1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AArch64TargetTransformInfo.h" 10 #include "AArch64ExpandImm.h" 11 #include "MCTargetDesc/AArch64AddressingModes.h" 12 #include "llvm/Analysis/LoopInfo.h" 13 #include "llvm/Analysis/TargetTransformInfo.h" 14 #include "llvm/CodeGen/BasicTTIImpl.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/TargetLowering.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/IntrinsicsAArch64.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/Debug.h" 21 #include <algorithm> 22 using namespace llvm; 23 using namespace llvm::PatternMatch; 24 25 #define DEBUG_TYPE "aarch64tti" 26 27 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix", 28 cl::init(true), cl::Hidden); 29 30 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller, 31 const Function *Callee) const { 32 const TargetMachine &TM = getTLI()->getTargetMachine(); 33 34 const FeatureBitset &CallerBits = 35 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 36 const FeatureBitset &CalleeBits = 37 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 38 39 // Inline a callee if its target-features are a subset of the callers 40 // target-features. 41 return (CallerBits & CalleeBits) == CalleeBits; 42 } 43 44 /// Calculate the cost of materializing a 64-bit value. This helper 45 /// method might only calculate a fraction of a larger immediate. Therefore it 46 /// is valid to return a cost of ZERO. 47 int AArch64TTIImpl::getIntImmCost(int64_t Val) { 48 // Check if the immediate can be encoded within an instruction. 49 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64)) 50 return 0; 51 52 if (Val < 0) 53 Val = ~Val; 54 55 // Calculate how many moves we will need to materialize this constant. 56 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; 57 AArch64_IMM::expandMOVImm(Val, 64, Insn); 58 return Insn.size(); 59 } 60 61 /// Calculate the cost of materializing the given constant. 62 int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 63 TTI::TargetCostKind CostKind) { 64 assert(Ty->isIntegerTy()); 65 66 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 67 if (BitSize == 0) 68 return ~0U; 69 70 // Sign-extend all constants to a multiple of 64-bit. 71 APInt ImmVal = Imm; 72 if (BitSize & 0x3f) 73 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU); 74 75 // Split the constant into 64-bit chunks and calculate the cost for each 76 // chunk. 77 int Cost = 0; 78 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { 79 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); 80 int64_t Val = Tmp.getSExtValue(); 81 Cost += getIntImmCost(Val); 82 } 83 // We need at least one instruction to materialze the constant. 84 return std::max(1, Cost); 85 } 86 87 int AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 88 const APInt &Imm, Type *Ty, 89 TTI::TargetCostKind CostKind, 90 Instruction *Inst) { 91 assert(Ty->isIntegerTy()); 92 93 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 94 // There is no cost model for constants with a bit size of 0. Return TCC_Free 95 // here, so that constant hoisting will ignore this constant. 96 if (BitSize == 0) 97 return TTI::TCC_Free; 98 99 unsigned ImmIdx = ~0U; 100 switch (Opcode) { 101 default: 102 return TTI::TCC_Free; 103 case Instruction::GetElementPtr: 104 // Always hoist the base address of a GetElementPtr. 105 if (Idx == 0) 106 return 2 * TTI::TCC_Basic; 107 return TTI::TCC_Free; 108 case Instruction::Store: 109 ImmIdx = 0; 110 break; 111 case Instruction::Add: 112 case Instruction::Sub: 113 case Instruction::Mul: 114 case Instruction::UDiv: 115 case Instruction::SDiv: 116 case Instruction::URem: 117 case Instruction::SRem: 118 case Instruction::And: 119 case Instruction::Or: 120 case Instruction::Xor: 121 case Instruction::ICmp: 122 ImmIdx = 1; 123 break; 124 // Always return TCC_Free for the shift value of a shift instruction. 125 case Instruction::Shl: 126 case Instruction::LShr: 127 case Instruction::AShr: 128 if (Idx == 1) 129 return TTI::TCC_Free; 130 break; 131 case Instruction::Trunc: 132 case Instruction::ZExt: 133 case Instruction::SExt: 134 case Instruction::IntToPtr: 135 case Instruction::PtrToInt: 136 case Instruction::BitCast: 137 case Instruction::PHI: 138 case Instruction::Call: 139 case Instruction::Select: 140 case Instruction::Ret: 141 case Instruction::Load: 142 break; 143 } 144 145 if (Idx == ImmIdx) { 146 int NumConstants = (BitSize + 63) / 64; 147 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 148 return (Cost <= NumConstants * TTI::TCC_Basic) 149 ? static_cast<int>(TTI::TCC_Free) 150 : Cost; 151 } 152 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 153 } 154 155 int AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 156 const APInt &Imm, Type *Ty, 157 TTI::TargetCostKind CostKind) { 158 assert(Ty->isIntegerTy()); 159 160 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 161 // There is no cost model for constants with a bit size of 0. Return TCC_Free 162 // here, so that constant hoisting will ignore this constant. 163 if (BitSize == 0) 164 return TTI::TCC_Free; 165 166 // Most (all?) AArch64 intrinsics do not support folding immediates into the 167 // selected instruction, so we compute the materialization cost for the 168 // immediate directly. 