
387     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
388     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
389     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
390     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
391     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
392     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
393     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
394     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
395     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
396     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
397     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
398 
399     // LowerVectorINT_TO_FP:
400     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
401     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
402     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
403     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
404     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
405     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
406 
407     // Complex: to v2f32
408     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
409     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
410     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
411     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
412     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
413     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
414 
415     // Complex: to v4f32
416     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
417     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
418     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
419     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
420 
421     // Complex: to v8f32
422     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
423     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
424     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
425     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
426 
427     // Complex: to v16f32
428     { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
429     { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
430 
431     // Complex: to v2f64
432     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
433     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
434     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
435     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
436     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
437     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
438 
439 
440     // LowerVectorFP_TO_INT
441     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
442     { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
443     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
444     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
445     { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
446     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
447 
448     // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
449     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
450     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
451     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
452     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
453     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
454     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },
455 
456     // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
457     { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
458     { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
459     { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
460     { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },
461 
462     // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
463     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
464     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
465     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
466     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
467     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
468     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
469   };
470 
471   if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
472                                                  DstTy.getSimpleVT(),
473                                                  SrcTy.getSimpleVT()))
474     return AdjustCost(Entry->Cost);
475 
476   return AdjustCost(
477       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
478 }
479 
480 int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
481                                              VectorType *VecTy,
482                                              unsigned Index) {
483 
484   // Make sure we were given a valid extend opcode.
485   assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
486          "Invalid opcode");
487 
488   // We are extending an element we extract from a vector, so the source type
489   // of the extend is the element type of the vector.
490   auto *Src = VecTy->getElementType();
491 
492   // Sign- and zero-extends are for integer types only.
493   assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
494 
495   // Get the cost for the extract. We compute the cost (if any) for the extend
496   // below.
497   auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);
498 
499   // Legalize the types.
500   auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
501   auto DstVT = TLI->getValueType(DL, Dst);
502   auto SrcVT = TLI->getValueType(DL, Src);
503   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
504 
505   // If the resulting type is still a vector and the destination type is legal,
506   // we may get the extension for free. If not, get the default cost for the
507   // extend.
508   if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
509     return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
510                                    CostKind);
511 
512   // The destination type should be larger than the element type. If not, get
513   // the default cost for the extend.
514   if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits())
515     return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
516                                    CostKind);
517 
518   switch (Opcode) {
519   default:
520     llvm_unreachable("Opcode should be either SExt or ZExt");
521 
522   // For sign-extends, we only need a smov, which performs the extension
523   // automatically.
524   case Instruction::SExt:
525     return Cost;
526 
527   // For zero-extends, the extend is performed automatically by a umov unless
528   // the destination type is i64 and the element type is i8 or i16.
529   case Instruction::ZExt:
530     if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
531       return Cost;
532   }
533 
534   // If we are unable to perform the extend for free, get the default cost.
535   return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
536                                  CostKind);
537 }
538 
539 unsigned AArch64TTIImpl::getCFInstrCost(unsigned Opcode,
540                                         TTI::TargetCostKind CostKind) {
541   if (CostKind != TTI::TCK_RecipThroughput)
542     return Opcode == Instruction::PHI ? 0 : 1;
543   assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind");
544   // Branches are assumed to be predicted.
545   return 0;
546 }
547 
548 int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
549                                        unsigned Index) {
550   assert(Val->isVectorTy() && "This must be a vector type");
551 
552   if (Index != -1U) {
553     // Legalize the type.
554     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
555 
556     // This type is legalized to a scalar type.
557     if (!LT.second.isVector())
558       return 0;
559 
560     // The type may be split. Normalize the index to the new type.
561     unsigned Width = LT.second.getVectorNumElements();
562     Index = Index % Width;
563 
564     // The element at index zero is already inside the vector.
565     if (Index == 0)
566       return 0;
567   }
568 
569   // All other insert/extracts cost this much.
570   return ST->getVectorInsertExtractBaseCost();
571 }
572 
573 int AArch64TTIImpl::getArithmeticInstrCost(
574     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
575     TTI::OperandValueKind Opd1Info,
576     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
577     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
578     const Instruction *CxtI) {
579   // TODO: Handle more cost kinds.
