1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AArch64TargetTransformInfo.h" 10 #include "AArch64ExpandImm.h" 11 #include "MCTargetDesc/AArch64AddressingModes.h" 12 #include "llvm/Analysis/IVDescriptors.h" 13 #include "llvm/Analysis/LoopInfo.h" 14 #include "llvm/Analysis/TargetTransformInfo.h" 15 #include "llvm/CodeGen/BasicTTIImpl.h" 16 #include "llvm/CodeGen/CostTable.h" 17 #include "llvm/CodeGen/TargetLowering.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/IntrinsicsAArch64.h" 21 #include "llvm/IR/PatternMatch.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Transforms/InstCombine/InstCombiner.h" 24 #include <algorithm> 25 using namespace llvm; 26 using namespace llvm::PatternMatch; 27 28 #define DEBUG_TYPE "aarch64tti" 29 30 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix", 31 cl::init(true), cl::Hidden); 32 33 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller, 34 const Function *Callee) const { 35 const TargetMachine &TM = getTLI()->getTargetMachine(); 36 37 const FeatureBitset &CallerBits = 38 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 39 const FeatureBitset &CalleeBits = 40 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 41 42 // Inline a callee if its target-features are a subset of the callers 43 // target-features. 44 return (CallerBits & CalleeBits) == CalleeBits; 45 } 46 47 /// Calculate the cost of materializing a 64-bit value. This helper 48 /// method might only calculate a fraction of a larger immediate. Therefore it 49 /// is valid to return a cost of ZERO. 50 InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) { 51 // Check if the immediate can be encoded within an instruction. 52 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64)) 53 return 0; 54 55 if (Val < 0) 56 Val = ~Val; 57 58 // Calculate how many moves we will need to materialize this constant. 59 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; 60 AArch64_IMM::expandMOVImm(Val, 64, Insn); 61 return Insn.size(); 62 } 63 64 /// Calculate the cost of materializing the given constant. 65 InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 66 TTI::TargetCostKind CostKind) { 67 assert(Ty->isIntegerTy()); 68 69 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 70 if (BitSize == 0) 71 return ~0U; 72 73 // Sign-extend all constants to a multiple of 64-bit. 74 APInt ImmVal = Imm; 75 if (BitSize & 0x3f) 76 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU); 77 78 // Split the constant into 64-bit chunks and calculate the cost for each 79 // chunk. 80 InstructionCost Cost = 0; 81 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { 82 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); 83 int64_t Val = Tmp.getSExtValue(); 84 Cost += getIntImmCost(Val); 85 } 86 // We need at least one instruction to materialze the constant. 87 return std::max<InstructionCost>(1, Cost); 88 } 89 90 InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 91 const APInt &Imm, Type *Ty, 92 TTI::TargetCostKind CostKind, 93 Instruction *Inst) { 94 assert(Ty->isIntegerTy()); 95 96 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 97 // There is no cost model for constants with a bit size of 0. Return TCC_Free 98 // here, so that constant hoisting will ignore this constant. 99 if (BitSize == 0) 100 return TTI::TCC_Free; 101 102 unsigned ImmIdx = ~0U; 103 switch (Opcode) { 104 default: 105 return TTI::TCC_Free; 106 case Instruction::GetElementPtr: 107 // Always hoist the base address of a GetElementPtr. 108 if (Idx == 0) 109 return 2 * TTI::TCC_Basic; 110 return TTI::TCC_Free; 111 case Instruction::Store: 112 ImmIdx = 0; 113 break; 114 case Instruction::Add: 115 case Instruction::Sub: 116 case Instruction::Mul: 117 case Instruction::UDiv: 118 case Instruction::SDiv: 119 case Instruction::URem: 120 case Instruction::SRem: 121 case Instruction::And: 122 case Instruction::Or: 123 case Instruction::Xor: 124 case Instruction::ICmp: 125 ImmIdx = 1; 126 break; 127 // Always return TCC_Free for the shift value of a shift instruction. 128 case Instruction::Shl: 129 case Instruction::LShr: 130 case Instruction::AShr: 131 if (Idx == 1) 132 return TTI::TCC_Free; 133 break; 134 case Instruction::Trunc: 135 case Instruction::ZExt: 136 case Instruction::SExt: 137 case Instruction::IntToPtr: 138 case Instruction::PtrToInt: 139 case Instruction::BitCast: 140 case Instruction::PHI: 141 case Instruction::Call: 142 case Instruction::Select: 143 case Instruction::Ret: 144 case Instruction::Load: 145 break; 146 } 147 148 if (Idx == ImmIdx) { 149 int NumConstants = (BitSize + 63) / 64; 150 InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 151 return (Cost <= NumConstants * TTI::TCC_Basic) 152 ? static_cast<int>(TTI::TCC_Free) 153 : Cost; 154 } 155 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 156 } 157 158 InstructionCost 159 AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 160 const APInt &Imm, Type *Ty, 161 TTI::TargetCostKind CostKind) { 162 assert(Ty->isIntegerTy()); 163 164 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 165 // There is no cost model for constants with a bit size of 0. Return TCC_Free 166 // here, so that constant hoisting will ignore this constant. 167 if (BitSize == 0) 168 return TTI::TCC_Free; 169 170 // Most (all?) AArch64 intrinsics do not support folding immediates into the 171 // selected instruction, so we compute the materialization cost for the 172 // immediate directly. 173 if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv) 174 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 175 176 switch (IID) { 177 default: 178 return TTI::TCC_Free; 179 case Intrinsic::sadd_with_overflow: 180 case Intrinsic::uadd_with_overflow: 181 case Intrinsic::ssub_with_overflow: 182 case Intrinsic::usub_with_overflow: 183 case Intrinsic::smul_with_overflow: 184 case Intrinsic::umul_with_overflow: 185 if (Idx == 1) { 186 int NumConstants = (BitSize + 63) / 64; 187 InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 188 return (Cost <= NumConstants * TTI::TCC_Basic) 189 ? static_cast<int>(TTI::TCC_Free) 190 : Cost; 191 } 192 break; 193 case Intrinsic::experimental_stackmap: 194 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 195 return TTI::TCC_Free; 196 break; 197 case Intrinsic::experimental_patchpoint_void: 198 case Intrinsic::experimental_patchpoint_i64: 199 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 200 return TTI::TCC_Free; 201 break; 202 case Intrinsic::experimental_gc_statepoint: 203 if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 204 return TTI::TCC_Free; 205 break; 206 } 207 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 208 } 209 210 TargetTransformInfo::PopcntSupportKind 211 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) { 212 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 213 if (TyWidth == 32 || TyWidth == 64) 214 return TTI::PSK_FastHardware; 215 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount. 216 return TTI::PSK_Software; 217 } 218 219 InstructionCost 220 AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 221 TTI::TargetCostKind CostKind) { 222 auto *RetTy = ICA.getReturnType(); 223 switch (ICA.getID()) { 224 case Intrinsic::umin: 225 case Intrinsic::umax: 226 case Intrinsic::smin: 227 case Intrinsic::smax: { 228 static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 229 MVT::v8i16, MVT::v2i32, MVT::v4i32}; 230 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 231 // v2i64 types get converted to cmp+bif hence the cost of 2 232 if (LT.second == MVT::v2i64) 233 return LT.first * 2; 234 if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; })) 235 return LT.first; 236 break; 237 } 238 case Intrinsic::sadd_sat: 239 case Intrinsic::ssub_sat: 240 case Intrinsic::uadd_sat: 241 case Intrinsic::usub_sat: { 242 static const auto ValidSatTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 243 MVT::v8i16, MVT::v2i32, MVT::v4i32, 244 MVT::v2i64}; 245 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 246 // This is a base cost of 1 for the vadd, plus 3 extract shifts if we 247 // need to extend the type, as it uses shr(qadd(shl, shl)). 248 unsigned Instrs = 249 LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4; 250 if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; })) 251 return LT.first * Instrs; 252 break; 253 } 254 case Intrinsic::abs: { 255 static const auto ValidAbsTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 256 MVT::v8i16, MVT::v2i32, MVT::v4i32, 257 MVT::v2i64}; 258 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 259 if (any_of(ValidAbsTys, [<](MVT M) { return M == LT.second; })) 260 return LT.first; 261 break; 262 } 263 case Intrinsic::experimental_stepvector: { 264 InstructionCost Cost = 1; // Cost of the `index' instruction 265 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 266 // Legalisation of illegal vectors involves an `index' instruction plus 267 // (LT.first - 1) vector adds. 268 if (LT.first > 1) { 269 Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext()); 270 InstructionCost AddCost = 271 getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind); 272 Cost += AddCost * (LT.first - 1); 273 } 274 return Cost; 275 } 276 case Intrinsic::bitreverse: { 277 static const CostTblEntry BitreverseTbl[] = { 278 {Intrinsic::bitreverse, MVT::i32, 1}, 279 {Intrinsic::bitreverse, MVT::i64, 1}, 280 {Intrinsic::bitreverse, MVT::v8i8, 1}, 281 {Intrinsic::bitreverse, MVT::v16i8, 1}, 282 {Intrinsic::bitreverse, MVT::v4i16, 2}, 283 {Intrinsic::bitreverse, MVT::v8i16, 2}, 284 {Intrinsic::bitreverse, MVT::v2i32, 2}, 285 {Intrinsic::bitreverse, MVT::v4i32, 2}, 286 {Intrinsic::bitreverse, MVT::v1i64, 2}, 287 {Intrinsic::bitreverse, MVT::v2i64, 2}, 288 }; 289 const auto LegalisationCost = TLI->getTypeLegalizationCost(DL, RetTy); 290 const auto *Entry = 291 CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second); 292 if (Entry) { 293 // Cost Model is using the legal type(i32) that i8 and i16 will be 294 // converted to +1 so that we match the actual lowering cost 295 if (TLI->getValueType(DL, RetTy, true) == MVT::i8 || 296 TLI->getValueType(DL, RetTy, true) == MVT::i16) 297 return LegalisationCost.first * Entry->Cost + 1; 298 299 return LegalisationCost.first * Entry->Cost; 300 } 301 break; 302 } 303 case Intrinsic::ctpop: { 304 static const CostTblEntry CtpopCostTbl[] = { 305 {ISD::CTPOP, MVT::v2i64, 4}, 306 {ISD::CTPOP, MVT::v4i32, 3}, 307 {ISD::CTPOP, MVT::v8i16, 2}, 308 {ISD::CTPOP, MVT::v16i8, 1}, 309 {ISD::CTPOP, MVT::i64, 4}, 310 {ISD::CTPOP, MVT::v2i32, 3}, 311 {ISD::CTPOP, MVT::v4i16, 2}, 312 {ISD::CTPOP, MVT::v8i8, 1}, 313 {ISD::CTPOP, MVT::i32, 5}, 314 }; 315 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 316 MVT MTy = LT.second; 317 if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) { 318 // Extra cost of +1 when illegal vector types are legalized by promoting 319 // the integer type. 320 int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() != 321 RetTy->getScalarSizeInBits() 322 ? 