1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AArch64ExpandImm.h" 10 #include "AArch64TargetTransformInfo.h" 11 #include "MCTargetDesc/AArch64AddressingModes.h" 12 #include "llvm/Analysis/LoopInfo.h" 13 #include "llvm/Analysis/TargetTransformInfo.h" 14 #include "llvm/CodeGen/BasicTTIImpl.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/TargetLowering.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/IntrinsicsAArch64.h" 19 #include "llvm/Support/Debug.h" 20 #include <algorithm> 21 using namespace llvm; 22 23 #define DEBUG_TYPE "aarch64tti" 24 25 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix", 26 cl::init(true), cl::Hidden); 27 28 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller, 29 const Function *Callee) const { 30 const TargetMachine &TM = getTLI()->getTargetMachine(); 31 32 const FeatureBitset &CallerBits = 33 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 34 const FeatureBitset &CalleeBits = 35 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 36 37 // Inline a callee if its target-features are a subset of the callers 38 // target-features. 39 return (CallerBits & CalleeBits) == CalleeBits; 40 } 41 42 /// Calculate the cost of materializing a 64-bit value. This helper 43 /// method might only calculate a fraction of a larger immediate. Therefore it 44 /// is valid to return a cost of ZERO. 45 int AArch64TTIImpl::getIntImmCost(int64_t Val) { 46 // Check if the immediate can be encoded within an instruction. 47 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64)) 48 return 0; 49 50 if (Val < 0) 51 Val = ~Val; 52 53 // Calculate how many moves we will need to materialize this constant. 54 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; 55 AArch64_IMM::expandMOVImm(Val, 64, Insn); 56 return Insn.size(); 57 } 58 59 /// Calculate the cost of materializing the given constant. 60 int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 61 TTI::TargetCostKind CostKind) { 62 assert(Ty->isIntegerTy()); 63 64 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 65 if (BitSize == 0) 66 return ~0U; 67 68 // Sign-extend all constants to a multiple of 64-bit. 69 APInt ImmVal = Imm; 70 if (BitSize & 0x3f) 71 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU); 72 73 // Split the constant into 64-bit chunks and calculate the cost for each 74 // chunk. 75 int Cost = 0; 76 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { 77 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); 78 int64_t Val = Tmp.getSExtValue(); 79 Cost += getIntImmCost(Val); 80 } 81 // We need at least one instruction to materialze the constant. 82 return std::max(1, Cost); 83 } 84 85 int AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 86 const APInt &Imm, Type *Ty, 87 TTI::TargetCostKind CostKind) { 88 assert(Ty->isIntegerTy()); 89 90 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 91 // There is no cost model for constants with a bit size of 0. Return TCC_Free 92 // here, so that constant hoisting will ignore this constant. 93 if (BitSize == 0) 94 return TTI::TCC_Free; 95 96 unsigned ImmIdx = ~0U; 97 switch (Opcode) { 98 default: 99 return TTI::TCC_Free; 100 case Instruction::GetElementPtr: 101 // Always hoist the base address of a GetElementPtr. 102 if (Idx == 0) 103 return 2 * TTI::TCC_Basic; 104 return TTI::TCC_Free; 105 case Instruction::Store: 106 ImmIdx = 0; 107 break; 108 case Instruction::Add: 109 case Instruction::Sub: 110 case Instruction::Mul: 111 case Instruction::UDiv: 112 case Instruction::SDiv: 113 case Instruction::URem: 114 case Instruction::SRem: 115 case Instruction::And: 116 case Instruction::Or: 117 case Instruction::Xor: 118 case Instruction::ICmp: 119 ImmIdx = 1; 120 break; 121 // Always return TCC_Free for the shift value of a shift instruction. 122 case Instruction::Shl: 123 case Instruction::LShr: 124 case Instruction::AShr: 125 if (Idx == 1) 126 return TTI::TCC_Free; 127 break; 128 case Instruction::Trunc: 129 case Instruction::ZExt: 130 case Instruction::SExt: 131 case Instruction::IntToPtr: 132 case Instruction::PtrToInt: 133 case Instruction::BitCast: 134 case Instruction::PHI: 135 case Instruction::Call: 136 case Instruction::Select: 137 case Instruction::Ret: 138 case Instruction::Load: 139 break; 140 } 141 142 if (Idx == ImmIdx) { 143 int NumConstants = (BitSize + 63) / 64; 144 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 145 return (Cost <= NumConstants * TTI::TCC_Basic) 146 ? static_cast<int>(TTI::TCC_Free) 147 : Cost; 148 } 149 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 150 } 151 152 int AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 153 const APInt &Imm, Type *Ty, 154 TTI::TargetCostKind CostKind) { 155 assert(Ty->isIntegerTy()); 156 157 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 158 // There is no cost model for constants with a bit size of 0. Return TCC_Free 159 // here, so that constant hoisting will ignore this constant. 