1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AArch64TargetTransformInfo.h"
10 #include "AArch64ExpandImm.h"
11 #include "MCTargetDesc/AArch64AddressingModes.h"
12 #include "llvm/Analysis/IVDescriptors.h"
13 #include "llvm/Analysis/LoopInfo.h"
14 #include "llvm/Analysis/TargetTransformInfo.h"
15 #include "llvm/CodeGen/BasicTTIImpl.h"
16 #include "llvm/CodeGen/CostTable.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/IntrinsicsAArch64.h"
21 #include "llvm/IR/PatternMatch.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Transforms/InstCombine/InstCombiner.h"
24 #include <algorithm>
25 using namespace llvm;
26 using namespace llvm::PatternMatch;
27 
28 #define DEBUG_TYPE "aarch64tti"
29 
30 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
31                                                cl::init(true), cl::Hidden);
32 
33 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
34                                          const Function *Callee) const {
35   const TargetMachine &TM = getTLI()->getTargetMachine();
36 
37   const FeatureBitset &CallerBits =
38       TM.getSubtargetImpl(*Caller)->getFeatureBits();
39   const FeatureBitset &CalleeBits =
40       TM.getSubtargetImpl(*Callee)->getFeatureBits();
41 
42   // Inline a callee if its target-features are a subset of the callers
43   // target-features.
44   return (CallerBits & CalleeBits) == CalleeBits;
45 }
46 
47 /// Calculate the cost of materializing a 64-bit value. This helper
48 /// method might only calculate a fraction of a larger immediate. Therefore it
49 /// is valid to return a cost of ZERO.
50 InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) {
51   // Check if the immediate can be encoded within an instruction.
52   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
53     return 0;
54 
55   if (Val < 0)
56     Val = ~Val;
57 
58   // Calculate how many moves we will need to materialize this constant.
59   SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
60   AArch64_IMM::expandMOVImm(Val, 64, Insn);
61   return Insn.size();
62 }
63 
64 /// Calculate the cost of materializing the given constant.
65 InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
66                                               TTI::TargetCostKind CostKind) {
67   assert(Ty->isIntegerTy());
68 
69   unsigned BitSize = Ty->getPrimitiveSizeInBits();
70   if (BitSize == 0)
71     return ~0U;
72 
73   // Sign-extend all constants to a multiple of 64-bit.
74   APInt ImmVal = Imm;
75   if (BitSize & 0x3f)
76     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
77 
78   // Split the constant into 64-bit chunks and calculate the cost for each
79   // chunk.
80   InstructionCost Cost = 0;
81   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
82     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
83     int64_t Val = Tmp.getSExtValue();
84     Cost += getIntImmCost(Val);
85   }
86   // We need at least one instruction to materialze the constant.
87   return std::max<InstructionCost>(1, Cost);
88 }
89 
90 InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
91                                                   const APInt &Imm, Type *Ty,
92                                                   TTI::TargetCostKind CostKind,
93                                                   Instruction *Inst) {
94   assert(Ty->isIntegerTy());
95 
96   unsigned BitSize = Ty->getPrimitiveSizeInBits();
97   // There is no cost model for constants with a bit size of 0. Return TCC_Free
98   // here, so that constant hoisting will ignore this constant.
99   if (BitSize == 0)
100     return TTI::TCC_Free;
101 
102   unsigned ImmIdx = ~0U;
103   switch (Opcode) {
104   default:
105     return TTI::TCC_Free;
106   case Instruction::GetElementPtr:
107     // Always hoist the base address of a GetElementPtr.
108     if (Idx == 0)
109       return 2 * TTI::TCC_Basic;
110     return TTI::TCC_Free;
111   case Instruction::Store:
112     ImmIdx = 0;
113     break;
114   case Instruction::Add:
115   case Instruction::Sub:
116   case Instruction::Mul:
117   case Instruction::UDiv:
118   case Instruction::SDiv:
119   case Instruction::URem:
120   case Instruction::SRem:
121   case Instruction::And:
122   case Instruction::Or:
123   case Instruction::Xor:
124   case Instruction::ICmp:
125     ImmIdx = 1;
126     break;
127   // Always return TCC_Free for the shift value of a shift instruction.
128   case Instruction::Shl:
129   case Instruction::LShr:
130   case Instruction::AShr:
131     if (Idx == 1)
132       return TTI::TCC_Free;
133     break;
134   case Instruction::Trunc:
135   case Instruction::ZExt:
136   case Instruction::SExt:
137   case Instruction::IntToPtr:
138   case Instruction::PtrToInt:
139   case Instruction::BitCast:
140   case Instruction::PHI:
141   case Instruction::Call:
142   case Instruction::Select:
143   case Instruction::Ret:
144   case Instruction::Load:
145     break;
146   }
147 
148   if (Idx == ImmIdx) {
149     int NumConstants = (BitSize + 63) / 64;
150     InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
151     return (Cost <= NumConstants * TTI::TCC_Basic)
152                ? static_cast<int>(TTI::TCC_Free)
153                : Cost;
154   }
155   return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
156 }
157 
158 InstructionCost
159 AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
160                                     const APInt &Imm, Type *Ty,
161                                     TTI::TargetCostKind CostKind) {
162   assert(Ty->isIntegerTy());
163 
164   unsigned BitSize = Ty->getPrimitiveSizeInBits();
165   // There is no cost model for constants with a bit size of 0. Return TCC_Free
166   // here, so that constant hoisting will ignore this constant.
167   if (BitSize == 0)
168     return TTI::TCC_Free;
169 
170   // Most (all?) AArch64 intrinsics do not support folding immediates into the
171   // selected instruction, so we compute the materialization cost for the
172   // immediate directly.
173   if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
174     return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
175 
176   switch (IID) {
177   default:
178     return TTI::TCC_Free;
179   case Intrinsic::sadd_with_overflow:
180   case Intrinsic::uadd_with_overflow:
181   case Intrinsic::ssub_with_overflow:
182   case Intrinsic::usub_with_overflow:
183   case Intrinsic::smul_with_overflow:
184   case Intrinsic::umul_with_overflow:
185     if (Idx == 1) {
186       int NumConstants = (BitSize + 63) / 64;
187       InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
188       return (Cost <= NumConstants * TTI::TCC_Basic)
189                  ? static_cast<int>(TTI::TCC_Free)
190                  : Cost;
191     }
192     break;
193   case Intrinsic::experimental_stackmap:
194     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
195       return TTI::TCC_Free;
196     break;
197   case Intrinsic::experimental_patchpoint_void:
198   case Intrinsic::experimental_patchpoint_i64:
199     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
200       return TTI::TCC_Free;
201     break;
202   case Intrinsic::experimental_gc_statepoint:
203     if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
204       return TTI::TCC_Free;
205     break;
206   }
207   return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
208 }
209 
210 TargetTransformInfo::PopcntSupportKind
211 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
212   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
213   if (TyWidth == 32 || TyWidth == 64)
214     return TTI::PSK_FastHardware;
215   // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
216   return TTI::PSK_Software;
217 }
218 
219 InstructionCost
220 AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
221                                       TTI::TargetCostKind CostKind) {
222   auto *RetTy = ICA.getReturnType();
223   switch (ICA.getID()) {
224   case Intrinsic::umin:
225   case Intrinsic::umax:
226   case Intrinsic::smin:
227   case Intrinsic::smax: {
228     static const auto ValidMinMaxTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
229                                         MVT::v8i16, MVT::v2i32, MVT::v4i32};
230     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
231     // v2i64 types get converted to cmp+bif hence the cost of 2
232     if (LT.second == MVT::v2i64)
233       return LT.first * 2;
234     if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }))
235       return LT.first;
236     break;
237   }
238   case Intrinsic::sadd_sat:
239   case Intrinsic::ssub_sat:
240   case Intrinsic::uadd_sat:
241   case Intrinsic::usub_sat: {
242     static const auto ValidSatTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
243                                      MVT::v8i16, MVT::v2i32, MVT::v4i32,
244                                      MVT::v2i64};
245     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
246     // This is a base cost of 1 for the vadd, plus 3 extract shifts if we
247     // need to extend the type, as it uses shr(qadd(shl, shl)).
248     unsigned Instrs =
249         LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4;
250     if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
251       return LT.first * Instrs;
252     break;
253   }
254   case Intrinsic::abs: {
255     static const auto ValidAbsTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
256                                      MVT::v8i16, MVT::v2i32, MVT::v4i32,
257                                      MVT::v2i64};
258     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
259     if (any_of(ValidAbsTys, [&LT](MVT M) { return M == LT.second; }))
260       return LT.first;
261     break;
262   }
263   case Intrinsic::experimental_stepvector: {
264     InstructionCost Cost = 1; // Cost of the `index' instruction
265     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
266     // Legalisation of illegal vectors involves an `index' instruction plus
267     // (LT.first - 1) vector adds.
268     if (LT.first > 1) {
269       Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext());
270       InstructionCost AddCost =
271           getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind);
272       Cost += AddCost * (LT.first - 1);
273     }
274     return Cost;
275   }
276   case Intrinsic::bitreverse: {
277     static const CostTblEntry BitreverseTbl[] = {
278         {Intrinsic::bitreverse, MVT::i32, 1},
279         {Intrinsic::bitreverse, MVT::i64, 1},
280         {Intrinsic::bitreverse, MVT::v8i8, 1},
281         {Intrinsic::bitreverse, MVT::v16i8, 1},
282         {Intrinsic::bitreverse, MVT::v4i16, 2},
283         {Intrinsic::bitreverse, MVT::v8i16, 2},
284         {Intrinsic::bitreverse, MVT::v2i32, 2},
285         {Intrinsic::bitreverse, MVT::v4i32, 2},
286         {Intrinsic::bitreverse, MVT::v1i64, 2},
287         {Intrinsic::bitreverse, MVT::v2i64, 2},
288     };
289     const auto LegalisationCost = TLI->getTypeLegalizationCost(DL, RetTy);
290     const auto *Entry =
291         CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second);
292     if (Entry) {
293       // Cost Model is using the legal type(i32) that i8 and i16 will be
294       // converted to +1 so that we match the actual lowering cost
295       if (TLI->getValueType(DL, RetTy, true) == MVT::i8 ||
296           TLI->getValueType(DL, RetTy, true) == MVT::i16)
297         return LegalisationCost.first * Entry->Cost + 1;
298 
299       return LegalisationCost.first * Entry->Cost;
300     }
301     break;
302   }
303   case Intrinsic::ctpop: {
304     static const CostTblEntry CtpopCostTbl[] = {
305         {ISD::CTPOP, MVT::v2i64, 4},
306         {ISD::CTPOP, MVT::v4i32, 3},
307         {ISD::CTPOP, MVT::v8i16, 2},
308         {ISD::CTPOP, MVT::v16i8, 1},
309         {ISD::CTPOP, MVT::i64,   4},
310         {ISD::CTPOP, MVT::v2i32, 3},
311         {ISD::CTPOP, MVT::v4i16, 2},
312         {ISD::CTPOP, MVT::v8i8,  1},
313         {ISD::CTPOP, MVT::i32,   5},
314     };
315     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
316     MVT MTy = LT.second;
317     if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) {
318       // Extra cost of +1 when illegal vector types are legalized by promoting
319       // the integer type.
