1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AArch64ExpandImm.h" 10 #include "AArch64TargetTransformInfo.h" 11 #include "MCTargetDesc/AArch64AddressingModes.h" 12 #include "llvm/Analysis/LoopInfo.h" 13 #include "llvm/Analysis/TargetTransformInfo.h" 14 #include "llvm/CodeGen/BasicTTIImpl.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/TargetLowering.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/IntrinsicsAArch64.h" 19 #include "llvm/Support/Debug.h" 20 #include <algorithm> 21 using namespace llvm; 22 23 #define DEBUG_TYPE "aarch64tti" 24 25 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix", 26 cl::init(true), cl::Hidden); 27 28 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller, 29 const Function *Callee) const { 30 const TargetMachine &TM = getTLI()->getTargetMachine(); 31 32 const FeatureBitset &CallerBits = 33 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 34 const FeatureBitset &CalleeBits = 35 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 36 37 // Inline a callee if its target-features are a subset of the callers 38 // target-features. 39 return (CallerBits & CalleeBits) == CalleeBits; 40 } 41 42 /// Calculate the cost of materializing a 64-bit value. This helper 43 /// method might only calculate a fraction of a larger immediate. Therefore it 44 /// is valid to return a cost of ZERO. 45 int AArch64TTIImpl::getIntImmCost(int64_t Val) { 46 // Check if the immediate can be encoded within an instruction. 47 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64)) 48 return 0; 49 50 if (Val < 0) 51 Val = ~Val; 52 53 // Calculate how many moves we will need to materialize this constant. 54 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; 55 AArch64_IMM::expandMOVImm(Val, 64, Insn); 56 return Insn.size(); 57 } 58 59 /// Calculate the cost of materializing the given constant. 60 int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 61 TTI::TargetCostKind CostKind) { 62 assert(Ty->isIntegerTy()); 63 64 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 65 if (BitSize == 0) 66 return ~0U; 67 68 // Sign-extend all constants to a multiple of 64-bit. 69 APInt ImmVal = Imm; 70 if (BitSize & 0x3f) 71 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU); 72 73 // Split the constant into 64-bit chunks and calculate the cost for each 74 // chunk. 75 int Cost = 0; 76 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { 77 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); 78 int64_t Val = Tmp.getSExtValue(); 79 Cost += getIntImmCost(Val); 80 } 81 // We need at least one instruction to materialze the constant. 82 return std::max(1, Cost); 83 } 84 85 int AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 86 const APInt &Imm, Type *Ty, 87 TTI::TargetCostKind CostKind) { 88 assert(Ty->isIntegerTy()); 89 90 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 91 // There is no cost model for constants with a bit size of 0. Return TCC_Free 92 // here, so that constant hoisting will ignore this constant. 93 if (BitSize == 0) 94 return TTI::TCC_Free; 95 96 unsigned ImmIdx = ~0U; 97 switch (Opcode) { 98 default: 99 return TTI::TCC_Free; 100 case Instruction::GetElementPtr: 101 // Always hoist the base address of a GetElementPtr. 102 if (Idx == 0) 103 return 2 * TTI::TCC_Basic; 104 return TTI::TCC_Free; 105 case Instruction::Store: 106 ImmIdx = 0; 107 break; 108 case Instruction::Add: 109 case Instruction::Sub: 110 case Instruction::Mul: 111 case Instruction::UDiv: 112 case Instruction::SDiv: 113 case Instruction::URem: 114 case Instruction::SRem: 115 case Instruction::And: 116 case Instruction::Or: 117 case Instruction::Xor: 118 case Instruction::ICmp: 119 ImmIdx = 1; 120 break; 121 // Always return TCC_Free for the shift value of a shift instruction. 122 case Instruction::Shl: 123 case Instruction::LShr: 124 case Instruction::AShr: 125 if (Idx == 1) 126 return TTI::TCC_Free; 127 break; 128 case Instruction::Trunc: 129 case Instruction::ZExt: 130 case Instruction::SExt: 131 case Instruction::IntToPtr: 132 case Instruction::PtrToInt: 133 case Instruction::BitCast: 134 case Instruction::PHI: 135 case Instruction::Call: 136 case Instruction::Select: 137 case Instruction::Ret: 138 case Instruction::Load: 139 break; 140 } 141 142 if (Idx == ImmIdx) { 143 int NumConstants = (BitSize + 63) / 64; 144 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 145 return (Cost <= NumConstants * TTI::TCC_Basic) 146 ? static_cast<int>(TTI::TCC_Free) 147 : Cost; 148 } 149 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 150 } 151 152 int AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 153 const APInt &Imm, Type *Ty, 154 TTI::TargetCostKind CostKind) { 155 assert(Ty->isIntegerTy()); 156 157 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 158 // There is no cost model for constants with a bit size of 0. Return TCC_Free 159 // here, so that constant hoisting will ignore this constant. 160 if (BitSize == 0) 161 return TTI::TCC_Free; 162 163 // Most (all?) AArch64 intrinsics do not support folding immediates into the 164 // selected instruction, so we compute the materialization cost for the 165 // immediate directly. 