1 323 : 0; 324 return LT.first * Entry->Cost + ExtraCost; 325 } 326 break; 327 } 328 default: 329 break; 330 } 331 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 332 } 333 334 /// The function will remove redundant reinterprets casting in the presence 335 /// of the control flow 336 static Optional<Instruction *> processPhiNode(InstCombiner &IC, 337 IntrinsicInst &II) { 338 SmallVector<Instruction *, 32> Worklist; 339 auto RequiredType = II.getType(); 340 341 auto *PN = dyn_cast<PHINode>(II.getArgOperand(0)); 342 assert(PN && "Expected Phi Node!"); 343 344 // Don't create a new Phi unless we can remove the old one. 345 if (!PN->hasOneUse()) 346 return None; 347 348 for (Value *IncValPhi : PN->incoming_values()) { 349 auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi); 350 if (!Reinterpret || 351 Reinterpret->getIntrinsicID() != 352 Intrinsic::aarch64_sve_convert_to_svbool || 353 RequiredType != Reinterpret->getArgOperand(0)->getType()) 354 return None; 355 } 356 357 // Create the new Phi 358 LLVMContext &Ctx = PN->getContext(); 359 IRBuilder<> Builder(Ctx); 360 Builder.SetInsertPoint(PN); 361 PHINode *NPN = Builder.CreatePHI(RequiredType, PN->getNumIncomingValues()); 362 Worklist.push_back(PN); 363 364 for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) { 365 auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I)); 366 NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I)); 367 Worklist.push_back(Reinterpret); 368 } 369 370 // Cleanup Phi Node and reinterprets 371 return IC.replaceInstUsesWith(II, NPN); 372 } 373 374 static Optional<Instruction *> instCombineConvertFromSVBool(InstCombiner &IC, 375 IntrinsicInst &II) { 376 // If the reinterpret instruction operand is a PHI Node 377 if (isa<PHINode>(II.getArgOperand(0))) 378 return processPhiNode(IC, II); 379 380 SmallVector<Instruction *, 32> CandidatesForRemoval; 381 Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr; 382 383 const auto *IVTy = cast<VectorType>(II.getType()); 384 385 // Walk the chain of conversions. 386 while (Cursor) { 387 // If the type of the cursor has fewer lanes than the final result, zeroing 388 // must take place, which breaks the equivalence chain. 389 const auto *CursorVTy = cast<VectorType>(Cursor->getType()); 390 if (CursorVTy->getElementCount().getKnownMinValue() < 391 IVTy->getElementCount().getKnownMinValue()) 392 break; 393 394 // If the cursor has the same type as I, it is a viable replacement. 395 if (Cursor->getType() == IVTy) 396 EarliestReplacement = Cursor; 397 398 auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor); 399 400 // If this is not an SVE conversion intrinsic, this is the end of the chain. 401 if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() == 402 Intrinsic::aarch64_sve_convert_to_svbool || 403 IntrinsicCursor->getIntrinsicID() == 404 Intrinsic::aarch64_sve_convert_from_svbool)) 405 break; 406 407 CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor); 408 Cursor = IntrinsicCursor->getOperand(0); 409 } 410 411 // If no viable replacement in the conversion chain was found, there is 412 // nothing to do. 413 if (!EarliestReplacement) 414 return None; 415 416 return IC.replaceInstUsesWith(II, EarliestReplacement); 417 } 418 419 static Optional<Instruction *> instCombineSVEDup(InstCombiner &IC, 420 IntrinsicInst &II) { 421 IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(1)); 422 if (!Pg) 423 return None; 424 425 if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) 426 return None; 427 428 const auto PTruePattern = 429 cast<ConstantInt>(Pg->getOperand(0))->getZExtValue(); 430 if (PTruePattern != AArch64SVEPredPattern::vl1) 431 return None; 432 433 // The intrinsic is inserting into lane zero so use an insert instead. 434 auto *IdxTy = Type::getInt64Ty(II.getContext()); 435 auto *Insert = InsertElementInst::Create( 436 II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0)); 437 Insert->insertBefore(&II); 438 Insert->takeName(&II); 439 440 return IC.replaceInstUsesWith(II, Insert); 441 } 442 443 static Optional<Instruction *> instCombineSVEDupX(InstCombiner &IC, 444 IntrinsicInst &II) { 445 // Replace DupX with a regular IR splat. 446 IRBuilder<> Builder(II.getContext()); 447 Builder.SetInsertPoint(&II); 448 auto *RetTy = cast<ScalableVectorType>(II.getType()); 449 Value *Splat = 450 Builder.CreateVectorSplat(RetTy->getElementCount(), II.getArgOperand(0)); 451 Splat->takeName(&II); 452 return IC.replaceInstUsesWith(II, Splat); 453 } 454 455 static Optional<Instruction *> instCombineSVECmpNE(InstCombiner &IC, 456 IntrinsicInst &II) { 457 LLVMContext &Ctx = II.getContext(); 458 IRBuilder<> Builder(Ctx); 459 Builder.SetInsertPoint(&II); 460 461 // Check that the predicate is all active 462 auto *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(0)); 463 if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) 464 return None; 465 466 const auto PTruePattern = 467 cast<ConstantInt>(Pg->getOperand(0))->getZExtValue(); 468 if (PTruePattern != AArch64SVEPredPattern::all) 469 return None; 470 471 // Check that we have a compare of zero.. 472 auto *SplatValue = 473 dyn_cast_or_null<ConstantInt>(getSplatValue(II.getArgOperand(2))); 474 if (!SplatValue || !SplatValue->isZero()) 475 return None; 476 477 // ..against a dupq 478 auto *DupQLane = dyn_cast<IntrinsicInst>(II.getArgOperand(1)); 479 if (!DupQLane || 480 DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane) 481 return None; 482 483 // Where the dupq is a lane 0 replicate of a vector insert 484 if (!cast<ConstantInt>(DupQLane->getArgOperand(1))->isZero()) 485 return None; 486 487 auto *VecIns = dyn_cast<IntrinsicInst>(DupQLane->getArgOperand(0)); 488 if (!VecIns || 489 VecIns->getIntrinsicID() != Intrinsic::experimental_vector_insert) 490 return None; 491 492 // Where the vector insert is a fixed constant vector insert into undef at 493 // index zero 494 if (!isa<UndefValue>(VecIns->getArgOperand(0))) 495 return None; 496 497 if (!cast<ConstantInt>(VecIns->getArgOperand(2))->isZero()) 498 return None; 499 500 auto *ConstVec = dyn_cast<Constant>(VecIns->getArgOperand(1)); 501 if (!ConstVec) 502 return None; 503 504 auto *VecTy = dyn_cast<FixedVectorType>(ConstVec->getType()); 505 auto *OutTy = dyn_cast<ScalableVectorType>(II.getType()); 506 if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements()) 507 return None; 508 509 unsigned NumElts = VecTy->getNumElements(); 510 unsigned PredicateBits = 0; 511 512 // Expand intrinsic operands to a 16-bit byte level predicate 513 for (unsigned I = 0; I < NumElts; ++I) { 514 auto *Arg = dyn_cast<ConstantInt>(ConstVec->getAggregateElement(I)); 515 if (!Arg) 516 return None; 517 if (!Arg->isZero()) 518 PredicateBits |= 1 << (I * (16 / NumElts)); 519 } 520 521 // If all bits are zero bail early with an empty predicate 522 if (PredicateBits == 0) { 523 auto *PFalse = Constant::getNullValue(II.getType()); 524 PFalse->takeName(&II); 525 return IC.replaceInstUsesWith(II, PFalse); 526 } 527 528 // Calculate largest predicate type used (where byte predicate is largest) 529 unsigned Mask = 8; 530 for (unsigned I = 0; I < 16; ++I) 531 if ((PredicateBits & (1 << I)) != 0) 532 Mask |= (I % 8); 533 534 unsigned PredSize = Mask & -Mask; 535 auto *PredType = ScalableVectorType::get( 536 Type::getInt1Ty(Ctx), AArch64::SVEBitsPerBlock / (PredSize * 8)); 537 538 // Ensure all relevant bits are set 539 for (unsigned I = 0; I < 16; I += PredSize) 540 if ((PredicateBits & (1 << I)) == 0) 541 return None; 542 543 auto *PTruePat = 544 ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all); 545 auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, 546 {PredType}, {PTruePat}); 547 auto *ConvertToSVBool = Builder.CreateIntrinsic( 548 Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue}); 549 auto *ConvertFromSVBool = 550 Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, 551 {II.getType()}, {ConvertToSVBool}); 552 553 ConvertFromSVBool->takeName(&II); 554 return IC.replaceInstUsesWith(II, ConvertFromSVBool); 555 } 556 557 static Optional<Instruction *> instCombineSVELast(InstCombiner &IC, 558 IntrinsicInst &II) { 559 IRBuilder<> Builder(II.getContext()); 560 Builder.SetInsertPoint(&II); 561 Value *Pg = II.getArgOperand(0); 562 Value *Vec = II.getArgOperand(1); 563 auto IntrinsicID = II.getIntrinsicID(); 564 bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta; 565 566 // lastX(splat(X)) --> X 567 if (auto *SplatVal = getSplatValue(Vec)) 568 return IC.replaceInstUsesWith(II, SplatVal); 569 570 // If x and/or y is a splat value then: 571 // lastX (binop (x, y)) --> binop(lastX(x), lastX(y)) 572 Value *LHS, *RHS; 573 if (match(Vec, m_OneUse(m_BinOp(m_Value(LHS), m_Value(RHS))))) { 574 if (isSplatValue(LHS) || isSplatValue(RHS)) { 575 auto *OldBinOp = cast<BinaryOperator>(Vec); 576 auto OpC = OldBinOp->getOpcode(); 577 auto *NewLHS = 578 Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, LHS}); 579 auto *NewRHS = 580 Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, RHS}); 581 auto *NewBinOp = BinaryOperator::CreateWithCopiedFlags( 582 OpC, NewLHS, NewRHS, OldBinOp, OldBinOp->getName(), &II); 583 return IC.replaceInstUsesWith(II, NewBinOp); 584 } 585 } 586 587 auto *C = dyn_cast<Constant>(Pg); 588 if (IsAfter && C && C->isNullValue()) { 589 // The intrinsic is extracting lane 0 so use an extract instead. 590 auto *IdxTy = Type::getInt64Ty(II.getContext()); 591 auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0)); 592 Extract->insertBefore(&II); 593 Extract->takeName(&II); 594 return IC.replaceInstUsesWith(II, Extract); 595 } 596 597 auto *IntrPG = dyn_cast<IntrinsicInst>(Pg); 598 if (!IntrPG) 599 return None; 600 601 if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) 602 return None; 603 604 const auto PTruePattern = 605 cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue(); 606 607 // Can the intrinsic's predicate be converted to a known constant index? 608 unsigned MinNumElts = getNumElementsFromSVEPredPattern(PTruePattern); 609 if (!MinNumElts) 610 return None; 611 612 unsigned Idx = MinNumElts - 1; 613 // Increment the index if extracting the element after the last active 614 // predicate element. 615 if (IsAfter) 616 ++Idx; 617 618 // Ignore extracts whose index is larger than the known minimum vector 619 // length. NOTE: This is an artificial constraint where we prefer to 620 // maintain what the user asked for until an alternative is proven faster. 621 auto *PgVTy = cast<ScalableVectorType>(Pg->getType()); 622 if (Idx >= PgVTy->getMinNumElements()) 623 return None; 624 625 // The intrinsic is extracting a fixed lane so use an extract instead. 626 auto *IdxTy = Type::getInt64Ty(II.getContext()); 627 auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx)); 628 Extract->insertBefore(&II); 629 Extract->takeName(&II); 630 return IC.replaceInstUsesWith(II, Extract); 631 } 632 633 static Optional<Instruction *> instCombineRDFFR(InstCombiner &IC, 634 IntrinsicInst &II) { 635 LLVMContext &Ctx = II.getContext(); 636 IRBuilder<> Builder(Ctx); 637 Builder.SetInsertPoint(&II); 638 // Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr 639 // can work with RDFFR_PP for ptest elimination. 