320       int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() !=
321                                             RetTy->getScalarSizeInBits()
322                           ? 1
323                           : 0;
324       return LT.first * Entry->Cost + ExtraCost;
325     }
326     break;
327   }
328   default:
329     break;
330   }
331   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
332 }
333 
334 /// The function will remove redundant reinterprets casting in the presence
335 /// of the control flow
336 static Optional<Instruction *> processPhiNode(InstCombiner &IC,
337                                               IntrinsicInst &II) {
338   SmallVector<Instruction *, 32> Worklist;
339   auto RequiredType = II.getType();
340 
341   auto *PN = dyn_cast<PHINode>(II.getArgOperand(0));
342   assert(PN && "Expected Phi Node!");
343 
344   // Don't create a new Phi unless we can remove the old one.
345   if (!PN->hasOneUse())
346     return None;
347 
348   for (Value *IncValPhi : PN->incoming_values()) {
349     auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi);
350     if (!Reinterpret ||
351         Reinterpret->getIntrinsicID() !=
352             Intrinsic::aarch64_sve_convert_to_svbool ||
353         RequiredType != Reinterpret->getArgOperand(0)->getType())
354       return None;
355   }
356 
357   // Create the new Phi
358   LLVMContext &Ctx = PN->getContext();
359   IRBuilder<> Builder(Ctx);
360   Builder.SetInsertPoint(PN);
361   PHINode *NPN = Builder.CreatePHI(RequiredType, PN->getNumIncomingValues());
362   Worklist.push_back(PN);
363 
364   for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) {
365     auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I));
366     NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I));
367     Worklist.push_back(Reinterpret);
368   }
369 
370   // Cleanup Phi Node and reinterprets
371   return IC.replaceInstUsesWith(II, NPN);
372 }
373 
374 static Optional<Instruction *> instCombineConvertFromSVBool(InstCombiner &IC,
375                                                             IntrinsicInst &II) {
376   // If the reinterpret instruction operand is a PHI Node
377   if (isa<PHINode>(II.getArgOperand(0)))
378     return processPhiNode(IC, II);
379 
380   SmallVector<Instruction *, 32> CandidatesForRemoval;
381   Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr;
382 
383   const auto *IVTy = cast<VectorType>(II.getType());
384 
385   // Walk the chain of conversions.
386   while (Cursor) {
387     // If the type of the cursor has fewer lanes than the final result, zeroing
388     // must take place, which breaks the equivalence chain.
389     const auto *CursorVTy = cast<VectorType>(Cursor->getType());
390     if (CursorVTy->getElementCount().getKnownMinValue() <
391         IVTy->getElementCount().getKnownMinValue())
392       break;
393 
394     // If the cursor has the same type as I, it is a viable replacement.
395     if (Cursor->getType() == IVTy)
396       EarliestReplacement = Cursor;
397 
398     auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor);
399 
400     // If this is not an SVE conversion intrinsic, this is the end of the chain.
401     if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() ==
402                                   Intrinsic::aarch64_sve_convert_to_svbool ||
403                               IntrinsicCursor->getIntrinsicID() ==
404                                   Intrinsic::aarch64_sve_convert_from_svbool))
405       break;
406 
407     CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor);
408     Cursor = IntrinsicCursor->getOperand(0);
409   }
410 
411   // If no viable replacement in the conversion chain was found, there is
412   // nothing to do.
413   if (!EarliestReplacement)
414     return None;
415 
416   return IC.replaceInstUsesWith(II, EarliestReplacement);
417 }
418 
419 static Optional<Instruction *> instCombineSVEDup(InstCombiner &IC,
420                                                  IntrinsicInst &II) {
421   IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
422   if (!Pg)
423     return None;
424 
425   if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
426     return None;
427 
428   const auto PTruePattern =
429       cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
430   if (PTruePattern != AArch64SVEPredPattern::vl1)
431     return None;
432 
433   // The intrinsic is inserting into lane zero so use an insert instead.
434   auto *IdxTy = Type::getInt64Ty(II.getContext());
435   auto *Insert = InsertElementInst::Create(
436       II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0));
437   Insert->insertBefore(&II);
438   Insert->takeName(&II);
439 
440   return IC.replaceInstUsesWith(II, Insert);
441 }
442 
443 static Optional<Instruction *> instCombineSVEDupX(InstCombiner &IC,
444                                                   IntrinsicInst &II) {
445   // Replace DupX with a regular IR splat.
446   IRBuilder<> Builder(II.getContext());
447   Builder.SetInsertPoint(&II);
448   auto *RetTy = cast<ScalableVectorType>(II.getType());
449   Value *Splat =
450       Builder.CreateVectorSplat(RetTy->getElementCount(), II.getArgOperand(0));
451   Splat->takeName(&II);
452   return IC.replaceInstUsesWith(II, Splat);
453 }
454 
455 static Optional<Instruction *> instCombineSVECmpNE(InstCombiner &IC,
456                                                    IntrinsicInst &II) {
457   LLVMContext &Ctx = II.getContext();
458   IRBuilder<> Builder(Ctx);
459   Builder.SetInsertPoint(&II);
460 
461   // Check that the predicate is all active
462   auto *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(0));
463   if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
464     return None;
465 
466   const auto PTruePattern =
467       cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
468   if (PTruePattern != AArch64SVEPredPattern::all)
469     return None;
470 
471   // Check that we have a compare of zero..
472   auto *SplatValue =
473       dyn_cast_or_null<ConstantInt>(getSplatValue(II.getArgOperand(2)));
474   if (!SplatValue || !SplatValue->isZero())
475     return None;
476 
477   // ..against a dupq
478   auto *DupQLane = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
479   if (!DupQLane ||
480       DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane)
481     return None;
482 
483   // Where the dupq is a lane 0 replicate of a vector insert
484   if (!cast<ConstantInt>(DupQLane->getArgOperand(1))->isZero())
485     return None;
486 
487   auto *VecIns = dyn_cast<IntrinsicInst>(DupQLane->getArgOperand(0));
488   if (!VecIns ||
489       VecIns->getIntrinsicID() != Intrinsic::experimental_vector_insert)
490     return None;
491 
492   // Where the vector insert is a fixed constant vector insert into undef at
493   // index zero
494   if (!isa<UndefValue>(VecIns->getArgOperand(0)))
495     return None;
496 
497   if (!cast<ConstantInt>(VecIns->getArgOperand(2))->isZero())
498     return None;
499 
500   auto *ConstVec = dyn_cast<Constant>(VecIns->getArgOperand(1));
501   if (!ConstVec)
502     return None;
503 
504   auto *VecTy = dyn_cast<FixedVectorType>(ConstVec->getType());
505   auto *OutTy = dyn_cast<ScalableVectorType>(II.getType());
506   if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements())
507     return None;
508 
509   unsigned NumElts = VecTy->getNumElements();
510   unsigned PredicateBits = 0;
511 
512   // Expand intrinsic operands to a 16-bit byte level predicate
513   for (unsigned I = 0; I < NumElts; ++I) {
514     auto *Arg = dyn_cast<ConstantInt>(ConstVec->getAggregateElement(I));
515     if (!Arg)
516       return None;
517     if (!Arg->isZero())
518       PredicateBits |= 1 << (I * (16 / NumElts));
519   }
520 
521   // If all bits are zero bail early with an empty predicate
522   if (PredicateBits == 0) {
523     auto *PFalse = Constant::getNullValue(II.getType());
524     PFalse->takeName(&II);
525     return IC.replaceInstUsesWith(II, PFalse);
526   }
527 
528   // Calculate largest predicate type used (where byte predicate is largest)
529   unsigned Mask = 8;
530   for (unsigned I = 0; I < 16; ++I)
531     if ((PredicateBits & (1 << I)) != 0)
532       Mask |= (I % 8);
533 
534   unsigned PredSize = Mask & -Mask;
535   auto *PredType = ScalableVectorType::get(
536       Type::getInt1Ty(Ctx), AArch64::SVEBitsPerBlock / (PredSize * 8));
537 
538   // Ensure all relevant bits are set
539   for (unsigned I = 0; I < 16; I += PredSize)
540     if ((PredicateBits & (1 << I)) == 0)
541       return None;
542 
543   auto *PTruePat =
544       ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
545   auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
546                                         {PredType}, {PTruePat});
547   auto *ConvertToSVBool = Builder.CreateIntrinsic(
548       Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue});
549   auto *ConvertFromSVBool =
550       Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool,
551                               {II.getType()}, {ConvertToSVBool});
552 
553   ConvertFromSVBool->takeName(&II);
554   return IC.replaceInstUsesWith(II, ConvertFromSVBool);
555 }
556 
557 static Optional<Instruction *> instCombineSVELast(InstCombiner &IC,
558                                                   IntrinsicInst &II) {
559   IRBuilder<> Builder(II.getContext());
560   Builder.SetInsertPoint(&II);
561   Value *Pg = II.getArgOperand(0);
562   Value *Vec = II.getArgOperand(1);
563   auto IntrinsicID = II.getIntrinsicID();
564   bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta;
565 
566   // lastX(splat(X)) --> X
567   if (auto *SplatVal = getSplatValue(Vec))
568     return IC.replaceInstUsesWith(II, SplatVal);
569 
570   // If x and/or y is a splat value then:
571   // lastX (binop (x, y)) --> binop(lastX(x), lastX(y))
572   Value *LHS, *RHS;
573   if (match(Vec, m_OneUse(m_BinOp(m_Value(LHS), m_Value(RHS))))) {
574     if (isSplatValue(LHS) || isSplatValue(RHS)) {
575       auto *OldBinOp = cast<BinaryOperator>(Vec);
576       auto OpC = OldBinOp->getOpcode();
577       auto *NewLHS =
578           Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, LHS});
579       auto *NewRHS =
580           Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, RHS});
581       auto *NewBinOp = BinaryOperator::CreateWithCopiedFlags(
582           OpC, NewLHS, NewRHS, OldBinOp, OldBinOp->getName(), &II);
583       return IC.replaceInstUsesWith(II, NewBinOp);
584     }
585   }
586 
587   auto *C = dyn_cast<Constant>(Pg);
588   if (IsAfter && C && C->isNullValue()) {
589     // The intrinsic is extracting lane 0 so use an extract instead.
590     auto *IdxTy = Type::getInt64Ty(II.getContext());
591     auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0));
592     Extract->insertBefore(&II);
593     Extract->takeName(&II);
594     return IC.replaceInstUsesWith(II, Extract);
595   }
596 
597   auto *IntrPG = dyn_cast<IntrinsicInst>(Pg);
598   if (!IntrPG)
599     return None;
600 
601   if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
602     return None;
603 
604   const auto PTruePattern =
605       cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue();
606 
607   // Can the intrinsic's predicate be converted to a known constant index?
608   unsigned MinNumElts = getNumElementsFromSVEPredPattern(PTruePattern);
609   if (!MinNumElts)
610     return None;
611 
612   unsigned Idx = MinNumElts - 1;
613   // Increment the index if extracting the element after the last active
614   // predicate element.
615   if (IsAfter)
616     ++Idx;
617 
618   // Ignore extracts whose index is larger than the known minimum vector
619   // length. NOTE: This is an artificial constraint where we prefer to
620   // maintain what the user asked for until an alternative is proven faster.
621   auto *PgVTy = cast<ScalableVectorType>(Pg->getType());
622   if (Idx >= PgVTy->getMinNumElements())
623     return None;
624 
625   // The intrinsic is extracting a fixed lane so use an extract instead.
626   auto *IdxTy = Type::getInt64Ty(II.getContext());
627   auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx));
628   Extract->insertBefore(&II);
629   Extract->takeName(&II);
630   return IC.replaceInstUsesWith(II, Extract);
631 }
632 
633 static Optional<Instruction *> instCombineRDFFR(InstCombiner &IC,
634                                                 IntrinsicInst &II) {
635   LLVMContext &Ctx = II.getContext();
636   IRBuilder<> Builder(Ctx);
637   Builder.SetInsertPoint(&II);
638   // Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr
639   // can work with RDFFR_PP for ptest elimination.