169 if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv) 170 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 171 172 switch (IID) { 173 default: 174 return TTI::TCC_Free; 175 case Intrinsic::sadd_with_overflow: 176 case Intrinsic::uadd_with_overflow: 177 case Intrinsic::ssub_with_overflow: 178 case Intrinsic::usub_with_overflow: 179 case Intrinsic::smul_with_overflow: 180 case Intrinsic::umul_with_overflow: 181 if (Idx == 1) { 182 int NumConstants = (BitSize + 63) / 64; 183 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 184 return (Cost <= NumConstants * TTI::TCC_Basic) 185 ? static_cast<int>(TTI::TCC_Free) 186 : Cost; 187 } 188 break; 189 case Intrinsic::experimental_stackmap: 190 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 191 return TTI::TCC_Free; 192 break; 193 case Intrinsic::experimental_patchpoint_void: 194 case Intrinsic::experimental_patchpoint_i64: 195 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 196 return TTI::TCC_Free; 197 break; 198 case Intrinsic::experimental_gc_statepoint: 199 if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 200 return TTI::TCC_Free; 201 break; 202 } 203 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 204 } 205 206 TargetTransformInfo::PopcntSupportKind 207 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) { 208 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 209 if (TyWidth == 32 || TyWidth == 64) 210 return TTI::PSK_FastHardware; 211 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount. 212 return TTI::PSK_Software; 213 } 214 215 unsigned 216 AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 217 TTI::TargetCostKind CostKind) { 218 auto *RetTy = ICA.getReturnType(); 219 switch (ICA.getID()) { 220 case Intrinsic::umin: 221 case Intrinsic::umax: { 222 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 223 // umin(x,y) -> sub(x,usubsat(x,y)) 224 // umax(x,y) -> add(x,usubsat(y,x)) 225 if (LT.second == MVT::v2i64) 226 return LT.first * 2; 227 LLVM_FALLTHROUGH; 228 } 229 case Intrinsic::smin: 230 case Intrinsic::smax: { 231 static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 232 MVT::v8i16, MVT::v2i32, MVT::v4i32}; 233 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 234 if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; })) 235 return LT.first; 236 break; 237 } 238 case Intrinsic::sadd_sat: 239 case Intrinsic::ssub_sat: 240 case Intrinsic::uadd_sat: 241 case Intrinsic::usub_sat: { 242 static const auto ValidSatTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 243 MVT::v8i16, MVT::v2i32, MVT::v4i32, 244 MVT::v2i64}; 245 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 246 // This is a base cost of 1 for the vadd, plus 3 extract shifts if we 247 // need to extend the type, as it uses shr(qadd(shl, shl)). 248 unsigned Instrs = 249 LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4; 250 if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; })) 251 return LT.first * Instrs; 252 break; 253 } 254 default: 255 break; 256 } 257 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 258 } 259 260 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode, 261 ArrayRef<const Value *> Args) { 262 263 // A helper that returns a vector type from the given type. The number of 264 // elements in type Ty determine the vector width. 265 auto toVectorTy = [&](Type *ArgTy) { 266 return VectorType::get(ArgTy->getScalarType(), 267 cast<VectorType>(DstTy)->getElementCount()); 268 }; 269 270 // Exit early if DstTy is not a vector type whose elements are at least 271 // 16-bits wide. 272 if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16) 273 return false; 274 275 // Determine if the operation has a widening variant. We consider both the 276 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the 277 // instructions. 278 // 279 // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we 280 // verify that their extending operands are eliminated during code 281 // generation. 282 switch (Opcode) { 283 case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2). 284 case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2). 285 break; 286 default: 287 return false; 288 } 289 290 // To be a widening instruction (either the "wide" or "long" versions), the 291 // second operand must be a sign- or zero extend having a single user. We 292 // only consider extends having a single user because they may otherwise not 293 // be eliminated. 294 if (Args.size() != 2 || 295 (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) || 296 !Args[1]->hasOneUse()) 297 return false; 298 auto *Extend = cast<CastInst>(Args[1]); 299 300 // Legalize the destination type and ensure it can be used in a widening 301 // operation. 302 auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy); 303 unsigned DstElTySize = DstTyL.second.getScalarSizeInBits(); 304 if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits()) 305 return false; 306 307 // Legalize the source type and ensure it can be used in a widening 308 // operation. 309 auto *SrcTy = toVectorTy(Extend->getSrcTy()); 310 auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy); 311 unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits(); 312 if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits()) 313 return false; 314 315 // Get the total number of vector elements in the legalized types. 316 unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorMinNumElements(); 317 unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorMinNumElements(); 318 319 // Return true if the legalized types have the same number of vector elements 320 // and the destination element type size is twice that of the source type. 321 return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize; 322 } 323 324 int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 325 TTI::CastContextHint CCH, 326 TTI::TargetCostKind CostKind, 327 const Instruction *I) { 328 int ISD = TLI->InstructionOpcodeToISD(Opcode); 329 assert(ISD && "Invalid opcode"); 330 331 // If the cast is observable, and it is used by a widening instruction (e.g., 332 // uaddl, saddw, etc.), it may be free. 333 if (I && I->hasOneUse()) { 334 auto *SingleUser = cast<Instruction>(*I->user_begin()); 335 SmallVector<const Value *, 4> Operands(SingleUser->operand_values()); 336 if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) { 337 // If the cast is the second operand, it is free. We will generate either 338 // a "wide" or "long" version of the widening instruction. 339 if (I == SingleUser->getOperand(1)) 340 return 0; 341 // If the cast is not the second operand, it will be free if it looks the 342 // same as the second operand. In this case, we will generate a "long" 343 // version of the widening instruction. 