1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "AArch64TargetTransformInfo.h" 11 #include "MCTargetDesc/AArch64AddressingModes.h" 12 #include "llvm/Analysis/LoopInfo.h" 13 #include "llvm/Analysis/TargetTransformInfo.h" 14 #include "llvm/CodeGen/BasicTTIImpl.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/TargetLowering.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/Support/Debug.h" 19 #include <algorithm> 20 using namespace llvm; 21 22 #define DEBUG_TYPE "aarch64tti" 23 24 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix", 25 cl::init(true), cl::Hidden); 26 27 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller, 28 const Function *Callee) const { 29 const TargetMachine &TM = getTLI()->getTargetMachine(); 30 31 const FeatureBitset &CallerBits = 32 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 33 const FeatureBitset &CalleeBits = 34 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 35 36 // Inline a callee if its target-features are a subset of the callers 37 // target-features. 38 return (CallerBits & CalleeBits) == CalleeBits; 39 } 40 41 /// \brief Calculate the cost of materializing a 64-bit value. This helper 42 /// method might only calculate a fraction of a larger immediate. Therefore it 43 /// is valid to return a cost of ZERO. 44 int AArch64TTIImpl::getIntImmCost(int64_t Val) { 45 // Check if the immediate can be encoded within an instruction. 46 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64)) 47 return 0; 48 49 if (Val < 0) 50 Val = ~Val; 51 52 // Calculate how many moves we will need to materialize this constant. 53 unsigned LZ = countLeadingZeros((uint64_t)Val); 54 return (64 - LZ + 15) / 16; 55 } 56 57 /// \brief Calculate the cost of materializing the given constant. 58 int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { 59 assert(Ty->isIntegerTy()); 60 61 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 62 if (BitSize == 0) 63 return ~0U; 64 65 // Sign-extend all constants to a multiple of 64-bit. 66 APInt ImmVal = Imm; 67 if (BitSize & 0x3f) 68 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU); 69 70 // Split the constant into 64-bit chunks and calculate the cost for each 71 // chunk. 72 int Cost = 0; 73 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { 74 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); 75 int64_t Val = Tmp.getSExtValue(); 76 Cost += getIntImmCost(Val); 77 } 78 // We need at least one instruction to materialze the constant. 79 return std::max(1, Cost); 80 } 81 82 int AArch64TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, 83 const APInt &Imm, Type *Ty) { 84 assert(Ty->isIntegerTy()); 85 86 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 87 // There is no cost model for constants with a bit size of 0. Return TCC_Free 88 // here, so that constant hoisting will ignore this constant. 89 if (BitSize == 0) 90 return TTI::TCC_Free; 91 92 unsigned ImmIdx = ~0U; 93 switch (Opcode) { 94 default: 95 return TTI::TCC_Free; 96 case Instruction::GetElementPtr: 97 // Always hoist the base address of a GetElementPtr. 98 if (Idx == 0) 99 return 2 * TTI::TCC_Basic; 100 return TTI::TCC_Free; 101 case Instruction::Store: 102 ImmIdx = 0; 103 break; 104 case Instruction::Add: 105 case Instruction::Sub: 106 case Instruction::Mul: 107 case Instruction::UDiv: 108 case Instruction::SDiv: 109 case Instruction::URem: 110 case Instruction::SRem: 111 case Instruction::And: 112 case Instruction::Or: 113 case Instruction::Xor: 114 case Instruction::ICmp: 115 ImmIdx = 1; 116 break; 117 // Always return TCC_Free for the shift value of a shift instruction. 118 case Instruction::Shl: 119 case Instruction::LShr: 120 case Instruction::AShr: 121 if (Idx == 1) 122 return TTI::TCC_Free; 123 break; 124 case Instruction::Trunc: 125 case Instruction::ZExt: 126 case Instruction::SExt: 127 case Instruction::IntToPtr: 128 case Instruction::PtrToInt: 129 case Instruction::BitCast: 130 case Instruction::PHI: 131 case Instruction::Call: 132 case Instruction::Select: 133 case Instruction::Ret: 134 case Instruction::Load: 135 break; 136 } 137 138 if (Idx == ImmIdx) { 139 int NumConstants = (BitSize + 63) / 64; 140 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty); 141 return (Cost <= NumConstants * TTI::TCC_Basic) 142 ? static_cast<int>(TTI::TCC_Free) 143 : Cost; 144 } 145 return AArch64TTIImpl::getIntImmCost(Imm, Ty); 146 } 147 148 int AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, 149 const APInt &Imm, Type *Ty) { 150 assert(Ty->isIntegerTy()); 151 152 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 153 // There is no cost model for constants with a bit size of 0. Return TCC_Free 154 // here, so that constant hoisting will ignore this constant. 