640   auto *AllPat =
641       ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
642   auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
643                                         {II.getType()}, {AllPat});
644   auto *RDFFR =
645       Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue});
646   RDFFR->takeName(&II);
647   return IC.replaceInstUsesWith(II, RDFFR);
648 }
649 
650 static Optional<Instruction *>
651 instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) {
652   const auto Pattern = cast<ConstantInt>(II.getArgOperand(0))->getZExtValue();
653 
654   if (Pattern == AArch64SVEPredPattern::all) {
655     LLVMContext &Ctx = II.getContext();
656     IRBuilder<> Builder(Ctx);
657     Builder.SetInsertPoint(&II);
658 
659     Constant *StepVal = ConstantInt::get(II.getType(), NumElts);
660     auto *VScale = Builder.CreateVScale(StepVal);
661     VScale->takeName(&II);
662     return IC.replaceInstUsesWith(II, VScale);
663   }
664 
665   unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern);
666 
667   return MinNumElts && NumElts >= MinNumElts
668              ? Optional<Instruction *>(IC.replaceInstUsesWith(
669                    II, ConstantInt::get(II.getType(), MinNumElts)))
670              : None;
671 }
672 
673 static Optional<Instruction *> instCombineSVEPTest(InstCombiner &IC,
674                                                    IntrinsicInst &II) {
675   IntrinsicInst *Op1 = dyn_cast<IntrinsicInst>(II.getArgOperand(0));
676   IntrinsicInst *Op2 = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
677 
678   if (Op1 && Op2 &&
679       Op1->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
680       Op2->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
681       Op1->getArgOperand(0)->getType() == Op2->getArgOperand(0)->getType()) {
682 
683     IRBuilder<> Builder(II.getContext());
684     Builder.SetInsertPoint(&II);
685 
686     Value *Ops[] = {Op1->getArgOperand(0), Op2->getArgOperand(0)};
687     Type *Tys[] = {Op1->getArgOperand(0)->getType()};
688 
689     auto *PTest = Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops);
690 
691     PTest->takeName(&II);
692     return IC.replaceInstUsesWith(II, PTest);
693   }
694 
695   return None;
696 }
697 
698 static Optional<Instruction *> instCombineSVEVectorFMLA(InstCombiner &IC,
699                                                         IntrinsicInst &II) {
700   // fold (fadd p a (fmul p b c)) -> (fma p a b c)
701   Value *P = II.getOperand(0);
702   Value *A = II.getOperand(1);
703   auto FMul = II.getOperand(2);
704   Value *B, *C;
705   if (!match(FMul, m_Intrinsic<Intrinsic::aarch64_sve_fmul>(
706                        m_Specific(P), m_Value(B), m_Value(C))))
707     return None;
708 
709   if (!FMul->hasOneUse())
710     return None;
711 
712   llvm::FastMathFlags FAddFlags = II.getFastMathFlags();
713   // Stop the combine when the flags on the inputs differ in case dropping flags
714   // would lead to us missing out on more beneficial optimizations.
715   if (FAddFlags != cast<CallInst>(FMul)->getFastMathFlags())
716     return None;
717   if (!FAddFlags.allowContract())
718     return None;
719 
720   IRBuilder<> Builder(II.getContext());
721   Builder.SetInsertPoint(&II);
722   auto FMLA = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_fmla,
723                                       {II.getType()}, {P, A, B, C}, &II);
724   FMLA->setFastMathFlags(FAddFlags);
725   return IC.replaceInstUsesWith(II, FMLA);
726 }
727 
728 static Instruction::BinaryOps intrinsicIDToBinOpCode(unsigned Intrinsic) {
729   switch (Intrinsic) {
730   case Intrinsic::aarch64_sve_fmul:
731     return Instruction::BinaryOps::FMul;
732   case Intrinsic::aarch64_sve_fadd:
733     return Instruction::BinaryOps::FAdd;
734   case Intrinsic::aarch64_sve_fsub:
735     return Instruction::BinaryOps::FSub;
736   default:
737     return Instruction::BinaryOpsEnd;
738   }
739 }
740 
741 static Optional<Instruction *> instCombineSVEVectorBinOp(InstCombiner &IC,
742                                                          IntrinsicInst &II) {
743   auto *OpPredicate = II.getOperand(0);
744   auto BinOpCode = intrinsicIDToBinOpCode(II.getIntrinsicID());
745   if (BinOpCode == Instruction::BinaryOpsEnd ||
746       !match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
747                               m_ConstantInt<AArch64SVEPredPattern::all>())))
748     return None;
749   IRBuilder<> Builder(II.getContext());
750   Builder.SetInsertPoint(&II);
751   Builder.setFastMathFlags(II.getFastMathFlags());
752   auto BinOp =
753       Builder.CreateBinOp(BinOpCode, II.getOperand(1), II.getOperand(2));
754   return IC.replaceInstUsesWith(II, BinOp);
755 }
756 
757 static Optional<Instruction *> instCombineSVEVectorFAdd(InstCombiner &IC,
758                                                         IntrinsicInst &II) {
759   if (auto FMLA = instCombineSVEVectorFMLA(IC, II))
760     return FMLA;
761   return instCombineSVEVectorBinOp(IC, II);
762 }
763 
764 static Optional<Instruction *> instCombineSVEVectorMul(InstCombiner &IC,
765                                                        IntrinsicInst &II) {
766   auto *OpPredicate = II.getOperand(0);
767   auto *OpMultiplicand = II.getOperand(1);
768   auto *OpMultiplier = II.getOperand(2);
769 
770   IRBuilder<> Builder(II.getContext());
771   Builder.SetInsertPoint(&II);
772 
773   // Return true if a given instruction is a unit splat value, false otherwise.
774   auto IsUnitSplat = [](auto *I) {
775     auto *SplatValue = getSplatValue(I);
776     if (!SplatValue)
777       return false;
778     return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
779   };
780 
781   // Return true if a given instruction is an aarch64_sve_dup intrinsic call
782   // with a unit splat value, false otherwise.
783   auto IsUnitDup = [](auto *I) {
784     auto *IntrI = dyn_cast<IntrinsicInst>(I);
785     if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup)
786       return false;
787 
788     auto *SplatValue = IntrI->getOperand(2);
789     return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
790   };
791 
792   // The OpMultiplier variable should always point to the dup (if any), so
793   // swap if necessary.
794   if (IsUnitDup(OpMultiplicand) || IsUnitSplat(OpMultiplicand))
795     std::swap(OpMultiplier, OpMultiplicand);
796 
797   if (IsUnitSplat(OpMultiplier)) {
798     // [f]mul pg (dupx 1) %n => %n
799     OpMultiplicand->takeName(&II);
800     return IC.replaceInstUsesWith(II, OpMultiplicand);
801   } else if (IsUnitDup(OpMultiplier)) {
802     // [f]mul pg (dup pg 1) %n => %n
803     auto *DupInst = cast<IntrinsicInst>(OpMultiplier);
804     auto *DupPg = DupInst->getOperand(1);
805     // TODO: this is naive. The optimization is still valid if DupPg
806     // 'encompasses' OpPredicate, not only if they're the same predicate.
807     if (OpPredicate == DupPg) {
808       OpMultiplicand->takeName(&II);
809       return IC.replaceInstUsesWith(II, OpMultiplicand);
810     }
811   }
812 
813   return instCombineSVEVectorBinOp(IC, II);
814 }
815 
816 static Optional<Instruction *> instCombineSVEUnpack(InstCombiner &IC,
817                                                     IntrinsicInst &II) {
818   IRBuilder<> Builder(II.getContext());
819   Builder.SetInsertPoint(&II);
820   Value *UnpackArg = II.getArgOperand(0);
821   auto *RetTy = cast<ScalableVectorType>(II.getType());
822   bool IsSigned = II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi ||
823                   II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo;
824 
825   // Hi = uunpkhi(splat(X)) --> Hi = splat(extend(X))
826   // Lo = uunpklo(splat(X)) --> Lo = splat(extend(X))
827   if (auto *ScalarArg = getSplatValue(UnpackArg)) {
828     ScalarArg =
829         Builder.CreateIntCast(ScalarArg, RetTy->getScalarType(), IsSigned);
830     Value *NewVal =
831         Builder.CreateVectorSplat(RetTy->getElementCount(), ScalarArg);
832     NewVal->takeName(&II);
833     return IC.replaceInstUsesWith(II, NewVal);
834   }
835 
836   return None;
837 }
838 static Optional<Instruction *> instCombineSVETBL(InstCombiner &IC,
839                                                  IntrinsicInst &II) {
840   auto *OpVal = II.getOperand(0);
841   auto *OpIndices = II.getOperand(1);
842   VectorType *VTy = cast<VectorType>(II.getType());
843 
844   // Check whether OpIndices is a constant splat value < minimal element count
845   // of result.
846   auto *SplatValue = dyn_cast_or_null<ConstantInt>(getSplatValue(OpIndices));
847   if (!SplatValue ||
848       SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue()))
849     return None;
850 
851   // Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to
852   // splat_vector(extractelement(OpVal, SplatValue)) for further optimization.
853   IRBuilder<> Builder(II.getContext());
854   Builder.SetInsertPoint(&II);
855   auto *Extract = Builder.CreateExtractElement(OpVal, SplatValue);
856   auto *VectorSplat =
857       Builder.CreateVectorSplat(VTy->getElementCount(), Extract);
858 
859   VectorSplat->takeName(&II);
860   return IC.replaceInstUsesWith(II, VectorSplat);
861 }
862 
863 static Optional<Instruction *> instCombineSVETupleGet(InstCombiner &IC,
864                                                       IntrinsicInst &II) {
865   // Try to remove sequences of tuple get/set.
866   Value *SetTuple, *SetIndex, *SetValue;
867   auto *GetTuple = II.getArgOperand(0);
868   auto *GetIndex = II.getArgOperand(1);
869   // Check that we have tuple_get(GetTuple, GetIndex) where GetTuple is a
870   // call to tuple_set i.e. tuple_set(SetTuple, SetIndex, SetValue).
871   // Make sure that the types of the current intrinsic and SetValue match
872   // in order to safely remove the sequence.
873   if (!match(GetTuple,
874              m_Intrinsic<Intrinsic::aarch64_sve_tuple_set>(
875                  m_Value(SetTuple), m_Value(SetIndex), m_Value(SetValue))) ||
876       SetValue->getType() != II.getType())
877     return None;
878   // Case where we get the same index right after setting it.
879   // tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex) --> SetValue
880   if (GetIndex == SetIndex)
881     return IC.replaceInstUsesWith(II, SetValue);
882   // If we are getting a different index than what was set in the tuple_set
883   // intrinsic. We can just set the input tuple to the one up in the chain.