166 if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv) 167 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 168 169 switch (IID) { 170 default: 171 return TTI::TCC_Free; 172 case Intrinsic::sadd_with_overflow: 173 case Intrinsic::uadd_with_overflow: 174 case Intrinsic::ssub_with_overflow: 175 case Intrinsic::usub_with_overflow: 176 case Intrinsic::smul_with_overflow: 177 case Intrinsic::umul_with_overflow: 178 if (Idx == 1) { 179 int NumConstants = (BitSize + 63) / 64; 180 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 181 return (Cost <= NumConstants * TTI::TCC_Basic) 182 ? static_cast<int>(TTI::TCC_Free) 183 : Cost; 184 } 185 break; 186 case Intrinsic::experimental_stackmap: 187 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 188 return TTI::TCC_Free; 189 break; 190 case Intrinsic::experimental_patchpoint_void: 191 case Intrinsic::experimental_patchpoint_i64: 192 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 193 return TTI::TCC_Free; 194 break; 195 } 196 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 197 } 198 199 TargetTransformInfo::PopcntSupportKind 200 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) { 201 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 202 if (TyWidth == 32 || TyWidth == 64) 203 return TTI::PSK_FastHardware; 204 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount. 205 return TTI::PSK_Software; 206 } 207 208 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode, 209 ArrayRef<const Value *> Args) { 210 211 // A helper that returns a vector type from the given type. The number of 212 // elements in type Ty determine the vector width. 213 auto toVectorTy = [&](Type *ArgTy) { 214 return FixedVectorType::get(ArgTy->getScalarType(), 215 cast<FixedVectorType>(DstTy)->getNumElements()); 216 }; 217 218 // Exit early if DstTy is not a vector type whose elements are at least 219 // 16-bits wide. 220 if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16) 221 return false; 222 223 // Determine if the operation has a widening variant. We consider both the 224 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the 225 // instructions. 226 // 227 // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we 228 // verify that their extending operands are eliminated during code 229 // generation. 230 switch (Opcode) { 231 case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2). 232 case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2). 233 break; 234 default: 235 return false; 236 } 237 238 // To be a widening instruction (either the "wide" or "long" versions), the 239 // second operand must be a sign- or zero extend having a single user. We 240 // only consider extends having a single user because they may otherwise not 241 // be eliminated. 242 if (Args.size() != 2 || 243 (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) || 244 !Args[1]->hasOneUse()) 245 return false; 246 auto *Extend = cast<CastInst>(Args[1]); 247 248 // Legalize the destination type and ensure it can be used in a widening 249 // operation. 250 auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy); 251 unsigned DstElTySize = DstTyL.second.getScalarSizeInBits(); 252 if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits()) 253 return false; 254 255 // Legalize the source type and ensure it can be used in a widening 256 // operation. 257 auto *SrcTy = toVectorTy(Extend->getSrcTy()); 258 auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy); 259 unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits(); 260 if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits()) 261 return false; 262 263 // Get the total number of vector elements in the legalized types. 264 unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorNumElements(); 265 unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorNumElements(); 266 267 // Return true if the legalized types have the same number of vector elements 268 // and the destination element type size is twice that of the source type. 269 return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize; 270 } 271 272 int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 273 TTI::CastContextHint CCH, 274 TTI::TargetCostKind CostKind, 275 const Instruction *I) { 276 int ISD = TLI->InstructionOpcodeToISD(Opcode); 277 assert(ISD && "Invalid opcode"); 278 279 // If the cast is observable, and it is used by a widening instruction (e.g., 280 // uaddl, saddw, etc.), it may be free. 281 if (I && I->hasOneUse()) { 282 auto *SingleUser = cast<Instruction>(*I->user_begin()); 283 SmallVector<const Value *, 4> Operands(SingleUser->operand_values()); 284 if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) { 285 // If the cast is the second operand, it is free. We will generate either 286 // a "wide" or "long" version of the widening instruction. 287 if (I == SingleUser->getOperand(1)) 288 return 0; 289 // If the cast is not the second operand, it will be free if it looks the 290 // same as the second operand. In this case, we will generate a "long" 291 // version of the widening instruction. 