580   if (CostKind != TTI::TCK_RecipThroughput)
581     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
582                                          Opd2Info, Opd1PropInfo,
583                                          Opd2PropInfo, Args, CxtI);
584 
585   // Legalize the type.
586   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
587 
588   // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
589   // add in the widening overhead specified by the sub-target. Since the
590   // extends feeding widening instructions are performed automatically, they
591   // aren't present in the generated code and have a zero cost. By adding a
592   // widening overhead here, we attach the total cost of the combined operation
593   // to the widening instruction.
594   int Cost = 0;
595   if (isWideningInstruction(Ty, Opcode, Args))
596     Cost += ST->getWideningBaseCost();
597 
598   int ISD = TLI->InstructionOpcodeToISD(Opcode);
599 
600   switch (ISD) {
601   default:
602     return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
603                                                 Opd2Info,
604                                                 Opd1PropInfo, Opd2PropInfo);
605   case ISD::SDIV:
606     if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
607         Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
608       // On AArch64, scalar signed division by constants power-of-two are
609       // normally expanded to the sequence ADD + CMP + SELECT + SRA.
610       // The OperandValue properties many not be same as that of previous
611       // operation; conservatively assume OP_None.
612       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind,
613                                      Opd1Info, Opd2Info,
614                                      TargetTransformInfo::OP_None,
615                                      TargetTransformInfo::OP_None);
616       Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind,
617                                      Opd1Info, Opd2Info,
618                                      TargetTransformInfo::OP_None,
619                                      TargetTransformInfo::OP_None);
620       Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind,
621                                      Opd1Info, Opd2Info,
622                                      TargetTransformInfo::OP_None,
623                                      TargetTransformInfo::OP_None);
624       Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
625                                      Opd1Info, Opd2Info,
626                                      TargetTransformInfo::OP_None,
627                                      TargetTransformInfo::OP_None);
628       return Cost;
629     }
630     LLVM_FALLTHROUGH;
631   case ISD::UDIV:
632     if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) {
633       auto VT = TLI->getValueType(DL, Ty);
634       if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
635         // Vector signed division by constant are expanded to the
636         // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
637         // to MULHS + SUB + SRL + ADD + SRL.
638         int MulCost = getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
639                                              Opd1Info, Opd2Info,
640                                              TargetTransformInfo::OP_None,
641                                              TargetTransformInfo::OP_None);
642         int AddCost = getArithmeticInstrCost(Instruction::Add, Ty, CostKind,
643                                              Opd1Info, Opd2Info,
644                                              TargetTransformInfo::OP_None,
645                                              TargetTransformInfo::OP_None);
646         int ShrCost = getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
647                                              Opd1Info, Opd2Info,
648                                              TargetTransformInfo::OP_None,
649                                              TargetTransformInfo::OP_None);
650         return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
651       }
652     }
653 
654     Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
655                                           Opd2Info,
656                                           Opd1PropInfo, Opd2PropInfo);
657     if (Ty->isVectorTy()) {
658       // On AArch64, vector divisions are not supported natively and are
659       // expanded into scalar divisions of each pair of elements.
660       Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind,
661                                      Opd1Info, Opd2Info, Opd1PropInfo,
662                                      Opd2PropInfo);
663       Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind,
664                                      Opd1Info, Opd2Info, Opd1PropInfo,
665                                      Opd2PropInfo);
666       // TODO: if one of the arguments is scalar, then it's not necessary to
667       // double the cost of handling the vector elements.
668       Cost += Cost;
669     }
670     return Cost;
671 
672   case ISD::MUL:
673     if (LT.second != MVT::v2i64)
674       return (Cost + 1) * LT.first;
675     // Since we do not have a MUL.2d instruction, a mul <2 x i64> is expensive
676     // as elements are extracted from the vectors and the muls scalarized.
677     // As getScalarizationOverhead is a bit too pessimistic, we estimate the
678     // cost for a i64 vector directly here, which is:
679     // - four i64 extracts,
680     // - two i64 inserts, and
681     // - two muls.
