1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AArch64TargetTransformInfo.h" 10 #include "AArch64ExpandImm.h" 11 #include "MCTargetDesc/AArch64AddressingModes.h" 12 #include "llvm/Analysis/IVDescriptors.h" 13 #include "llvm/Analysis/LoopInfo.h" 14 #include "llvm/Analysis/TargetTransformInfo.h" 15 #include "llvm/CodeGen/BasicTTIImpl.h" 16 #include "llvm/CodeGen/CostTable.h" 17 #include "llvm/CodeGen/TargetLowering.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/IntrinsicsAArch64.h" 21 #include "llvm/IR/PatternMatch.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Transforms/InstCombine/InstCombiner.h" 24 #include <algorithm> 25 using namespace llvm; 26 using namespace llvm::PatternMatch; 27 28 #define DEBUG_TYPE "aarch64tti" 29 30 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix", 31 cl::init(true), cl::Hidden); 32 33 static cl::opt<unsigned> SVEGatherOverhead("sve-gather-overhead", cl::init(10), 34 cl::Hidden); 35 36 static cl::opt<unsigned> SVEScatterOverhead("sve-scatter-overhead", 37 cl::init(10), cl::Hidden); 38 39 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller, 40 const Function *Callee) const { 41 const TargetMachine &TM = getTLI()->getTargetMachine(); 42 43 const FeatureBitset &CallerBits = 44 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 45 const FeatureBitset &CalleeBits = 46 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 47 48 // Inline a callee if its target-features are a subset of the callers 49 // target-features. 50 return (CallerBits & CalleeBits) == CalleeBits; 51 } 52 53 /// Calculate the cost of materializing a 64-bit value. This helper 54 /// method might only calculate a fraction of a larger immediate. Therefore it 55 /// is valid to return a cost of ZERO. 56 InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) { 57 // Check if the immediate can be encoded within an instruction. 58 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64)) 59 return 0; 60 61 if (Val < 0) 62 Val = ~Val; 63 64 // Calculate how many moves we will need to materialize this constant. 65 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; 66 AArch64_IMM::expandMOVImm(Val, 64, Insn); 67 return Insn.size(); 68 } 69 70 /// Calculate the cost of materializing the given constant. 71 InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 72 TTI::TargetCostKind CostKind) { 73 assert(Ty->isIntegerTy()); 74 75 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 76 if (BitSize == 0) 77 return ~0U; 78 79 // Sign-extend all constants to a multiple of 64-bit. 80 APInt ImmVal = Imm; 81 if (BitSize & 0x3f) 82 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU); 83 84 // Split the constant into 64-bit chunks and calculate the cost for each 85 // chunk. 86 InstructionCost Cost = 0; 87 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { 88 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); 89 int64_t Val = Tmp.getSExtValue(); 90 Cost += getIntImmCost(Val); 91 } 92 // We need at least one instruction to materialze the constant. 93 return std::max<InstructionCost>(1, Cost); 94 } 95 96 InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 97 const APInt &Imm, Type *Ty, 98 TTI::TargetCostKind CostKind, 99 Instruction *Inst) { 100 assert(Ty->isIntegerTy()); 101 102 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 103 // There is no cost model for constants with a bit size of 0. Return TCC_Free 104 // here, so that constant hoisting will ignore this constant. 