292 if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1))) 293 if (I->getOpcode() == unsigned(Cast->getOpcode()) && 294 cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy()) 295 return 0; 296 } 297 } 298 299 // TODO: Allow non-throughput costs that aren't binary. 300 auto AdjustCost = [&CostKind](int Cost) { 301 if (CostKind != TTI::TCK_RecipThroughput) 302 return Cost == 0 ? 0 : 1; 303 return Cost; 304 }; 305 306 EVT SrcTy = TLI->getValueType(DL, Src); 307 EVT DstTy = TLI->getValueType(DL, Dst); 308 309 if (!SrcTy.isSimple() || !DstTy.isSimple()) 310 return AdjustCost( 311 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 312 313 static const TypeConversionCostTblEntry 314 ConversionTbl[] = { 315 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 316 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 317 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 318 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 319 320 // The number of shll instructions for the extension. 321 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 322 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 323 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 324 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 325 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 326 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 327 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 328 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 329 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 330 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 331 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 332 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 333 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 334 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 335 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 336 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 337 338 // LowerVectorINT_TO_FP: 339 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 340 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 341 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 342 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 343 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 344 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 345 346 // Complex: to v2f32 347 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 348 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 349 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 350 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 351 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 352 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 353 354 // Complex: to v4f32 355 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 }, 356 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 357 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 358 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 359 360 // Complex: to v8f32 361 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 362 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 363 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 364 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 365 366 // Complex: to v16f32 367 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 368 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 369 370 // Complex: to v2f64 371 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 372 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 373 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 374 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 375 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 376 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 377 378 379 // LowerVectorFP_TO_INT 380 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 }, 381 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 382 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, 383 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, 384 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 385 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, 386 387 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext). 388 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 }, 389 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 }, 390 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 }, 391 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 }, 392 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 }, 393 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 }, 394 395 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2 396 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 397 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 }, 398 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 399 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 }, 400 401 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2. 