160 if (BitSize == 0) 161 return TTI::TCC_Free; 162 163 // Most (all?) AArch64 intrinsics do not support folding immediates into the 164 // selected instruction, so we compute the materialization cost for the 165 // immediate directly. 166 if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv) 167 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 168 169 switch (IID) { 170 default: 171 return TTI::TCC_Free; 172 case Intrinsic::sadd_with_overflow: 173 case Intrinsic::uadd_with_overflow: 174 case Intrinsic::ssub_with_overflow: 175 case Intrinsic::usub_with_overflow: 176 case Intrinsic::smul_with_overflow: 177 case Intrinsic::umul_with_overflow: 178 if (Idx == 1) { 179 int NumConstants = (BitSize + 63) / 64; 180 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 181 return (Cost <= NumConstants * TTI::TCC_Basic) 182 ? static_cast<int>(TTI::TCC_Free) 183 : Cost; 184 } 185 break; 186 case Intrinsic::experimental_stackmap: 187 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 188 return TTI::TCC_Free; 189 break; 190 case Intrinsic::experimental_patchpoint_void: 191 case Intrinsic::experimental_patchpoint_i64: 192 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 193 return TTI::TCC_Free; 194 break; 195 } 196 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 197 } 198 199 TargetTransformInfo::PopcntSupportKind 200 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) { 201 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 202 if (TyWidth == 32 || TyWidth == 64) 203 return TTI::PSK_FastHardware; 204 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount. 205 return TTI::PSK_Software; 206 } 207 208 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode, 209 ArrayRef<const Value *> Args) { 210 211 // A helper that returns a vector type from the given type. The number of 212 // elements in type Ty determine the vector width. 213 auto toVectorTy = [&](Type *ArgTy) { 214 return VectorType::get(ArgTy->getScalarType(), 215 cast<VectorType>(DstTy)->getNumElements()); 216 }; 217 218 // Exit early if DstTy is not a vector type whose elements are at least 219 // 16-bits wide. 220 if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16) 221 return false; 222 223 // Determine if the operation has a widening variant. We consider both the 224 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the 225 // instructions. 226 // 227 // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we 228 // verify that their extending operands are eliminated during code 229 // generation. 230 switch (Opcode) { 231 case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2). 232 case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2). 233 break; 234 default: 235 return false; 236 } 237 238 // To be a widening instruction (either the "wide" or "long" versions), the 239 // second operand must be a sign- or zero extend having a single user. We 240 // only consider extends having a single user because they may otherwise not 241 // be eliminated. 242 if (Args.size() != 2 || 243 (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) || 244 !Args[1]->hasOneUse()) 245 return false; 246 auto *Extend = cast<CastInst>(Args[1]); 247 248 // Legalize the destination type and ensure it can be used in a widening 249 // operation. 250 auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy); 251 unsigned DstElTySize = DstTyL.second.getScalarSizeInBits(); 252 if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits()) 253 return false; 254 255 // Legalize the source type and ensure it can be used in a widening 256 // operation. 257 Type *SrcTy = toVectorTy(Extend->getSrcTy()); 258 auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy); 259 unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits(); 260 if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits()) 261 return false; 262 263 // Get the total number of vector elements in the legalized types. 264 unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorNumElements(); 265 unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorNumElements(); 266 267 // Return true if the legalized types have the same number of vector elements 268 // and the destination element type size is twice that of the source type. 269 return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize; 270 } 271 272 int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 273 TTI::TargetCostKind CostKind, 274 const Instruction *I) { 275 int ISD = TLI->InstructionOpcodeToISD(Opcode); 276 assert(ISD && "Invalid opcode"); 277 278 // If the cast is observable, and it is used by a widening instruction (e.g., 279 // uaddl, saddw, etc.), it may be free. 280 if (I && I->hasOneUse()) { 281 auto *SingleUser = cast<Instruction>(*I->user_begin()); 282 SmallVector<const Value *, 4> Operands(SingleUser->operand_values()); 283 if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) { 284 // If the cast is the second operand, it is free. We will generate either 285 // a "wide" or "long" version of the widening instruction. 