344 if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1))) 345 if (I->getOpcode() == unsigned(Cast->getOpcode()) && 346 cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy()) 347 return 0; 348 } 349 } 350 351 // TODO: Allow non-throughput costs that aren't binary. 352 auto AdjustCost = [&CostKind](int Cost) { 353 if (CostKind != TTI::TCK_RecipThroughput) 354 return Cost == 0 ? 0 : 1; 355 return Cost; 356 }; 357 358 EVT SrcTy = TLI->getValueType(DL, Src); 359 EVT DstTy = TLI->getValueType(DL, Dst); 360 361 if (!SrcTy.isSimple() || !DstTy.isSimple()) 362 return AdjustCost( 363 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 364 365 static const TypeConversionCostTblEntry 366 ConversionTbl[] = { 367 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 368 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 369 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 370 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 371 372 // The number of shll instructions for the extension. 373 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 374 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 375 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 376 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 377 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 378 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 379 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 380 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 381 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 382 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 383 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 384 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 385 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 386 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 387 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 388 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 389 390 // LowerVectorINT_TO_FP: 391 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 392 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 393 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 394 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 395 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 396 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 397 398 // Complex: to v2f32 399 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 400 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 401 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 402 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 403 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 404 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 405 406 // Complex: to v4f32 407 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 }, 408 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 409 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 410 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 411 412 // Complex: to v8f32 413 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 414 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 415 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 416 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 417 418 // Complex: to v16f32 419 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 420 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 421 422 // Complex: to v2f64 423 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 424 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 425 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 426 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 427 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 428 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 429 430 431 // LowerVectorFP_TO_INT 432 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 }, 433 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 434 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, 435 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, 436 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 437 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, 438 439 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext). 440 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 }, 441 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 }, 442 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 }, 443 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 }, 444 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 }, 445 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 }, 446 447 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2 448 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 449 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 }, 450 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 451 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 }, 452 453 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2. 454 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 455 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 }, 456 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 }, 457 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 458 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 }, 459 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 }, 460 }; 461 462 if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD, 463 DstTy.getSimpleVT(), 464 SrcTy.getSimpleVT())) 465 return AdjustCost(Entry->Cost); 466 467 return AdjustCost( 468 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 469 } 470 471 int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 472 VectorType *VecTy, 473 unsigned Index) { 474 475 // Make sure we were given a valid extend opcode. 476 assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) && 477 "Invalid opcode"); 478 479 // We are extending an element we extract from a vector, so the source type 480 // of the extend is the element type of the vector. 