640 auto *AllPat = 641 ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all); 642 auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, 643 {II.getType()}, {AllPat}); 644 auto *RDFFR = 645 Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue}); 646 RDFFR->takeName(&II); 647 return IC.replaceInstUsesWith(II, RDFFR); 648 } 649 650 static Optional<Instruction *> 651 instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) { 652 const auto Pattern = cast<ConstantInt>(II.getArgOperand(0))->getZExtValue(); 653 654 if (Pattern == AArch64SVEPredPattern::all) { 655 LLVMContext &Ctx = II.getContext(); 656 IRBuilder<> Builder(Ctx); 657 Builder.SetInsertPoint(&II); 658 659 Constant *StepVal = ConstantInt::get(II.getType(), NumElts); 660 auto *VScale = Builder.CreateVScale(StepVal); 661 VScale->takeName(&II); 662 return IC.replaceInstUsesWith(II, VScale); 663 } 664 665 unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern); 666 667 return MinNumElts && NumElts >= MinNumElts 668 ? Optional<Instruction *>(IC.replaceInstUsesWith( 669 II, ConstantInt::get(II.getType(), MinNumElts))) 670 : None; 671 } 672 673 static Optional<Instruction *> instCombineSVEPTest(InstCombiner &IC, 674 IntrinsicInst &II) { 675 IntrinsicInst *Op1 = dyn_cast<IntrinsicInst>(II.getArgOperand(0)); 676 IntrinsicInst *Op2 = dyn_cast<IntrinsicInst>(II.getArgOperand(1)); 677 678 if (Op1 && Op2 && 679 Op1->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool && 680 Op2->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool && 681 Op1->getArgOperand(0)->getType() == Op2->getArgOperand(0)->getType()) { 682 683 IRBuilder<> Builder(II.getContext()); 684 Builder.SetInsertPoint(&II); 685 686 Value *Ops[] = {Op1->getArgOperand(0), Op2->getArgOperand(0)}; 687 Type *Tys[] = {Op1->getArgOperand(0)->getType()}; 688 689 auto *PTest = Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops); 690 691 PTest->takeName(&II); 692 return IC.replaceInstUsesWith(II, PTest); 693 } 694 695 return None; 696 } 697 698 static Instruction::BinaryOps intrinsicIDToBinOpCode(unsigned Intrinsic) { 699 switch (Intrinsic) { 700 case Intrinsic::aarch64_sve_fmul: 701 return Instruction::BinaryOps::FMul; 702 case Intrinsic::aarch64_sve_fadd: 703 return Instruction::BinaryOps::FAdd; 704 case Intrinsic::aarch64_sve_fsub: 705 return Instruction::BinaryOps::FSub; 706 default: 707 return Instruction::BinaryOpsEnd; 708 } 709 } 710 711 static Optional<Instruction *> instCombineSVEVectorBinOp(InstCombiner &IC, 712 IntrinsicInst &II) { 713 auto *OpPredicate = II.getOperand(0); 714 auto BinOpCode = intrinsicIDToBinOpCode(II.getIntrinsicID()); 715 if (BinOpCode == Instruction::BinaryOpsEnd || 716 !match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>( 717 m_ConstantInt<AArch64SVEPredPattern::all>()))) 718 return None; 719 IRBuilder<> Builder(II.getContext()); 720 Builder.SetInsertPoint(&II); 721 Builder.setFastMathFlags(II.getFastMathFlags()); 722 auto BinOp = 723 Builder.CreateBinOp(BinOpCode, II.getOperand(1), II.getOperand(2)); 724 return IC.replaceInstUsesWith(II, BinOp); 725 } 726 727 static Optional<Instruction *> instCombineSVEVectorMul(InstCombiner &IC, 728 IntrinsicInst &II) { 729 auto *OpPredicate = II.getOperand(0); 730 auto *OpMultiplicand = II.getOperand(1); 731 auto *OpMultiplier = II.getOperand(2); 732 733 IRBuilder<> Builder(II.getContext()); 734 Builder.SetInsertPoint(&II); 735 736 // Return true if a given instruction is a unit splat value, false otherwise. 737 auto IsUnitSplat = [](auto *I) { 738 auto *SplatValue = getSplatValue(I); 739 if (!SplatValue) 740 return false; 741 return match(SplatValue, m_FPOne()) || match(SplatValue, m_One()); 742 }; 743 744 // Return true if a given instruction is an aarch64_sve_dup intrinsic call 745 // with a unit splat value, false otherwise. 746 auto IsUnitDup = [](auto *I) { 747 auto *IntrI = dyn_cast<IntrinsicInst>(I); 748 if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup) 749 return false; 750 751 auto *SplatValue = IntrI->getOperand(2); 752 return match(SplatValue, m_FPOne()) || match(SplatValue, m_One()); 753 }; 754 755 // The OpMultiplier variable should always point to the dup (if any), so 756 // swap if necessary. 757 if (IsUnitDup(OpMultiplicand) || IsUnitSplat(OpMultiplicand)) 758 std::swap(OpMultiplier, OpMultiplicand); 759 760 if (IsUnitSplat(OpMultiplier)) { 761 // [f]mul pg (dupx 1) %n => %n 762 OpMultiplicand->takeName(&II); 763 return IC.replaceInstUsesWith(II, OpMultiplicand); 764 } else if (IsUnitDup(OpMultiplier)) { 765 // [f]mul pg (dup pg 1) %n => %n 766 auto *DupInst = cast<IntrinsicInst>(OpMultiplier); 767 auto *DupPg = DupInst->getOperand(1); 768 // TODO: this is naive. The optimization is still valid if DupPg 769 // 'encompasses' OpPredicate, not only if they're the same predicate. 770 if (OpPredicate == DupPg) { 771 OpMultiplicand->takeName(&II); 772 return IC.replaceInstUsesWith(II, OpMultiplicand); 773 } 774 } 775 776 return instCombineSVEVectorBinOp(IC, II); 777 } 778 779 static Optional<Instruction *> instCombineSVEUnpack(InstCombiner &IC, 780 IntrinsicInst &II) { 781 IRBuilder<> Builder(II.getContext()); 782 Builder.SetInsertPoint(&II); 783 Value *UnpackArg = II.getArgOperand(0); 784 auto *RetTy = cast<ScalableVectorType>(II.getType()); 785 bool IsSigned = II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi || 786 II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo; 787 788 // Hi = uunpkhi(splat(X)) --> Hi = splat(extend(X)) 789 // Lo = uunpklo(splat(X)) --> Lo = splat(extend(X)) 790 if (auto *ScalarArg = getSplatValue(UnpackArg)) { 791 ScalarArg = 792 Builder.CreateIntCast(ScalarArg, RetTy->getScalarType(), IsSigned); 793 Value *NewVal = 794 Builder.CreateVectorSplat(RetTy->getElementCount(), ScalarArg); 795 NewVal->takeName(&II); 796 return IC.replaceInstUsesWith(II, NewVal); 797 } 798 799 return None; 800 } 801 static Optional<Instruction *> instCombineSVETBL(InstCombiner &IC, 802 IntrinsicInst &II) { 803 auto *OpVal = II.getOperand(0); 804 auto *OpIndices = II.getOperand(1); 805 VectorType *VTy = cast<VectorType>(II.getType()); 806 807 // Check whether OpIndices is a constant splat value < minimal element count 808 // of result. 809 auto *SplatValue = dyn_cast_or_null<ConstantInt>(getSplatValue(OpIndices)); 810 if (!SplatValue || 811 SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue())) 812 return None; 813 814 // Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to 815 // splat_vector(extractelement(OpVal, SplatValue)) for further optimization. 816 IRBuilder<> Builder(II.getContext()); 817 Builder.SetInsertPoint(&II); 818 auto *Extract = Builder.CreateExtractElement(OpVal, SplatValue); 819 auto *VectorSplat = 820 Builder.CreateVectorSplat(VTy->getElementCount(), Extract); 821 822 VectorSplat->takeName(&II); 823 return IC.replaceInstUsesWith(II, VectorSplat); 824 } 825 826 static Optional<Instruction *> instCombineSVETupleGet(InstCombiner &IC, 827 IntrinsicInst &II) { 828 // Try to remove sequences of tuple get/set. 829 Value *SetTuple, *SetIndex, *SetValue; 830 auto *GetTuple = II.getArgOperand(0); 831 auto *GetIndex = II.getArgOperand(1); 832 // Check that we have tuple_get(GetTuple, GetIndex) where GetTuple is a 833 // call to tuple_set i.e. tuple_set(SetTuple, SetIndex, SetValue). 834 // Make sure that the types of the current intrinsic and SetValue match 835 // in order to safely remove the sequence. 836 if (!match(GetTuple, 837 m_Intrinsic<Intrinsic::aarch64_sve_tuple_set>( 838 m_Value(SetTuple), m_Value(SetIndex), m_Value(SetValue))) || 839 SetValue->getType() != II.getType()) 840 return None; 841 // Case where we get the same index right after setting it. 842 // tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex) --> SetValue 843 if (GetIndex == SetIndex) 844 return IC.replaceInstUsesWith(II, SetValue); 845 // If we are getting a different index than what was set in the tuple_set 846 // intrinsic. We can just set the input tuple to the one up in the chain. 847 // tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex) 848 // --> tuple_get(SetTuple, GetIndex) 849 return IC.replaceOperand(II, 0, SetTuple); 850 } 851 852 static Optional<Instruction *> instCombineSVEZip(InstCombiner &IC, 853 IntrinsicInst &II) { 854 // zip1(uzp1(A, B), uzp2(A, B)) --> A 855 // zip2(uzp1(A, B), uzp2(A, B)) --> B 856 Value *A, *B; 857 if (match(II.getArgOperand(0), 858 m_Intrinsic<Intrinsic::aarch64_sve_uzp1>(m_Value(A), m_Value(B))) && 859 match(II.getArgOperand(1), m_Intrinsic<Intrinsic::aarch64_sve_uzp2>( 860 m_Specific(A), m_Specific(B)))) 861 return IC.replaceInstUsesWith( 862 II, (II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ? A : B)); 863 864 return None; 865 } 866 867 Optional<Instruction *> 868 AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC, 869 IntrinsicInst &II) const { 870 Intrinsic::ID IID = II.getIntrinsicID(); 871 switch (IID) { 872 default: 873 break; 874 case Intrinsic::aarch64_sve_convert_from_svbool: 875 return instCombineConvertFromSVBool(IC, II); 876 case Intrinsic::aarch64_sve_dup: 877 return instCombineSVEDup(IC, II); 878 case Intrinsic::aarch64_sve_dup_x: 879 return instCombineSVEDupX(IC, II); 880 case Intrinsic::aarch64_sve_cmpne: 881 case Intrinsic::aarch64_sve_cmpne_wide: 882 return instCombineSVECmpNE(IC, II); 883 case Intrinsic::aarch64_sve_rdffr: 884 return instCombineRDFFR(IC, II); 885 case Intrinsic::aarch64_sve_lasta: 886 case Intrinsic::aarch64_sve_lastb: 887 return instCombineSVELast(IC, II); 888 case Intrinsic::aarch64_sve_cntd: 889 return instCombineSVECntElts(IC, II, 2); 890 case Intrinsic::aarch64_sve_cntw: 891 return instCombineSVECntElts(IC, II, 4); 892 case Intrinsic::aarch64_sve_cnth: 893 return instCombineSVECntElts(IC, II, 8); 894 case Intrinsic::aarch64_sve_cntb: 895 return instCombineSVECntElts(IC, II, 16); 896 case Intrinsic::aarch64_sve_ptest_any: 897 case Intrinsic::aarch64_sve_ptest_first: 898 case Intrinsic::aarch64_sve_ptest_last: 899 return instCombineSVEPTest(IC, II); 900 case Intrinsic::aarch64_sve_mul: 901 case Intrinsic::aarch64_sve_fmul: 902 return instCombineSVEVectorMul(IC, II); 903 case Intrinsic::aarch64_sve_fadd: 904 case Intrinsic::aarch64_sve_fsub: 905 return instCombineSVEVectorBinOp(IC, II); 906 case Intrinsic::aarch64_sve_tbl: 907 return instCombineSVETBL(IC, II); 908 case Intrinsic::aarch64_sve_uunpkhi: 909 case Intrinsic::aarch64_sve_uunpklo: 910 case Intrinsic::aarch64_sve_sunpkhi: 911 case Intrinsic::aarch64_sve_sunpklo: 912 return instCombineSVEUnpack(IC, II); 913 case Intrinsic::aarch64_sve_tuple_get: 914 return instCombineSVETupleGet(IC, II); 915 case Intrinsic::aarch64_sve_zip1: 916 case Intrinsic::aarch64_sve_zip2: 917 return instCombineSVEZip(IC, II); 918 } 919 920 return None; 921 } 922 923 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode, 924 ArrayRef<const Value *> Args) { 925 926 // A helper that returns a vector type from the given type. The number of 927 // elements in type Ty determine the vector width. 928 auto toVectorTy = [&](Type *ArgTy) { 929 return VectorType::get(ArgTy->getScalarType(), 930 cast<VectorType>(DstTy)->getElementCount()); 931 }; 932 933 // Exit early if DstTy is not a vector type whose elements are at least 934 // 16-bits wide. 935 if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16) 936 return false; 937 938 // Determine if the operation has a widening variant. We consider both the 939 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the 940 // instructions. 