682     // So, for a v2i64 with LT.First = 1 the cost is 8, and for a v4i64 with
683     // LT.first = 2 the cost is 16.
684     return LT.first * 8;
685   case ISD::ADD:
686   case ISD::XOR:
687   case ISD::OR:
688   case ISD::AND:
689     // These nodes are marked as 'custom' for combining purposes only.
690     // We know that they are legal. See LowerAdd in ISelLowering.
691     return (Cost + 1) * LT.first;
692 
693   case ISD::FADD:
694     // These nodes are marked as 'custom' just to lower them to SVE.
695     // We know said lowering will incur no additional cost.
696     if (isa<FixedVectorType>(Ty) && !Ty->getScalarType()->isFP128Ty())
697       return (Cost + 2) * LT.first;
698 
699     return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
700                                                 Opd2Info,
701                                                 Opd1PropInfo, Opd2PropInfo);
702   }
703 }
704 
705 int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
706                                               const SCEV *Ptr) {
707   // Address computations in vectorized code with non-consecutive addresses will
708   // likely result in more instructions compared to scalar code where the
709   // computation can more often be merged into the index mode. The resulting
710   // extra micro-ops can significantly decrease throughput.
711   unsigned NumVectorInstToHideOverhead = 10;
712   int MaxMergeDistance = 64;
713 
714   if (Ty->isVectorTy() && SE &&
715       !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
716     return NumVectorInstToHideOverhead;
717 
718   // In many cases the address computation is not merged into the instruction
719   // addressing mode.
720   return 1;
721 }
722 
723 int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
724                                        Type *CondTy, CmpInst::Predicate VecPred,
725                                        TTI::TargetCostKind CostKind,
726                                        const Instruction *I) {
727   // TODO: Handle other cost kinds.
728   if (CostKind != TTI::TCK_RecipThroughput)
729     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
730                                      I);
731 
732   int ISD = TLI->InstructionOpcodeToISD(Opcode);
733   // We don't lower some vector selects well that are wider than the register
734   // width.
735   if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) {
736     // We would need this many instructions to hide the scalarization happening.
737     const int AmortizationCost = 20;
738 
739     // If VecPred is not set, check if we can get a predicate from the context
740     // instruction, if its type matches the requested ValTy.
741     if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) {
742       CmpInst::Predicate CurrentPred;
743       if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(),
744                             m_Value())))
745         VecPred = CurrentPred;
746     }
747     // Check if we have a compare/select chain that can be lowered using CMxx &
748     // BFI pair.
749     if (CmpInst::isIntPredicate(VecPred)) {
750       static const auto ValidMinMaxTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
751                                           MVT::v8i16, MVT::v2i32, MVT::v4i32,
752                                           MVT::v2i64};
753       auto LT = TLI->getTypeLegalizationCost(DL, ValTy);
754       if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }))
755         return LT.first;
756     }
757 
758     static const TypeConversionCostTblEntry
759     VectorSelectTbl[] = {
760       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
761       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
762       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
763       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
764       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
765       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
766     };
767 
768     EVT SelCondTy = TLI->getValueType(DL, CondTy);
769     EVT SelValTy = TLI->getValueType(DL, ValTy);
770     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
771       if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
772                                                      SelCondTy.getSimpleVT(),
773                                                      SelValTy.getSimpleVT()))
774         return Entry->Cost;
775     }
776   }
777   // The base case handles scalable vectors fine for now, since it treats the
778   // cost as 1 * legalization cost.
779   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
780 }
781 
782 AArch64TTIImpl::TTI::MemCmpExpansionOptions
783 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
784   TTI::MemCmpExpansionOptions Options;
785   if (ST->requiresStrictAlign()) {
786     // TODO: Add cost modeling for strict align. Misaligned loads expand to
787     // a bunch of instructions when strict align is enabled.
788     return Options;
789   }
790   Options.AllowOverlappingLoads = true;
791   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
792   Options.NumLoadsPerBlock = Options.MaxNumLoads;
793   // TODO: Though vector loads usually perform well on AArch64, in some targets
794   // they may wake up the FP unit, which raises the power consumption.  Perhaps
795   // they could be used with no holds barred (-O3).