105 if (BitSize == 0) 106 return TTI::TCC_Free; 107 108 unsigned ImmIdx = ~0U; 109 switch (Opcode) { 110 default: 111 return TTI::TCC_Free; 112 case Instruction::GetElementPtr: 113 // Always hoist the base address of a GetElementPtr. 114 if (Idx == 0) 115 return 2 * TTI::TCC_Basic; 116 return TTI::TCC_Free; 117 case Instruction::Store: 118 ImmIdx = 0; 119 break; 120 case Instruction::Add: 121 case Instruction::Sub: 122 case Instruction::Mul: 123 case Instruction::UDiv: 124 case Instruction::SDiv: 125 case Instruction::URem: 126 case Instruction::SRem: 127 case Instruction::And: 128 case Instruction::Or: 129 case Instruction::Xor: 130 case Instruction::ICmp: 131 ImmIdx = 1; 132 break; 133 // Always return TCC_Free for the shift value of a shift instruction. 134 case Instruction::Shl: 135 case Instruction::LShr: 136 case Instruction::AShr: 137 if (Idx == 1) 138 return TTI::TCC_Free; 139 break; 140 case Instruction::Trunc: 141 case Instruction::ZExt: 142 case Instruction::SExt: 143 case Instruction::IntToPtr: 144 case Instruction::PtrToInt: 145 case Instruction::BitCast: 146 case Instruction::PHI: 147 case Instruction::Call: 148 case Instruction::Select: 149 case Instruction::Ret: 150 case Instruction::Load: 151 break; 152 } 153 154 if (Idx == ImmIdx) { 155 int NumConstants = (BitSize + 63) / 64; 156 InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 157 return (Cost <= NumConstants * TTI::TCC_Basic) 158 ? static_cast<int>(TTI::TCC_Free) 159 : Cost; 160 } 161 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 162 } 163 164 InstructionCost 165 AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 166 const APInt &Imm, Type *Ty, 167 TTI::TargetCostKind CostKind) { 168 assert(Ty->isIntegerTy()); 169 170 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 171 // There is no cost model for constants with a bit size of 0. Return TCC_Free 172 // here, so that constant hoisting will ignore this constant. 173 if (BitSize == 0) 174 return TTI::TCC_Free; 175 176 // Most (all?) AArch64 intrinsics do not support folding immediates into the 177 // selected instruction, so we compute the materialization cost for the 178 // immediate directly. 179 if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv) 180 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 181 182 switch (IID) { 183 default: 184 return TTI::TCC_Free; 185 case Intrinsic::sadd_with_overflow: 186 case Intrinsic::uadd_with_overflow: 187 case Intrinsic::ssub_with_overflow: 188 case Intrinsic::usub_with_overflow: 189 case Intrinsic::smul_with_overflow: 190 case Intrinsic::umul_with_overflow: 191 if (Idx == 1) { 192 int NumConstants = (BitSize + 63) / 64; 193 InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 194 return (Cost <= NumConstants * TTI::TCC_Basic) 195 ? static_cast<int>(TTI::TCC_Free) 196 : Cost; 197 } 198 break; 199 case Intrinsic::experimental_stackmap: 200 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 201 return TTI::TCC_Free; 202 break; 203 case Intrinsic::experimental_patchpoint_void: 204 case Intrinsic::experimental_patchpoint_i64: 205 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 206 return TTI::TCC_Free; 207 break; 208 case Intrinsic::experimental_gc_statepoint: 209 if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 210 return TTI::TCC_Free; 211 break; 212 } 213 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 214 } 215 216 