941 // 942 // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we 943 // verify that their extending operands are eliminated during code 944 // generation. 945 switch (Opcode) { 946 case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2). 947 case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2). 948 break; 949 default: 950 return false; 951 } 952 953 // To be a widening instruction (either the "wide" or "long" versions), the 954 // second operand must be a sign- or zero extend having a single user. We 955 // only consider extends having a single user because they may otherwise not 956 // be eliminated. 957 if (Args.size() != 2 || 958 (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) || 959 !Args[1]->hasOneUse()) 960 return false; 961 auto *Extend = cast<CastInst>(Args[1]); 962 963 // Legalize the destination type and ensure it can be used in a widening 964 // operation. 965 auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy); 966 unsigned DstElTySize = DstTyL.second.getScalarSizeInBits(); 967 if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits()) 968 return false; 969 970 // Legalize the source type and ensure it can be used in a widening 971 // operation. 972 auto *SrcTy = toVectorTy(Extend->getSrcTy()); 973 auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy); 974 unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits(); 975 if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits()) 976 return false; 977 978 // Get the total number of vector elements in the legalized types. 979 InstructionCost NumDstEls = 980 DstTyL.first * DstTyL.second.getVectorMinNumElements(); 981 InstructionCost NumSrcEls = 982 SrcTyL.first * SrcTyL.second.getVectorMinNumElements(); 983 984 // Return true if the legalized types have the same number of vector elements 985 // and the destination element type size is twice that of the source type. 986 return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize; 987 } 988 989 InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 990 Type *Src, 991 TTI::CastContextHint CCH, 992 TTI::TargetCostKind CostKind, 993 const Instruction *I) { 994 int ISD = TLI->InstructionOpcodeToISD(Opcode); 995 assert(ISD && "Invalid opcode"); 996 997 // If the cast is observable, and it is used by a widening instruction (e.g., 998 // uaddl, saddw, etc.), it may be free. 999 if (I && I->hasOneUse()) { 1000 auto *SingleUser = cast<Instruction>(*I->user_begin()); 1001 SmallVector<const Value *, 4> Operands(SingleUser->operand_values()); 1002 if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) { 1003 // If the cast is the second operand, it is free. We will generate either 1004 // a "wide" or "long" version of the widening instruction. 1005 if (I == SingleUser->getOperand(1)) 1006 return 0; 1007 // If the cast is not the second operand, it will be free if it looks the 1008 // same as the second operand. In this case, we will generate a "long" 1009 // version of the widening instruction. 1010 if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1))) 1011 if (I->getOpcode() == unsigned(Cast->getOpcode()) && 1012 cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy()) 1013 return 0; 1014 } 1015 } 1016 1017 // TODO: Allow non-throughput costs that aren't binary. 1018 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { 1019 if (CostKind != TTI::TCK_RecipThroughput) 1020 return Cost == 0 ? 0 : 1; 1021 return Cost; 1022 }; 1023 1024 EVT SrcTy = TLI->getValueType(DL, Src); 1025 EVT DstTy = TLI->getValueType(DL, Dst); 1026 1027 if (!SrcTy.isSimple() || !DstTy.isSimple()) 1028 return AdjustCost( 1029 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 1030 1031 static const TypeConversionCostTblEntry 1032 ConversionTbl[] = { 1033 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 1034 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 1035 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 1036 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 1037 1038 // Truncations on nxvmiN 1039 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 }, 1040 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 }, 1041 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 }, 1042 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 }, 1043 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 }, 1044 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 }, 1045 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 }, 1046 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 }, 1047 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 }, 1048 { ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 1 }, 1049 { ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 }, 1050 { ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 }, 1051 { ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 }, 1052 { ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 }, 1053 { ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 }, 1054 { ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 }, 1055 1056 // The number of shll instructions for the extension. 1057 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 1058 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 1059 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 1060 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 1061 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 1062 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 1063 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 1064 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 1065 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 1066 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 1067 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 1068 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 1069 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 1070 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 1071 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 1072 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 1073 1074 // LowerVectorINT_TO_FP: 1075 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 1076 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 1077 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 1078 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 1079 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 1080 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 1081 1082 // Complex: to v2f32 1083 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 1084 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 1085 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 1086 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 1087 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 1088 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 1089 1090 // Complex: to v4f32 1091 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 }, 1092 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 1093 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 1094 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 1095 1096 // Complex: to v8f32 1097 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 1098 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 1099 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 1100 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 1101 1102 // Complex: to v16f32 1103 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 1104 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 1105 1106 // Complex: to v2f64 1107 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 1108 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 1109 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 1110 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 1111 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 1112 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 1113 1114 1115 // LowerVectorFP_TO_INT 1116 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 }, 1117 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 1118 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, 1119 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, 1120 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 1121 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, 1122 1123 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext). 1124 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 }, 1125 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 }, 1126 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 }, 1127 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 }, 1128 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 }, 1129 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 }, 1130 1131 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2 1132 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 1133 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 }, 1134 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 1135 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 }, 1136 1137 // Complex, from nxv2f32. 1138 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 }, 1139 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 }, 1140 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 }, 1141 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f32, 1 }, 1142 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 }, 1143 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 }, 1144 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 }, 1145 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f32, 1 }, 1146 1147 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2. 1148 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 1149 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 }, 1150 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 }, 1151 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 1152 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 }, 1153 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 }, 1154 1155 // Complex, from nxv2f64. 1156 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 }, 1157 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 }, 1158 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 }, 1159 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f64, 1 }, 1160 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 }, 1161 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 }, 1162 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 }, 1163 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f64, 1 }, 1164 1165 // Complex, from nxv4f32. 1166 { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 }, 1167 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 }, 1168 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 }, 1169 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f32, 1 }, 1170 { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 }, 1171 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 }, 1172 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 }, 1173 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f32, 1 }, 1174 1175 // Complex, from nxv8f64. Illegal -> illegal conversions not required. 