286 if (I == SingleUser->getOperand(1)) 287 return 0; 288 // If the cast is not the second operand, it will be free if it looks the 289 // same as the second operand. In this case, we will generate a "long" 290 // version of the widening instruction. 291 if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1))) 292 if (I->getOpcode() == unsigned(Cast->getOpcode()) && 293 cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy()) 294 return 0; 295 } 296 } 297 298 EVT SrcTy = TLI->getValueType(DL, Src); 299 EVT DstTy = TLI->getValueType(DL, Dst); 300 301 if (!SrcTy.isSimple() || !DstTy.isSimple()) 302 return BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I); 303 304 static const TypeConversionCostTblEntry 305 ConversionTbl[] = { 306 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 307 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 308 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 309 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 310 311 // The number of shll instructions for the extension. 312 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 313 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 314 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 315 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 316 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 317 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 318 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 319 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 320 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 321 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 322 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 323 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 324 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 325 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 326 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 327 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 328 329 // LowerVectorINT_TO_FP: 330 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 331 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 332 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 333 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 334 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 335 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 336 337 // Complex: to v2f32 338 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 339 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 340 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 341 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 342 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 343 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 344 345 // Complex: to v4f32 346 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 }, 347 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 348 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 349 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 350 351 // Complex: to v8f32 352 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 353 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 354 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 355 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 356 357 // Complex: to v16f32 358 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 359 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 360 361 // Complex: to v2f64 362 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 363 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 364 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 365 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 366 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 367 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 368 369 370 // LowerVectorFP_TO_INT 371 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 }, 372 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 373 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, 374 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, 375 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 376 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, 377 378 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext). 379 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 }, 380 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 }, 381 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 }, 382 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 }, 383 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 }, 384 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 }, 385 386 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2 387 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 388 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 }, 389 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 390 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 }, 391 392 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2. 