TargetTransformInfo::PopcntSupportKind 217 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) { 218 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 219 if (TyWidth == 32 || TyWidth == 64) 220 return TTI::PSK_FastHardware; 221 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount. 222 return TTI::PSK_Software; 223 } 224 225 InstructionCost 226 AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 227 TTI::TargetCostKind CostKind) { 228 auto *RetTy = ICA.getReturnType(); 229 switch (ICA.getID()) { 230 case Intrinsic::umin: 231 case Intrinsic::umax: 232 case Intrinsic::smin: 233 case Intrinsic::smax: { 234 static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 235 MVT::v8i16, MVT::v2i32, MVT::v4i32}; 236 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 237 // v2i64 types get converted to cmp+bif hence the cost of 2 238 if (LT.second == MVT::v2i64) 239 return LT.first * 2; 240 if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; })) 241 return LT.first; 242 break; 243 } 244 case Intrinsic::sadd_sat: 245 case Intrinsic::ssub_sat: 246 case Intrinsic::uadd_sat: 247 case Intrinsic::usub_sat: { 248 static const auto ValidSatTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 249 MVT::v8i16, MVT::v2i32, MVT::v4i32, 250 MVT::v2i64}; 251 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 252 // This is a base cost of 1 for the vadd, plus 3 extract shifts if we 253 // need to extend the type, as it uses shr(qadd(shl, shl)). 254 unsigned Instrs = 255 LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4; 256 if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; })) 257 return LT.first * Instrs; 258 break; 259 } 260 case Intrinsic::abs: { 261 static const auto ValidAbsTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 262 MVT::v8i16, MVT::v2i32, MVT::v4i32, 263 MVT::v2i64}; 264 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 265 if (any_of(ValidAbsTys, [<](MVT M) { return M == LT.second; })) 266 return LT.first; 267 break; 268 } 269 case Intrinsic::experimental_stepvector: { 270 InstructionCost Cost = 1; // Cost of the `index' instruction 271 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 272 // Legalisation of illegal vectors involves an `index' instruction plus 273 // (LT.first - 1) vector adds. 274 if (LT.first > 1) { 275 Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext()); 276 InstructionCost AddCost = 277 getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind); 278 Cost += AddCost * (LT.first - 1); 279 } 280 return Cost; 281 } 282 case Intrinsic::bitreverse: { 283 static const CostTblEntry BitreverseTbl[] = { 284 {Intrinsic::bitreverse, MVT::i32, 1}, 285 {Intrinsic::bitreverse, MVT::i64, 1}, 286 {Intrinsic::bitreverse, MVT::v8i8, 1}, 287 {Intrinsic::bitreverse, MVT::v16i8, 1}, 288 {Intrinsic::bitreverse, MVT::v4i16, 2}, 289 {Intrinsic::bitreverse, MVT::v8i16, 2}, 290 {Intrinsic::bitreverse, MVT::v2i32, 2}, 291 {Intrinsic::bitreverse, MVT::v4i32, 2}, 292 {Intrinsic::bitreverse, MVT::v1i64, 2}, 293 {Intrinsic::bitreverse, MVT::v2i64, 2}, 294 }; 295 const auto LegalisationCost = TLI->getTypeLegalizationCost(DL, RetTy); 296 const auto *Entry = 297 CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second); 298 if (Entry) { 299 // Cost Model is using the legal type(i32) that i8 and i16 will be 300 // converted to +1 so that we match the actual lowering cost 301 if (TLI->getValueType(DL, RetTy, true) == MVT::i8 || 302 