155 if (BitSize == 0) 156 return TTI::TCC_Free; 157 158 switch (IID) { 159 default: 160 return TTI::TCC_Free; 161 case Intrinsic::sadd_with_overflow: 162 case Intrinsic::uadd_with_overflow: 163 case Intrinsic::ssub_with_overflow: 164 case Intrinsic::usub_with_overflow: 165 case Intrinsic::smul_with_overflow: 166 case Intrinsic::umul_with_overflow: 167 if (Idx == 1) { 168 int NumConstants = (BitSize + 63) / 64; 169 int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty); 170 return (Cost <= NumConstants * TTI::TCC_Basic) 171 ? static_cast<int>(TTI::TCC_Free) 172 : Cost; 173 } 174 break; 175 case Intrinsic::experimental_stackmap: 176 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 177 return TTI::TCC_Free; 178 break; 179 case Intrinsic::experimental_patchpoint_void: 180 case Intrinsic::experimental_patchpoint_i64: 181 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 182 return TTI::TCC_Free; 183 break; 184 } 185 return AArch64TTIImpl::getIntImmCost(Imm, Ty); 186 } 187 188 TargetTransformInfo::PopcntSupportKind 189 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) { 190 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 191 if (TyWidth == 32 || TyWidth == 64) 192 return TTI::PSK_FastHardware; 193 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount. 194 return TTI::PSK_Software; 195 } 196 197 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode, 198 ArrayRef<const Value *> Args) { 199 200 // A helper that returns a vector type from the given type. The number of 201 // elements in type Ty determine the vector width. 202 auto toVectorTy = [&](Type *ArgTy) { 203 return VectorType::get(ArgTy->getScalarType(), 204 DstTy->getVectorNumElements()); 205 }; 206 207 // Exit early if DstTy is not a vector type whose elements are at least 208 // 16-bits wide. 209 if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16) 210 return false; 211 212 // Determine if the operation has a widening variant. We consider both the 213 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the 214 // instructions. 215 // 216 // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we 217 // verify that their extending operands are eliminated during code 218 // generation. 219 switch (Opcode) { 220 case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2). 221 case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2). 222 break; 223 default: 224 return false; 225 } 226 227 // To be a widening instruction (either the "wide" or "long" versions), the 228 // second operand must be a sign- or zero extend having a single user. We 229 // only consider extends having a single user because they may otherwise not 230 // be eliminated. 231 if (Args.size() != 2 || 232 (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) || 233 !Args[1]->hasOneUse()) 234 return false; 235 auto *Extend = cast<CastInst>(Args[1]); 236 237 // Legalize the destination type and ensure it can be used in a widening 238 // operation. 239 auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy); 240 unsigned DstElTySize = DstTyL.second.getScalarSizeInBits(); 241 if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits()) 242 return false; 243 244 // Legalize the source type and ensure it can be used in a widening 245 // operation. 246 Type *SrcTy = toVectorTy(Extend->getSrcTy()); 247 auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy); 248 unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits(); 249 if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits()) 250 return false; 251 252 // Get the total number of vector elements in the legalized types. 253 unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorNumElements(); 254 unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorNumElements(); 255 256 // Return true if the legalized types have the same number of vector elements 257 // and the destination element type size is twice that of the source type. 258 return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize; 259 } 260 261 int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 262 const Instruction *I) { 263 int ISD = TLI->InstructionOpcodeToISD(Opcode); 264 assert(ISD && "Invalid opcode"); 265 266 // If the cast is observable, and it is used by a widening instruction (e.g., 267 // uaddl, saddw, etc.), it may be free. 268 if (I && I->hasOneUse()) { 269 auto *SingleUser = cast<Instruction>(*I->user_begin()); 270 SmallVector<const Value *, 4> Operands(SingleUser->operand_values()); 271 if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) { 272 // If the cast is the second operand, it is free. We will generate either 273 // a "wide" or "long" version of the widening instruction. 274 if (I == SingleUser->getOperand(1)) 275 return 0; 276 // If the cast is not the second operand, it will be free if it looks the 277 // same as the second operand. In this case, we will generate a "long" 278 // version of the widening instruction. 