884   // tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex)
885   // --> tuple_get(SetTuple, GetIndex)
886   return IC.replaceOperand(II, 0, SetTuple);
887 }
888 
889 static Optional<Instruction *> instCombineSVEZip(InstCombiner &IC,
890                                                  IntrinsicInst &II) {
891   // zip1(uzp1(A, B), uzp2(A, B)) --> A
892   // zip2(uzp1(A, B), uzp2(A, B)) --> B
893   Value *A, *B;
894   if (match(II.getArgOperand(0),
895             m_Intrinsic<Intrinsic::aarch64_sve_uzp1>(m_Value(A), m_Value(B))) &&
896       match(II.getArgOperand(1), m_Intrinsic<Intrinsic::aarch64_sve_uzp2>(
897                                      m_Specific(A), m_Specific(B))))
898     return IC.replaceInstUsesWith(
899         II, (II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ? A : B));
900 
901   return None;
902 }
903 
904 static Optional<Instruction *> instCombineLD1GatherIndex(InstCombiner &IC,
905                                                          IntrinsicInst &II) {
906   Value *Mask = II.getOperand(0);
907   Value *BasePtr = II.getOperand(1);
908   Value *Index = II.getOperand(2);
909   Type *Ty = II.getType();
910   Type *BasePtrTy = BasePtr->getType();
911   Value *PassThru = ConstantAggregateZero::get(Ty);
912 
913   // Contiguous gather => masked load.
914   // (sve.ld1.gather.index Mask BasePtr (sve.index IndexBase 1))
915   // => (masked.load (gep BasePtr IndexBase) Align Mask zeroinitializer)
916   Value *IndexBase;
917   if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
918                        m_Value(IndexBase), m_SpecificInt(1)))) {
919     IRBuilder<> Builder(II.getContext());
920     Builder.SetInsertPoint(&II);
921 
922     Align Alignment =
923         BasePtr->getPointerAlignment(II.getModule()->getDataLayout());
924 
925     Type *VecPtrTy = PointerType::getUnqual(Ty);
926     Value *Ptr = Builder.CreateGEP(BasePtrTy->getPointerElementType(), BasePtr,
927                                    IndexBase);
928     Ptr = Builder.CreateBitCast(Ptr, VecPtrTy);
929     CallInst *MaskedLoad =
930         Builder.CreateMaskedLoad(Ty, Ptr, Alignment, Mask, PassThru);
931     MaskedLoad->takeName(&II);
932     return IC.replaceInstUsesWith(II, MaskedLoad);
933   }
934 
935   return None;
936 }
937 
938 static Optional<Instruction *> instCombineST1ScatterIndex(InstCombiner &IC,
939                                                           IntrinsicInst &II) {
940   Value *Val = II.getOperand(0);
941   Value *Mask = II.getOperand(1);
942   Value *BasePtr = II.getOperand(2);
943   Value *Index = II.getOperand(3);
944   Type *Ty = Val->getType();
945   Type *BasePtrTy = BasePtr->getType();
946 
947   // Contiguous scatter => masked store.
948   // (sve.ld1.scatter.index Value Mask BasePtr (sve.index IndexBase 1))
949   // => (masked.store Value (gep BasePtr IndexBase) Align Mask)
950   Value *IndexBase;
951   if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
952                        m_Value(IndexBase), m_SpecificInt(1)))) {
953     IRBuilder<> Builder(II.getContext());
954     Builder.SetInsertPoint(&II);
955 
956     Align Alignment =
957         BasePtr->getPointerAlignment(II.getModule()->getDataLayout());
958 
959     Value *Ptr = Builder.CreateGEP(BasePtrTy->getPointerElementType(), BasePtr,
960                                    IndexBase);
961     Type *VecPtrTy = PointerType::getUnqual(Ty);
962     Ptr = Builder.CreateBitCast(Ptr, VecPtrTy);
963 
964     (void)Builder.CreateMaskedStore(Val, Ptr, Alignment, Mask);
965 
966     return IC.eraseInstFromFunction(II);
967   }
968 
969   return None;
970 }
971 
972 Optional<Instruction *>
973 AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC,
974                                      IntrinsicInst &II) const {
975   Intrinsic::ID IID = II.getIntrinsicID();
976   switch (IID) {
977   default:
978     break;
979   case Intrinsic::aarch64_sve_convert_from_svbool:
980     return instCombineConvertFromSVBool(IC, II);
981   case Intrinsic::aarch64_sve_dup:
982     return instCombineSVEDup(IC, II);
983   case Intrinsic::aarch64_sve_dup_x:
984     return instCombineSVEDupX(IC, II);
985   case Intrinsic::aarch64_sve_cmpne:
986   case Intrinsic::aarch64_sve_cmpne_wide:
987     return instCombineSVECmpNE(IC, II);
988   case Intrinsic::aarch64_sve_rdffr:
989     return instCombineRDFFR(IC, II);
990   case Intrinsic::aarch64_sve_lasta:
991   case Intrinsic::aarch64_sve_lastb:
992     return instCombineSVELast(IC, II);
993   case Intrinsic::aarch64_sve_cntd:
994     return instCombineSVECntElts(IC, II, 2);
995   case Intrinsic::aarch64_sve_cntw:
996     return instCombineSVECntElts(IC, II, 4);
997   case Intrinsic::aarch64_sve_cnth:
998     return instCombineSVECntElts(IC, II, 8);
999   case Intrinsic::aarch64_sve_cntb:
1000     return instCombineSVECntElts(IC, II, 16);
1001   case Intrinsic::aarch64_sve_ptest_any:
1002   case Intrinsic::aarch64_sve_ptest_first:
1003   case Intrinsic::aarch64_sve_ptest_last:
1004     return instCombineSVEPTest(IC, II);
1005   case Intrinsic::aarch64_sve_mul:
1006   case Intrinsic::aarch64_sve_fmul:
1007     return instCombineSVEVectorMul(IC, II);
1008   case Intrinsic::aarch64_sve_fadd:
1009     return instCombineSVEVectorFAdd(IC, II);
1010   case Intrinsic::aarch64_sve_fsub:
1011     return instCombineSVEVectorBinOp(IC, II);
1012   case Intrinsic::aarch64_sve_tbl:
1013     return instCombineSVETBL(IC, II);
1014   case Intrinsic::aarch64_sve_uunpkhi:
1015   case Intrinsic::aarch64_sve_uunpklo:
1016   case Intrinsic::aarch64_sve_sunpkhi:
1017   case Intrinsic::aarch64_sve_sunpklo:
1018     return instCombineSVEUnpack(IC, II);
1019   case Intrinsic::aarch64_sve_tuple_get:
1020     return instCombineSVETupleGet(IC, II);
1021   case Intrinsic::aarch64_sve_zip1:
1022   case Intrinsic::aarch64_sve_zip2:
1023     return instCombineSVEZip(IC, II);
1024   case Intrinsic::aarch64_sve_ld1_gather_index:
1025     return instCombineLD1GatherIndex(IC, II);
1026   case Intrinsic::aarch64_sve_st1_scatter_index:
1027     return instCombineST1ScatterIndex(IC, II);
1028   }
1029 
1030   return None;
1031 }
1032 
1033 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
1034                                            ArrayRef<const Value *> Args) {
1035 
1036   // A helper that returns a vector type from the given type. The number of
1037   // elements in type Ty determine the vector width.
1038   auto toVectorTy = [&](Type *ArgTy) {
1039     return VectorType::get(ArgTy->getScalarType(),
1040                            cast<VectorType>(DstTy)->getElementCount());
1041   };
1042 
1043   // Exit early if DstTy is not a vector type whose elements are at least
1044   // 16-bits wide.
1045   if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16)
1046     return false;
1047 
1048   // Determine if the operation has a widening variant. We consider both the
1049   // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
1050   // instructions.
1051   //
1052   // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
1053   //       verify that their extending operands are eliminated during code
1054   //       generation.
1055   switch (Opcode) {
1056   case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
1057   case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
1058     break;
1059   default:
1060     return false;
1061   }
1062 
1063   // To be a widening instruction (either the "wide" or "long" versions), the
1064   // second operand must be a sign- or zero extend having a single user. We
1065   // only consider extends having a single user because they may otherwise not
1066   // be eliminated.
1067   if (Args.size() != 2 ||
1068       (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) ||
1069       !Args[1]->hasOneUse())
1070     return false;
1071   auto *Extend = cast<CastInst>(Args[1]);
1072 
1073   // Legalize the destination type and ensure it can be used in a widening
1074   // operation.
1075   auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy);
1076   unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
1077   if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
1078     return false;
1079 
1080   // Legalize the source type and ensure it can be used in a widening
1081   // operation.
1082   auto *SrcTy = toVectorTy(Extend->getSrcTy());
1083   auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy);
1084   unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
1085   if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
1086     return false;
1087 
1088   // Get the total number of vector elements in the legalized types.
1089   InstructionCost NumDstEls =
1090       DstTyL.first * DstTyL.second.getVectorMinNumElements();
1091   InstructionCost NumSrcEls =
1092       SrcTyL.first * SrcTyL.second.getVectorMinNumElements();
1093 
1094   // Return true if the legalized types have the same number of vector elements
1095   // and the destination element type size is twice that of the source type.
1096   return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
1097 }
1098 
1099 InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
1100                                                  Type *Src,
1101                                                  TTI::CastContextHint CCH,
1102                                                  TTI::TargetCostKind CostKind,
1103                                                  const Instruction *I) {
1104   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1105   assert(ISD && "Invalid opcode");
1106 
1107   // If the cast is observable, and it is used by a widening instruction (e.g.,
1108   // uaddl, saddw, etc.), it may be free.
1109   if (I && I->hasOneUse()) {
1110     auto *SingleUser = cast<Instruction>(*I->user_begin());
1111     SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
1112     if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
1113       // If the cast is the second operand, it is free. We will generate either
1114       // a "wide" or "long" version of the widening instruction.
1115       if (I == SingleUser->getOperand(1))
1116         return 0;
1117       // If the cast is not the second operand, it will be free if it looks the
1118       // same as the second operand. In this case, we will generate a "long"
1119       // version of the widening instruction.
1120       if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
1121         if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
1122             cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
1123           return 0;
1124     }
1125   }
1126 
1127   // TODO: Allow non-throughput costs that aren't binary.
1128   auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
1129     if (CostKind != TTI::TCK_RecipThroughput)
1130       return Cost == 0 ? 0 : 1;
1131     return Cost;
1132   };
1133 
1134   EVT SrcTy = TLI->getValueType(DL, Src);
1135   EVT DstTy = TLI->getValueType(DL, Dst);
1136 
1137   if (!SrcTy.isSimple() || !DstTy.isSimple())
1138     return AdjustCost(
1139         BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
1140 
1141   static const TypeConversionCostTblEntry
1142   ConversionTbl[] = {
1143     { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32,  1 },
1144     { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64,  0 },
1145     { ISD::TRUNCATE, MVT::v8i8,  MVT::v8i32,  3 },
1146     { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
1147 
1148     // Truncations on nxvmiN
1149     { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 },
1150     { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 },
1151     { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 },
1152     { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 },
1153     { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 },
1154     { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 },
1155     { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 },
1156     { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 },
1157     { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 },
1158     { ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 1 },
1159     { ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 },
1160     { ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 },
1161     { ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 },
1162     { ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 },
1163     { ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 },
1164     { ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 },
1165 
1166     // The number of shll instructions for the extension.
1167     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1168     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1169     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
1170     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
1171     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
1172     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
1173     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
1174     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
1175     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
1176     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
1177     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
1178     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
1179     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1180     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1181     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
1182     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
1183 
1184     // LowerVectorINT_TO_FP:
1185     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
1186     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1187     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
1188     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
1189     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1190     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
1191 
1192     // Complex: to v2f32
1193     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
1194     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
1195     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
1196     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
1197     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
1198     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
1199 
1200     // Complex: to v4f32
1201     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
1202     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
1203     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
1204     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
1205 
1206     // Complex: to v8f32
1207     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
1208     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
1209     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
1210     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
1211 
1212     // Complex: to v16f32
1213     { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
1214     { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
1215 
1216     // Complex: to v2f64
1217     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
1218     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
1219     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
1220     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
1221     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
1222     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
1223 
1224 
1225     // LowerVectorFP_TO_INT
1226     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
1227     { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
1228     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
1229     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
1230     { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
1231     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
1232 
1233     // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
1234     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
1235     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
1236     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
1237     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
1238     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
1239     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },
1240 
1241     // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
1242     { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
1243     { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
1244     { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
1245     { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },
1246 
1247     // Complex, from nxv2f32.