1176 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 }, 1177 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f64, 7 }, 1178 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 }, 1179 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f64, 7 }, 1180 1181 // Complex, from nxv4f64. Illegal -> illegal conversions not required. 1182 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 }, 1183 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 }, 1184 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f64, 3 }, 1185 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 }, 1186 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 }, 1187 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f64, 3 }, 1188 1189 // Complex, from nxv8f32. Illegal -> illegal conversions not required. 1190 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 }, 1191 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f32, 3 }, 1192 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 }, 1193 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f32, 3 }, 1194 1195 // Complex, from nxv8f16. 1196 { ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 }, 1197 { ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 }, 1198 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 }, 1199 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f16, 1 }, 1200 { ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 }, 1201 { ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 }, 1202 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 }, 1203 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f16, 1 }, 1204 1205 // Complex, from nxv4f16. 1206 { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 }, 1207 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 }, 1208 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 }, 1209 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f16, 1 }, 1210 { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 }, 1211 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 }, 1212 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 }, 1213 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f16, 1 }, 1214 1215 // Complex, from nxv2f16. 1216 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 }, 1217 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 }, 1218 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 }, 1219 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f16, 1 }, 1220 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 }, 1221 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 }, 1222 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 }, 1223 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f16, 1 }, 1224 1225 // Truncate from nxvmf32 to nxvmf16. 1226 { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 }, 1227 { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 }, 1228 { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 }, 1229 1230 // Truncate from nxvmf64 to nxvmf16. 1231 { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 }, 1232 { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 }, 1233 { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 }, 1234 1235 // Truncate from nxvmf64 to nxvmf32. 1236 { ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 }, 1237 { ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 }, 1238 { ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 }, 1239 1240 // Extend from nxvmf16 to nxvmf32. 1241 { ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1}, 1242 { ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1}, 1243 { ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2}, 1244 1245 // Extend from nxvmf16 to nxvmf64. 1246 { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1}, 1247 { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2}, 1248 { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4}, 1249 1250 // Extend from nxvmf32 to nxvmf64. 1251 { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1}, 1252 { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2}, 1253 { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6}, 1254 1255 }; 1256 1257 if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD, 1258 DstTy.getSimpleVT(), 1259 SrcTy.getSimpleVT())) 1260 return AdjustCost(Entry->Cost); 1261 1262 return AdjustCost( 1263 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 1264 } 1265 1266 InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, 1267 Type *Dst, 1268 VectorType *VecTy, 1269 unsigned Index) { 1270 1271 // Make sure we were given a valid extend opcode. 1272 assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) && 1273 "Invalid opcode"); 1274 1275 // We are extending an element we extract from a vector, so the source type 1276 // of the extend is the element type of the vector. 1277 auto *Src = VecTy->getElementType(); 1278 1279 // Sign- and zero-extends are for integer types only. 1280 assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type"); 1281 1282 // Get the cost for the extract. We compute the cost (if any) for the extend 1283 // below. 1284 InstructionCost Cost = 1285 getVectorInstrCost(Instruction::ExtractElement, VecTy, Index); 1286 1287 // Legalize the types. 1288 auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy); 1289 auto DstVT = TLI->getValueType(DL, Dst); 1290 auto SrcVT = TLI->getValueType(DL, Src); 1291 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1292 1293 // If the resulting type is still a vector and the destination type is legal, 1294 // we may get the extension for free. If not, get the default cost for the 1295 // extend. 1296 if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT)) 1297 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 1298 CostKind); 1299 1300 // The destination type should be larger than the element type. If not, get 1301 // the default cost for the extend. 1302 if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits()) 1303 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 1304 CostKind); 1305 1306 switch (Opcode) { 1307 default: 1308 llvm_unreachable("Opcode should be either SExt or ZExt"); 1309 1310 // For sign-extends, we only need a smov, which performs the extension 1311 // automatically. 1312 case Instruction::SExt: 1313 return Cost; 1314 1315 // For zero-extends, the extend is performed automatically by a umov unless 1316 // the destination type is i64 and the element type is i8 or i16. 1317 case Instruction::ZExt: 1318 if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u) 1319 return Cost; 1320 } 1321 1322 // If we are unable to perform the extend for free, get the default cost. 1323 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 1324 CostKind); 1325 } 1326 1327 InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode, 1328 TTI::TargetCostKind CostKind, 1329 const Instruction *I) { 1330 if (CostKind != TTI::TCK_RecipThroughput) 1331 return Opcode == Instruction::PHI ? 0 : 1; 1332 assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind"); 1333 // Branches are assumed to be predicted. 1334 return 0; 1335 } 1336 1337 InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 1338 unsigned Index) { 1339 assert(Val->isVectorTy() && "This must be a vector type"); 1340 1341 if (Index != -1U) { 1342 // Legalize the type. 1343 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); 1344 1345 // This type is legalized to a scalar type. 1346 if (!LT.second.isVector()) 1347 return 0; 1348 1349 // The type may be split. Normalize the index to the new type. 1350 unsigned Width = LT.second.getVectorNumElements(); 1351 Index = Index % Width; 1352 1353 // The element at index zero is already inside the vector. 1354 if (Index == 0) 1355 return 0; 1356 } 1357 1358 // All other insert/extracts cost this much. 1359 return ST->getVectorInsertExtractBaseCost(); 1360 } 1361 1362 InstructionCost AArch64TTIImpl::getArithmeticInstrCost( 1363 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 1364 TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, 1365 TTI::OperandValueProperties Opd1PropInfo, 1366 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 1367 const Instruction *CxtI) { 1368 // TODO: Handle more cost kinds. 1369 if (CostKind != TTI::TCK_RecipThroughput) 1370 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1371 Opd2Info, Opd1PropInfo, 1372 Opd2PropInfo, Args, CxtI); 1373 1374 // Legalize the type. 1375 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 1376 1377 // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.), 1378 // add in the widening overhead specified by the sub-target. Since the 1379 // extends feeding widening instructions are performed automatically, they 1380 // aren't present in the generated code and have a zero cost. By adding a 1381 // widening overhead here, we attach the total cost of the combined operation 1382 // to the widening instruction. 1383 InstructionCost Cost = 0; 1384 if (isWideningInstruction(Ty, Opcode, Args)) 1385 Cost += ST->getWideningBaseCost(); 1386 1387 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1388 1389 switch (ISD) { 1390 default: 1391 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1392 Opd2Info, 1393 Opd1PropInfo, Opd2PropInfo); 1394 case ISD::SDIV: 1395 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue && 1396 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 1397 // On AArch64, scalar signed division by constants power-of-two are 1398 // normally expanded to the sequence ADD + CMP + SELECT + SRA. 1399 // The OperandValue properties many not be same as that of previous 1400 // operation; conservatively assume OP_None. 1401 Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, 1402 Opd1Info, Opd2Info, 1403 TargetTransformInfo::OP_None, 1404 TargetTransformInfo::OP_None); 1405 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, 1406 Opd1Info, Opd2Info, 1407 TargetTransformInfo::OP_None, 1408 TargetTransformInfo::OP_None); 1409 Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind, 1410 Opd1Info, Opd2Info, 1411 TargetTransformInfo::OP_None, 1412 TargetTransformInfo::OP_None); 1413 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, 1414 Opd1Info, Opd2Info, 1415 TargetTransformInfo::OP_None, 1416 TargetTransformInfo::OP_None); 1417 return Cost; 1418 } 1419 LLVM_FALLTHROUGH; 1420 case ISD::UDIV: 1421 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) { 1422 auto VT = TLI->getValueType(DL, Ty); 1423 if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) { 1424 // Vector signed division by constant are expanded to the 1425 // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division 1426 // to MULHS + SUB + SRL + ADD + SRL. 1427 InstructionCost MulCost = getArithmeticInstrCost( 1428 Instruction::Mul, Ty, CostKind, Opd1Info, Opd2Info, 1429 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1430 InstructionCost AddCost = getArithmeticInstrCost( 1431 Instruction::Add, Ty, CostKind, Opd1Info, Opd2Info, 1432 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1433 InstructionCost ShrCost = getArithmeticInstrCost( 1434 Instruction::AShr, Ty, CostKind, Opd1Info, Opd2Info, 1435 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1436 return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1; 1437 } 1438 } 1439 1440 Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1441 Opd2Info, 1442 Opd1PropInfo, Opd2PropInfo); 1443 if (Ty->isVectorTy()) { 1444 // On AArch64, vector divisions are not supported natively and are 1445 // expanded into scalar divisions of each pair of elements. 