279 if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1))) 280 if (I->getOpcode() == unsigned(Cast->getOpcode()) && 281 cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy()) 282 return 0; 283 } 284 } 285 286 EVT SrcTy = TLI->getValueType(DL, Src); 287 EVT DstTy = TLI->getValueType(DL, Dst); 288 289 if (!SrcTy.isSimple() || !DstTy.isSimple()) 290 return BaseT::getCastInstrCost(Opcode, Dst, Src); 291 292 static const TypeConversionCostTblEntry 293 ConversionTbl[] = { 294 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 295 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 296 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 297 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 298 299 // The number of shll instructions for the extension. 300 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 301 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 302 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 303 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 304 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 305 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 306 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 307 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 308 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 309 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 310 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 311 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 312 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 313 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 314 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 315 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 316 317 // LowerVectorINT_TO_FP: 318 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 319 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 320 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 321 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 322 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 323 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 324 325 // Complex: to v2f32 326 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 327 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 328 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 329 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 330 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 331 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 332 333 // Complex: to v4f32 334 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 }, 335 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 336 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 337 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 338 339 // Complex: to v8f32 340 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 341 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 342 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 343 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 344 345 // Complex: to v16f32 346 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 347 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 348 349 // Complex: to v2f64 350 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 351 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 352 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 353 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 354 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 355 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 356 357 358 // LowerVectorFP_TO_INT 359 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 }, 360 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 361 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, 362 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, 363 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 364 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, 365 366 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext). 367 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 }, 368 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 }, 369 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 }, 370 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 }, 371 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 }, 372 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 }, 373 374 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2 375 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 376 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 }, 377 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 378 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 }, 379 380 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2. 