1248     { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
1249     { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
1250     { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
1251     { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f32, 1 },
1252     { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
1253     { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
1254     { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
1255     { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f32, 1 },
1256 
1257     // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
1258     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
1259     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
1260     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
1261     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
1262     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
1263     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
1264 
1265     // Complex, from nxv2f64.
1266     { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
1267     { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
1268     { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
1269     { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f64, 1 },
1270     { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
1271     { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
1272     { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
1273     { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f64, 1 },
1274 
1275     // Complex, from nxv4f32.
1276     { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
1277     { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
1278     { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
1279     { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f32, 1 },
1280     { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
1281     { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
1282     { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
1283     { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f32, 1 },
1284 
1285     // Complex, from nxv8f64. Illegal -> illegal conversions not required.
1286     { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
1287     { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f64, 7 },
1288     { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
1289     { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f64, 7 },
1290 
1291     // Complex, from nxv4f64. Illegal -> illegal conversions not required.
1292     { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
1293     { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
1294     { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f64, 3 },
1295     { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
1296     { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
1297     { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f64, 3 },
1298 
1299     // Complex, from nxv8f32. Illegal -> illegal conversions not required.
1300     { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
1301     { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f32, 3 },
1302     { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
1303     { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f32, 3 },
1304 
1305     // Complex, from nxv8f16.
1306     { ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
1307     { ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
1308     { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
1309     { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f16, 1 },
1310     { ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
1311     { ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
1312     { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
1313     { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f16, 1 },
1314 
1315     // Complex, from nxv4f16.
1316     { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
1317     { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
1318     { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
1319     { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f16, 1 },
1320     { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
1321     { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
1322     { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
1323     { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f16, 1 },
1324 
1325     // Complex, from nxv2f16.
1326     { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
1327     { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
1328     { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
1329     { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f16, 1 },
1330     { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
1331     { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
1332     { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
1333     { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f16, 1 },
1334 
1335     // Truncate from nxvmf32 to nxvmf16.
1336     { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 },
1337     { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 },
1338     { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 },
1339 
1340     // Truncate from nxvmf64 to nxvmf16.
1341     { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 },
1342     { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 },
1343     { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 },
1344 
1345     // Truncate from nxvmf64 to nxvmf32.
1346     { ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 },
1347     { ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 },
1348     { ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 },
1349 
1350     // Extend from nxvmf16 to nxvmf32.
1351     { ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1},
1352     { ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1},
1353     { ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2},
1354 
1355     // Extend from nxvmf16 to nxvmf64.
1356     { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1},
1357     { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2},
1358     { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4},
1359 
1360     // Extend from nxvmf32 to nxvmf64.
1361     { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1},
1362     { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2},
1363     { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6},
1364 
1365   };
1366 
1367   if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
1368                                                  DstTy.getSimpleVT(),
1369                                                  SrcTy.getSimpleVT()))
1370     return AdjustCost(Entry->Cost);
1371 
1372   return AdjustCost(
1373       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
1374 }
1375 
1376 InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode,
1377                                                          Type *Dst,
1378                                                          VectorType *VecTy,
1379                                                          unsigned Index) {
1380 
1381   // Make sure we were given a valid extend opcode.
1382   assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
1383          "Invalid opcode");
1384 
1385   // We are extending an element we extract from a vector, so the source type
1386   // of the extend is the element type of the vector.
1387   auto *Src = VecTy->getElementType();
1388 
1389   // Sign- and zero-extends are for integer types only.
1390   assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
1391 
1392   // Get the cost for the extract. We compute the cost (if any) for the extend
1393   // below.
1394   InstructionCost Cost =
1395       getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);
1396 
1397   // Legalize the types.
1398   auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
1399   auto DstVT = TLI->getValueType(DL, Dst);
1400   auto SrcVT = TLI->getValueType(DL, Src);
1401   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1402 
1403   // If the resulting type is still a vector and the destination type is legal,
1404   // we may get the extension for free. If not, get the default cost for the
1405   // extend.
1406   if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
1407     return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
1408                                    CostKind);
1409 
1410   // The destination type should be larger than the element type. If not, get
1411   // the default cost for the extend.
1412   if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits())
1413     return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
1414                                    CostKind);
1415 
1416   switch (Opcode) {
1417   default:
1418     llvm_unreachable("Opcode should be either SExt or ZExt");
1419 
1420   // For sign-extends, we only need a smov, which performs the extension
1421   // automatically.
1422   case Instruction::SExt:
1423     return Cost;
1424 
1425   // For zero-extends, the extend is performed automatically by a umov unless
1426   // the destination type is i64 and the element type is i8 or i16.
1427   case Instruction::ZExt:
1428     if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
1429       return Cost;
1430   }
1431 
1432   // If we are unable to perform the extend for free, get the default cost.
1433   return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
1434                                  CostKind);
1435 }
1436 
1437 InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode,
1438                                                TTI::TargetCostKind CostKind,
1439                                                const Instruction *I) {
1440   if (CostKind != TTI::TCK_RecipThroughput)
1441     return Opcode == Instruction::PHI ? 0 : 1;
1442   assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind");
1443   // Branches are assumed to be predicted.
1444   return 0;
1445 }
1446 
1447 InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
1448                                                    unsigned Index) {
1449   assert(Val->isVectorTy() && "This must be a vector type");
1450 
1451   if (Index != -1U) {
1452     // Legalize the type.
1453     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
1454 
1455     // This type is legalized to a scalar type.
1456     if (!LT.second.isVector())
1457       return 0;
1458 
1459     // The type may be split. Normalize the index to the new type.
1460     unsigned Width = LT.second.getVectorNumElements();
1461     Index = Index % Width;
1462 
1463     // The element at index zero is already inside the vector.
1464     if (Index == 0)
1465       return 0;
1466   }
1467 
1468   // All other insert/extracts cost this much.
1469   return ST->getVectorInsertExtractBaseCost();
1470 }
1471 
1472 InstructionCost AArch64TTIImpl::getArithmeticInstrCost(
1473     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
1474     TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
1475     TTI::OperandValueProperties Opd1PropInfo,
1476     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
1477     const Instruction *CxtI) {
1478   // TODO: Handle more cost kinds.
1479   if (CostKind != TTI::TCK_RecipThroughput)
1480     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
1481                                          Opd2Info, Opd1PropInfo,
1482                                          Opd2PropInfo, Args, CxtI);
1483 
1484   // Legalize the type.
1485   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
1486 
1487   // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
1488   // add in the widening overhead specified by the sub-target. Since the
1489   // extends feeding widening instructions are performed automatically, they
1490   // aren't present in the generated code and have a zero cost. By adding a
1491   // widening overhead here, we attach the total cost of the combined operation
1492   // to the widening instruction.
1493   InstructionCost Cost = 0;
1494   if (isWideningInstruction(Ty, Opcode, Args))
1495     Cost += ST->getWideningBaseCost();
1496 
1497   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1498 
1499   switch (ISD) {
1500   default:
1501     return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
1502                                                 Opd2Info,
1503                                                 Opd1PropInfo, Opd2PropInfo);
1504   case ISD::SDIV:
1505     if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
1506         Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
1507       // On AArch64, scalar signed division by constants power-of-two are
1508       // normally expanded to the sequence ADD + CMP + SELECT + SRA.
1509       // The OperandValue properties many not be same as that of previous
1510       // operation; conservatively assume OP_None.
1511       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind,
1512                                      Opd1Info, Opd2Info,
1513                                      TargetTransformInfo::OP_None,
1514                                      TargetTransformInfo::OP_None);
1515       Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind,
1516                                      Opd1Info, Opd2Info,
1517                                      TargetTransformInfo::OP_None,
1518                                      TargetTransformInfo::OP_None);
1519       Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind,
1520                                      Opd1Info, Opd2Info,
1521                                      TargetTransformInfo::OP_None,
1522                                      TargetTransformInfo::OP_None);
1523       Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
1524                                      Opd1Info, Opd2Info,
1525                                      TargetTransformInfo::OP_None,
1526                                      TargetTransformInfo::OP_None);
1527       return Cost;
1528     }
1529     LLVM_FALLTHROUGH;
1530   case ISD::UDIV:
1531     if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) {
1532       auto VT = TLI->getValueType(DL, Ty);
1533       if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
1534         // Vector signed division by constant are expanded to the
1535         // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
1536         // to MULHS + SUB + SRL + ADD + SRL.
1537         InstructionCost MulCost = getArithmeticInstrCost(
1538             Instruction::Mul, Ty, CostKind, Opd1Info, Opd2Info,
1539             TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1540         InstructionCost AddCost = getArithmeticInstrCost(
1541             Instruction::Add, Ty, CostKind, Opd1Info, Opd2Info,
1542             TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1543         InstructionCost ShrCost = getArithmeticInstrCost(
1544             Instruction::AShr, Ty, CostKind, Opd1Info, Opd2Info,
1545             TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1546         return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
1547       }
1548     }
1549 
1550     Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
1551                                           Opd2Info,
1552                                           Opd1PropInfo, Opd2PropInfo);
1553     if (Ty->isVectorTy()) {
1554       // On AArch64, vector divisions are not supported natively and are
1555       // expanded into scalar divisions of each pair of elements.
1556       Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind,
1557                                      Opd1Info, Opd2Info, Opd1PropInfo,
1558                                      Opd2PropInfo);
1559       Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind,
1560                                      Opd1Info, Opd2Info, Opd1PropInfo,
1561                                      Opd2PropInfo);
1562       // TODO: if one of the arguments is scalar, then it's not necessary to
1563       // double the cost of handling the vector elements.
1564       Cost += Cost;
1565     }
1566     return Cost;
1567 
1568   case ISD::MUL:
1569     if (LT.second != MVT::v2i64)
1570       return (Cost + 1) * LT.first;
1571     // Since we do not have a MUL.2d instruction, a mul <2 x i64> is expensive
1572     // as elements are extracted from the vectors and the muls scalarized.
1573     // As getScalarizationOverhead is a bit too pessimistic, we estimate the
1574     // cost for a i64 vector directly here, which is:
1575     // - four i64 extracts,
1576     // - two i64 inserts, and
1577     // - two muls.
1578     // So, for a v2i64 with LT.First = 1 the cost is 8, and for a v4i64 with
1579     // LT.first = 2 the cost is 16.
1580     return LT.first * 8;
1581   case ISD::ADD:
1582   case ISD::XOR:
1583   case ISD::OR:
1584   case ISD::AND:
1585     // These nodes are marked as 'custom' for combining purposes only.
1586     // We know that they are legal. See LowerAdd in ISelLowering.
1587     return (Cost + 1) * LT.first;
1588 
1589   case ISD::FADD:
1590   case ISD::FSUB:
1591   case ISD::FMUL:
1592   case ISD::FDIV:
1593   case ISD::FNEG:
1594     // These nodes are marked as 'custom' just to lower them to SVE.
1595     // We know said lowering will incur no additional cost.