481 auto *Src = VecTy->getElementType(); 482 483 // Sign- and zero-extends are for integer types only. 484 assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type"); 485 486 // Get the cost for the extract. We compute the cost (if any) for the extend 487 // below. 488 auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index); 489 490 // Legalize the types. 491 auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy); 492 auto DstVT = TLI->getValueType(DL, Dst); 493 auto SrcVT = TLI->getValueType(DL, Src); 494 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 495 496 // If the resulting type is still a vector and the destination type is legal, 497 // we may get the extension for free. If not, get the default cost for the 498 // extend. 499 if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT)) 500 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 501 CostKind); 502 503 // The destination type should be larger than the element type. If not, get 504 // the default cost for the extend. 505 if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits()) 506 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 507 CostKind); 508 509 switch (Opcode) { 510 default: 511 llvm_unreachable("Opcode should be either SExt or ZExt"); 512 513 // For sign-extends, we only need a smov, which performs the extension 514 // automatically. 515 case Instruction::SExt: 516 return Cost; 517 518 // For zero-extends, the extend is performed automatically by a umov unless 519 // the destination type is i64 and the element type is i8 or i16. 520 case Instruction::ZExt: 521 if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u) 522 return Cost; 523 } 524 525 // If we are unable to perform the extend for free, get the default cost. 526 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 527 CostKind); 528 } 529 530 unsigned AArch64TTIImpl::getCFInstrCost(unsigned Opcode, 531 TTI::TargetCostKind CostKind) { 532 if (CostKind != TTI::TCK_RecipThroughput) 533 return Opcode == Instruction::PHI ? 0 : 1; 534 assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind"); 535 // Branches are assumed to be predicted. 536 return 0; 537 } 538 539 int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 540 unsigned Index) { 541 assert(Val->isVectorTy() && "This must be a vector type"); 542 543 if (Index != -1U) { 544 // Legalize the type. 545 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); 546 547 // This type is legalized to a scalar type. 548 if (!LT.second.isVector()) 549 return 0; 550 551 // The type may be split. Normalize the index to the new type. 552 unsigned Width = LT.second.getVectorNumElements(); 553 Index = Index % Width; 554 555 // The element at index zero is already inside the vector. 556 if (Index == 0) 557 return 0; 558 } 559 560 // All other insert/extracts cost this much. 561 return ST->getVectorInsertExtractBaseCost(); 562 } 563 564 int AArch64TTIImpl::getArithmeticInstrCost( 565 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 566 TTI::OperandValueKind Opd1Info, 567 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, 568 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 569 const Instruction *CxtI) { 570 // TODO: Handle more cost kinds. 571 if (CostKind != TTI::TCK_RecipThroughput) 572 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 573 Opd2Info, Opd1PropInfo, 574 Opd2PropInfo, Args, CxtI); 575 576 // Legalize the type. 577 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 578 579 // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.), 580 // add in the widening overhead specified by the sub-target. Since the 581 // extends feeding widening instructions are performed automatically, they 582 // aren't present in the generated code and have a zero cost. By adding a 583 // widening overhead here, we attach the total cost of the combined operation 584 // to the widening instruction. 585 int Cost = 0; 586 if (isWideningInstruction(Ty, Opcode, Args)) 587 Cost += ST->getWideningBaseCost(); 588 589 int ISD = TLI->InstructionOpcodeToISD(Opcode); 590 591 switch (ISD) { 592 default: 593 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 594 Opd2Info, 595 Opd1PropInfo, Opd2PropInfo); 596 case ISD::SDIV: 597 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue && 598 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 599 // On AArch64, scalar signed division by constants power-of-two are 600 // normally expanded to the sequence ADD + CMP + SELECT + SRA. 601 // The OperandValue properties many not be same as that of previous 602 // operation; conservatively assume OP_None. 603 Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, 604 Opd1Info, Opd2Info, 605 TargetTransformInfo::OP_None, 606 TargetTransformInfo::OP_None); 607 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, 608 Opd1Info, Opd2Info, 609 TargetTransformInfo::OP_None, 610 TargetTransformInfo::OP_None); 611 Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind, 612 Opd1Info, Opd2Info, 613 TargetTransformInfo::OP_None, 614 TargetTransformInfo::OP_None); 615 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, 616 Opd1Info, Opd2Info, 617 TargetTransformInfo::OP_None, 618 TargetTransformInfo::OP_None); 619 return Cost; 620 } 621 LLVM_FALLTHROUGH; 622 case ISD::UDIV: 623 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) { 624 auto VT = TLI->getValueType(DL, Ty); 625 if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) { 626 // Vector signed division by constant are expanded to the 627 // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division 628 // to MULHS + SUB + SRL + ADD + SRL. 629 int MulCost = getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, 630 Opd1Info, Opd2Info, 631 TargetTransformInfo::OP_None, 632 TargetTransformInfo::OP_None); 633 int AddCost = getArithmeticInstrCost(Instruction::Add, Ty, CostKind, 634 Opd1Info, Opd2Info, 635 TargetTransformInfo::OP_None, 636 TargetTransformInfo::OP_None); 637 int ShrCost = getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, 638 Opd1Info, Opd2Info, 639 TargetTransformInfo::OP_None, 640 TargetTransformInfo::OP_None); 641 return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1; 642 } 643 } 644 645 Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 646 Opd2Info, 647 Opd1PropInfo, Opd2PropInfo); 648 if (Ty->isVectorTy()) { 649 // On AArch64, vector divisions are not supported natively and are 650 // expanded into scalar divisions of each pair of elements. 