381 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 382 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 }, 383 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 }, 384 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 385 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 }, 386 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 }, 387 }; 388 389 if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD, 390 DstTy.getSimpleVT(), 391 SrcTy.getSimpleVT())) 392 return Entry->Cost; 393 394 return BaseT::getCastInstrCost(Opcode, Dst, Src); 395 } 396 397 int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst, 398 VectorType *VecTy, 399 unsigned Index) { 400 401 // Make sure we were given a valid extend opcode. 402 assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) && 403 "Invalid opcode"); 404 405 // We are extending an element we extract from a vector, so the source type 406 // of the extend is the element type of the vector. 407 auto *Src = VecTy->getElementType(); 408 409 // Sign- and zero-extends are for integer types only. 410 assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type"); 411 412 // Get the cost for the extract. We compute the cost (if any) for the extend 413 // below. 414 auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index); 415 416 // Legalize the types. 417 auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy); 418 auto DstVT = TLI->getValueType(DL, Dst); 419 auto SrcVT = TLI->getValueType(DL, Src); 420 421 // If the resulting type is still a vector and the destination type is legal, 422 // we may get the extension for free. If not, get the default cost for the 423 // extend. 424 if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT)) 425 return Cost + getCastInstrCost(Opcode, Dst, Src); 426 427 // The destination type should be larger than the element type. If not, get 428 // the default cost for the extend. 429 if (DstVT.getSizeInBits() < SrcVT.getSizeInBits()) 430 return Cost + getCastInstrCost(Opcode, Dst, Src); 431 432 switch (Opcode) { 433 default: 434 llvm_unreachable("Opcode should be either SExt or ZExt"); 435 436 // For sign-extends, we only need a smov, which performs the extension 437 // automatically. 438 case Instruction::SExt: 439 return Cost; 440 441 // For zero-extends, the extend is performed automatically by a umov unless 442 // the destination type is i64 and the element type is i8 or i16. 443 case Instruction::ZExt: 444 if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u) 445 return Cost; 446 } 447 448 // If we are unable to perform the extend for free, get the default cost. 449 return Cost + getCastInstrCost(Opcode, Dst, Src); 450 } 451 452 int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 453 unsigned Index) { 454 assert(Val->isVectorTy() && "This must be a vector type"); 455 456 if (Index != -1U) { 457 // Legalize the type. 458 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); 459 460 // This type is legalized to a scalar type. 461 if (!LT.second.isVector()) 462 return 0; 463 464 // The type may be split. Normalize the index to the new type. 465 unsigned Width = LT.second.getVectorNumElements(); 466 Index = Index % Width; 467 468 // The element at index zero is already inside the vector. 469 if (Index == 0) 470 return 0; 471 } 472 473 // All other insert/extracts cost this much. 474 return ST->getVectorInsertExtractBaseCost(); 475 } 476 477 int AArch64TTIImpl::getArithmeticInstrCost( 478 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info, 479 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, 480 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args) { 481 // Legalize the type. 482 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 483 484 // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.), 485 // add in the widening overhead specified by the sub-target. Since the 486 // extends feeding widening instructions are performed automatically, they 487 // aren't present in the generated code and have a zero cost. By adding a 488 // widening overhead here, we attach the total cost of the combined operation 489 // to the widening instruction. 490 int Cost = 0; 491 if (isWideningInstruction(Ty, Opcode, Args)) 492 Cost += ST->getWideningBaseCost(); 493 494 int ISD = TLI->InstructionOpcodeToISD(Opcode); 495 496 switch (ISD) { 497 default: 498 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 499 Opd1PropInfo, Opd2PropInfo); 500 case ISD::SDIV: 501 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue && 502 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 503 // On AArch64, scalar signed division by constants power-of-two are 504 // normally expanded to the sequence ADD + CMP + SELECT + SRA. 505 // The OperandValue properties many not be same as that of previous 506 // operation; conservatively assume OP_None. 507 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info, 508 TargetTransformInfo::OP_None, 509 TargetTransformInfo::OP_None); 510 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info, 511 TargetTransformInfo::OP_None, 512 TargetTransformInfo::OP_None); 513 Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info, 514 TargetTransformInfo::OP_None, 515 TargetTransformInfo::OP_None); 516 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info, 517 TargetTransformInfo::OP_None, 518 TargetTransformInfo::OP_None); 519 return Cost; 520 } 521 LLVM_FALLTHROUGH; 522 case ISD::UDIV: 523 Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 524 Opd1PropInfo, Opd2PropInfo); 525 if (Ty->isVectorTy()) { 526 // On AArch64, vector divisions are not supported natively and are 527 // expanded into scalar divisions of each pair of elements. 