402 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 403 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 }, 404 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 }, 405 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 406 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 }, 407 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 }, 408 }; 409 410 if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD, 411 DstTy.getSimpleVT(), 412 SrcTy.getSimpleVT())) 413 return AdjustCost(Entry->Cost); 414 415 return AdjustCost( 416 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 417 } 418 419 int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 420 VectorType *VecTy, 421 unsigned Index) { 422 423 // Make sure we were given a valid extend opcode. 424 assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) && 425 "Invalid opcode"); 426 427 // We are extending an element we extract from a vector, so the source type 428 // of the extend is the element type of the vector. 429 auto *Src = VecTy->getElementType(); 430 431 // Sign- and zero-extends are for integer types only. 432 assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type"); 433 434 // Get the cost for the extract. We compute the cost (if any) for the extend 435 // below. 436 auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index); 437 438 // Legalize the types. 439 auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy); 440 auto DstVT = TLI->getValueType(DL, Dst); 441 auto SrcVT = TLI->getValueType(DL, Src); 442 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 443 444 // If the resulting type is still a vector and the destination type is legal, 445 // we may get the extension for free. If not, get the default cost for the 446 // extend. 447 if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT)) 448 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 449 CostKind); 450 451 // The destination type should be larger than the element type. If not, get 452 // the default cost for the extend. 453 if (DstVT.getSizeInBits() < SrcVT.getSizeInBits()) 454 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 455 CostKind); 456 457 switch (Opcode) { 458 default: 459 llvm_unreachable("Opcode should be either SExt or ZExt"); 460 461 // For sign-extends, we only need a smov, which performs the extension 462 // automatically. 463 case Instruction::SExt: 464 return Cost; 465 466 // For zero-extends, the extend is performed automatically by a umov unless 467 // the destination type is i64 and the element type is i8 or i16. 468 case Instruction::ZExt: 469 if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u) 470 return Cost; 471 } 472 473 // If we are unable to perform the extend for free, get the default cost. 474 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 475 CostKind); 476 } 477 478 unsigned AArch64TTIImpl::getCFInstrCost(unsigned Opcode, 479 TTI::TargetCostKind CostKind) { 480 if (CostKind != TTI::TCK_RecipThroughput) 481 return Opcode == Instruction::PHI ? 0 : 1; 482 assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind"); 483 // Branches are assumed to be predicted. 484 return 0; 485 } 486 487 int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 488 unsigned Index) { 489 assert(Val->isVectorTy() && "This must be a vector type"); 490 491 if (Index != -1U) { 492 // Legalize the type. 493 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); 494 495 // This type is legalized to a scalar type. 496 if (!LT.second.isVector()) 497 return 0; 498 499 // The type may be split. Normalize the index to the new type. 500 unsigned Width = LT.second.getVectorNumElements(); 501 Index = Index % Width; 502 503 // The element at index zero is already inside the vector. 504 if (Index == 0) 505 return 0; 506 } 507 508 // All other insert/extracts cost this much. 509 return ST->getVectorInsertExtractBaseCost(); 510 } 511 512 int AArch64TTIImpl::getArithmeticInstrCost( 513 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 514 TTI::OperandValueKind Opd1Info, 515 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, 516 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 517 const Instruction *CxtI) { 518 // TODO: Handle more cost kinds. 519 if (CostKind != TTI::TCK_RecipThroughput) 520 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 521 Opd2Info, Opd1PropInfo, 522 Opd2PropInfo, Args, CxtI); 523 524 // Legalize the type. 525 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 526 527 // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.), 528 // add in the widening overhead specified by the sub-target. Since the 529 // extends feeding widening instructions are performed automatically, they 530 // aren't present in the generated code and have a zero cost. By adding a 531 // widening overhead here, we attach the total cost of the combined operation 532 // to the widening instruction. 