393 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 394 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 }, 395 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 }, 396 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 397 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 }, 398 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 }, 399 }; 400 401 if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD, 402 DstTy.getSimpleVT(), 403 SrcTy.getSimpleVT())) 404 return Entry->Cost; 405 406 return BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I); 407 } 408 409 int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 410 VectorType *VecTy, 411 unsigned Index) { 412 413 // Make sure we were given a valid extend opcode. 414 assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) && 415 "Invalid opcode"); 416 417 // We are extending an element we extract from a vector, so the source type 418 // of the extend is the element type of the vector. 419 auto *Src = VecTy->getElementType(); 420 421 // Sign- and zero-extends are for integer types only. 422 assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type"); 423 424 // Get the cost for the extract. We compute the cost (if any) for the extend 425 // below. 426 auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index); 427 428 // Legalize the types. 429 auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy); 430 auto DstVT = TLI->getValueType(DL, Dst); 431 auto SrcVT = TLI->getValueType(DL, Src); 432 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 433 434 // If the resulting type is still a vector and the destination type is legal, 435 // we may get the extension for free. If not, get the default cost for the 436 // extend. 437 if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT)) 438 return Cost + getCastInstrCost(Opcode, Dst, Src, CostKind); 439 440 // The destination type should be larger than the element type. If not, get 441 // the default cost for the extend. 442 if (DstVT.getSizeInBits() < SrcVT.getSizeInBits()) 443 return Cost + getCastInstrCost(Opcode, Dst, Src, CostKind); 444 445 switch (Opcode) { 446 default: 447 llvm_unreachable("Opcode should be either SExt or ZExt"); 448 449 // For sign-extends, we only need a smov, which performs the extension 450 // automatically. 451 case Instruction::SExt: 452 return Cost; 453 454 // For zero-extends, the extend is performed automatically by a umov unless 455 // the destination type is i64 and the element type is i8 or i16. 456 case Instruction::ZExt: 457 if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u) 458 return Cost; 459 } 460 461 // If we are unable to perform the extend for free, get the default cost. 462 return Cost + getCastInstrCost(Opcode, Dst, Src, CostKind); 463 } 464 465 int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 466 unsigned Index) { 467 assert(Val->isVectorTy() && "This must be a vector type"); 468 469 if (Index != -1U) { 470 // Legalize the type. 471 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); 472 473 // This type is legalized to a scalar type. 474 if (!LT.second.isVector()) 475 return 0; 476 477 // The type may be split. Normalize the index to the new type. 478 unsigned Width = LT.second.getVectorNumElements(); 479 Index = Index % Width; 480 481 // The element at index zero is already inside the vector. 482 if (Index == 0) 483 return 0; 484 } 485 486 // All other insert/extracts cost this much. 487 return ST->getVectorInsertExtractBaseCost(); 488 } 489 490 int AArch64TTIImpl::getArithmeticInstrCost( 491 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 492 TTI::OperandValueKind Opd1Info, 493 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, 494 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 495 const Instruction *CxtI) { 496 // Legalize the type. 497 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 498 499 // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.), 500 // add in the widening overhead specified by the sub-target. Since the 501 // extends feeding widening instructions are performed automatically, they 502 // aren't present in the generated code and have a zero cost. By adding a 503 // widening overhead here, we attach the total cost of the combined operation 504 // to the widening instruction. 