651 Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind, 652 Opd1Info, Opd2Info, Opd1PropInfo, 653 Opd2PropInfo); 654 Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind, 655 Opd1Info, Opd2Info, Opd1PropInfo, 656 Opd2PropInfo); 657 // TODO: if one of the arguments is scalar, then it's not necessary to 658 // double the cost of handling the vector elements. 659 Cost += Cost; 660 } 661 return Cost; 662 663 case ISD::MUL: 664 if (LT.second != MVT::v2i64) 665 return (Cost + 1) * LT.first; 666 // Since we do not have a MUL.2d instruction, a mul <2 x i64> is expensive 667 // as elements are extracted from the vectors and the muls scalarized. 668 // As getScalarizationOverhead is a bit too pessimistic, we estimate the 669 // cost for a i64 vector directly here, which is: 670 // - four i64 extracts, 671 // - two i64 inserts, and 672 // - two muls. 673 // So, for a v2i64 with LT.First = 1 the cost is 8, and for a v4i64 with 674 // LT.first = 2 the cost is 16. 675 return LT.first * 8; 676 case ISD::ADD: 677 case ISD::XOR: 678 case ISD::OR: 679 case ISD::AND: 680 // These nodes are marked as 'custom' for combining purposes only. 681 // We know that they are legal. See LowerAdd in ISelLowering. 682 return (Cost + 1) * LT.first; 683 684 case ISD::FADD: 685 // These nodes are marked as 'custom' just to lower them to SVE. 686 // We know said lowering will incur no additional cost. 687 if (isa<FixedVectorType>(Ty) && !Ty->getScalarType()->isFP128Ty()) 688 return (Cost + 2) * LT.first; 689 690 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 691 Opd2Info, 692 Opd1PropInfo, Opd2PropInfo); 693 } 694 } 695 696 int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, 697 const SCEV *Ptr) { 698 // Address computations in vectorized code with non-consecutive addresses will 699 // likely result in more instructions compared to scalar code where the 700 // computation can more often be merged into the index mode. The resulting 701 // extra micro-ops can significantly decrease throughput. 702 unsigned NumVectorInstToHideOverhead = 10; 703 int MaxMergeDistance = 64; 704 705 if (Ty->isVectorTy() && SE && 706 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 707 return NumVectorInstToHideOverhead; 708 709 // In many cases the address computation is not merged into the instruction 710 // addressing mode. 711 return 1; 712 } 713 714 int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 715 Type *CondTy, CmpInst::Predicate VecPred, 716 TTI::TargetCostKind CostKind, 717 const Instruction *I) { 718 // TODO: Handle other cost kinds. 719 if (CostKind != TTI::TCK_RecipThroughput) 720 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, 721 I); 722 723 int ISD = TLI->InstructionOpcodeToISD(Opcode); 724 // We don't lower some vector selects well that are wider than the register 725 // width. 726 if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) { 727 // We would need this many instructions to hide the scalarization happening. 728 const int AmortizationCost = 20; 729 730 // If VecPred is not set, check if we can get a predicate from the context 731 // instruction, if its type matches the requested ValTy. 732 if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) { 733 CmpInst::Predicate CurrentPred; 734 if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(), 735 m_Value()))) 736 VecPred = CurrentPred; 737 } 738 // Check if we have a compare/select chain that can be lowered using CMxx & 739 // BFI pair. 740 if (CmpInst::isIntPredicate(VecPred)) { 741 static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 742 MVT::v8i16, MVT::v2i32, MVT::v4i32, 743 MVT::v2i64}; 744 auto LT = TLI->getTypeLegalizationCost(DL, ValTy); 745 if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; })) 746 return LT.first; 747 } 748 749 static const TypeConversionCostTblEntry 750 VectorSelectTbl[] = { 751 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 }, 752 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 }, 753 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 }, 754 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost }, 755 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost }, 756 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost } 757 }; 758 759 EVT SelCondTy = TLI->getValueType(DL, CondTy); 760 EVT SelValTy = TLI->getValueType(DL, ValTy); 761 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 762 if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD, 763 SelCondTy.getSimpleVT(), 764 SelValTy.getSimpleVT())) 765 return Entry->Cost; 766 } 767 } 768 // The base case handles scalable vectors fine for now, since it treats the 769 // cost as 1 * legalization cost. 770 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 771 } 772 773 AArch64TTIImpl::TTI::MemCmpExpansionOptions 774 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 775 TTI::MemCmpExpansionOptions Options; 776 if (ST->requiresStrictAlign()) { 777 // TODO: Add cost modeling for strict align. Misaligned loads expand to 778 // a bunch of instructions when strict align is enabled. 779 return Options; 780 } 781 Options.AllowOverlappingLoads = true; 782 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 783 Options.NumLoadsPerBlock = Options.MaxNumLoads; 784 // TODO: Though vector loads usually perform well on AArch64, in some targets 785 // they may wake up the FP unit, which raises the power consumption. Perhaps 786 // they could be used with no holds barred (-O3). 