533 int Cost = 0; 534 if (isWideningInstruction(Ty, Opcode, Args)) 535 Cost += ST->getWideningBaseCost(); 536 537 int ISD = TLI->InstructionOpcodeToISD(Opcode); 538 539 switch (ISD) { 540 default: 541 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 542 Opd2Info, 543 Opd1PropInfo, Opd2PropInfo); 544 case ISD::SDIV: 545 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue && 546 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 547 // On AArch64, scalar signed division by constants power-of-two are 548 // normally expanded to the sequence ADD + CMP + SELECT + SRA. 549 // The OperandValue properties many not be same as that of previous 550 // operation; conservatively assume OP_None. 551 Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, 552 Opd1Info, Opd2Info, 553 TargetTransformInfo::OP_None, 554 TargetTransformInfo::OP_None); 555 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, 556 Opd1Info, Opd2Info, 557 TargetTransformInfo::OP_None, 558 TargetTransformInfo::OP_None); 559 Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind, 560 Opd1Info, Opd2Info, 561 TargetTransformInfo::OP_None, 562 TargetTransformInfo::OP_None); 563 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, 564 Opd1Info, Opd2Info, 565 TargetTransformInfo::OP_None, 566 TargetTransformInfo::OP_None); 567 return Cost; 568 } 569 LLVM_FALLTHROUGH; 570 case ISD::UDIV: 571 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) { 572 auto VT = TLI->getValueType(DL, Ty); 573 if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) { 574 // Vector signed division by constant are expanded to the 575 // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division 576 // to MULHS + SUB + SRL + ADD + SRL. 577 int MulCost = getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, 578 Opd1Info, Opd2Info, 579 TargetTransformInfo::OP_None, 580 TargetTransformInfo::OP_None); 581 int AddCost = getArithmeticInstrCost(Instruction::Add, Ty, CostKind, 582 Opd1Info, Opd2Info, 583 TargetTransformInfo::OP_None, 584 TargetTransformInfo::OP_None); 585 int ShrCost = getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, 586 Opd1Info, Opd2Info, 587 TargetTransformInfo::OP_None, 588 TargetTransformInfo::OP_None); 589 return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1; 590 } 591 } 592 593 Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 594 Opd2Info, 595 Opd1PropInfo, Opd2PropInfo); 596 if (Ty->isVectorTy()) { 597 // On AArch64, vector divisions are not supported natively and are 598 // expanded into scalar divisions of each pair of elements. 599 Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind, 600 Opd1Info, Opd2Info, Opd1PropInfo, 601 Opd2PropInfo); 602 Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind, 603 Opd1Info, Opd2Info, Opd1PropInfo, 604 Opd2PropInfo); 605 // TODO: if one of the arguments is scalar, then it's not necessary to 606 // double the cost of handling the vector elements. 607 Cost += Cost; 608 } 609 return Cost; 610 611 case ISD::ADD: 612 case ISD::MUL: 613 case ISD::XOR: 614 case ISD::OR: 615 case ISD::AND: 616 // These nodes are marked as 'custom' for combining purposes only. 617 // We know that they are legal. See LowerAdd in ISelLowering. 618 return (Cost + 1) * LT.first; 619 620 case ISD::FADD: 621 // These nodes are marked as 'custom' just to lower them to SVE. 622 // We know said lowering will incur no additional cost. 623 if (isa<FixedVectorType>(Ty) && !Ty->getScalarType()->isFP128Ty()) 624 return (Cost + 2) * LT.first; 625 626 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 627 Opd2Info, 628 Opd1PropInfo, Opd2PropInfo); 629 } 630 } 631 632 int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, 633 const SCEV *Ptr) { 634 // Address computations in vectorized code with non-consecutive addresses will 635 // likely result in more instructions compared to scalar code where the 636 // computation can more often be merged into the index mode. The resulting 637 // extra micro-ops can significantly decrease throughput. 638 unsigned NumVectorInstToHideOverhead = 10; 639 int MaxMergeDistance = 64; 640 641 if (Ty->isVectorTy() && SE && 642 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 643 return NumVectorInstToHideOverhead; 644 645 // In many cases the address computation is not merged into the instruction 646 // addressing mode. 647 return 1; 648 } 649 650 int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 651 Type *CondTy, 652 TTI::TargetCostKind CostKind, 653 const Instruction *I) { 654 // TODO: Handle other cost kinds. 655 if (CostKind != TTI::TCK_RecipThroughput) 656 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I); 657 658 int ISD = TLI->InstructionOpcodeToISD(Opcode); 659 // We don't lower some vector selects well that are wider than the register 660 // width. 661 if (ValTy->isVectorTy() && ISD == ISD::SELECT) { 662 // We would need this many instructions to hide the scalarization happening. 