796   Options.LoadSizes = {8, 4, 2, 1};
797   return Options;
798 }
799 
800 unsigned AArch64TTIImpl::getGatherScatterOpCost(
801     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
802     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
803 
804   if (!isa<ScalableVectorType>(DataTy))
805     return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
806                                          Alignment, CostKind, I);
807   auto *VT = cast<VectorType>(DataTy);
808   auto LT = TLI->getTypeLegalizationCost(DL, DataTy);
809   ElementCount LegalVF = LT.second.getVectorElementCount();
810   Optional<unsigned> MaxNumVScale = getMaxVScale();
811   assert(MaxNumVScale && "Expected valid max vscale value");
812 
813   unsigned MemOpCost =
814       getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind, I);
815   unsigned MaxNumElementsPerGather =
816       MaxNumVScale.getValue() * LegalVF.getKnownMinValue();
817   return LT.first * MaxNumElementsPerGather * MemOpCost;
818 }
819 
820 bool AArch64TTIImpl::useNeonVector(const Type *Ty) const {
821   return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors();
822 }
823 
824 int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
825                                     MaybeAlign Alignment, unsigned AddressSpace,
826                                     TTI::TargetCostKind CostKind,
827                                     const Instruction *I) {
828   // TODO: Handle other cost kinds.
829   if (CostKind != TTI::TCK_RecipThroughput)
830     return 1;
831 
832   // Type legalization can't handle structs
833   if (TLI->getValueType(DL, Ty,  true) == MVT::Other)
834     return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
835                                   CostKind);
836 
837   auto LT = TLI->getTypeLegalizationCost(DL, Ty);
838 
839   if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
840       LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
841     // Unaligned stores are extremely inefficient. We don't split all
842     // unaligned 128-bit stores because the negative impact that has shown in
843     // practice on inlined block copy code.
844     // We make such stores expensive so that we will only vectorize if there
845     // are 6 other instructions getting vectorized.
846     const int AmortizationCost = 6;
847 
848     return LT.first * 2 * AmortizationCost;
849   }
850 
851   if (useNeonVector(Ty) &&
852       cast<VectorType>(Ty)->getElementType()->isIntegerTy(8)) {
853     unsigned ProfitableNumElements;
854     if (Opcode == Instruction::Store)
855       // We use a custom trunc store lowering so v.4b should be profitable.
856       ProfitableNumElements = 4;
857     else
858       // We scalarize the loads because there is not v.4b register and we
859       // have to promote the elements to v.2.
860       ProfitableNumElements = 8;
861 
862     if (cast<FixedVectorType>(Ty)->getNumElements() < ProfitableNumElements) {
863       unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
864       unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
865       // We generate 2 instructions per vector element.
866       return NumVectorizableInstsToAmortize * NumVecElts * 2;
867     }
868   }
869 
870   return LT.first;
871 }
872 
873 int AArch64TTIImpl::getInterleavedMemoryOpCost(
874     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
875     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
876     bool UseMaskForCond, bool UseMaskForGaps) {
877   assert(Factor >= 2 && "Invalid interleave factor");
878   auto *VecVTy = cast<FixedVectorType>(VecTy);
879 
880   if (!UseMaskForCond && !UseMaskForGaps &&
881       Factor <= TLI->getMaxSupportedInterleaveFactor()) {
882     unsigned NumElts = VecVTy->getNumElements();
883     auto *SubVecTy =
884         FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
885 
886     // ldN/stN only support legal vector types of size 64 or 128 in bits.
887     // Accesses having vector types that are a multiple of 128 bits can be
888     // matched to more than one ldN/stN instruction.