1446 Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind, 1447 Opd1Info, Opd2Info, Opd1PropInfo, 1448 Opd2PropInfo); 1449 Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind, 1450 Opd1Info, Opd2Info, Opd1PropInfo, 1451 Opd2PropInfo); 1452 // TODO: if one of the arguments is scalar, then it's not necessary to 1453 // double the cost of handling the vector elements. 1454 Cost += Cost; 1455 } 1456 return Cost; 1457 1458 case ISD::MUL: 1459 if (LT.second != MVT::v2i64) 1460 return (Cost + 1) * LT.first; 1461 // Since we do not have a MUL.2d instruction, a mul <2 x i64> is expensive 1462 // as elements are extracted from the vectors and the muls scalarized. 1463 // As getScalarizationOverhead is a bit too pessimistic, we estimate the 1464 // cost for a i64 vector directly here, which is: 1465 // - four i64 extracts, 1466 // - two i64 inserts, and 1467 // - two muls. 1468 // So, for a v2i64 with LT.First = 1 the cost is 8, and for a v4i64 with 1469 // LT.first = 2 the cost is 16. 1470 return LT.first * 8; 1471 case ISD::ADD: 1472 case ISD::XOR: 1473 case ISD::OR: 1474 case ISD::AND: 1475 // These nodes are marked as 'custom' for combining purposes only. 1476 // We know that they are legal. See LowerAdd in ISelLowering. 1477 return (Cost + 1) * LT.first; 1478 1479 case ISD::FADD: 1480 case ISD::FSUB: 1481 case ISD::FMUL: 1482 case ISD::FDIV: 1483 case ISD::FNEG: 1484 // These nodes are marked as 'custom' just to lower them to SVE. 1485 // We know said lowering will incur no additional cost. 1486 if (!Ty->getScalarType()->isFP128Ty()) 1487 return (Cost + 2) * LT.first; 1488 1489 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1490 Opd2Info, 1491 Opd1PropInfo, Opd2PropInfo); 1492 } 1493 } 1494 1495 InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty, 1496 ScalarEvolution *SE, 1497 const SCEV *Ptr) { 1498 // Address computations in vectorized code with non-consecutive addresses will 1499 // likely result in more instructions compared to scalar code where the 1500 // computation can more often be merged into the index mode. The resulting 1501 // extra micro-ops can significantly decrease throughput. 1502 unsigned NumVectorInstToHideOverhead = 10; 1503 int MaxMergeDistance = 64; 1504 1505 if (Ty->isVectorTy() && SE && 1506 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 1507 return NumVectorInstToHideOverhead; 1508 1509 // In many cases the address computation is not merged into the instruction 1510 // addressing mode. 1511 return 1; 1512 } 1513 1514 InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 1515 Type *CondTy, 1516 CmpInst::Predicate VecPred, 1517 TTI::TargetCostKind CostKind, 1518 const Instruction *I) { 1519 // TODO: Handle other cost kinds. 1520 if (CostKind != TTI::TCK_RecipThroughput) 1521 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, 1522 I); 1523 1524 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1525 // We don't lower some vector selects well that are wider than the register 1526 // width. 1527 if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) { 1528 // We would need this many instructions to hide the scalarization happening. 1529 const int AmortizationCost = 20; 1530 1531 // If VecPred is not set, check if we can get a predicate from the context 1532 // instruction, if its type matches the requested ValTy. 1533 if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) { 1534 CmpInst::Predicate CurrentPred; 1535 if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(), 1536 m_Value()))) 1537 VecPred = CurrentPred; 1538 } 1539 // Check if we have a compare/select chain that can be lowered using CMxx & 1540 // BFI pair. 1541 if (CmpInst::isIntPredicate(VecPred)) { 1542 static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 1543 MVT::v8i16, MVT::v2i32, MVT::v4i32, 1544 MVT::v2i64}; 1545 auto LT = TLI->getTypeLegalizationCost(DL, ValTy); 1546 if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; })) 1547 return LT.first; 1548 } 1549 1550 static const TypeConversionCostTblEntry 1551 VectorSelectTbl[] = { 1552 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 }, 1553 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 }, 1554 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 }, 1555 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost }, 1556 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost }, 1557 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost } 1558 }; 1559 1560 EVT SelCondTy = TLI->getValueType(DL, CondTy); 1561 EVT SelValTy = TLI->getValueType(DL, ValTy); 1562 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 1563 if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD, 1564 SelCondTy.getSimpleVT(), 1565 SelValTy.getSimpleVT())) 1566 return Entry->Cost; 1567 } 1568 } 1569 // The base case handles scalable vectors fine for now, since it treats the 1570 // cost as 1 * legalization cost. 1571 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 1572 } 1573 1574 AArch64TTIImpl::TTI::MemCmpExpansionOptions 1575 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 1576 TTI::MemCmpExpansionOptions Options; 1577 if (ST->requiresStrictAlign()) { 1578 // TODO: Add cost modeling for strict align. Misaligned loads expand to 1579 // a bunch of instructions when strict align is enabled. 1580 return Options; 1581 } 1582 Options.AllowOverlappingLoads = true; 1583 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 1584 Options.NumLoadsPerBlock = Options.MaxNumLoads; 1585 // TODO: Though vector loads usually perform well on AArch64, in some targets 1586 // they may wake up the FP unit, which raises the power consumption. Perhaps 1587 // they could be used with no holds barred (-O3). 1588 Options.LoadSizes = {8, 4, 2, 1}; 1589 return Options; 1590 } 1591 1592 InstructionCost 1593 AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 1594 Align Alignment, unsigned AddressSpace, 1595 TTI::TargetCostKind CostKind) { 1596 if (!isa<ScalableVectorType>(Src)) 1597 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1598 CostKind); 1599 auto LT = TLI->getTypeLegalizationCost(DL, Src); 1600 if (!LT.first.isValid()) 1601 return InstructionCost::getInvalid(); 1602 1603 // The code-generator is currently not able to handle scalable vectors 1604 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting 1605 // it. This change will be removed when code-generation for these types is 1606 // sufficiently reliable. 1607 if (cast<VectorType>(Src)->getElementCount() == ElementCount::getScalable(1)) 1608 return InstructionCost::getInvalid(); 1609 1610 return LT.first * 2; 1611 } 1612 1613 InstructionCost AArch64TTIImpl::getGatherScatterOpCost( 1614 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 1615 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) { 1616 if (useNeonVector(DataTy)) 1617 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 1618 Alignment, CostKind, I); 1619 auto *VT = cast<VectorType>(DataTy); 1620 auto LT = TLI->getTypeLegalizationCost(DL, DataTy); 1621 if (!LT.first.isValid()) 1622 return InstructionCost::getInvalid(); 1623 1624 // The code-generator is currently not able to handle scalable vectors 1625 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting 1626 // it. This change will be removed when code-generation for these types is 1627 // sufficiently reliable. 1628 if (cast<VectorType>(DataTy)->getElementCount() == 1629 ElementCount::getScalable(1)) 1630 return InstructionCost::getInvalid(); 1631 1632 ElementCount LegalVF = LT.second.getVectorElementCount(); 1633 InstructionCost MemOpCost = 1634 getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind, I); 1635 return LT.first * MemOpCost * getMaxNumElements(LegalVF, I->getFunction()); 1636 } 1637 1638 bool AArch64TTIImpl::useNeonVector(const Type *Ty) const { 1639 return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors(); 1640 } 1641 1642 InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty, 1643 MaybeAlign Alignment, 1644 unsigned AddressSpace, 1645 TTI::TargetCostKind CostKind, 1646 const Instruction *I) { 1647 EVT VT = TLI->getValueType(DL, Ty, true); 1648 // Type legalization can't handle structs 1649 if (VT == MVT::Other) 1650 return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace, 1651 CostKind); 1652 1653 auto LT = TLI->getTypeLegalizationCost(DL, Ty); 1654 if (!LT.first.isValid()) 1655 return InstructionCost::getInvalid(); 1656 1657 // The code-generator is currently not able to handle scalable vectors 1658 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting 1659 // it. This change will be removed when code-generation for these types is 1660 // sufficiently reliable. 1661 if (auto *VTy = dyn_cast<ScalableVectorType>(Ty)) 1662 if (VTy->getElementCount() == ElementCount::getScalable(1)) 1663 return InstructionCost::getInvalid(); 1664 1665 // TODO: consider latency as well for TCK_SizeAndLatency. 1666 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) 1667 return LT.first; 1668 1669 if (CostKind != TTI::TCK_RecipThroughput) 1670 return 1; 1671 1672 if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store && 1673 LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) { 1674 // Unaligned stores are extremely inefficient. We don't split all 1675 // unaligned 128-bit stores because the negative impact that has shown in 1676 // practice on inlined block copy code. 1677 // We make such stores expensive so that we will only vectorize if there 1678 // are 6 other instructions getting vectorized. 1679 const int AmortizationCost = 6; 1680 1681 return LT.first * 2 * AmortizationCost; 1682 } 1683 1684 // Check truncating stores and extending loads. 1685 if (useNeonVector(Ty) && 1686 Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) { 1687 // v4i8 types are lowered to scalar a load/store and sshll/xtn. 1688 if (VT == MVT::v4i8) 1689 return 2; 1690 // Otherwise we need to scalarize. 1691 return cast<FixedVectorType>(Ty)->getNumElements() * 2; 1692 } 1693 1694 return LT.first; 1695 } 1696 1697 InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost( 1698 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1699 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 1700 bool UseMaskForCond, bool UseMaskForGaps) { 1701 assert(Factor >= 2 && "Invalid interleave factor"); 1702 auto *VecVTy = cast<FixedVectorType>(VecTy); 1703 1704 if (!UseMaskForCond && !UseMaskForGaps && 1705 Factor <= TLI->getMaxSupportedInterleaveFactor()) { 1706 unsigned NumElts = VecVTy->getNumElements(); 1707 auto *SubVecTy = 1708 FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor); 1709 1710 // ldN/stN only support legal vector types of size 64 or 128 in bits. 1711 // Accesses having vector types that are a multiple of 128 bits can be 1712 // matched to more than one ldN/stN instruction. 