505 int Cost = 0; 506 if (isWideningInstruction(Ty, Opcode, Args)) 507 Cost += ST->getWideningBaseCost(); 508 509 int ISD = TLI->InstructionOpcodeToISD(Opcode); 510 511 switch (ISD) { 512 default: 513 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 514 Opd2Info, 515 Opd1PropInfo, Opd2PropInfo); 516 case ISD::SDIV: 517 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue && 518 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 519 // On AArch64, scalar signed division by constants power-of-two are 520 // normally expanded to the sequence ADD + CMP + SELECT + SRA. 521 // The OperandValue properties many not be same as that of previous 522 // operation; conservatively assume OP_None. 523 Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, 524 Opd1Info, Opd2Info, 525 TargetTransformInfo::OP_None, 526 TargetTransformInfo::OP_None); 527 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, 528 Opd1Info, Opd2Info, 529 TargetTransformInfo::OP_None, 530 TargetTransformInfo::OP_None); 531 Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind, 532 Opd1Info, Opd2Info, 533 TargetTransformInfo::OP_None, 534 TargetTransformInfo::OP_None); 535 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, 536 Opd1Info, Opd2Info, 537 TargetTransformInfo::OP_None, 538 TargetTransformInfo::OP_None); 539 return Cost; 540 } 541 LLVM_FALLTHROUGH; 542 case ISD::UDIV: 543 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) { 544 auto VT = TLI->getValueType(DL, Ty); 545 if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) { 546 // Vector signed division by constant are expanded to the 547 // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division 548 // to MULHS + SUB + SRL + ADD + SRL. 549 int MulCost = getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, 550 Opd1Info, Opd2Info, 551 TargetTransformInfo::OP_None, 552 TargetTransformInfo::OP_None); 553 int AddCost = getArithmeticInstrCost(Instruction::Add, Ty, CostKind, 554 Opd1Info, Opd2Info, 555 TargetTransformInfo::OP_None, 556 TargetTransformInfo::OP_None); 557 int ShrCost = getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, 558 Opd1Info, Opd2Info, 559 TargetTransformInfo::OP_None, 560 TargetTransformInfo::OP_None); 561 return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1; 562 } 563 } 564 565 Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 566 Opd2Info, 567 Opd1PropInfo, Opd2PropInfo); 568 if (Ty->isVectorTy()) { 569 // On AArch64, vector divisions are not supported natively and are 570 // expanded into scalar divisions of each pair of elements. 571 Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind, 572 Opd1Info, Opd2Info, Opd1PropInfo, 573 Opd2PropInfo); 574 Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind, 575 Opd1Info, Opd2Info, Opd1PropInfo, 576 Opd2PropInfo); 577 // TODO: if one of the arguments is scalar, then it's not necessary to 578 // double the cost of handling the vector elements. 579 Cost += Cost; 580 } 581 return Cost; 582 583 case ISD::ADD: 584 case ISD::MUL: 585 case ISD::XOR: 586 case ISD::OR: 587 case ISD::AND: 588 // These nodes are marked as 'custom' for combining purposes only. 589 // We know that they are legal. See LowerAdd in ISelLowering. 590 return (Cost + 1) * LT.first; 591 } 592 } 593 594 int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, 595 const SCEV *Ptr) { 596 // Address computations in vectorized code with non-consecutive addresses will 597 // likely result in more instructions compared to scalar code where the 598 // computation can more often be merged into the index mode. The resulting 599 // extra micro-ops can significantly decrease throughput. 600 unsigned NumVectorInstToHideOverhead = 10; 601 int MaxMergeDistance = 64; 602 603 if (Ty->isVectorTy() && SE && 604 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 605 return NumVectorInstToHideOverhead; 606 607 // In many cases the address computation is not merged into the instruction 608 // addressing mode. 609 return 1; 610 } 611 612 int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 613 Type *CondTy, 614 TTI::TargetCostKind CostKind, 615 const Instruction *I) { 616 617 int ISD = TLI->InstructionOpcodeToISD(Opcode); 618 // We don't lower some vector selects well that are wider than the register 619 // width. 620 if (ValTy->isVectorTy() && ISD == ISD::SELECT) { 621 // We would need this many instructions to hide the scalarization happening. 622 const int AmortizationCost = 20; 623 static const TypeConversionCostTblEntry 624 VectorSelectTbl[] = { 625 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 }, 626 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 }, 627 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 }, 628 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost }, 629 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost }, 630 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost } 631 }; 632 633 EVT SelCondTy = TLI->getValueType(DL, CondTy); 634 EVT SelValTy = TLI->getValueType(DL, ValTy); 635 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 636 if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD, 637 SelCondTy.getSimpleVT(), 638 SelValTy.getSimpleVT())) 639 return Entry->Cost; 640 } 641 } 642 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I); 643 } 644 645 AArch64TTIImpl::TTI::MemCmpExpansionOptions 646 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 647 TTI::MemCmpExpansionOptions Options; 648 if (ST->requiresStrictAlign()) { 649 // TODO: Add cost modeling for strict align. Misaligned loads expand to 650 // a bunch of instructions when strict align is enabled. 