TLI->getValueType(DL, RetTy, true) == MVT::i16) 303 return LegalisationCost.first * Entry->Cost + 1; 304 305 return LegalisationCost.first * Entry->Cost; 306 } 307 break; 308 } 309 case Intrinsic::ctpop: { 310 static const CostTblEntry CtpopCostTbl[] = { 311 {ISD::CTPOP, MVT::v2i64, 4}, 312 {ISD::CTPOP, MVT::v4i32, 3}, 313 {ISD::CTPOP, MVT::v8i16, 2}, 314 {ISD::CTPOP, MVT::v16i8, 1}, 315 {ISD::CTPOP, MVT::i64, 4}, 316 {ISD::CTPOP, MVT::v2i32, 3}, 317 {ISD::CTPOP, MVT::v4i16, 2}, 318 {ISD::CTPOP, MVT::v8i8, 1}, 319 {ISD::CTPOP, MVT::i32, 5}, 320 }; 321 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 322 MVT MTy = LT.second; 323 if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) { 324 // Extra cost of +1 when illegal vector types are legalized by promoting 325 // the integer type. 326 int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() != 327 RetTy->getScalarSizeInBits() 328 ? 1 329 : 0; 330 return LT.first * Entry->Cost + ExtraCost; 331 } 332 break; 333 } 334 case Intrinsic::sadd_with_overflow: 335 case Intrinsic::uadd_with_overflow: 336 case Intrinsic::ssub_with_overflow: 337 case Intrinsic::usub_with_overflow: 338 case Intrinsic::smul_with_overflow: 339 case Intrinsic::umul_with_overflow: { 340 static const CostTblEntry WithOverflowCostTbl[] = { 341 {Intrinsic::sadd_with_overflow, MVT::i8, 3}, 342 {Intrinsic::uadd_with_overflow, MVT::i8, 3}, 343 {Intrinsic::sadd_with_overflow, MVT::i16, 3}, 344 {Intrinsic::uadd_with_overflow, MVT::i16, 3}, 345 {Intrinsic::sadd_with_overflow, MVT::i32, 1}, 346 {Intrinsic::uadd_with_overflow, MVT::i32, 1}, 347 {Intrinsic::sadd_with_overflow, MVT::i64, 1}, 348 {Intrinsic::uadd_with_overflow, MVT::i64, 1}, 349 {Intrinsic::ssub_with_overflow, MVT::i8, 3}, 350 {Intrinsic::usub_with_overflow, MVT::i8, 3}, 351 {Intrinsic::ssub_with_overflow, MVT::i16, 3}, 352 {Intrinsic::usub_with_overflow, MVT::i16, 3}, 353 {Intrinsic::ssub_with_overflow, MVT::i32, 1}, 354 {Intrinsic::usub_with_overflow, MVT::i32, 1}, 355 {Intrinsic::ssub_with_overflow, MVT::i64, 1}, 356 {Intrinsic::usub_with_overflow, MVT::i64, 1}, 357 {Intrinsic::smul_with_overflow, MVT::i8, 5}, 358 {Intrinsic::umul_with_overflow, MVT::i8, 4}, 359 {Intrinsic::smul_with_overflow, MVT::i16, 5}, 360 {Intrinsic::umul_with_overflow, MVT::i16, 4}, 361 {Intrinsic::smul_with_overflow, MVT::i32, 2}, // eg umull;tst 362 {Intrinsic::umul_with_overflow, MVT::i32, 2}, // eg umull;cmp sxtw 363 {Intrinsic::smul_with_overflow, MVT::i64, 3}, // eg mul;smulh;cmp 364 {Intrinsic::umul_with_overflow, MVT::i64, 3}, // eg mul;umulh;cmp asr 365 }; 366 EVT MTy = TLI->getValueType(DL, RetTy->getContainedType(0), true); 367 if (MTy.isSimple()) 368 if (const auto *Entry = CostTableLookup(WithOverflowCostTbl, ICA.getID(), 369 MTy.getSimpleVT())) 370 return Entry->Cost; 371 break; 372 } 373 default: 374 break; 375 } 376 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 377 } 378 379 /// The function will remove redundant reinterprets casting in the presence 380 /// of the control flow 381 static Optional<Instruction *> processPhiNode(InstCombiner &IC, 382 IntrinsicInst &II) { 383 SmallVector<Instruction *, 32> Worklist; 384 auto RequiredType = II.getType(); 385 386 auto *PN = dyn_cast<PHINode>(II.getArgOperand(0)); 387 assert(PN && "Expected Phi Node!"); 388 389 // Don't create a new Phi unless we can remove the old one. 390 if (!PN->hasOneUse()) 391 return None; 392 393 for (Value *IncValPhi : PN->incoming_values()) { 