528 Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, Opd1Info, 529 Opd2Info, Opd1PropInfo, Opd2PropInfo); 530 Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, Opd1Info, 531 Opd2Info, Opd1PropInfo, Opd2PropInfo); 532 // TODO: if one of the arguments is scalar, then it's not necessary to 533 // double the cost of handling the vector elements. 534 Cost += Cost; 535 } 536 return Cost; 537 538 case ISD::ADD: 539 case ISD::MUL: 540 case ISD::XOR: 541 case ISD::OR: 542 case ISD::AND: 543 // These nodes are marked as 'custom' for combining purposes only. 544 // We know that they are legal. See LowerAdd in ISelLowering. 545 return (Cost + 1) * LT.first; 546 } 547 } 548 549 int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, 550 const SCEV *Ptr) { 551 // Address computations in vectorized code with non-consecutive addresses will 552 // likely result in more instructions compared to scalar code where the 553 // computation can more often be merged into the index mode. The resulting 554 // extra micro-ops can significantly decrease throughput. 555 unsigned NumVectorInstToHideOverhead = 10; 556 int MaxMergeDistance = 64; 557 558 if (Ty->isVectorTy() && SE && 559 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 560 return NumVectorInstToHideOverhead; 561 562 // In many cases the address computation is not merged into the instruction 563 // addressing mode. 564 return 1; 565 } 566 567 int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 568 Type *CondTy, const Instruction *I) { 569 570 int ISD = TLI->InstructionOpcodeToISD(Opcode); 571 // We don't lower some vector selects well that are wider than the register 572 // width. 573 if (ValTy->isVectorTy() && ISD == ISD::SELECT) { 574 // We would need this many instructions to hide the scalarization happening. 575 const int AmortizationCost = 20; 576 static const TypeConversionCostTblEntry 577 VectorSelectTbl[] = { 578 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 }, 579 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 }, 580 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 }, 581 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost }, 582 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost }, 583 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost } 584 }; 585 586 EVT SelCondTy = TLI->getValueType(DL, CondTy); 587 EVT SelValTy = TLI->getValueType(DL, ValTy); 588 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 589 if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD, 590 SelCondTy.getSimpleVT(), 591 SelValTy.getSimpleVT())) 592 return Entry->Cost; 593 } 594 } 595 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I); 596 } 597 598 int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty, 599 unsigned Alignment, unsigned AddressSpace, 600 const Instruction *I) { 601 auto LT = TLI->getTypeLegalizationCost(DL, Ty); 602 603 if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store && 604 LT.second.is128BitVector() && Alignment < 16) { 605 // Unaligned stores are extremely inefficient. We don't split all 606 // unaligned 128-bit stores because the negative impact that has shown in 607 // practice on inlined block copy code. 608 // We make such stores expensive so that we will only vectorize if there 609 // are 6 other instructions getting vectorized. 610 const int AmortizationCost = 6; 611 612 return LT.first * 2 * AmortizationCost; 613 } 614 615 if (Ty->isVectorTy() && Ty->getVectorElementType()->isIntegerTy(8) && 616 Ty->getVectorNumElements() < 8) { 617 // We scalarize the loads/stores because there is not v.4b register and we 618 // have to promote the elements to v.4h. 619 unsigned NumVecElts = Ty->getVectorNumElements(); 620 unsigned NumVectorizableInstsToAmortize = NumVecElts * 2; 621 // We generate 2 instructions per vector element. 