651 return Options; 652 } 653 Options.AllowOverlappingLoads = true; 654 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 655 Options.NumLoadsPerBlock = Options.MaxNumLoads; 656 // TODO: Though vector loads usually perform well on AArch64, in some targets 657 // they may wake up the FP unit, which raises the power consumption. Perhaps 658 // they could be used with no holds barred (-O3). 659 Options.LoadSizes = {8, 4, 2, 1}; 660 return Options; 661 } 662 663 int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty, 664 MaybeAlign Alignment, unsigned AddressSpace, 665 TTI::TargetCostKind CostKind, 666 const Instruction *I) { 667 auto LT = TLI->getTypeLegalizationCost(DL, Ty); 668 669 if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store && 670 LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) { 671 // Unaligned stores are extremely inefficient. We don't split all 672 // unaligned 128-bit stores because the negative impact that has shown in 673 // practice on inlined block copy code. 674 // We make such stores expensive so that we will only vectorize if there 675 // are 6 other instructions getting vectorized. 676 const int AmortizationCost = 6; 677 678 return LT.first * 2 * AmortizationCost; 679 } 680 681 if (Ty->isVectorTy() && 682 cast<VectorType>(Ty)->getElementType()->isIntegerTy(8)) { 683 unsigned ProfitableNumElements; 684 if (Opcode == Instruction::Store) 685 // We use a custom trunc store lowering so v.4b should be profitable. 686 ProfitableNumElements = 4; 687 else 688 // We scalarize the loads because there is not v.4b register and we 689 // have to promote the elements to v.2. 690 ProfitableNumElements = 8; 691 692 if (cast<VectorType>(Ty)->getNumElements() < ProfitableNumElements) { 693 unsigned NumVecElts = cast<VectorType>(Ty)->getNumElements(); 694 unsigned NumVectorizableInstsToAmortize = NumVecElts * 2; 695 // We generate 2 instructions per vector element. 696 return NumVectorizableInstsToAmortize * NumVecElts * 2; 697 } 698 } 699 700 return LT.first; 701 } 702 703 int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 704 unsigned Factor, 705 ArrayRef<unsigned> Indices, 706 unsigned Alignment, 707 unsigned AddressSpace, 708 TTI::TargetCostKind CostKind, 709 bool UseMaskForCond, 710 bool UseMaskForGaps) { 711 assert(Factor >= 2 && "Invalid interleave factor"); 712 auto *VecVTy = cast<VectorType>(VecTy); 713 714 if (!UseMaskForCond && !UseMaskForGaps && 715 Factor <= TLI->getMaxSupportedInterleaveFactor()) { 716 unsigned NumElts = VecVTy->getNumElements(); 717 auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor); 718 719 // ldN/stN only support legal vector types of size 64 or 128 in bits. 720 // Accesses having vector types that are a multiple of 128 bits can be 721 // matched to more than one ldN/stN instruction. 722 if (NumElts % Factor == 0 && 723 TLI->isLegalInterleavedAccessType(SubVecTy, DL)) 724 return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL); 725 } 726 727 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 728 Alignment, AddressSpace, CostKind, 729 UseMaskForCond, UseMaskForGaps); 730 } 731 732 int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { 733 int Cost = 0; 734 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 735 for (auto *I : Tys) { 736 if (!I->isVectorTy()) 737 continue; 738 if (I->getScalarSizeInBits() * cast<VectorType>(I)->getNumElements() == 128) 739 Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) + 740 getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind); 741 } 742 return Cost; 743 } 744 745 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) { 746 return ST->getMaxInterleaveFactor(); 747 } 748 749 // For Falkor, we want to avoid having too many strided loads in a loop since 750 // that can exhaust the HW prefetcher resources. We adjust the unroller 751 // MaxCount preference below to attempt to ensure unrolling doesn't create too 752 // many strided loads. 753 static void 754 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE, 755 TargetTransformInfo::UnrollingPreferences &UP) { 756 enum { MaxStridedLoads = 7 }; 757 auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) { 758 int StridedLoads = 0; 759 // FIXME? We could make this more precise by looking at the CFG and 760 // e.g. not counting loads in each side of an if-then-else diamond. 