787 Options.LoadSizes = {8, 4, 2, 1}; 788 return Options; 789 } 790 791 unsigned AArch64TTIImpl::getGatherScatterOpCost( 792 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 793 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) { 794 795 if (!isa<ScalableVectorType>(DataTy)) 796 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 797 Alignment, CostKind, I); 798 auto *VT = cast<VectorType>(DataTy); 799 auto LT = TLI->getTypeLegalizationCost(DL, DataTy); 800 ElementCount LegalVF = LT.second.getVectorElementCount(); 801 Optional<unsigned> MaxNumVScale = getMaxVScale(); 802 assert(MaxNumVScale && "Expected valid max vscale value"); 803 804 unsigned MemOpCost = 805 getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind, I); 806 unsigned MaxNumElementsPerGather = 807 MaxNumVScale.getValue() * LegalVF.getKnownMinValue(); 808 return LT.first * MaxNumElementsPerGather * MemOpCost; 809 } 810 811 bool AArch64TTIImpl::useNeonVector(const Type *Ty) const { 812 return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors(); 813 } 814 815 int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty, 816 MaybeAlign Alignment, unsigned AddressSpace, 817 TTI::TargetCostKind CostKind, 818 const Instruction *I) { 819 // TODO: Handle other cost kinds. 820 if (CostKind != TTI::TCK_RecipThroughput) 821 return 1; 822 823 // Type legalization can't handle structs 824 if (TLI->getValueType(DL, Ty, true) == MVT::Other) 825 return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace, 826 CostKind); 827 828 auto LT = TLI->getTypeLegalizationCost(DL, Ty); 829 830 if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store && 831 LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) { 832 // Unaligned stores are extremely inefficient. We don't split all 833 // unaligned 128-bit stores because the negative impact that has shown in 834 // practice on inlined block copy code. 835 // We make such stores expensive so that we will only vectorize if there 836 // are 6 other instructions getting vectorized. 837 const int AmortizationCost = 6; 838 839 return LT.first * 2 * AmortizationCost; 840 } 841 842 if (useNeonVector(Ty) && 843 cast<VectorType>(Ty)->getElementType()->isIntegerTy(8)) { 844 unsigned ProfitableNumElements; 845 if (Opcode == Instruction::Store) 846 // We use a custom trunc store lowering so v.4b should be profitable. 847 ProfitableNumElements = 4; 848 else 849 // We scalarize the loads because there is not v.4b register and we 850 // have to promote the elements to v.2. 851 ProfitableNumElements = 8; 852 853 if (cast<FixedVectorType>(Ty)->getNumElements() < ProfitableNumElements) { 854 unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements(); 855 unsigned NumVectorizableInstsToAmortize = NumVecElts * 2; 856 // We generate 2 instructions per vector element. 857 return NumVectorizableInstsToAmortize * NumVecElts * 2; 858 } 859 } 860 861 return LT.first; 862 } 863 864 int AArch64TTIImpl::getInterleavedMemoryOpCost( 865 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 866 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 867 bool UseMaskForCond, bool UseMaskForGaps) { 868 assert(Factor >= 2 && "Invalid interleave factor"); 869 auto *VecVTy = cast<FixedVectorType>(VecTy); 870 871 if (!UseMaskForCond && !UseMaskForGaps && 872 Factor <= TLI->getMaxSupportedInterleaveFactor()) { 873 unsigned NumElts = VecVTy->getNumElements(); 874 auto *SubVecTy = 875 FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor); 876 877 // ldN/stN only support legal vector types of size 64 or 128 in bits. 878 // Accesses having vector types that are a multiple of 128 bits can be 879 // matched to more than one ldN/stN instruction. 880 if (NumElts % Factor == 0 && 881 TLI->isLegalInterleavedAccessType(SubVecTy, DL)) 882 return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL); 883 } 884 885 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 886 Alignment, AddressSpace, CostKind, 887 UseMaskForCond, UseMaskForGaps); 888 } 889 890 int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { 891 int Cost = 0; 892 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 893 for (auto *I : Tys) { 894 if (!I->isVectorTy()) 895 continue; 896 if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() == 897 128) 898 Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) + 899 getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind); 900 } 901 return Cost; 902 } 903 904 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) { 905 return ST->getMaxInterleaveFactor(); 906 } 907 908 // For Falkor, we want to avoid having too many strided loads in a loop since 909 // that can exhaust the HW prefetcher resources. We adjust the unroller 910 // MaxCount preference below to attempt to ensure unrolling doesn't create too 911 // many strided loads. 912 static void 913 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE, 914 TargetTransformInfo::UnrollingPreferences &UP) { 915 enum { MaxStridedLoads = 7 }; 916 auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) { 917 int StridedLoads = 0; 918 // FIXME? We could make this more precise by looking at the CFG and 919 // e.g. not counting loads in each side of an if-then-else diamond. 920 for (const auto BB : L->blocks()) { 921 for (auto &I : *BB) { 922 LoadInst *LMemI = dyn_cast<LoadInst>(&I); 923 if (!LMemI) 924 continue; 925 926 Value *PtrValue = LMemI->getPointerOperand(); 927 if (L->isLoopInvariant(PtrValue)) 928 continue; 929 930 const SCEV *LSCEV = SE.getSCEV(PtrValue); 931 const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV); 932 if (!LSCEVAddRec || !LSCEVAddRec->isAffine()) 933 continue; 934 935 // FIXME? We could take pairing of unrolled load copies into account 936 // by looking at the AddRec, but we would probably have to limit this 937 // to loops with no stores or other memory optimization barriers. 938 ++StridedLoads; 939 // We've seen enough strided loads that seeing more won't make a 940 // difference. 941 if (StridedLoads > MaxStridedLoads / 2) 942 return StridedLoads; 943 } 944 } 945 return StridedLoads; 946 }; 947 948 int StridedLoads = countStridedLoads(L, SE); 949 LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads 950 << " strided loads\n"); 951 // Pick the largest power of 2 unroll count that won't result in too many 952 // strided loads. 