889     if (NumElts % Factor == 0 &&
890         TLI->isLegalInterleavedAccessType(SubVecTy, DL))
891       return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
892   }
893 
894   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
895                                            Alignment, AddressSpace, CostKind,
896                                            UseMaskForCond, UseMaskForGaps);
897 }
898 
899 int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
900   int Cost = 0;
901   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
902   for (auto *I : Tys) {
903     if (!I->isVectorTy())
904       continue;
905     if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() ==
906         128)
907       Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) +
908               getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind);
909   }
910   return Cost;
911 }
912 
913 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
914   return ST->getMaxInterleaveFactor();
915 }
916 
917 // For Falkor, we want to avoid having too many strided loads in a loop since
918 // that can exhaust the HW prefetcher resources.  We adjust the unroller
919 // MaxCount preference below to attempt to ensure unrolling doesn't create too
920 // many strided loads.
921 static void
922 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
923                               TargetTransformInfo::UnrollingPreferences &UP) {
924   enum { MaxStridedLoads = 7 };
925   auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
926     int StridedLoads = 0;
927     // FIXME? We could make this more precise by looking at the CFG and
928     // e.g. not counting loads in each side of an if-then-else diamond.
929     for (const auto BB : L->blocks()) {
930       for (auto &I : *BB) {
931         LoadInst *LMemI = dyn_cast<LoadInst>(&I);
932         if (!LMemI)
933           continue;
934 
935         Value *PtrValue = LMemI->getPointerOperand();
936         if (L->isLoopInvariant(PtrValue))
937           continue;
938 
939         const SCEV *LSCEV = SE.getSCEV(PtrValue);
940         const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
941         if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
942           continue;
943 
944         // FIXME? We could take pairing of unrolled load copies into account
945         // by looking at the AddRec, but we would probably have to limit this
946         // to loops with no stores or other memory optimization barriers.
947         ++StridedLoads;
948         // We've seen enough strided loads that seeing more won't make a
949         // difference.
950         if (StridedLoads > MaxStridedLoads / 2)
951           return StridedLoads;
952       }
953     }
954     return StridedLoads;
955   };
956 
957   int StridedLoads = countStridedLoads(L, SE);
958   LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
959                     << " strided loads\n");
960   // Pick the largest power of 2 unroll count that won't result in too many
961   // strided loads.
962   if (StridedLoads) {
963     UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
964     LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
965                       << UP.MaxCount << '\n');
966   }
967 }
968 
969 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
970                                              TTI::UnrollingPreferences &UP) {
971   // Enable partial unrolling and runtime unrolling.
972   BaseT::getUnrollingPreferences(L, SE, UP);
973 
974   // For inner loop, it is more likely to be a hot one, and the runtime check
975   // can be promoted out from LICM pass, so the overhead is less, let's try
976   // a larger threshold to unroll more loops.
977   if (L->getLoopDepth() > 1)
978     UP.PartialThreshold *= 2;
979 
980   // Disable partial & runtime unrolling on -Os.
981   UP.PartialOptSizeThreshold = 0;
982 
983   if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
984       EnableFalkorHWPFUnrollFix)
985     getFalkorUnrollingPreferences(L, SE, UP);
986 }
987 
988 void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
989                                            TTI::PeelingPreferences &PP) {
990   BaseT::getPeelingPreferences(L, SE, PP);
991 }
992 
993 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
994                                                          Type *ExpectedType) {
995   switch (Inst->getIntrinsicID()) {
996   default:
997     return nullptr;
998   case Intrinsic::aarch64_neon_st2:
999   case Intrinsic::aarch64_neon_st3:
1000   case Intrinsic::aarch64_neon_st4: {
1001     // Create a struct type
1002     StructType *ST = dyn_cast<StructType>(ExpectedType);
1003     if (!ST)
1004       return nullptr;
1005     unsigned NumElts = Inst->getNumArgOperands() - 1;
1006     if (ST->getNumElements() != NumElts)
1007       return nullptr;
1008     for (unsigned i = 0, e = NumElts; i != e; ++i) {
1009       if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
1010         return nullptr;
1011     }
1012     Value *Res = UndefValue::get(ExpectedType);
1013     IRBuilder<> Builder(Inst);
1014     for (unsigned i = 0, e = NumElts; i != e; ++i) {
1015       Value *L = Inst->getArgOperand(i);
1016       Res = Builder.CreateInsertValue(Res, L, i);
1017     }
1018     return Res;
1019   }
1020   case Intrinsic::aarch64_neon_ld2:
1021   case Intrinsic::aarch64_neon_ld3:
1022   case Intrinsic::aarch64_neon_ld4:
1023     if (Inst->getType() == ExpectedType)
1024       return Inst;
1025     return nullptr;
1026   }
1027 }
1028 
1029 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
1030                                         MemIntrinsicInfo &Info) {
1031   switch (Inst->getIntrinsicID()) {
1032   default:
1033     break;
1034   case Intrinsic::aarch64_neon_ld2:
1035   case Intrinsic::aarch64_neon_ld3:
1036   case Intrinsic::aarch64_neon_ld4:
1037     Info.ReadMem = true;
1038     Info.WriteMem = false;
1039     Info.PtrVal = Inst->getArgOperand(0);
1040     break;
1041   case Intrinsic::aarch64_neon_st2:
1042   case Intrinsic::aarch64_neon_st3:
1043   case Intrinsic::aarch64_neon_st4:
1044     Info.ReadMem = false;
1045     Info.WriteMem = true;
1046     Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
1047     break;
1048   }
1049 
1050   switch (Inst->getIntrinsicID()) {
1051   default:
1052     return false;
1053   case Intrinsic::aarch64_neon_ld2:
1054   case Intrinsic::aarch64_neon_st2:
1055     Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
1056     break;
1057   case Intrinsic::aarch64_neon_ld3:
1058   case Intrinsic::aarch64_neon_st3:
1059     Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
1060     break;
1061   case Intrinsic::aarch64_neon_ld4:
1062   case Intrinsic::aarch64_neon_st4:
1063     Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
1064     break;
1065   }
1066   return true;
1067 }
1068 
1069 /// See if \p I should be considered for address type promotion. We check if \p
1070 /// I is a sext with right type and used in memory accesses. If it used in a
1071 /// "complex" getelementptr, we allow it to be promoted without finding other
1072 /// sext instructions that sign extended the same initial value. A getelementptr
1073 /// is considered as "complex" if it has more than 2 operands.
1074 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
1075     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
1076   bool Considerable = false;
1077   AllowPromotionWithoutCommonHeader = false;
1078   if (!isa<SExtInst>(&I))
1079     return false;
1080   Type *ConsideredSExtType =
1081       Type::getInt64Ty(I.getParent()->getParent()->getContext());
1082   if (I.getType() != ConsideredSExtType)
1083     return false;
1084   // See if the sext is the one with the right type and used in at least one
1085   // GetElementPtrInst.
1086   for (const User *U : I.users()) {
1087     if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
1088       Considerable = true;
1089       // A getelementptr is considered as "complex" if it has more than 2
1090       // operands. We will promote a SExt used in such complex GEP as we
1091       // expect some computation to be merged if they are done on 64 bits.
1092       if (GEPInst->getNumOperands() > 2) {
1093         AllowPromotionWithoutCommonHeader = true;
1094         break;
1095       }
1096     }
1097   }
1098   return Considerable;
1099 }
1100 
1101 bool AArch64TTIImpl::isLegalToVectorizeReduction(RecurrenceDescriptor RdxDesc,
1102                                                  ElementCount VF) const {
1103   if (!VF.isScalable())
1104     return true;
1105 
1106   Type *Ty = RdxDesc.getRecurrenceType();
1107   if (Ty->isBFloatTy() || !isLegalElementTypeForSVE(Ty))
1108     return false;
1109 
1110   switch (RdxDesc.getRecurrenceKind()) {
1111   case RecurKind::Add:
1112   case RecurKind::FAdd:
1113   case RecurKind::And:
1114   case RecurKind::Or:
1115   case RecurKind::Xor:
1116   case RecurKind::SMin:
1117   case RecurKind::SMax:
1118   case RecurKind::UMin:
1119   case RecurKind::UMax:
1120   case RecurKind::FMin:
1121   case RecurKind::FMax:
1122     return true;
1123   default:
1124     return false;
1125   }
1126 }
1127 
1128 int AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
1129                                            bool IsPairwise, bool IsUnsigned,
1130                                            TTI::TargetCostKind CostKind) {
1131   if (!isa<ScalableVectorType>(Ty))
1132     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned,
1133                                          CostKind);
1134   assert((isa<ScalableVectorType>(Ty) && isa<ScalableVectorType>(CondTy)) &&
1135          "Both vector needs to be scalable");
1136 
1137   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
1138   int LegalizationCost = 0;
1139   if (LT.first > 1) {
1140     Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext());
1141     unsigned CmpOpcode =
1142         Ty->isFPOrFPVectorTy() ? Instruction::FCmp : Instruction::ICmp;
1143     LegalizationCost =
1144         getCmpSelInstrCost(CmpOpcode, LegalVTy, LegalVTy,
1145                            CmpInst::BAD_ICMP_PREDICATE, CostKind) +
1146         getCmpSelInstrCost(Instruction::Select, LegalVTy, LegalVTy,
1147                            CmpInst::BAD_ICMP_PREDICATE, CostKind);
1148     LegalizationCost *= LT.first - 1;
1149   }
1150 
1151   return LegalizationCost + /*Cost of horizontal reduction*/ 2;
1152 }
1153 
1154 int AArch64TTIImpl::getArithmeticReductionCostSVE(
1155     unsigned Opcode, VectorType *ValTy, bool IsPairwise,
1156     TTI::TargetCostKind CostKind) {
1157   assert(!IsPairwise && "Cannot be pair wise to continue");
1158 
1159   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
1160   int LegalizationCost = 0;
1161   if (LT.first > 1) {
1162     Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext());
1163     LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind);
1164     LegalizationCost *= LT.first - 1;
1165   }
1166 
1167   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1168   assert(ISD && "Invalid opcode");
1169   // Add the final reduction cost for the legal horizontal reduction
1170   switch (ISD) {
1171   case ISD::ADD:
1172   case ISD::AND:
1173   case ISD::OR:
1174   case ISD::XOR:
1175   case ISD::FADD:
1176     return LegalizationCost + 2;
1177   default:
1178     // TODO: Replace for invalid when InstructionCost is used
1179     // cases not supported by SVE
1180     return 16;
1181   }
1182 }
1183 
1184 int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode,
1185                                                VectorType *ValTy,
1186                                                bool IsPairwiseForm,
1187                                                TTI::TargetCostKind CostKind) {
1188 
1189   if (isa<ScalableVectorType>(ValTy))
1190     return getArithmeticReductionCostSVE(Opcode, ValTy, IsPairwiseForm,
1191                                          CostKind);
1192   if (IsPairwiseForm)
1193     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm,
1194                                              CostKind);
1195 
1196   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
1197   MVT MTy = LT.second;
1198   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1199   assert(ISD && "Invalid opcode");
1200 
1201   // Horizontal adds can use the 'addv' instruction. We model the cost of these
1202   // instructions as normal vector adds. This is the only arithmetic vector
1203   // reduction operation for which we have an instruction.
1204   static const CostTblEntry CostTblNoPairwise[]{
1205       {ISD::ADD, MVT::v8i8,  1},
1206       {ISD::ADD, MVT::v16i8, 1},
1207       {ISD::ADD, MVT::v4i16, 1},
1208       {ISD::ADD, MVT::v8i16, 1},
1209       {ISD::ADD, MVT::v4i32, 1},
1210   };
1211 
1212   if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
1213     return LT.first * Entry->Cost;
1214 
1215   return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm,
1216                                            CostKind);
1217 }
1218 
1219 int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
1220                                    ArrayRef<int> Mask, int Index,
1221                                    VectorType *SubTp) {
1222   if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
1223       Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc ||
1224       Kind == TTI::SK_Reverse) {
1225     static const CostTblEntry ShuffleTbl[] = {
1226       // Broadcast shuffle kinds can be performed with 'dup'.