761 for (const auto BB : L->blocks()) { 762 for (auto &I : *BB) { 763 LoadInst *LMemI = dyn_cast<LoadInst>(&I); 764 if (!LMemI) 765 continue; 766 767 Value *PtrValue = LMemI->getPointerOperand(); 768 if (L->isLoopInvariant(PtrValue)) 769 continue; 770 771 const SCEV *LSCEV = SE.getSCEV(PtrValue); 772 const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV); 773 if (!LSCEVAddRec || !LSCEVAddRec->isAffine()) 774 continue; 775 776 // FIXME? We could take pairing of unrolled load copies into account 777 // by looking at the AddRec, but we would probably have to limit this 778 // to loops with no stores or other memory optimization barriers. 779 ++StridedLoads; 780 // We've seen enough strided loads that seeing more won't make a 781 // difference. 782 if (StridedLoads > MaxStridedLoads / 2) 783 return StridedLoads; 784 } 785 } 786 return StridedLoads; 787 }; 788 789 int StridedLoads = countStridedLoads(L, SE); 790 LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads 791 << " strided loads\n"); 792 // Pick the largest power of 2 unroll count that won't result in too many 793 // strided loads. 794 if (StridedLoads) { 795 UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads); 796 LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to " 797 << UP.MaxCount << '\n'); 798 } 799 } 800 801 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 802 TTI::UnrollingPreferences &UP) { 803 // Enable partial unrolling and runtime unrolling. 804 BaseT::getUnrollingPreferences(L, SE, UP); 805 806 // For inner loop, it is more likely to be a hot one, and the runtime check 807 // can be promoted out from LICM pass, so the overhead is less, let's try 808 // a larger threshold to unroll more loops. 809 if (L->getLoopDepth() > 1) 810 UP.PartialThreshold *= 2; 811 812 // Disable partial & runtime unrolling on -Os. 813 UP.PartialOptSizeThreshold = 0; 814 815 if (ST->getProcFamily() == AArch64Subtarget::Falkor && 816 EnableFalkorHWPFUnrollFix) 817 getFalkorUnrollingPreferences(L, SE, UP); 818 } 819 820 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 821 Type *ExpectedType) { 822 switch (Inst->getIntrinsicID()) { 823 default: 824 return nullptr; 825 case Intrinsic::aarch64_neon_st2: 826 case Intrinsic::aarch64_neon_st3: 827 case Intrinsic::aarch64_neon_st4: { 828 // Create a struct type 829 StructType *ST = dyn_cast<StructType>(ExpectedType); 830 if (!ST) 831 return nullptr; 832 unsigned NumElts = Inst->getNumArgOperands() - 1; 833 if (ST->getNumElements() != NumElts) 834 return nullptr; 835 for (unsigned i = 0, e = NumElts; i != e; ++i) { 836 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i)) 837 return nullptr; 838 } 839 Value *Res = UndefValue::get(ExpectedType); 840 IRBuilder<> Builder(Inst); 841 for (unsigned i = 0, e = NumElts; i != e; ++i) { 842 Value *L = Inst->getArgOperand(i); 843 Res = Builder.CreateInsertValue(Res, L, i); 844 } 845 return Res; 846 } 847 case Intrinsic::aarch64_neon_ld2: 848 case Intrinsic::aarch64_neon_ld3: 849 case Intrinsic::aarch64_neon_ld4: 850 if (Inst->getType() == ExpectedType) 851 return Inst; 852 return nullptr; 853 } 854 } 855 856 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 857 MemIntrinsicInfo &Info) { 858 switch (Inst->getIntrinsicID()) { 859 default: 860 break; 861 case Intrinsic::aarch64_neon_ld2: 862 case Intrinsic::aarch64_neon_ld3: 863 case Intrinsic::aarch64_neon_ld4: 864 Info.ReadMem = true; 865 Info.WriteMem = false; 866 Info.PtrVal = Inst->getArgOperand(0); 867 break; 868 case Intrinsic::aarch64_neon_st2: 869 case Intrinsic::aarch64_neon_st3: 870 case Intrinsic::aarch64_neon_st4: 871 Info.ReadMem = false; 872 Info.WriteMem = true; 873 Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1); 874 break; 875 } 876 877 switch (Inst->getIntrinsicID()) { 878 default: 879 return false; 880 case Intrinsic::aarch64_neon_ld2: 881 case Intrinsic::aarch64_neon_st2: 882 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS; 883 break; 884 case Intrinsic::aarch64_neon_ld3: 885 case Intrinsic::aarch64_neon_st3: 886 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS; 887 break; 888 case Intrinsic::aarch64_neon_ld4: 889 case Intrinsic::aarch64_neon_st4: 890 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS; 891 break; 892 } 893 return true; 894 } 895 896 /// See if \p I should be considered for address type promotion. We check if \p 897 /// I is a sext with right type and used in memory accesses. If it used in a 898 /// "complex" getelementptr, we allow it to be promoted without finding other 899 /// sext instructions that sign extended the same initial value. A getelementptr 900 /// is considered as "complex" if it has more than 2 operands. 901 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion( 902 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) { 903 bool Considerable = false; 904 AllowPromotionWithoutCommonHeader = false; 905 if (!isa<SExtInst>(&I)) 906 return false; 907 Type *ConsideredSExtType = 908 Type::getInt64Ty(I.getParent()->getParent()->getContext()); 909 if (I.getType() != ConsideredSExtType) 910 return false; 911 // See if the sext is the one with the right type and used in at least one 912 // GetElementPtrInst. 