1596     if (!Ty->getScalarType()->isFP128Ty())
1597       return (Cost + 2) * LT.first;
1598 
1599     return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
1600                                                 Opd2Info,
1601                                                 Opd1PropInfo, Opd2PropInfo);
1602   }
1603 }
1604 
1605 InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty,
1606                                                           ScalarEvolution *SE,
1607                                                           const SCEV *Ptr) {
1608   // Address computations in vectorized code with non-consecutive addresses will
1609   // likely result in more instructions compared to scalar code where the
1610   // computation can more often be merged into the index mode. The resulting
1611   // extra micro-ops can significantly decrease throughput.
1612   unsigned NumVectorInstToHideOverhead = 10;
1613   int MaxMergeDistance = 64;
1614 
1615   if (Ty->isVectorTy() && SE &&
1616       !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
1617     return NumVectorInstToHideOverhead;
1618 
1619   // In many cases the address computation is not merged into the instruction
1620   // addressing mode.
1621   return 1;
1622 }
1623 
1624 InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
1625                                                    Type *CondTy,
1626                                                    CmpInst::Predicate VecPred,
1627                                                    TTI::TargetCostKind CostKind,
1628                                                    const Instruction *I) {
1629   // TODO: Handle other cost kinds.
1630   if (CostKind != TTI::TCK_RecipThroughput)
1631     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
1632                                      I);
1633 
1634   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1635   // We don't lower some vector selects well that are wider than the register
1636   // width.
1637   if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) {
1638     // We would need this many instructions to hide the scalarization happening.
1639     const int AmortizationCost = 20;
1640 
1641     // If VecPred is not set, check if we can get a predicate from the context
1642     // instruction, if its type matches the requested ValTy.
1643     if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) {
1644       CmpInst::Predicate CurrentPred;
1645       if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(),
1646                             m_Value())))
1647         VecPred = CurrentPred;
1648     }
1649     // Check if we have a compare/select chain that can be lowered using CMxx &
1650     // BFI pair.
1651     if (CmpInst::isIntPredicate(VecPred)) {
1652       static const auto ValidMinMaxTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
1653                                           MVT::v8i16, MVT::v2i32, MVT::v4i32,
1654                                           MVT::v2i64};
1655       auto LT = TLI->getTypeLegalizationCost(DL, ValTy);
1656       if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }))
1657         return LT.first;
1658     }
1659 
1660     static const TypeConversionCostTblEntry
1661     VectorSelectTbl[] = {
1662       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
1663       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
1664       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
1665       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
1666       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
1667       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
1668     };
1669 
1670     EVT SelCondTy = TLI->getValueType(DL, CondTy);
1671     EVT SelValTy = TLI->getValueType(DL, ValTy);
1672     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
1673       if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
1674                                                      SelCondTy.getSimpleVT(),
1675                                                      SelValTy.getSimpleVT()))
1676         return Entry->Cost;
1677     }
1678   }
1679   // The base case handles scalable vectors fine for now, since it treats the
1680   // cost as 1 * legalization cost.
1681   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
1682 }
1683 
1684 AArch64TTIImpl::TTI::MemCmpExpansionOptions
1685 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
1686   TTI::MemCmpExpansionOptions Options;
1687   if (ST->requiresStrictAlign()) {
1688     // TODO: Add cost modeling for strict align. Misaligned loads expand to
1689     // a bunch of instructions when strict align is enabled.
1690     return Options;
1691   }
1692   Options.AllowOverlappingLoads = true;
1693   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
1694   Options.NumLoadsPerBlock = Options.MaxNumLoads;
1695   // TODO: Though vector loads usually perform well on AArch64, in some targets
1696   // they may wake up the FP unit, which raises the power consumption.  Perhaps
1697   // they could be used with no holds barred (-O3).
1698   Options.LoadSizes = {8, 4, 2, 1};
1699   return Options;
1700 }
1701 
1702 InstructionCost
1703 AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
1704                                       Align Alignment, unsigned AddressSpace,
1705                                       TTI::TargetCostKind CostKind) {
1706   if (!isa<ScalableVectorType>(Src))
1707     return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1708                                         CostKind);
1709   auto LT = TLI->getTypeLegalizationCost(DL, Src);
1710   if (!LT.first.isValid())
1711     return InstructionCost::getInvalid();
1712 
1713   // The code-generator is currently not able to handle scalable vectors
1714   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
1715   // it. This change will be removed when code-generation for these types is
1716   // sufficiently reliable.
1717   if (cast<VectorType>(Src)->getElementCount() == ElementCount::getScalable(1))
1718     return InstructionCost::getInvalid();
1719 
1720   return LT.first * 2;
1721 }
1722 
1723 InstructionCost AArch64TTIImpl::getGatherScatterOpCost(
1724     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1725     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
1726   if (useNeonVector(DataTy))
1727     return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
1728                                          Alignment, CostKind, I);
1729   auto *VT = cast<VectorType>(DataTy);
1730   auto LT = TLI->getTypeLegalizationCost(DL, DataTy);
1731   if (!LT.first.isValid())
1732     return InstructionCost::getInvalid();
1733 
1734   // The code-generator is currently not able to handle scalable vectors
1735   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
1736   // it. This change will be removed when code-generation for these types is
1737   // sufficiently reliable.
1738   if (cast<VectorType>(DataTy)->getElementCount() ==
1739       ElementCount::getScalable(1))
1740     return InstructionCost::getInvalid();
1741 
1742   ElementCount LegalVF = LT.second.getVectorElementCount();
1743   InstructionCost MemOpCost =
1744       getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind, I);
1745   return LT.first * MemOpCost * getMaxNumElements(LegalVF);
1746 }
1747 
1748 bool AArch64TTIImpl::useNeonVector(const Type *Ty) const {
1749   return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors();
1750 }
1751 
1752 InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
1753                                                 MaybeAlign Alignment,
1754                                                 unsigned AddressSpace,
1755                                                 TTI::TargetCostKind CostKind,
1756                                                 const Instruction *I) {
1757   EVT VT = TLI->getValueType(DL, Ty, true);
1758   // Type legalization can't handle structs
1759   if (VT == MVT::Other)
1760     return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
1761                                   CostKind);
1762 
1763   auto LT = TLI->getTypeLegalizationCost(DL, Ty);
1764   if (!LT.first.isValid())
1765     return InstructionCost::getInvalid();
1766 
1767   // The code-generator is currently not able to handle scalable vectors
1768   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
1769   // it. This change will be removed when code-generation for these types is
1770   // sufficiently reliable.
1771   if (auto *VTy = dyn_cast<ScalableVectorType>(Ty))
1772     if (VTy->getElementCount() == ElementCount::getScalable(1))
1773       return InstructionCost::getInvalid();
1774 
1775   // TODO: consider latency as well for TCK_SizeAndLatency.
1776   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
1777     return LT.first;
1778 
1779   if (CostKind != TTI::TCK_RecipThroughput)
1780     return 1;
1781 
1782   if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
1783       LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
1784     // Unaligned stores are extremely inefficient. We don't split all
1785     // unaligned 128-bit stores because the negative impact that has shown in
1786     // practice on inlined block copy code.
1787     // We make such stores expensive so that we will only vectorize if there
1788     // are 6 other instructions getting vectorized.
1789     const int AmortizationCost = 6;
1790 
1791     return LT.first * 2 * AmortizationCost;
1792   }
1793 
1794   // Check truncating stores and extending loads.
1795   if (useNeonVector(Ty) &&
1796       Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) {
1797     // v4i8 types are lowered to scalar a load/store and sshll/xtn.
1798     if (VT == MVT::v4i8)
1799       return 2;
1800     // Otherwise we need to scalarize.
1801     return cast<FixedVectorType>(Ty)->getNumElements() * 2;
1802   }
1803 
1804   return LT.first;
1805 }
1806 
1807 InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost(
1808     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1809     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1810     bool UseMaskForCond, bool UseMaskForGaps) {
1811   assert(Factor >= 2 && "Invalid interleave factor");
1812   auto *VecVTy = cast<FixedVectorType>(VecTy);
1813 
1814   if (!UseMaskForCond && !UseMaskForGaps &&
1815       Factor <= TLI->getMaxSupportedInterleaveFactor()) {
1816     unsigned NumElts = VecVTy->getNumElements();
1817     auto *SubVecTy =
1818         FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
1819 
1820     // ldN/stN only support legal vector types of size 64 or 128 in bits.
1821     // Accesses having vector types that are a multiple of 128 bits can be
1822     // matched to more than one ldN/stN instruction.
1823     bool UseScalable;
1824     if (NumElts % Factor == 0 &&
1825         TLI->isLegalInterleavedAccessType(SubVecTy, DL, UseScalable))
1826       return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL, UseScalable);
1827   }
1828 
1829   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1830                                            Alignment, AddressSpace, CostKind,
1831                                            UseMaskForCond, UseMaskForGaps);
1832 }
1833 
1834 InstructionCost
1835 AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
1836   InstructionCost Cost = 0;
1837   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1838   for (auto *I : Tys) {
1839     if (!I->isVectorTy())
1840       continue;
1841     if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() ==
1842         128)
1843       Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) +
1844               getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind);
1845   }
1846   return Cost;
1847 }
1848 
1849 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
1850   return ST->getMaxInterleaveFactor();
1851 }
1852 
1853 // For Falkor, we want to avoid having too many strided loads in a loop since
1854 // that can exhaust the HW prefetcher resources.  We adjust the unroller
1855 // MaxCount preference below to attempt to ensure unrolling doesn't create too
1856 // many strided loads.
1857 static void
1858 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1859                               TargetTransformInfo::UnrollingPreferences &UP) {
1860   enum { MaxStridedLoads = 7 };
1861   auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
1862     int StridedLoads = 0;
1863     // FIXME? We could make this more precise by looking at the CFG and
1864     // e.g. not counting loads in each side of an if-then-else diamond.
1865     for (const auto BB : L->blocks()) {
1866       for (auto &I : *BB) {
1867         LoadInst *LMemI = dyn_cast<LoadInst>(&I);
1868         if (!LMemI)
1869           continue;
1870 
1871         Value *PtrValue = LMemI->getPointerOperand();
1872         if (L->isLoopInvariant(PtrValue))
1873           continue;
1874 
1875         const SCEV *LSCEV = SE.getSCEV(PtrValue);
1876         const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
1877         if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
1878           continue;
1879 
1880         // FIXME? We could take pairing of unrolled load copies into account
1881         // by looking at the AddRec, but we would probably have to limit this
1882         // to loops with no stores or other memory optimization barriers.
1883         ++StridedLoads;
1884         // We've seen enough strided loads that seeing more won't make a
1885         // difference.
1886         if (StridedLoads > MaxStridedLoads / 2)
1887           return StridedLoads;
1888       }
1889     }
1890     return StridedLoads;
1891   };
1892 
1893   int StridedLoads = countStridedLoads(L, SE);
1894   LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
1895                     << " strided loads\n");
1896   // Pick the largest power of 2 unroll count that won't result in too many
1897   // strided loads.
1898   if (StridedLoads) {
1899     UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
1900     LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
1901                       << UP.MaxCount << '\n');
1902   }
1903 }
1904 
1905 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1906                                              TTI::UnrollingPreferences &UP,
1907                                              OptimizationRemarkEmitter *ORE) {
1908   // Enable partial unrolling and runtime unrolling.
1909   BaseT::getUnrollingPreferences(L, SE, UP, ORE);
1910 
1911   UP.UpperBound = true;
1912 
1913   // For inner loop, it is more likely to be a hot one, and the runtime check
1914   // can be promoted out from LICM pass, so the overhead is less, let's try
1915   // a larger threshold to unroll more loops.