1227       { TTI::SK_Broadcast, MVT::v8i8,  1 },
1228       { TTI::SK_Broadcast, MVT::v16i8, 1 },
1229       { TTI::SK_Broadcast, MVT::v4i16, 1 },
1230       { TTI::SK_Broadcast, MVT::v8i16, 1 },
1231       { TTI::SK_Broadcast, MVT::v2i32, 1 },
1232       { TTI::SK_Broadcast, MVT::v4i32, 1 },
1233       { TTI::SK_Broadcast, MVT::v2i64, 1 },
1234       { TTI::SK_Broadcast, MVT::v2f32, 1 },
1235       { TTI::SK_Broadcast, MVT::v4f32, 1 },
1236       { TTI::SK_Broadcast, MVT::v2f64, 1 },
1237       // Transpose shuffle kinds can be performed with 'trn1/trn2' and
1238       // 'zip1/zip2' instructions.
1239       { TTI::SK_Transpose, MVT::v8i8,  1 },
1240       { TTI::SK_Transpose, MVT::v16i8, 1 },
1241       { TTI::SK_Transpose, MVT::v4i16, 1 },
1242       { TTI::SK_Transpose, MVT::v8i16, 1 },
1243       { TTI::SK_Transpose, MVT::v2i32, 1 },
1244       { TTI::SK_Transpose, MVT::v4i32, 1 },
1245       { TTI::SK_Transpose, MVT::v2i64, 1 },
1246       { TTI::SK_Transpose, MVT::v2f32, 1 },
1247       { TTI::SK_Transpose, MVT::v4f32, 1 },
1248       { TTI::SK_Transpose, MVT::v2f64, 1 },
1249       // Select shuffle kinds.
1250       // TODO: handle vXi8/vXi16.
1251       { TTI::SK_Select, MVT::v2i32, 1 }, // mov.
1252       { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar).
1253       { TTI::SK_Select, MVT::v2i64, 1 }, // mov.
1254       { TTI::SK_Select, MVT::v2f32, 1 }, // mov.
1255       { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar).
1256       { TTI::SK_Select, MVT::v2f64, 1 }, // mov.
1257       // PermuteSingleSrc shuffle kinds.
1258       // TODO: handle vXi8/vXi16.
1259       { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov.
1260       { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case.
1261       { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov.
1262       { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov.
1263       { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case.
1264       { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov.
1265       // Broadcast shuffle kinds for scalable vectors
1266       { TTI::SK_Broadcast, MVT::nxv16i8,  1 },
1267       { TTI::SK_Broadcast, MVT::nxv8i16,  1 },
1268       { TTI::SK_Broadcast, MVT::nxv4i32,  1 },
1269       { TTI::SK_Broadcast, MVT::nxv2i64,  1 },
1270       { TTI::SK_Broadcast, MVT::nxv8f16,  1 },
1271       { TTI::SK_Broadcast, MVT::nxv8bf16, 1 },
1272       { TTI::SK_Broadcast, MVT::nxv4f32,  1 },
1273       { TTI::SK_Broadcast, MVT::nxv2f64,  1 },
1274       // Handle the cases for vector.reverse with scalable vectors
1275       { TTI::SK_Reverse, MVT::nxv16i8,  1 },
1276       { TTI::SK_Reverse, MVT::nxv8i16,  1 },
1277       { TTI::SK_Reverse, MVT::nxv4i32,  1 },
1278       { TTI::SK_Reverse, MVT::nxv2i64,  1 },
1279       { TTI::SK_Reverse, MVT::nxv8f16,  1 },
1280       { TTI::SK_Reverse, MVT::nxv8bf16, 1 },
1281       { TTI::SK_Reverse, MVT::nxv4f32,  1 },
1282       { TTI::SK_Reverse, MVT::nxv2f64,  1 },
1283       { TTI::SK_Reverse, MVT::nxv16i1,  1 },
1284       { TTI::SK_Reverse, MVT::nxv8i1,   1 },
1285       { TTI::SK_Reverse, MVT::nxv4i1,   1 },
1286       { TTI::SK_Reverse, MVT::nxv2i1,   1 },
1287     };
1288     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
1289     if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
1290       return LT.first * Entry->Cost;
1291   }
1292 
1293   return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp);
1294 }
1295