622 return NumVectorizableInstsToAmortize * NumVecElts * 2; 623 } 624 625 return LT.first; 626 } 627 628 int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 629 unsigned Factor, 630 ArrayRef<unsigned> Indices, 631 unsigned Alignment, 632 unsigned AddressSpace) { 633 assert(Factor >= 2 && "Invalid interleave factor"); 634 assert(isa<VectorType>(VecTy) && "Expect a vector type"); 635 636 if (Factor <= TLI->getMaxSupportedInterleaveFactor()) { 637 unsigned NumElts = VecTy->getVectorNumElements(); 638 auto *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor); 639 640 // ldN/stN only support legal vector types of size 64 or 128 in bits. 641 // Accesses having vector types that are a multiple of 128 bits can be 642 // matched to more than one ldN/stN instruction. 643 if (NumElts % Factor == 0 && 644 TLI->isLegalInterleavedAccessType(SubVecTy, DL)) 645 return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL); 646 } 647 648 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 649 Alignment, AddressSpace); 650 } 651 652 int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { 653 int Cost = 0; 654 for (auto *I : Tys) { 655 if (!I->isVectorTy()) 656 continue; 657 if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128) 658 Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) + 659 getMemoryOpCost(Instruction::Load, I, 128, 0); 660 } 661 return Cost; 662 } 663 664 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) { 665 return ST->getMaxInterleaveFactor(); 666 } 667 668 // For Falkor, we want to avoid having too many strided loads in a loop since 669 // that can exhaust the HW prefetcher resources. We adjust the unroller 670 // MaxCount preference below to attempt to ensure unrolling doesn't create too 671 // many strided loads. 672 static void 673 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE, 674 TargetTransformInfo::UnrollingPreferences &UP) { 675 enum { MaxStridedLoads = 7 }; 676 auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) { 677 int StridedLoads = 0; 678 // FIXME? We could make this more precise by looking at the CFG and 679 // e.g. not counting loads in each side of an if-then-else diamond. 680 for (const auto BB : L->blocks()) { 681 for (auto &I : *BB) { 682 LoadInst *LMemI = dyn_cast<LoadInst>(&I); 683 if (!LMemI) 684 continue; 685 686 Value *PtrValue = LMemI->getPointerOperand(); 687 if (L->isLoopInvariant(PtrValue)) 688 continue; 689 690 const SCEV *LSCEV = SE.getSCEV(PtrValue); 691 const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV); 692 if (!LSCEVAddRec || !LSCEVAddRec->isAffine()) 693 continue; 694 695 // FIXME? We could take pairing of unrolled load copies into account 696 // by looking at the AddRec, but we would probably have to limit this 697 // to loops with no stores or other memory optimization barriers. 698 ++StridedLoads; 699 // We've seen enough strided loads that seeing more won't make a 700 // difference. 701 if (StridedLoads > MaxStridedLoads / 2) 702 return StridedLoads; 703 } 704 } 705 return StridedLoads; 706 }; 707 708 int StridedLoads = countStridedLoads(L, SE); 709 DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads 710 << " strided loads\n"); 711 // Pick the largest power of 2 unroll count that won't result in too many 712 // strided loads. 713 if (StridedLoads) { 714 UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads); 715 DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to " << UP.MaxCount 716 << '\n'); 717 } 718 } 719 720 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 721 TTI::UnrollingPreferences &UP) { 722 // Enable partial unrolling and runtime unrolling. 723 BaseT::getUnrollingPreferences(L, SE, UP); 724 725 // For inner loop, it is more likely to be a hot one, and the runtime check 726 // can be promoted out from LICM pass, so the overhead is less, let's try 727 // a larger threshold to unroll more loops. 728 if (L->getLoopDepth() > 1) 729 UP.PartialThreshold *= 2; 730 731 // Disable partial & runtime unrolling on -Os. 732 UP.PartialOptSizeThreshold = 0; 733 734 if (ST->getProcFamily() == AArch64Subtarget::Falkor && 735 EnableFalkorHWPFUnrollFix) 736 getFalkorUnrollingPreferences(L, SE, UP); 737 } 738 739 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 740 Type *ExpectedType) { 741 switch (Inst->getIntrinsicID()) { 742 default: 743 return nullptr; 744 case Intrinsic::aarch64_neon_st2: 745 case Intrinsic::aarch64_neon_st3: 746 case Intrinsic::aarch64_neon_st4: { 747 // Create a struct type 748 StructType *ST = dyn_cast<StructType>(ExpectedType); 749 if (!ST) 750 return nullptr; 751 unsigned NumElts = Inst->getNumArgOperands() - 1; 752 if (ST->getNumElements() != NumElts) 753 return nullptr; 754 for (unsigned i = 0, e = NumElts; i != e; ++i) { 755 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i)) 756 return nullptr; 757 } 758 Value *Res = UndefValue::get(ExpectedType); 759 IRBuilder<> Builder(Inst); 760 for (unsigned i = 0, e = NumElts; i != e; ++i) { 761 Value *L = Inst->getArgOperand(i); 762 Res = Builder.CreateInsertValue(Res, L, i); 763 } 764 return Res; 765 } 766 case Intrinsic::aarch64_neon_ld2: 767 case Intrinsic::aarch64_neon_ld3: 768 case Intrinsic::aarch64_neon_ld4: 