1916   if (L->getLoopDepth() > 1)
1917     UP.PartialThreshold *= 2;
1918 
1919   // Disable partial & runtime unrolling on -Os.
1920   UP.PartialOptSizeThreshold = 0;
1921 
1922   if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
1923       EnableFalkorHWPFUnrollFix)
1924     getFalkorUnrollingPreferences(L, SE, UP);
1925 
1926   // Scan the loop: don't unroll loops with calls as this could prevent
1927   // inlining. Don't unroll vector loops either, as they don't benefit much from
1928   // unrolling.
1929   for (auto *BB : L->getBlocks()) {
1930     for (auto &I : *BB) {
1931       // Don't unroll vectorised loop.
1932       if (I.getType()->isVectorTy())
1933         return;
1934 
1935       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
1936         if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
1937           if (!isLoweredToCall(F))
1938             continue;
1939         }
1940         return;
1941       }
1942     }
1943   }
1944 
1945   // Enable runtime unrolling for in-order models
1946   // If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by
1947   // checking for that case, we can ensure that the default behaviour is
1948   // unchanged
1949   if (ST->getProcFamily() != AArch64Subtarget::Others &&
1950       !ST->getSchedModel().isOutOfOrder()) {
1951     UP.Runtime = true;
1952     UP.Partial = true;
1953     UP.UnrollRemainder = true;
1954     UP.DefaultUnrollRuntimeCount = 4;
1955 
1956     UP.UnrollAndJam = true;
1957     UP.UnrollAndJamInnerLoopThreshold = 60;
1958   }
1959 }
1960 
1961 void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1962                                            TTI::PeelingPreferences &PP) {
1963   BaseT::getPeelingPreferences(L, SE, PP);
1964 }
1965 
1966 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1967                                                          Type *ExpectedType) {
1968   switch (Inst->getIntrinsicID()) {
1969   default:
1970     return nullptr;
1971   case Intrinsic::aarch64_neon_st2:
1972   case Intrinsic::aarch64_neon_st3:
1973   case Intrinsic::aarch64_neon_st4: {
1974     // Create a struct type
1975     StructType *ST = dyn_cast<StructType>(ExpectedType);
1976     if (!ST)
1977       return nullptr;
1978     unsigned NumElts = Inst->arg_size() - 1;
1979     if (ST->getNumElements() != NumElts)
1980       return nullptr;
1981     for (unsigned i = 0, e = NumElts; i != e; ++i) {
1982       if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
1983         return nullptr;
1984     }
1985     Value *Res = UndefValue::get(ExpectedType);
1986     IRBuilder<> Builder(Inst);
1987     for (unsigned i = 0, e = NumElts; i != e; ++i) {
1988       Value *L = Inst->getArgOperand(i);
1989       Res = Builder.CreateInsertValue(Res, L, i);
1990     }
1991     return Res;
1992   }
1993   case Intrinsic::aarch64_neon_ld2:
1994   case Intrinsic::aarch64_neon_ld3:
1995   case Intrinsic::aarch64_neon_ld4:
1996     if (Inst->getType() == ExpectedType)
1997       return Inst;
1998     return nullptr;
1999   }
2000 }
2001 
2002 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
2003                                         MemIntrinsicInfo &Info) {
2004   switch (Inst->getIntrinsicID()) {
2005   default:
2006     break;
2007   case Intrinsic::aarch64_neon_ld2:
2008   case Intrinsic::aarch64_neon_ld3:
2009   case Intrinsic::aarch64_neon_ld4:
2010     Info.ReadMem = true;
2011     Info.WriteMem = false;
2012     Info.PtrVal = Inst->getArgOperand(0);
2013     break;
2014   case Intrinsic::aarch64_neon_st2:
2015   case Intrinsic::aarch64_neon_st3:
2016   case Intrinsic::aarch64_neon_st4:
2017     Info.ReadMem = false;
2018     Info.WriteMem = true;
2019     Info.PtrVal = Inst->getArgOperand(Inst->arg_size() - 1);
2020     break;
2021   }
2022 
2023   switch (Inst->getIntrinsicID()) {
2024   default:
2025     return false;
2026   case Intrinsic::aarch64_neon_ld2:
2027   case Intrinsic::aarch64_neon_st2:
2028     Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
2029     break;
2030   case Intrinsic::aarch64_neon_ld3:
2031   case Intrinsic::aarch64_neon_st3:
2032     Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
2033     break;
2034   case Intrinsic::aarch64_neon_ld4:
2035   case Intrinsic::aarch64_neon_st4:
2036     Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
2037     break;
2038   }
2039   return true;
2040 }
2041 
2042 /// See if \p I should be considered for address type promotion. We check if \p
2043 /// I is a sext with right type and used in memory accesses. If it used in a
2044 /// "complex" getelementptr, we allow it to be promoted without finding other
2045 /// sext instructions that sign extended the same initial value. A getelementptr
2046 /// is considered as "complex" if it has more than 2 operands.
2047 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
2048     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
2049   bool Considerable = false;
2050   AllowPromotionWithoutCommonHeader = false;
2051   if (!isa<SExtInst>(&I))
2052     return false;
2053   Type *ConsideredSExtType =
2054       Type::getInt64Ty(I.getParent()->getParent()->getContext());
2055   if (I.getType() != ConsideredSExtType)
2056     return false;
2057   // See if the sext is the one with the right type and used in at least one
2058   // GetElementPtrInst.
2059   for (const User *U : I.users()) {
2060     if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
2061       Considerable = true;
2062       // A getelementptr is considered as "complex" if it has more than 2
2063       // operands. We will promote a SExt used in such complex GEP as we
2064       // expect some computation to be merged if they are done on 64 bits.
2065       if (GEPInst->getNumOperands() > 2) {
2066         AllowPromotionWithoutCommonHeader = true;
2067         break;
2068       }
2069     }
2070   }
2071   return Considerable;
2072 }
2073 
2074 bool AArch64TTIImpl::isLegalToVectorizeReduction(
2075     const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
2076   if (!VF.isScalable())
2077     return true;
2078 
2079   Type *Ty = RdxDesc.getRecurrenceType();
2080   if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty))
2081     return false;
2082 
2083   switch (RdxDesc.getRecurrenceKind()) {
2084   case RecurKind::Add:
2085   case RecurKind::FAdd:
2086   case RecurKind::And:
2087   case RecurKind::Or:
2088   case RecurKind::Xor:
2089   case RecurKind::SMin:
2090   case RecurKind::SMax:
2091   case RecurKind::UMin:
2092   case RecurKind::UMax:
2093   case RecurKind::FMin:
2094   case RecurKind::FMax:
2095   case RecurKind::SelectICmp:
2096   case RecurKind::SelectFCmp:
2097     return true;
2098   default:
2099     return false;
2100   }
2101 }
2102 
2103 InstructionCost
2104 AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
2105                                        bool IsUnsigned,
2106                                        TTI::TargetCostKind CostKind) {
2107   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
2108 
2109   if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16())
2110     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
2111 
2112   assert((isa<ScalableVectorType>(Ty) == isa<ScalableVectorType>(CondTy)) &&
2113          "Both vector needs to be equally scalable");
2114 
2115   InstructionCost LegalizationCost = 0;
2116   if (LT.first > 1) {
2117     Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext());
2118     unsigned MinMaxOpcode =
2119         Ty->isFPOrFPVectorTy()
2120             ? Intrinsic::maxnum
2121             : (IsUnsigned ? Intrinsic::umin : Intrinsic::smin);
2122     IntrinsicCostAttributes Attrs(MinMaxOpcode, LegalVTy, {LegalVTy, LegalVTy});
2123     LegalizationCost = getIntrinsicInstrCost(Attrs, CostKind) * (LT.first - 1);
2124   }
2125 
2126   return LegalizationCost + /*Cost of horizontal reduction*/ 2;
2127 }
2128 
2129 InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE(
2130     unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) {
2131   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2132   InstructionCost LegalizationCost = 0;
2133   if (LT.first > 1) {
2134     Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext());
2135     LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind);
2136     LegalizationCost *= LT.first - 1;
2137   }
2138 
2139   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2140   assert(ISD && "Invalid opcode");
2141   // Add the final reduction cost for the legal horizontal reduction
2142   switch (ISD) {
2143   case ISD::ADD:
2144   case ISD::AND:
2145   case ISD::OR:
2146   case ISD::XOR:
2147   case ISD::FADD:
2148     return LegalizationCost + 2;
2149   default:
2150     return InstructionCost::getInvalid();
2151   }
2152 }
2153 
2154 InstructionCost
2155 AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
2156                                            Optional<FastMathFlags> FMF,
2157                                            TTI::TargetCostKind CostKind) {
2158   if (TTI::requiresOrderedReduction(FMF)) {
2159     if (auto *FixedVTy = dyn_cast<FixedVectorType>(ValTy)) {
2160       InstructionCost BaseCost =
2161           BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
2162       // Add on extra cost to reflect the extra overhead on some CPUs. We still
2163       // end up vectorizing for more computationally intensive loops.
2164       return BaseCost + FixedVTy->getNumElements();
2165     }
2166 
2167     if (Opcode != Instruction::FAdd)
2168       return InstructionCost::getInvalid();
2169 
2170     auto *VTy = cast<ScalableVectorType>(ValTy);
2171     InstructionCost Cost =
2172         getArithmeticInstrCost(Opcode, VTy->getScalarType(), CostKind);
2173     Cost *= getMaxNumElements(VTy->getElementCount());
2174     return Cost;
2175   }
2176 
2177   if (isa<ScalableVectorType>(ValTy))
2178     return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind);
2179 
2180   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2181   MVT MTy = LT.second;
2182   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2183   assert(ISD && "Invalid opcode");
2184 
2185   // Horizontal adds can use the 'addv' instruction. We model the cost of these
2186   // instructions as twice a normal vector add, plus 1 for each legalization
2187   // step (LT.first). This is the only arithmetic vector reduction operation for
2188   // which we have an instruction.
2189   // OR, XOR and AND costs should match the codegen from:
2190   // OR: llvm/test/CodeGen/AArch64/reduce-or.ll
2191   // XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll
2192   // AND: llvm/test/CodeGen/AArch64/reduce-and.ll
2193   static const CostTblEntry CostTblNoPairwise[]{
2194       {ISD::ADD, MVT::v8i8,   2},
2195       {ISD::ADD, MVT::v16i8,  2},
2196       {ISD::ADD, MVT::v4i16,  2},
2197       {ISD::ADD, MVT::v8i16,  2},
2198       {ISD::ADD, MVT::v4i32,  2},
2199       {ISD::OR,  MVT::v8i8,  15},
2200       {ISD::OR,  MVT::v16i8, 17},
2201       {ISD::OR,  MVT::v4i16,  7},
2202       {ISD::OR,  MVT::v8i16,  9},
2203       {ISD::OR,  MVT::v2i32,  3},
2204       {ISD::OR,  MVT::v4i32,  5},
2205       {ISD::OR,  MVT::v2i64,  3},
2206       {ISD::XOR, MVT::v8i8,  15},
2207       {ISD::XOR, MVT::v16i8, 17},
2208       {ISD::XOR, MVT::v4i16,  7},
2209       {ISD::XOR, MVT::v8i16,  9},
2210       {ISD::XOR, MVT::v2i32,  3},
2211       {ISD::XOR, MVT::v4i32,  5},
2212       {ISD::XOR, MVT::v2i64,  3},
2213       {ISD::AND, MVT::v8i8,  15},
2214       {ISD::AND, MVT::v16i8, 17},
2215       {ISD::AND, MVT::v4i16,  7},
2216       {ISD::AND, MVT::v8i16,  9},
2217       {ISD::AND, MVT::v2i32,  3},
2218       {ISD::AND, MVT::v4i32,  5},
2219       {ISD::AND, MVT::v2i64,  3},
2220   };
2221   switch (ISD) {
2222   default:
2223     break;
2224   case ISD::ADD:
2225     if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
2226       return (LT.first - 1) + Entry->Cost;
2227     break;
2228   case ISD::XOR:
2229   case ISD::AND:
2230   case ISD::OR:
2231     const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy);
2232     if (!Entry)
2233       break;
2234     auto *ValVTy = cast<FixedVectorType>(ValTy);
2235     if (!ValVTy->getElementType()->isIntegerTy(1) &&
2236         MTy.getVectorNumElements() <= ValVTy->getNumElements() &&
2237         isPowerOf2_32(ValVTy->getNumElements())) {
2238       InstructionCost ExtraCost = 0;
2239       if (LT.first != 1) {
2240         // Type needs to be split, so there is an extra cost of LT.first - 1
2241         // arithmetic ops.