1713 if (NumElts % Factor == 0 && 1714 TLI->isLegalInterleavedAccessType(SubVecTy, DL)) 1715 return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL); 1716 } 1717 1718 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1719 Alignment, AddressSpace, CostKind, 1720 UseMaskForCond, UseMaskForGaps); 1721 } 1722 1723 InstructionCost 1724 AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { 1725 InstructionCost Cost = 0; 1726 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1727 for (auto *I : Tys) { 1728 if (!I->isVectorTy()) 1729 continue; 1730 if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() == 1731 128) 1732 Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) + 1733 getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind); 1734 } 1735 return Cost; 1736 } 1737 1738 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) { 1739 return ST->getMaxInterleaveFactor(); 1740 } 1741 1742 // For Falkor, we want to avoid having too many strided loads in a loop since 1743 // that can exhaust the HW prefetcher resources. We adjust the unroller 1744 // MaxCount preference below to attempt to ensure unrolling doesn't create too 1745 // many strided loads. 1746 static void 1747 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1748 TargetTransformInfo::UnrollingPreferences &UP) { 1749 enum { MaxStridedLoads = 7 }; 1750 auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) { 1751 int StridedLoads = 0; 1752 // FIXME? We could make this more precise by looking at the CFG and 1753 // e.g. not counting loads in each side of an if-then-else diamond. 1754 for (const auto BB : L->blocks()) { 1755 for (auto &I : *BB) { 1756 LoadInst *LMemI = dyn_cast<LoadInst>(&I); 1757 if (!LMemI) 1758 continue; 1759 1760 Value *PtrValue = LMemI->getPointerOperand(); 1761 if (L->isLoopInvariant(PtrValue)) 1762 continue; 1763 1764 const SCEV *LSCEV = SE.getSCEV(PtrValue); 1765 const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV); 1766 if (!LSCEVAddRec || !LSCEVAddRec->isAffine()) 1767 continue; 1768 1769 // FIXME? We could take pairing of unrolled load copies into account 1770 // by looking at the AddRec, but we would probably have to limit this 1771 // to loops with no stores or other memory optimization barriers. 1772 ++StridedLoads; 1773 // We've seen enough strided loads that seeing more won't make a 1774 // difference. 1775 if (StridedLoads > MaxStridedLoads / 2) 1776 return StridedLoads; 1777 } 1778 } 1779 return StridedLoads; 1780 }; 1781 1782 int StridedLoads = countStridedLoads(L, SE); 1783 LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads 1784 << " strided loads\n"); 1785 // Pick the largest power of 2 unroll count that won't result in too many 1786 // strided loads. 1787 if (StridedLoads) { 1788 UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads); 1789 LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to " 1790 << UP.MaxCount << '\n'); 1791 } 1792 } 1793 1794 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1795 TTI::UnrollingPreferences &UP, 1796 OptimizationRemarkEmitter *ORE) { 1797 // Enable partial unrolling and runtime unrolling. 1798 BaseT::getUnrollingPreferences(L, SE, UP, ORE); 1799 1800 UP.UpperBound = true; 1801 1802 // For inner loop, it is more likely to be a hot one, and the runtime check 1803 // can be promoted out from LICM pass, so the overhead is less, let's try 1804 // a larger threshold to unroll more loops. 1805 if (L->getLoopDepth() > 1) 1806 UP.PartialThreshold *= 2; 1807 1808 // Disable partial & runtime unrolling on -Os. 1809 UP.PartialOptSizeThreshold = 0; 1810 1811 if (ST->getProcFamily() == AArch64Subtarget::Falkor && 1812 EnableFalkorHWPFUnrollFix) 1813 getFalkorUnrollingPreferences(L, SE, UP); 1814 1815 // Scan the loop: don't unroll loops with calls as this could prevent 1816 // inlining. Don't unroll vector loops either, as they don't benefit much from 1817 // unrolling. 1818 for (auto *BB : L->getBlocks()) { 1819 for (auto &I : *BB) { 1820 // Don't unroll vectorised loop. 1821 if (I.getType()->isVectorTy()) 1822 return; 1823 1824 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 1825 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 1826 if (!isLoweredToCall(F)) 1827 continue; 1828 } 1829 return; 1830 } 1831 } 1832 } 1833 1834 // Enable runtime unrolling for in-order models 1835 // If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by 1836 // checking for that case, we can ensure that the default behaviour is 1837 // unchanged 1838 if (ST->getProcFamily() != AArch64Subtarget::Others && 1839 !ST->getSchedModel().isOutOfOrder()) { 1840 UP.Runtime = true; 1841 UP.Partial = true; 1842 UP.UnrollRemainder = true; 1843 UP.DefaultUnrollRuntimeCount = 4; 1844 1845 UP.UnrollAndJam = true; 1846 UP.UnrollAndJamInnerLoopThreshold = 60; 1847 } 1848 } 1849 1850 void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 1851 TTI::PeelingPreferences &PP) { 1852 BaseT::getPeelingPreferences(L, SE, PP); 1853 } 1854 1855 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 1856 Type *ExpectedType) { 1857 switch (Inst->getIntrinsicID()) { 1858 default: 1859 return nullptr; 1860 case Intrinsic::aarch64_neon_st2: 1861 case Intrinsic::aarch64_neon_st3: 1862 case Intrinsic::aarch64_neon_st4: { 1863 // Create a struct type 1864 StructType *ST = dyn_cast<StructType>(ExpectedType); 1865 if (!ST) 1866 return nullptr; 1867 unsigned NumElts = Inst->arg_size() - 1; 1868 if (ST->getNumElements() != NumElts) 1869 return nullptr; 1870 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1871 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i)) 1872 return nullptr; 1873 } 1874 Value *Res = UndefValue::get(ExpectedType); 1875 IRBuilder<> Builder(Inst); 1876 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1877 Value *L = Inst->getArgOperand(i); 1878 Res = Builder.CreateInsertValue(Res, L, i); 1879 } 1880 return Res; 1881 } 1882 case Intrinsic::aarch64_neon_ld2: 1883 case Intrinsic::aarch64_neon_ld3: 1884 case Intrinsic::aarch64_neon_ld4: 1885 if (Inst->getType() == ExpectedType) 1886 return Inst; 1887 return nullptr; 1888 } 1889 } 1890 1891 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 1892 MemIntrinsicInfo &Info) { 1893 switch (Inst->getIntrinsicID()) { 1894 default: 1895 break; 1896 case Intrinsic::aarch64_neon_ld2: 1897 case Intrinsic::aarch64_neon_ld3: 1898 case Intrinsic::aarch64_neon_ld4: 1899 Info.ReadMem = true; 1900 Info.WriteMem = false; 1901 Info.PtrVal = Inst->getArgOperand(0); 1902 break; 1903 case Intrinsic::aarch64_neon_st2: 1904 case Intrinsic::aarch64_neon_st3: 1905 case Intrinsic::aarch64_neon_st4: 1906 Info.ReadMem = false; 1907 Info.WriteMem = true; 1908 Info.PtrVal = Inst->getArgOperand(Inst->arg_size() - 1); 1909 break; 1910 } 1911 1912 switch (Inst->getIntrinsicID()) { 1913 default: 1914 return false; 1915 case Intrinsic::aarch64_neon_ld2: 1916 case Intrinsic::aarch64_neon_st2: 1917 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS; 1918 break; 1919 case Intrinsic::aarch64_neon_ld3: 1920 case Intrinsic::aarch64_neon_st3: 1921 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS; 1922 break; 1923 case Intrinsic::aarch64_neon_ld4: 1924 case Intrinsic::aarch64_neon_st4: 1925 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS; 1926 break; 1927 } 1928 return true; 1929 } 1930 1931 /// See if \p I should be considered for address type promotion. We check if \p 1932 /// I is a sext with right type and used in memory accesses. If it used in a 1933 /// "complex" getelementptr, we allow it to be promoted without finding other 1934 /// sext instructions that sign extended the same initial value. A getelementptr 1935 /// is considered as "complex" if it has more than 2 operands. 1936 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion( 1937 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) { 1938 bool Considerable = false; 1939 AllowPromotionWithoutCommonHeader = false; 1940 if (!isa<SExtInst>(&I)) 1941 return false; 1942 Type *ConsideredSExtType = 1943 Type::getInt64Ty(I.getParent()->getParent()->getContext()); 1944 if (I.getType() != ConsideredSExtType) 1945 return false; 1946 // See if the sext is the one with the right type and used in at least one 1947 // GetElementPtrInst. 1948 for (const User *U : I.users()) { 1949 if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) { 1950 Considerable = true; 1951 // A getelementptr is considered as "complex" if it has more than 2 1952 // operands. We will promote a SExt used in such complex GEP as we 1953 // expect some computation to be merged if they are done on 64 bits. 1954 if (GEPInst->getNumOperands() > 2) { 1955 AllowPromotionWithoutCommonHeader = true; 1956 break; 1957 } 1958 } 1959 } 1960 return Considerable; 1961 } 1962 1963 bool AArch64TTIImpl::isLegalToVectorizeReduction( 1964 const RecurrenceDescriptor &RdxDesc, ElementCount VF) const { 1965 if (!VF.isScalable()) 1966 return true; 1967 1968 Type *Ty = RdxDesc.getRecurrenceType(); 1969 if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty)) 1970 return false; 1971 1972 switch (RdxDesc.getRecurrenceKind()) { 1973 case RecurKind::Add: 1974 case RecurKind::FAdd: 1975 case RecurKind::And: 1976 case RecurKind::Or: 1977 case RecurKind::Xor: 1978 case RecurKind::SMin: 1979 case RecurKind::SMax: 1980 case RecurKind::UMin: 1981 case RecurKind::UMax: 1982 case RecurKind::FMin: 1983 case RecurKind::FMax: 1984 case RecurKind::SelectICmp: 1985 case RecurKind::SelectFCmp: 1986 return true; 1987 default: 1988 return false; 1989 } 1990 } 1991 1992 InstructionCost 1993 AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 1994 bool IsUnsigned, 1995 TTI::TargetCostKind CostKind) { 1996 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 1997 1998 if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16()) 1999 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind); 2000 2001 assert((isa<ScalableVectorType>(Ty) == isa<ScalableVectorType>(CondTy)) && 2002 "Both vector needs to be equally scalable"); 2003 2004 InstructionCost LegalizationCost = 0; 2005 if (LT.first > 1) { 2006 Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext()); 2007 unsigned MinMaxOpcode = 2008 Ty->isFPOrFPVectorTy() 2009 ? Intrinsic::maxnum 2010 : (IsUnsigned ? Intrinsic::umin : Intrinsic::smin); 2011 IntrinsicCostAttributes Attrs(MinMaxOpcode, LegalVTy, {LegalVTy, LegalVTy}); 2012 LegalizationCost = getIntrinsicInstrCost(Attrs, CostKind) * (LT.first - 1); 2013 } 2014 2015 return LegalizationCost + /*Cost of horizontal reduction*/ 2; 2016 } 2017 2018 InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE( 2019 unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) { 2020 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 2021 InstructionCost LegalizationCost = 0; 2022 if (LT.first > 1) { 2023 Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext()); 2024 LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind); 2025 LegalizationCost *= LT.first - 1; 2026 } 2027 2028 int ISD = TLI->InstructionOpcodeToISD(Opcode); 2029 assert(ISD && "Invalid opcode"); 2030 // Add the final reduction cost for the legal horizontal reduction 2031 switch (ISD) { 2032 case ISD::ADD: 2033 case ISD::AND: 2034 case ISD::OR: 2035 case ISD::XOR: 2036 case ISD::FADD: 2037 return LegalizationCost + 2; 2038 default: 2039 return InstructionCost::getInvalid(); 2040 } 2041 } 2042 2043 InstructionCost 2044 AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, 2045 Optional<FastMathFlags> FMF, 2046 TTI::TargetCostKind CostKind) { 2047 if (TTI::requiresOrderedReduction(FMF)) { 2048 if (auto *FixedVTy = dyn_cast<FixedVectorType>(ValTy)) { 2049 InstructionCost BaseCost = 2050 BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 2051 // Add on extra cost to reflect the extra overhead on some CPUs. We still 2052 // end up vectorizing for more computationally intensive loops. 