663 const int AmortizationCost = 20; 664 static const TypeConversionCostTblEntry 665 VectorSelectTbl[] = { 666 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 }, 667 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 }, 668 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 }, 669 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost }, 670 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost }, 671 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost } 672 }; 673 674 EVT SelCondTy = TLI->getValueType(DL, CondTy); 675 EVT SelValTy = TLI->getValueType(DL, ValTy); 676 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 677 if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD, 678 SelCondTy.getSimpleVT(), 679 SelValTy.getSimpleVT())) 680 return Entry->Cost; 681 } 682 } 683 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I); 684 } 685 686 AArch64TTIImpl::TTI::MemCmpExpansionOptions 687 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 688 TTI::MemCmpExpansionOptions Options; 689 if (ST->requiresStrictAlign()) { 690 // TODO: Add cost modeling for strict align. Misaligned loads expand to 691 // a bunch of instructions when strict align is enabled. 692 return Options; 693 } 694 Options.AllowOverlappingLoads = true; 695 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 696 Options.NumLoadsPerBlock = Options.MaxNumLoads; 697 // TODO: Though vector loads usually perform well on AArch64, in some targets 698 // they may wake up the FP unit, which raises the power consumption. Perhaps 699 // they could be used with no holds barred (-O3). 700 Options.LoadSizes = {8, 4, 2, 1}; 701 return Options; 702 } 703 704 int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty, 705 MaybeAlign Alignment, unsigned AddressSpace, 706 TTI::TargetCostKind CostKind, 707 const Instruction *I) { 708 // TODO: Handle other cost kinds. 709 if (CostKind != TTI::TCK_RecipThroughput) 710 return 1; 711 712 // Type legalization can't handle structs 713 if (TLI->getValueType(DL, Ty, true) == MVT::Other) 714 return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace, 715 CostKind); 716 717 auto LT = TLI->getTypeLegalizationCost(DL, Ty); 718 719 if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store && 720 LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) { 721 // Unaligned stores are extremely inefficient. We don't split all 722 // unaligned 128-bit stores because the negative impact that has shown in 723 // practice on inlined block copy code. 724 // We make such stores expensive so that we will only vectorize if there 725 // are 6 other instructions getting vectorized. 726 const int AmortizationCost = 6; 727 728 return LT.first * 2 * AmortizationCost; 729 } 730 731 if (Ty->isVectorTy() && 732 cast<VectorType>(Ty)->getElementType()->isIntegerTy(8)) { 733 unsigned ProfitableNumElements; 734 if (Opcode == Instruction::Store) 735 // We use a custom trunc store lowering so v.4b should be profitable. 736 ProfitableNumElements = 4; 737 else 738 // We scalarize the loads because there is not v.4b register and we 739 // have to promote the elements to v.2. 740 ProfitableNumElements = 8; 741 742 if (cast<FixedVectorType>(Ty)->getNumElements() < ProfitableNumElements) { 743 unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements(); 744 unsigned NumVectorizableInstsToAmortize = NumVecElts * 2; 745 // We generate 2 instructions per vector element. 746 return NumVectorizableInstsToAmortize * NumVecElts * 2; 747 } 748 } 749 750 return LT.first; 751 } 752 753 int AArch64TTIImpl::getInterleavedMemoryOpCost( 754 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 755 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 756 bool UseMaskForCond, bool UseMaskForGaps) { 757 assert(Factor >= 2 && "Invalid interleave factor"); 758 auto *VecVTy = cast<FixedVectorType>(VecTy); 759 760 if (!UseMaskForCond && !UseMaskForGaps && 761 Factor <= TLI->getMaxSupportedInterleaveFactor()) { 762 unsigned NumElts = VecVTy->getNumElements(); 763 auto *SubVecTy = 764 FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor); 765 766 // ldN/stN only support legal vector types of size 64 or 128 in bits. 767 // Accesses having vector types that are a multiple of 128 bits can be 768 // matched to more than one ldN/stN instruction. 769 if (NumElts % Factor == 0 && 770 TLI->isLegalInterleavedAccessType(SubVecTy, DL)) 771 return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL); 772 } 773 774 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 775 Alignment, AddressSpace, CostKind, 776 UseMaskForCond, UseMaskForGaps); 777 } 778 779 int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { 780 int Cost = 0; 781 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 782 for (auto *I : Tys) { 783 if (!I->isVectorTy()) 784 continue; 785 if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() == 786 128) 787 Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) + 788 getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind); 789 } 790 return Cost; 791 } 792 793 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) { 794 return ST->getMaxInterleaveFactor(); 795 } 796 797 // For Falkor, we want to avoid having too many strided loads in a loop since 798 // that can exhaust the HW prefetcher resources. We adjust the unroller 799 // MaxCount preference below to attempt to ensure unrolling doesn't create too 800 // many strided loads. 801 static void 802 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE, 803 TargetTransformInfo::UnrollingPreferences &UP) { 804 enum { MaxStridedLoads = 7 }; 805 auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) { 806 int StridedLoads = 0; 807 // FIXME? We could make this more precise by looking at the CFG and 808 // e.g. not counting loads in each side of an if-then-else diamond. 