769 if (Inst->getType() == ExpectedType) 770 return Inst; 771 return nullptr; 772 } 773 } 774 775 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 776 MemIntrinsicInfo &Info) { 777 switch (Inst->getIntrinsicID()) { 778 default: 779 break; 780 case Intrinsic::aarch64_neon_ld2: 781 case Intrinsic::aarch64_neon_ld3: 782 case Intrinsic::aarch64_neon_ld4: 783 Info.ReadMem = true; 784 Info.WriteMem = false; 785 Info.PtrVal = Inst->getArgOperand(0); 786 break; 787 case Intrinsic::aarch64_neon_st2: 788 case Intrinsic::aarch64_neon_st3: 789 case Intrinsic::aarch64_neon_st4: 790 Info.ReadMem = false; 791 Info.WriteMem = true; 792 Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1); 793 break; 794 } 795 796 switch (Inst->getIntrinsicID()) { 797 default: 798 return false; 799 case Intrinsic::aarch64_neon_ld2: 800 case Intrinsic::aarch64_neon_st2: 801 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS; 802 break; 803 case Intrinsic::aarch64_neon_ld3: 804 case Intrinsic::aarch64_neon_st3: 805 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS; 806 break; 807 case Intrinsic::aarch64_neon_ld4: 808 case Intrinsic::aarch64_neon_st4: 809 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS; 810 break; 811 } 812 return true; 813 } 814 815 /// See if \p I should be considered for address type promotion. We check if \p 816 /// I is a sext with right type and used in memory accesses. If it used in a 817 /// "complex" getelementptr, we allow it to be promoted without finding other 818 /// sext instructions that sign extended the same initial value. A getelementptr 819 /// is considered as "complex" if it has more than 2 operands. 820 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion( 821 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) { 822 bool Considerable = false; 823 AllowPromotionWithoutCommonHeader = false; 824 if (!isa<SExtInst>(&I)) 825 return false; 826 Type *ConsideredSExtType = 827 Type::getInt64Ty(I.getParent()->getParent()->getContext()); 828 if (I.getType() != ConsideredSExtType) 829 return false; 830 // See if the sext is the one with the right type and used in at least one 831 // GetElementPtrInst. 832 for (const User *U : I.users()) { 833 if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) { 834 Considerable = true; 835 // A getelementptr is considered as "complex" if it has more than 2 836 // operands. We will promote a SExt used in such complex GEP as we 837 // expect some computation to be merged if they are done on 64 bits. 838 if (GEPInst->getNumOperands() > 2) { 839 AllowPromotionWithoutCommonHeader = true; 840 break; 841 } 842 } 843 } 844 return Considerable; 845 } 846 847 unsigned AArch64TTIImpl::getCacheLineSize() { 848 return ST->getCacheLineSize(); 849 } 850 851 unsigned AArch64TTIImpl::getPrefetchDistance() { 852 return ST->getPrefetchDistance(); 853 } 854 855 unsigned AArch64TTIImpl::getMinPrefetchStride() { 856 return ST->getMinPrefetchStride(); 857 } 858 859 unsigned AArch64TTIImpl::getMaxPrefetchIterationsAhead() { 860 return ST->getMaxPrefetchIterationsAhead(); 861 } 862 863 bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty, 864 TTI::ReductionFlags Flags) const { 865 assert(isa<VectorType>(Ty) && "Expected Ty to be a vector type"); 866 unsigned ScalarBits = Ty->getScalarSizeInBits(); 867 switch (Opcode) { 868 case Instruction::FAdd: 869 case Instruction::FMul: 870 case Instruction::And: 871 case Instruction::Or: 872 case Instruction::Xor: 873 case Instruction::Mul: 874 return false; 875 case Instruction::Add: 876 return ScalarBits * Ty->getVectorNumElements() >= 128; 877 case Instruction::ICmp: 878 return (ScalarBits < 64) && 879 (ScalarBits * Ty->getVectorNumElements() >= 128); 880 case Instruction::FCmp: 881 return Flags.NoNaN; 882 default: 883 llvm_unreachable("Unhandled reduction opcode"); 884 } 885 return false; 886 } 887 888 int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *ValTy, 889 bool IsPairwiseForm) { 890 891 if (IsPairwiseForm) 892 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm); 893 894 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 895 MVT MTy = LT.second; 896 int ISD = TLI->InstructionOpcodeToISD(Opcode); 897 assert(ISD && "Invalid opcode"); 898 899 // Horizontal adds can use the 'addv' instruction. We model the cost of these 900 // instructions as normal vector adds. This is the only arithmetic vector 901 // reduction operation for which we have an instruction. 902 static const CostTblEntry CostTblNoPairwise[]{ 903 {ISD::ADD, MVT::v8i8, 1}, 904 {ISD::ADD, MVT::v16i8, 1}, 905 {ISD::ADD, MVT::v4i16, 1}, 906 {ISD::ADD, MVT::v8i16, 1}, 907 {ISD::ADD, MVT::v4i32, 1}, 908 }; 909 910 if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy)) 911 return LT.first * Entry->Cost; 912 913 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm); 914 } 915