2053 return BaseCost + FixedVTy->getNumElements(); 2054 } 2055 2056 if (Opcode != Instruction::FAdd) 2057 return InstructionCost::getInvalid(); 2058 2059 auto *VTy = cast<ScalableVectorType>(ValTy); 2060 InstructionCost Cost = 2061 getArithmeticInstrCost(Opcode, VTy->getScalarType(), CostKind); 2062 Cost *= getMaxNumElements(VTy->getElementCount()); 2063 return Cost; 2064 } 2065 2066 if (isa<ScalableVectorType>(ValTy)) 2067 return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind); 2068 2069 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 2070 MVT MTy = LT.second; 2071 int ISD = TLI->InstructionOpcodeToISD(Opcode); 2072 assert(ISD && "Invalid opcode"); 2073 2074 // Horizontal adds can use the 'addv' instruction. We model the cost of these 2075 // instructions as twice a normal vector add, plus 1 for each legalization 2076 // step (LT.first). This is the only arithmetic vector reduction operation for 2077 // which we have an instruction. 2078 // OR, XOR and AND costs should match the codegen from: 2079 // OR: llvm/test/CodeGen/AArch64/reduce-or.ll 2080 // XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll 2081 // AND: llvm/test/CodeGen/AArch64/reduce-and.ll 2082 static const CostTblEntry CostTblNoPairwise[]{ 2083 {ISD::ADD, MVT::v8i8, 2}, 2084 {ISD::ADD, MVT::v16i8, 2}, 2085 {ISD::ADD, MVT::v4i16, 2}, 2086 {ISD::ADD, MVT::v8i16, 2}, 2087 {ISD::ADD, MVT::v4i32, 2}, 2088 {ISD::OR, MVT::v8i8, 15}, 2089 {ISD::OR, MVT::v16i8, 17}, 2090 {ISD::OR, MVT::v4i16, 7}, 2091 {ISD::OR, MVT::v8i16, 9}, 2092 {ISD::OR, MVT::v2i32, 3}, 2093 {ISD::OR, MVT::v4i32, 5}, 2094 {ISD::OR, MVT::v2i64, 3}, 2095 {ISD::XOR, MVT::v8i8, 15}, 2096 {ISD::XOR, MVT::v16i8, 17}, 2097 {ISD::XOR, MVT::v4i16, 7}, 2098 {ISD::XOR, MVT::v8i16, 9}, 2099 {ISD::XOR, MVT::v2i32, 3}, 2100 {ISD::XOR, MVT::v4i32, 5}, 2101 {ISD::XOR, MVT::v2i64, 3}, 2102 {ISD::AND, MVT::v8i8, 15}, 2103 {ISD::AND, MVT::v16i8, 17}, 2104 {ISD::AND, MVT::v4i16, 7}, 2105 {ISD::AND, MVT::v8i16, 9}, 2106 {ISD::AND, MVT::v2i32, 3}, 2107 {ISD::AND, MVT::v4i32, 5}, 2108 {ISD::AND, MVT::v2i64, 3}, 2109 }; 2110 switch (ISD) { 2111 default: 2112 break; 2113 case ISD::ADD: 2114 if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy)) 2115 return (LT.first - 1) + Entry->Cost; 2116 break; 2117 case ISD::XOR: 2118 case ISD::AND: 2119 case ISD::OR: 2120 const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy); 2121 if (!Entry) 2122 break; 2123 auto *ValVTy = cast<FixedVectorType>(ValTy); 2124 if (!ValVTy->getElementType()->isIntegerTy(1) && 2125 MTy.getVectorNumElements() <= ValVTy->getNumElements() && 2126 isPowerOf2_32(ValVTy->getNumElements())) { 2127 InstructionCost ExtraCost = 0; 2128 if (LT.first != 1) { 2129 // Type needs to be split, so there is an extra cost of LT.first - 1 2130 // arithmetic ops. 2131 auto *Ty = FixedVectorType::get(ValTy->getElementType(), 2132 MTy.getVectorNumElements()); 2133 ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind); 2134 ExtraCost *= LT.first - 1; 2135 } 2136 return Entry->Cost + ExtraCost; 2137 } 2138 break; 2139 } 2140 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 2141 } 2142 2143 InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) { 2144 static const CostTblEntry ShuffleTbl[] = { 2145 { TTI::SK_Splice, MVT::nxv16i8, 1 }, 2146 { TTI::SK_Splice, MVT::nxv8i16, 1 }, 2147 { TTI::SK_Splice, MVT::nxv4i32, 1 }, 2148 { TTI::SK_Splice, MVT::nxv2i64, 1 }, 2149 { TTI::SK_Splice, MVT::nxv2f16, 1 }, 2150 { TTI::SK_Splice, MVT::nxv4f16, 1 }, 2151 { TTI::SK_Splice, MVT::nxv8f16, 1 }, 2152 { TTI::SK_Splice, MVT::nxv2bf16, 1 }, 2153 { TTI::SK_Splice, MVT::nxv4bf16, 1 }, 2154 { TTI::SK_Splice, MVT::nxv8bf16, 1 }, 2155 { TTI::SK_Splice, MVT::nxv2f32, 1 }, 2156 { TTI::SK_Splice, MVT::nxv4f32, 1 }, 2157 { TTI::SK_Splice, MVT::nxv2f64, 1 }, 2158 }; 2159 2160 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 2161 Type *LegalVTy = EVT(LT.second).getTypeForEVT(Tp->getContext()); 2162 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 2163 EVT PromotedVT = LT.second.getScalarType() == MVT::i1 2164 ? TLI->getPromotedVTForPredicate(EVT(LT.second)) 2165 : LT.second; 2166 Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Tp->getContext()); 2167 InstructionCost LegalizationCost = 0; 2168 if (Index < 0) { 2169 LegalizationCost = 2170 getCmpSelInstrCost(Instruction::ICmp, PromotedVTy, PromotedVTy, 2171 CmpInst::BAD_ICMP_PREDICATE, CostKind) + 2172 getCmpSelInstrCost(Instruction::Select, PromotedVTy, LegalVTy, 2173 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2174 } 2175 2176 // Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp 2177 // Cost performed on a promoted type. 2178 if (LT.second.getScalarType() == MVT::i1) { 2179 LegalizationCost += 2180 getCastInstrCost(Instruction::ZExt, PromotedVTy, LegalVTy, 2181 TTI::CastContextHint::None, CostKind) + 2182 getCastInstrCost(Instruction::Trunc, LegalVTy, PromotedVTy, 2183 TTI::CastContextHint::None, CostKind); 2184 } 2185 const auto *Entry = 2186 CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT()); 2187 assert(Entry && "Illegal Type for Splice"); 2188 LegalizationCost += Entry->Cost; 2189 return LegalizationCost * LT.first; 2190 } 2191 2192 InstructionCost AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 2193 VectorType *Tp, 2194 ArrayRef<int> Mask, int Index, 2195 VectorType *SubTp) { 2196 Kind = improveShuffleKindFromMask(Kind, Mask); 2197 if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose || 2198 Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc || 2199 Kind == TTI::SK_Reverse) { 2200 static const CostTblEntry ShuffleTbl[] = { 2201 // Broadcast shuffle kinds can be performed with 'dup'. 2202 { TTI::SK_Broadcast, MVT::v8i8, 1 }, 2203 { TTI::SK_Broadcast, MVT::v16i8, 1 }, 2204 { TTI::SK_Broadcast, MVT::v4i16, 1 }, 2205 { TTI::SK_Broadcast, MVT::v8i16, 1 }, 2206 { TTI::SK_Broadcast, MVT::v2i32, 1 }, 2207 { TTI::SK_Broadcast, MVT::v4i32, 1 }, 2208 { TTI::SK_Broadcast, MVT::v2i64, 1 }, 2209 { TTI::SK_Broadcast, MVT::v2f32, 1 }, 2210 { TTI::SK_Broadcast, MVT::v4f32, 1 }, 2211 { TTI::SK_Broadcast, MVT::v2f64, 1 }, 2212 // Transpose shuffle kinds can be performed with 'trn1/trn2' and 2213 // 'zip1/zip2' instructions. 2214 { TTI::SK_Transpose, MVT::v8i8, 1 }, 2215 { TTI::SK_Transpose, MVT::v16i8, 1 }, 2216 { TTI::SK_Transpose, MVT::v4i16, 1 }, 2217 { TTI::SK_Transpose, MVT::v8i16, 1 }, 2218 { TTI::SK_Transpose, MVT::v2i32, 1 }, 2219 { TTI::SK_Transpose, MVT::v4i32, 1 }, 2220 { TTI::SK_Transpose, MVT::v2i64, 1 }, 2221 { TTI::SK_Transpose, MVT::v2f32, 1 }, 2222 { TTI::SK_Transpose, MVT::v4f32, 1 }, 2223 { TTI::SK_Transpose, MVT::v2f64, 1 }, 2224 // Select shuffle kinds. 2225 // TODO: handle vXi8/vXi16. 2226 { TTI::SK_Select, MVT::v2i32, 1 }, // mov. 2227 { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar). 2228 { TTI::SK_Select, MVT::v2i64, 1 }, // mov. 2229 { TTI::SK_Select, MVT::v2f32, 1 }, // mov. 2230 { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar). 2231 { TTI::SK_Select, MVT::v2f64, 1 }, // mov. 2232 // PermuteSingleSrc shuffle kinds. 2233 { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov. 2234 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case. 2235 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov. 2236 { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov. 2237 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case. 2238 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov. 2239 { TTI::SK_PermuteSingleSrc, MVT::v4i16, 3 }, // perfectshuffle worst case. 2240 { TTI::SK_PermuteSingleSrc, MVT::v4f16, 3 }, // perfectshuffle worst case. 2241 { TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3 }, // perfectshuffle worst case. 2242 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 8 }, // constpool + load + tbl 2243 { TTI::SK_PermuteSingleSrc, MVT::v8f16, 8 }, // constpool + load + tbl 2244 { TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8 }, // constpool + load + tbl 2245 { TTI::SK_PermuteSingleSrc, MVT::v8i8, 8 }, // constpool + load + tbl 2246 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 8 }, // constpool + load + tbl 2247 // Reverse can be lowered with `rev`. 2248 { TTI::SK_Reverse, MVT::v2i32, 1 }, // mov. 2249 { TTI::SK_Reverse, MVT::v4i32, 2 }, // REV64; EXT 2250 { TTI::SK_Reverse, MVT::v2i64, 1 }, // mov. 2251 { TTI::SK_Reverse, MVT::v2f32, 1 }, // mov. 2252 { TTI::SK_Reverse, MVT::v4f32, 2 }, // REV64; EXT 2253 { TTI::SK_Reverse, MVT::v2f64, 1 }, // mov. 2254 // Broadcast shuffle kinds for scalable vectors 2255 { TTI::SK_Broadcast, MVT::nxv16i8, 1 }, 2256 { TTI::SK_Broadcast, MVT::nxv8i16, 1 }, 2257 { TTI::SK_Broadcast, MVT::nxv4i32, 1 }, 2258 { TTI::SK_Broadcast, MVT::nxv2i64, 1 }, 2259 { TTI::SK_Broadcast, MVT::nxv2f16, 1 }, 2260 { TTI::SK_Broadcast, MVT::nxv4f16, 1 }, 2261 { TTI::SK_Broadcast, MVT::nxv8f16, 1 }, 2262 { TTI::SK_Broadcast, MVT::nxv2bf16, 1 }, 2263 { TTI::SK_Broadcast, MVT::nxv4bf16, 1 }, 2264 { TTI::SK_Broadcast, MVT::nxv8bf16, 1 }, 2265 { TTI::SK_Broadcast, MVT::nxv2f32, 1 }, 2266 { TTI::SK_Broadcast, MVT::nxv4f32, 1 }, 2267 { TTI::SK_Broadcast, MVT::nxv2f64, 1 }, 2268 { TTI::SK_Broadcast, MVT::nxv16i1, 1 }, 2269 { TTI::SK_Broadcast, MVT::nxv8i1, 1 }, 2270 { TTI::SK_Broadcast, MVT::nxv4i1, 1 }, 2271 { TTI::SK_Broadcast, MVT::nxv2i1, 1 }, 2272 // Handle the cases for vector.reverse with scalable vectors 2273 { TTI::SK_Reverse, MVT::nxv16i8, 1 }, 2274 { TTI::SK_Reverse, MVT::nxv8i16, 1 }, 2275 { TTI::SK_Reverse, MVT::nxv4i32, 1 }, 2276 { TTI::SK_Reverse, MVT::nxv2i64, 1 }, 2277 { TTI::SK_Reverse, MVT::nxv2f16, 1 }, 2278 { TTI::SK_Reverse, MVT::nxv4f16, 1 }, 2279 { TTI::SK_Reverse, MVT::nxv8f16, 1 }, 2280 { TTI::SK_Reverse, MVT::nxv2bf16, 1 }, 2281 { TTI::SK_Reverse, MVT::nxv4bf16, 1 }, 2282 { TTI::SK_Reverse, MVT::nxv8bf16, 1 }, 2283 { TTI::SK_Reverse, MVT::nxv2f32, 1 }, 2284 { TTI::SK_Reverse, MVT::nxv4f32, 1 }, 2285 { TTI::SK_Reverse, MVT::nxv2f64, 1 }, 2286 { TTI::SK_Reverse, MVT::nxv16i1, 1 }, 2287 { TTI::SK_Reverse, MVT::nxv8i1, 1 }, 2288 { TTI::SK_Reverse, MVT::nxv4i1, 1 }, 2289 { TTI::SK_Reverse, MVT::nxv2i1, 1 }, 2290 }; 2291 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 2292 if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second)) 2293 return LT.first * Entry->Cost; 2294 } 2295 if (Kind == TTI::SK_Splice && isa<ScalableVectorType>(Tp)) 2296 return getSpliceCost(Tp, Index); 2297 return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp); 2298 } 2299