809 for (const auto BB : L->blocks()) { 810 for (auto &I : *BB) { 811 LoadInst *LMemI = dyn_cast<LoadInst>(&I); 812 if (!LMemI) 813 continue; 814 815 Value *PtrValue = LMemI->getPointerOperand(); 816 if (L->isLoopInvariant(PtrValue)) 817 continue; 818 819 const SCEV *LSCEV = SE.getSCEV(PtrValue); 820 const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV); 821 if (!LSCEVAddRec || !LSCEVAddRec->isAffine()) 822 continue; 823 824 // FIXME? We could take pairing of unrolled load copies into account 825 // by looking at the AddRec, but we would probably have to limit this 826 // to loops with no stores or other memory optimization barriers. 827 ++StridedLoads; 828 // We've seen enough strided loads that seeing more won't make a 829 // difference. 830 if (StridedLoads > MaxStridedLoads / 2) 831 return StridedLoads; 832 } 833 } 834 return StridedLoads; 835 }; 836 837 int StridedLoads = countStridedLoads(L, SE); 838 LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads 839 << " strided loads\n"); 840 // Pick the largest power of 2 unroll count that won't result in too many 841 // strided loads. 842 if (StridedLoads) { 843 UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads); 844 LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to " 845 << UP.MaxCount << '\n'); 846 } 847 } 848 849 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 850 TTI::UnrollingPreferences &UP) { 851 // Enable partial unrolling and runtime unrolling. 852 BaseT::getUnrollingPreferences(L, SE, UP); 853 854 // For inner loop, it is more likely to be a hot one, and the runtime check 855 // can be promoted out from LICM pass, so the overhead is less, let's try 856 // a larger threshold to unroll more loops. 857 if (L->getLoopDepth() > 1) 858 UP.PartialThreshold *= 2; 859 860 // Disable partial & runtime unrolling on -Os. 861 UP.PartialOptSizeThreshold = 0; 862 863 if (ST->getProcFamily() == AArch64Subtarget::Falkor && 864 EnableFalkorHWPFUnrollFix) 865 getFalkorUnrollingPreferences(L, SE, UP); 866 } 867 868 void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 869 TTI::PeelingPreferences &PP) { 870 BaseT::getPeelingPreferences(L, SE, PP); 871 } 872 873 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 874 Type *ExpectedType) { 875 switch (Inst->getIntrinsicID()) { 876 default: 877 return nullptr; 878 case Intrinsic::aarch64_neon_st2: 879 case Intrinsic::aarch64_neon_st3: 880 case Intrinsic::aarch64_neon_st4: { 881 // Create a struct type 882 StructType *ST = dyn_cast<StructType>(ExpectedType); 883 if (!ST) 884 return nullptr; 885 unsigned NumElts = Inst->getNumArgOperands() - 1; 886 if (ST->getNumElements() != NumElts) 887 return nullptr; 888 for (unsigned i = 0, e = NumElts; i != e; ++i) { 889 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i)) 890 return nullptr; 891 } 892 Value *Res = UndefValue::get(ExpectedType); 893 IRBuilder<> Builder(Inst); 894 for (unsigned i = 0, e = NumElts; i != e; ++i) { 895 Value *L = Inst->getArgOperand(i); 896 Res = Builder.CreateInsertValue(Res, L, i); 897 } 898 return Res; 899 } 900 case Intrinsic::aarch64_neon_ld2: 901 case Intrinsic::aarch64_neon_ld3: 902 case Intrinsic::aarch64_neon_ld4: 903 if (Inst->getType() == ExpectedType) 904 return Inst; 905 return nullptr; 906 } 907 } 908 909 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 910 MemIntrinsicInfo &Info) { 911 switch (Inst->getIntrinsicID()) { 912 default: 913 break; 914 case Intrinsic::aarch64_neon_ld2: 915 case Intrinsic::aarch64_neon_ld3: 916 case Intrinsic::aarch64_neon_ld4: 917 Info.ReadMem = true; 918 Info.WriteMem = false; 919 Info.PtrVal = Inst->getArgOperand(0); 920 break; 921 case Intrinsic::aarch64_neon_st2: 922 case Intrinsic::aarch64_neon_st3: 923 case Intrinsic::aarch64_neon_st4: 924 Info.ReadMem = false; 925 Info.WriteMem = true; 926 Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1); 927 break; 928 } 929 930 switch (Inst->getIntrinsicID()) { 931 default: 932 return false; 933 case Intrinsic::aarch64_neon_ld2: 934 case Intrinsic::aarch64_neon_st2: 935 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS; 936 break; 937 case Intrinsic::aarch64_neon_ld3: 938 case Intrinsic::aarch64_neon_st3: 939 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS; 940 break; 941 case Intrinsic::aarch64_neon_ld4: 942 case Intrinsic::aarch64_neon_st4: 943 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS; 944 break; 945 } 946 return true; 947 } 948 949 /// See if \p I should be considered for address type promotion. We check if \p 950 /// I is a sext with right type and used in memory accesses. If it used in a 951 /// "complex" getelementptr, we allow it to be promoted without finding other 952 /// sext instructions that sign extended the same initial value. A getelementptr 953 /// is considered as "complex" if it has more than 2 operands. 