913 for (const User *U : I.users()) { 914 if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) { 915 Considerable = true; 916 // A getelementptr is considered as "complex" if it has more than 2 917 // operands. We will promote a SExt used in such complex GEP as we 918 // expect some computation to be merged if they are done on 64 bits. 919 if (GEPInst->getNumOperands() > 2) { 920 AllowPromotionWithoutCommonHeader = true; 921 break; 922 } 923 } 924 } 925 return Considerable; 926 } 927 928 bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty, 929 TTI::ReductionFlags Flags) const { 930 auto *VTy = cast<VectorType>(Ty); 931 unsigned ScalarBits = Ty->getScalarSizeInBits(); 932 switch (Opcode) { 933 case Instruction::FAdd: 934 case Instruction::FMul: 935 case Instruction::And: 936 case Instruction::Or: 937 case Instruction::Xor: 938 case Instruction::Mul: 939 return false; 940 case Instruction::Add: 941 return ScalarBits * VTy->getNumElements() >= 128; 942 case Instruction::ICmp: 943 return (ScalarBits < 64) && (ScalarBits * VTy->getNumElements() >= 128); 944 case Instruction::FCmp: 945 return Flags.NoNaN; 946 default: 947 llvm_unreachable("Unhandled reduction opcode"); 948 } 949 return false; 950 } 951 952 int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, 953 VectorType *ValTy, 954 bool IsPairwiseForm, 955 TTI::TargetCostKind CostKind) { 956 957 if (IsPairwiseForm) 958 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm, 959 CostKind); 960 961 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 962 MVT MTy = LT.second; 963 int ISD = TLI->InstructionOpcodeToISD(Opcode); 964 assert(ISD && "Invalid opcode"); 965 966 // Horizontal adds can use the 'addv' instruction. We model the cost of these 967 // instructions as normal vector adds. This is the only arithmetic vector 968 // reduction operation for which we have an instruction. 969 static const CostTblEntry CostTblNoPairwise[]{ 970 {ISD::ADD, MVT::v8i8, 1}, 971 {ISD::ADD, MVT::v16i8, 1}, 972 {ISD::ADD, MVT::v4i16, 1}, 973 {ISD::ADD, MVT::v8i16, 1}, 974 {ISD::ADD, MVT::v4i32, 1}, 975 }; 976 977 if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy)) 978 return LT.first * Entry->Cost; 979 980 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm, 981 CostKind); 982 } 983 984 int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, 985 int Index, VectorType *SubTp) { 986 if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose || 987 Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc) { 988 static const CostTblEntry ShuffleTbl[] = { 989 // Broadcast shuffle kinds can be performed with 'dup'. 990 { TTI::SK_Broadcast, MVT::v8i8, 1 }, 991 { TTI::SK_Broadcast, MVT::v16i8, 1 }, 992 { TTI::SK_Broadcast, MVT::v4i16, 1 }, 993 { TTI::SK_Broadcast, MVT::v8i16, 1 }, 994 { TTI::SK_Broadcast, MVT::v2i32, 1 }, 995 { TTI::SK_Broadcast, MVT::v4i32, 1 }, 996 { TTI::SK_Broadcast, MVT::v2i64, 1 }, 997 { TTI::SK_Broadcast, MVT::v2f32, 1 }, 998 { TTI::SK_Broadcast, MVT::v4f32, 1 }, 999 { TTI::SK_Broadcast, MVT::v2f64, 1 }, 1000 // Transpose shuffle kinds can be performed with 'trn1/trn2' and 1001 // 'zip1/zip2' instructions. 1002 { TTI::SK_Transpose, MVT::v8i8, 1 }, 1003 { TTI::SK_Transpose, MVT::v16i8, 1 }, 1004 { TTI::SK_Transpose, MVT::v4i16, 1 }, 1005 { TTI::SK_Transpose, MVT::v8i16, 1 }, 1006 { TTI::SK_Transpose, MVT::v2i32, 1 }, 1007 { TTI::SK_Transpose, MVT::v4i32, 1 }, 1008 { TTI::SK_Transpose, MVT::v2i64, 1 }, 1009 { TTI::SK_Transpose, MVT::v2f32, 1 }, 1010 { TTI::SK_Transpose, MVT::v4f32, 1 }, 1011 { TTI::SK_Transpose, MVT::v2f64, 1 }, 1012 // Select shuffle kinds. 1013 // TODO: handle vXi8/vXi16. 1014 { TTI::SK_Select, MVT::v2i32, 1 }, // mov. 1015 { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar). 1016 { TTI::SK_Select, MVT::v2i64, 1 }, // mov. 1017 { TTI::SK_Select, MVT::v2f32, 1 }, // mov. 1018 { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar). 1019 { TTI::SK_Select, MVT::v2f64, 1 }, // mov. 1020 // PermuteSingleSrc shuffle kinds. 1021 // TODO: handle vXi8/vXi16. 1022 { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov. 1023 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case. 1024 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov. 1025 { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov. 1026 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case. 1027 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov. 1028 }; 1029 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1030 if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second)) 1031 return LT.first * Entry->Cost; 1032 } 1033 1034 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); 1035 } 1036