953 if (StridedLoads) { 954 UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads); 955 LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to " 956 << UP.MaxCount << '\n'); 957 } 958 } 959 960 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 961 TTI::UnrollingPreferences &UP) { 962 // Enable partial unrolling and runtime unrolling. 963 BaseT::getUnrollingPreferences(L, SE, UP); 964 965 // For inner loop, it is more likely to be a hot one, and the runtime check 966 // can be promoted out from LICM pass, so the overhead is less, let's try 967 // a larger threshold to unroll more loops. 968 if (L->getLoopDepth() > 1) 969 UP.PartialThreshold *= 2; 970 971 // Disable partial & runtime unrolling on -Os. 972 UP.PartialOptSizeThreshold = 0; 973 974 if (ST->getProcFamily() == AArch64Subtarget::Falkor && 975 EnableFalkorHWPFUnrollFix) 976 getFalkorUnrollingPreferences(L, SE, UP); 977 } 978 979 void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 980 TTI::PeelingPreferences &PP) { 981 BaseT::getPeelingPreferences(L, SE, PP); 982 } 983 984 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 985 Type *ExpectedType) { 986 switch (Inst->getIntrinsicID()) { 987 default: 988 return nullptr; 989 case Intrinsic::aarch64_neon_st2: 990 case Intrinsic::aarch64_neon_st3: 991 case Intrinsic::aarch64_neon_st4: { 992 // Create a struct type 993 StructType *ST = dyn_cast<StructType>(ExpectedType); 994 if (!ST) 995 return nullptr; 996 unsigned NumElts = Inst->getNumArgOperands() - 1; 997 if (ST->getNumElements() != NumElts) 998 return nullptr; 999 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1000 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i)) 1001 return nullptr; 1002 } 1003 Value *Res = UndefValue::get(ExpectedType); 1004 IRBuilder<> Builder(Inst); 1005 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1006 Value *L = Inst->getArgOperand(i); 1007 Res = Builder.CreateInsertValue(Res, L, i); 1008 } 1009 return Res; 1010 } 1011 case Intrinsic::aarch64_neon_ld2: 1012 case Intrinsic::aarch64_neon_ld3: 1013 case Intrinsic::aarch64_neon_ld4: 1014 if (Inst->getType() == ExpectedType) 1015 return Inst; 1016 return nullptr; 1017 } 1018 } 1019 1020 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 1021 MemIntrinsicInfo &Info) { 1022 switch (Inst->getIntrinsicID()) { 1023 default: 1024 break; 1025 case Intrinsic::aarch64_neon_ld2: 1026 case Intrinsic::aarch64_neon_ld3: 1027 case Intrinsic::aarch64_neon_ld4: 1028 Info.ReadMem = true; 1029 Info.WriteMem = false; 1030 Info.PtrVal = Inst->getArgOperand(0); 1031 break; 1032 case Intrinsic::aarch64_neon_st2: 1033 case Intrinsic::aarch64_neon_st3: 1034 case Intrinsic::aarch64_neon_st4: 1035 Info.ReadMem = false; 1036 Info.WriteMem = true; 1037 Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1); 1038 break; 1039 } 1040 1041 switch (Inst->getIntrinsicID()) { 1042 default: 1043 return false; 1044 case Intrinsic::aarch64_neon_ld2: 1045 case Intrinsic::aarch64_neon_st2: 1046 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS; 1047 break; 1048 case Intrinsic::aarch64_neon_ld3: 1049 case Intrinsic::aarch64_neon_st3: 1050 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS; 1051 break; 1052 case Intrinsic::aarch64_neon_ld4: 1053 case Intrinsic::aarch64_neon_st4: 1054 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS; 1055 break; 1056 } 1057 return true; 1058 } 1059 1060 /// See if \p I should be considered for address type promotion. We check if \p 1061 /// I is a sext with right type and used in memory accesses. If it used in a 1062 /// "complex" getelementptr, we allow it to be promoted without finding other 1063 /// sext instructions that sign extended the same initial value. A getelementptr 1064 /// is considered as "complex" if it has more than 2 operands. 1065 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion( 1066 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) { 1067 bool Considerable = false; 1068 AllowPromotionWithoutCommonHeader = false; 1069 if (!isa<SExtInst>(&I)) 1070 return false; 1071 Type *ConsideredSExtType = 1072 Type::getInt64Ty(I.getParent()->getParent()->getContext()); 1073 if (I.getType() != ConsideredSExtType) 1074 return false; 1075 // See if the sext is the one with the right type and used in at least one 1076 // GetElementPtrInst. 1077 for (const User *U : I.users()) { 1078 if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) { 1079 Considerable = true; 1080 // A getelementptr is considered as "complex" if it has more than 2 1081 // operands. We will promote a SExt used in such complex GEP as we 1082 // expect some computation to be merged if they are done on 64 bits. 1083 if (GEPInst->getNumOperands() > 2) { 1084 AllowPromotionWithoutCommonHeader = true; 1085 break; 1086 } 1087 } 1088 } 1089 return Considerable; 1090 } 1091 1092 bool AArch64TTIImpl::isLegalToVectorizeReduction(RecurrenceDescriptor RdxDesc, 1093 ElementCount VF) const { 1094 if (!VF.isScalable()) 1095 return true; 1096 1097 Type *Ty = RdxDesc.getRecurrenceType(); 1098 if (Ty->isBFloatTy() || !isLegalElementTypeForSVE(Ty)) 1099 return false; 1100 1101 switch (RdxDesc.getRecurrenceKind()) { 1102 case RecurKind::Add: 1103 case RecurKind::FAdd: 1104 case RecurKind::And: 1105 case RecurKind::Or: 1106 case RecurKind::Xor: 1107 case RecurKind::SMin: 1108 case RecurKind::SMax: 1109 case RecurKind::UMin: 1110 case RecurKind::UMax: 1111 case RecurKind::FMin: 1112 case RecurKind::FMax: 1113 return true; 1114 default: 1115 return false; 1116 } 1117 } 1118 1119 int AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 1120 bool IsPairwise, bool IsUnsigned, 1121 TTI::TargetCostKind CostKind) { 1122 if (!isa<ScalableVectorType>(Ty)) 1123 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned, 1124 CostKind); 1125 assert((isa<ScalableVectorType>(Ty) && isa<ScalableVectorType>(CondTy)) && 1126 "Both vector needs to be scalable"); 1127 1128 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 1129 int