954 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion( 955 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) { 956 bool Considerable = false; 957 AllowPromotionWithoutCommonHeader = false; 958 if (!isa<SExtInst>(&I)) 959 return false; 960 Type *ConsideredSExtType = 961 Type::getInt64Ty(I.getParent()->getParent()->getContext()); 962 if (I.getType() != ConsideredSExtType) 963 return false; 964 // See if the sext is the one with the right type and used in at least one 965 // GetElementPtrInst. 966 for (const User *U : I.users()) { 967 if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) { 968 Considerable = true; 969 // A getelementptr is considered as "complex" if it has more than 2 970 // operands. We will promote a SExt used in such complex GEP as we 971 // expect some computation to be merged if they are done on 64 bits. 972 if (GEPInst->getNumOperands() > 2) { 973 AllowPromotionWithoutCommonHeader = true; 974 break; 975 } 976 } 977 } 978 return Considerable; 979 } 980 981 bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty, 982 TTI::ReductionFlags Flags) const { 983 auto *VTy = cast<VectorType>(Ty); 984 unsigned ScalarBits = Ty->getScalarSizeInBits(); 985 switch (Opcode) { 986 case Instruction::FAdd: 987 case Instruction::FMul: 988 case Instruction::And: 989 case Instruction::Or: 990 case Instruction::Xor: 991 case Instruction::Mul: 992 return false; 993 case Instruction::Add: 994 return ScalarBits * cast<FixedVectorType>(VTy)->getNumElements() >= 128; 995 case Instruction::ICmp: 996 return (ScalarBits < 64) && 997 (ScalarBits * cast<FixedVectorType>(VTy)->getNumElements() >= 128); 998 case Instruction::FCmp: 999 return Flags.NoNaN; 1000 default: 1001 llvm_unreachable("Unhandled reduction opcode"); 1002 } 1003 return false; 1004 } 1005 1006 int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, 1007 VectorType *ValTy, 1008 bool IsPairwiseForm, 1009 TTI::TargetCostKind CostKind) { 1010 1011 if (IsPairwiseForm) 1012 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm, 1013 CostKind); 1014 1015 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 1016 MVT MTy = LT.second; 1017 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1018 assert(ISD && "Invalid opcode"); 1019 1020 // Horizontal adds can use the 'addv' instruction. We model the cost of these 1021 // instructions as normal vector adds. This is the only arithmetic vector 1022 // reduction operation for which we have an instruction. 1023 static const CostTblEntry CostTblNoPairwise[]{ 1024 {ISD::ADD, MVT::v8i8, 1}, 1025 {ISD::ADD, MVT::v16i8, 1}, 1026 {ISD::ADD, MVT::v4i16, 1}, 1027 {ISD::ADD, MVT::v8i16, 1}, 1028 {ISD::ADD, MVT::v4i32, 1}, 1029 }; 1030 1031 if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy)) 1032 return LT.first * Entry->Cost; 1033 1034 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm, 1035 CostKind); 1036 } 1037 1038 int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, 1039 int Index, VectorType *SubTp) { 1040 if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose || 1041 Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc) { 1042 static const CostTblEntry ShuffleTbl[] = { 1043 // Broadcast shuffle kinds can be performed with 'dup'. 1044 { TTI::SK_Broadcast, MVT::v8i8, 1 }, 1045 { TTI::SK_Broadcast, MVT::v16i8, 1 }, 1046 { TTI::SK_Broadcast, MVT::v4i16, 1 }, 1047 { TTI::SK_Broadcast, MVT::v8i16, 1 }, 1048 { TTI::SK_Broadcast, MVT::v2i32, 1 }, 1049 { TTI::SK_Broadcast, MVT::v4i32, 1 }, 1050 { TTI::SK_Broadcast, MVT::v2i64, 1 }, 1051 { TTI::SK_Broadcast, MVT::v2f32, 1 }, 1052 { TTI::SK_Broadcast, MVT::v4f32, 1 }, 1053 { TTI::SK_Broadcast, MVT::v2f64, 1 }, 1054 // Transpose shuffle kinds can be performed with 'trn1/trn2' and 1055 // 'zip1/zip2' instructions. 1056 { TTI::SK_Transpose, MVT::v8i8, 1 }, 1057 { TTI::SK_Transpose, MVT::v16i8, 1 }, 1058 { TTI::SK_Transpose, MVT::v4i16, 1 }, 1059 { TTI::SK_Transpose, MVT::v8i16, 1 }, 1060 { TTI::SK_Transpose, MVT::v2i32, 1 }, 1061 { TTI::SK_Transpose, MVT::v4i32, 1 }, 1062 { TTI::SK_Transpose, MVT::v2i64, 1 }, 1063 { TTI::SK_Transpose, MVT::v2f32, 1 }, 1064 { TTI::SK_Transpose, MVT::v4f32, 1 }, 1065 { TTI::SK_Transpose, MVT::v2f64, 1 }, 1066 // Select shuffle kinds. 1067 // TODO: handle vXi8/vXi16. 1068 { TTI::SK_Select, MVT::v2i32, 1 }, // mov. 1069 { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar). 1070 { TTI::SK_Select, MVT::v2i64, 1 }, // mov. 1071 { TTI::SK_Select, MVT::v2f32, 1 }, // mov. 1072 { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar). 1073 { TTI::SK_Select, MVT::v2f64, 1 }, // mov. 1074 // PermuteSingleSrc shuffle kinds. 1075 // TODO: handle vXi8/vXi16. 1076 { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov. 1077 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case. 1078 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov. 1079 { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov. 1080 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case. 1081 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov. 1082 }; 1083 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1084 if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second)) 1085 return LT.first * Entry->Cost; 1086 } 1087 1088 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 1089 } 1090