2242         auto *Ty = FixedVectorType::get(ValTy->getElementType(),
2243                                         MTy.getVectorNumElements());
2244         ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
2245         ExtraCost *= LT.first - 1;
2246       }
2247       return Entry->Cost + ExtraCost;
2248     }
2249     break;
2250   }
2251   return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
2252 }
2253 
2254 InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) {
2255   static const CostTblEntry ShuffleTbl[] = {
2256       { TTI::SK_Splice, MVT::nxv16i8,  1 },
2257       { TTI::SK_Splice, MVT::nxv8i16,  1 },
2258       { TTI::SK_Splice, MVT::nxv4i32,  1 },
2259       { TTI::SK_Splice, MVT::nxv2i64,  1 },
2260       { TTI::SK_Splice, MVT::nxv2f16,  1 },
2261       { TTI::SK_Splice, MVT::nxv4f16,  1 },
2262       { TTI::SK_Splice, MVT::nxv8f16,  1 },
2263       { TTI::SK_Splice, MVT::nxv2bf16, 1 },
2264       { TTI::SK_Splice, MVT::nxv4bf16, 1 },
2265       { TTI::SK_Splice, MVT::nxv8bf16, 1 },
2266       { TTI::SK_Splice, MVT::nxv2f32,  1 },
2267       { TTI::SK_Splice, MVT::nxv4f32,  1 },
2268       { TTI::SK_Splice, MVT::nxv2f64,  1 },
2269   };
2270 
2271   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
2272   Type *LegalVTy = EVT(LT.second).getTypeForEVT(Tp->getContext());
2273   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
2274   EVT PromotedVT = LT.second.getScalarType() == MVT::i1
2275                        ? TLI->getPromotedVTForPredicate(EVT(LT.second))
2276                        : LT.second;
2277   Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Tp->getContext());
2278   InstructionCost LegalizationCost = 0;
2279   if (Index < 0) {
2280     LegalizationCost =
2281         getCmpSelInstrCost(Instruction::ICmp, PromotedVTy, PromotedVTy,
2282                            CmpInst::BAD_ICMP_PREDICATE, CostKind) +
2283         getCmpSelInstrCost(Instruction::Select, PromotedVTy, LegalVTy,
2284                            CmpInst::BAD_ICMP_PREDICATE, CostKind);
2285   }
2286 
2287   // Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp
2288   // Cost performed on a promoted type.
2289   if (LT.second.getScalarType() == MVT::i1) {
2290     LegalizationCost +=
2291         getCastInstrCost(Instruction::ZExt, PromotedVTy, LegalVTy,
2292                          TTI::CastContextHint::None, CostKind) +
2293         getCastInstrCost(Instruction::Trunc, LegalVTy, PromotedVTy,
2294                          TTI::CastContextHint::None, CostKind);
2295   }
2296   const auto *Entry =
2297       CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT());
2298   assert(Entry && "Illegal Type for Splice");
2299   LegalizationCost += Entry->Cost;
2300   return LegalizationCost * LT.first;
2301 }
2302 
2303 InstructionCost AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
2304                                                VectorType *Tp,
2305                                                ArrayRef<int> Mask, int Index,
2306                                                VectorType *SubTp) {
2307   Kind = improveShuffleKindFromMask(Kind, Mask);
2308   if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
2309       Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc ||
2310       Kind == TTI::SK_Reverse) {
2311     static const CostTblEntry ShuffleTbl[] = {
2312       // Broadcast shuffle kinds can be performed with 'dup'.
2313       { TTI::SK_Broadcast, MVT::v8i8,  1 },
2314       { TTI::SK_Broadcast, MVT::v16i8, 1 },
2315       { TTI::SK_Broadcast, MVT::v4i16, 1 },
2316       { TTI::SK_Broadcast, MVT::v8i16, 1 },
2317       { TTI::SK_Broadcast, MVT::v2i32, 1 },
2318       { TTI::SK_Broadcast, MVT::v4i32, 1 },
2319       { TTI::SK_Broadcast, MVT::v2i64, 1 },
2320       { TTI::SK_Broadcast, MVT::v2f32, 1 },
2321       { TTI::SK_Broadcast, MVT::v4f32, 1 },
2322       { TTI::SK_Broadcast, MVT::v2f64, 1 },
2323       // Transpose shuffle kinds can be performed with 'trn1/trn2' and
2324       // 'zip1/zip2' instructions.
2325       { TTI::SK_Transpose, MVT::v8i8,  1 },
2326       { TTI::SK_Transpose, MVT::v16i8, 1 },
2327       { TTI::SK_Transpose, MVT::v4i16, 1 },
2328       { TTI::SK_Transpose, MVT::v8i16, 1 },
2329       { TTI::SK_Transpose, MVT::v2i32, 1 },
2330       { TTI::SK_Transpose, MVT::v4i32, 1 },
2331       { TTI::SK_Transpose, MVT::v2i64, 1 },
2332       { TTI::SK_Transpose, MVT::v2f32, 1 },
2333       { TTI::SK_Transpose, MVT::v4f32, 1 },
2334       { TTI::SK_Transpose, MVT::v2f64, 1 },
2335       // Select shuffle kinds.
2336       // TODO: handle vXi8/vXi16.
2337       { TTI::SK_Select, MVT::v2i32, 1 }, // mov.
2338       { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar).
2339       { TTI::SK_Select, MVT::v2i64, 1 }, // mov.
2340       { TTI::SK_Select, MVT::v2f32, 1 }, // mov.
2341       { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar).
2342       { TTI::SK_Select, MVT::v2f64, 1 }, // mov.
2343       // PermuteSingleSrc shuffle kinds.
2344       { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov.
2345       { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case.
2346       { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov.
2347       { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov.
2348       { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case.
2349       { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov.
2350       { TTI::SK_PermuteSingleSrc, MVT::v4i16, 3 }, // perfectshuffle worst case.
2351       { TTI::SK_PermuteSingleSrc, MVT::v4f16, 3 }, // perfectshuffle worst case.
2352       { TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3 }, // perfectshuffle worst case.
2353       { TTI::SK_PermuteSingleSrc, MVT::v8i16, 8 }, // constpool + load + tbl
2354       { TTI::SK_PermuteSingleSrc, MVT::v8f16, 8 }, // constpool + load + tbl
2355       { TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8 }, // constpool + load + tbl
2356       { TTI::SK_PermuteSingleSrc, MVT::v8i8, 8 }, // constpool + load + tbl
2357       { TTI::SK_PermuteSingleSrc, MVT::v16i8, 8 }, // constpool + load + tbl
2358       // Reverse can be lowered with `rev`.
2359       { TTI::SK_Reverse, MVT::v2i32, 1 }, // mov.
2360       { TTI::SK_Reverse, MVT::v4i32, 2 }, // REV64; EXT
2361       { TTI::SK_Reverse, MVT::v2i64, 1 }, // mov.
2362       { TTI::SK_Reverse, MVT::v2f32, 1 }, // mov.
2363       { TTI::SK_Reverse, MVT::v4f32, 2 }, // REV64; EXT
2364       { TTI::SK_Reverse, MVT::v2f64, 1 }, // mov.
2365       // Broadcast shuffle kinds for scalable vectors
2366       { TTI::SK_Broadcast, MVT::nxv16i8,  1 },
2367       { TTI::SK_Broadcast, MVT::nxv8i16,  1 },
2368       { TTI::SK_Broadcast, MVT::nxv4i32,  1 },
2369       { TTI::SK_Broadcast, MVT::nxv2i64,  1 },
2370       { TTI::SK_Broadcast, MVT::nxv2f16,  1 },
2371       { TTI::SK_Broadcast, MVT::nxv4f16,  1 },
2372       { TTI::SK_Broadcast, MVT::nxv8f16,  1 },
2373       { TTI::SK_Broadcast, MVT::nxv2bf16, 1 },
2374       { TTI::SK_Broadcast, MVT::nxv4bf16, 1 },
2375       { TTI::SK_Broadcast, MVT::nxv8bf16, 1 },
2376       { TTI::SK_Broadcast, MVT::nxv2f32,  1 },
2377       { TTI::SK_Broadcast, MVT::nxv4f32,  1 },
2378       { TTI::SK_Broadcast, MVT::nxv2f64,  1 },
2379       { TTI::SK_Broadcast, MVT::nxv16i1,  1 },
2380       { TTI::SK_Broadcast, MVT::nxv8i1,   1 },
2381       { TTI::SK_Broadcast, MVT::nxv4i1,   1 },
2382       { TTI::SK_Broadcast, MVT::nxv2i1,   1 },
2383       // Handle the cases for vector.reverse with scalable vectors
2384       { TTI::SK_Reverse, MVT::nxv16i8,  1 },
2385       { TTI::SK_Reverse, MVT::nxv8i16,  1 },
2386       { TTI::SK_Reverse, MVT::nxv4i32,  1 },
2387       { TTI::SK_Reverse, MVT::nxv2i64,  1 },
2388       { TTI::SK_Reverse, MVT::nxv2f16,  1 },
2389       { TTI::SK_Reverse, MVT::nxv4f16,  1 },
2390       { TTI::SK_Reverse, MVT::nxv8f16,  1 },
2391       { TTI::SK_Reverse, MVT::nxv2bf16, 1 },
2392       { TTI::SK_Reverse, MVT::nxv4bf16, 1 },
2393       { TTI::SK_Reverse, MVT::nxv8bf16, 1 },
2394       { TTI::SK_Reverse, MVT::nxv2f32,  1 },
2395       { TTI::SK_Reverse, MVT::nxv4f32,  1 },
2396       { TTI::SK_Reverse, MVT::nxv2f64,  1 },
2397       { TTI::SK_Reverse, MVT::nxv16i1,  1 },
2398       { TTI::SK_Reverse, MVT::nxv8i1,   1 },
2399       { TTI::SK_Reverse, MVT::nxv4i1,   1 },
2400       { TTI::SK_Reverse, MVT::nxv2i1,   1 },
2401     };
2402     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
2403     if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
2404       return LT.first * Entry->Cost;
2405   }
2406   if (Kind == TTI::SK_Splice && isa<ScalableVectorType>(Tp))
2407     return getSpliceCost(Tp, Index);
2408   return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp);
2409 }
2410