LegalizationCost = 0; 1130 if (LT.first > 1) { 1131 Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext()); 1132 unsigned CmpOpcode = 1133 Ty->isFPOrFPVectorTy() ? Instruction::FCmp : Instruction::ICmp; 1134 LegalizationCost = 1135 getCmpSelInstrCost(CmpOpcode, LegalVTy, LegalVTy, 1136 CmpInst::BAD_ICMP_PREDICATE, CostKind) + 1137 getCmpSelInstrCost(Instruction::Select, LegalVTy, LegalVTy, 1138 CmpInst::BAD_ICMP_PREDICATE, CostKind); 1139 LegalizationCost *= LT.first - 1; 1140 } 1141 1142 return LegalizationCost + /*Cost of horizontal reduction*/ 2; 1143 } 1144 1145 int AArch64TTIImpl::getArithmeticReductionCostSVE( 1146 unsigned Opcode, VectorType *ValTy, bool IsPairwise, 1147 TTI::TargetCostKind CostKind) { 1148 assert(!IsPairwise && "Cannot be pair wise to continue"); 1149 1150 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 1151 int LegalizationCost = 0; 1152 if (LT.first > 1) { 1153 Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext()); 1154 LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind); 1155 LegalizationCost *= LT.first - 1; 1156 } 1157 1158 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1159 assert(ISD && "Invalid opcode"); 1160 // Add the final reduction cost for the legal horizontal reduction 1161 switch (ISD) { 1162 case ISD::ADD: 1163 case ISD::AND: 1164 case ISD::OR: 1165 case ISD::XOR: 1166 case ISD::FADD: 1167 return LegalizationCost + 2; 1168 default: 1169 // TODO: Replace for invalid when InstructionCost is used 1170 // cases not supported by SVE 1171 return 16; 1172 } 1173 } 1174 1175 int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, 1176 VectorType *ValTy, 1177 bool IsPairwiseForm, 1178 TTI::TargetCostKind CostKind) { 1179 1180 if (isa<ScalableVectorType>(ValTy)) 1181 return getArithmeticReductionCostSVE(Opcode, ValTy, IsPairwiseForm, 1182 CostKind); 1183 if (IsPairwiseForm) 1184 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm, 1185 CostKind); 1186 1187 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 1188 MVT MTy = LT.second; 1189 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1190 assert(ISD && "Invalid opcode"); 1191 1192 // Horizontal adds can use the 'addv' instruction. We model the cost of these 1193 // instructions as normal vector adds. This is the only arithmetic vector 1194 // reduction operation for which we have an instruction. 1195 static const CostTblEntry CostTblNoPairwise[]{ 1196 {ISD::ADD, MVT::v8i8, 1}, 1197 {ISD::ADD, MVT::v16i8, 1}, 1198 {ISD::ADD, MVT::v4i16, 1}, 1199 {ISD::ADD, MVT::v8i16, 1}, 1200 {ISD::ADD, MVT::v4i32, 1}, 1201 }; 1202 1203 if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy)) 1204 return LT.first * Entry->Cost; 1205 1206 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm, 1207 CostKind); 1208 } 1209 1210 int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, 1211 int Index, VectorType *SubTp) { 1212 if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose || 1213 Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc || 1214 Kind == TTI::SK_Reverse) { 1215 static const CostTblEntry ShuffleTbl[] = { 1216 // Broadcast shuffle kinds can be performed with 'dup'. 1217 { TTI::SK_Broadcast, MVT::v8i8, 1 }, 1218 { TTI::SK_Broadcast, MVT::v16i8, 1 }, 1219 { TTI::SK_Broadcast, MVT::v4i16, 1 }, 1220 { TTI::SK_Broadcast, MVT::v8i16, 1 }, 1221 { TTI::SK_Broadcast, MVT::v2i32, 1 }, 1222 { TTI::SK_Broadcast, MVT::v4i32, 1 }, 1223 { TTI::SK_Broadcast, MVT::v2i64, 1 }, 1224 { TTI::SK_Broadcast, MVT::v2f32, 1 }, 1225 { TTI::SK_Broadcast, MVT::v4f32, 1 }, 1226 { TTI::SK_Broadcast, MVT::v2f64, 1 }, 1227 // Transpose shuffle kinds can be performed with 'trn1/trn2' and 1228 // 'zip1/zip2' instructions. 1229 { TTI::SK_Transpose, MVT::v8i8, 1 }, 1230 { TTI::SK_Transpose, MVT::v16i8, 1 }, 1231 { TTI::SK_Transpose, MVT::v4i16, 1 }, 1232 { TTI::SK_Transpose, MVT::v8i16, 1 }, 1233 { TTI::SK_Transpose, MVT::v2i32, 1 }, 1234 { TTI::SK_Transpose, MVT::v4i32, 1 }, 1235 { TTI::SK_Transpose, MVT::v2i64, 1 }, 1236 { TTI::SK_Transpose, MVT::v2f32, 1 }, 1237 { TTI::SK_Transpose, MVT::v4f32, 1 }, 1238 { TTI::SK_Transpose, MVT::v2f64, 1 }, 1239 // Select shuffle kinds. 1240 // TODO: handle vXi8/vXi16. 1241 { TTI::SK_Select, MVT::v2i32, 1 }, // mov. 1242 { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar). 1243 { TTI::SK_Select, MVT::v2i64, 1 }, // mov. 1244 { TTI::SK_Select, MVT::v2f32, 1 }, // mov. 1245 { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar). 1246 { TTI::SK_Select, MVT::v2f64, 1 }, // mov. 1247 // PermuteSingleSrc shuffle kinds. 1248 // TODO: handle vXi8/vXi16. 1249 { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov. 1250 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case. 1251 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov. 1252 { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov. 1253 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case. 1254 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov. 1255 // Broadcast shuffle kinds for scalable vectors 1256 { TTI::SK_Broadcast, MVT::nxv16i8, 1 }, 1257 { TTI::SK_Broadcast, MVT::nxv8i16, 1 }, 1258 { TTI::SK_Broadcast, MVT::nxv4i32, 1 }, 1259 { TTI::SK_Broadcast, MVT::nxv2i64, 1 }, 1260 { TTI::SK_Broadcast, MVT::nxv8f16, 1 }, 1261 { TTI::SK_Broadcast, MVT::nxv8bf16, 1 }, 1262 { TTI::SK_Broadcast, MVT::nxv4f32, 1 }, 1263 { TTI::SK_Broadcast, MVT::nxv2f64, 1 }, 1264 // Handle the cases for vector.reverse with scalable vectors 1265 { TTI::SK_Reverse, MVT::nxv16i8, 1 }, 1266 { TTI::SK_Reverse, MVT::nxv8i16, 1 }, 1267 { TTI::SK_Reverse, MVT::nxv4i32, 1 }, 1268 { TTI::SK_Reverse, MVT::nxv2i64, 1 }, 1269 { TTI::SK_Reverse, MVT::nxv8f16, 1 }, 1270 { TTI::SK_Reverse, MVT::nxv8bf16, 1 }, 1271 { TTI::SK_Reverse, MVT::nxv4f32, 1 }, 1272 { TTI::SK_Reverse, MVT::nxv2f64, 1 }, 1273 }; 1274 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1275 if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second)) 1276 return LT.first * Entry->Cost; 1277 } 1278 1279 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 1280 } 1281