394 auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi); 395 if (!Reinterpret || 396 Reinterpret->getIntrinsicID() != 397 Intrinsic::aarch64_sve_convert_to_svbool || 398 RequiredType != Reinterpret->getArgOperand(0)->getType()) 399 return None; 400 } 401 402 // Create the new Phi 403 LLVMContext &Ctx = PN->getContext(); 404 IRBuilder<> Builder(Ctx); 405 Builder.SetInsertPoint(PN); 406 PHINode *NPN = Builder.CreatePHI(RequiredType, PN->getNumIncomingValues()); 407 Worklist.push_back(PN); 408 409 for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) { 410 auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I)); 411 NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I)); 412 Worklist.push_back(Reinterpret); 413 } 414 415 // Cleanup Phi Node and reinterprets 416 return IC.replaceInstUsesWith(II, NPN); 417 } 418 419 // (from_svbool (binop (to_svbool pred) (svbool_t _) (svbool_t _)))) 420 // => (binop (pred) (from_svbool _) (from_svbool _)) 421 // 422 // The above transformation eliminates a `to_svbool` in the predicate 423 // operand of bitwise operation `binop` by narrowing the vector width of 424 // the operation. For example, it would convert a `<vscale x 16 x i1> 425 // and` into a `<vscale x 4 x i1> and`. This is profitable because 426 // to_svbool must zero the new lanes during widening, whereas 427 // from_svbool is free. 428 static Optional<Instruction *> tryCombineFromSVBoolBinOp(InstCombiner &IC, 429 IntrinsicInst &II) { 430 auto BinOp = dyn_cast<IntrinsicInst>(II.getOperand(0)); 431 if (!BinOp) 432 return None; 433 434 auto IntrinsicID = BinOp->getIntrinsicID(); 435 switch (IntrinsicID) { 436 case Intrinsic::aarch64_sve_and_z: 437 case Intrinsic::aarch64_sve_bic_z: 438 case Intrinsic::aarch64_sve_eor_z: 439 case Intrinsic::aarch64_sve_nand_z: 440 case Intrinsic::aarch64_sve_nor_z: 441 case Intrinsic::aarch64_sve_orn_z: 442 case Intrinsic::aarch64_sve_orr_z: 443 break; 444 default: 445 return None; 446 } 447 448 auto BinOpPred = BinOp->getOperand(0); 449 auto BinOpOp1 = BinOp->getOperand(1); 450 auto BinOpOp2 = BinOp->getOperand(2); 451 452 auto PredIntr = dyn_cast<IntrinsicInst>(BinOpPred); 453 if (!PredIntr || 454 PredIntr->getIntrinsicID() != Intrinsic::aarch64_sve_convert_to_svbool) 455 return None; 456 457 auto PredOp = PredIntr->getOperand(0); 458 auto PredOpTy = cast<VectorType>(PredOp->getType()); 459 if (PredOpTy != II.getType()) 460 return None; 461 462 IRBuilder<> Builder(II.getContext()); 463 Builder.SetInsertPoint(&II); 464 465 SmallVector<Value *> NarrowedBinOpArgs = {PredOp}; 466 auto NarrowBinOpOp1 = Builder.CreateIntrinsic( 467 Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp1}); 468 NarrowedBinOpArgs.push_back(NarrowBinOpOp1); 469 if (BinOpOp1 == BinOpOp2) 470 NarrowedBinOpArgs.push_back(NarrowBinOpOp1); 471 else 472 NarrowedBinOpArgs.push_back(Builder.CreateIntrinsic( 473 Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp2})); 474 475 auto NarrowedBinOp = 476 Builder.CreateIntrinsic(IntrinsicID, {PredOpTy}, NarrowedBinOpArgs); 477 return IC.replaceInstUsesWith(II, NarrowedBinOp); 478 } 479 480 static Optional<Instruction *> instCombineConvertFromSVBool(InstCombiner &IC, 481 IntrinsicInst &II) { 482 // If the reinterpret instruction operand is a PHI Node 483 if (isa<PHINode>(II.getArgOperand(0))) 484 return processPhiNode(IC, II); 485 486 if (auto BinOpCombine = tryCombineFromSVBoolBinOp(IC, II)) 487 return BinOpCombine; 488 489 SmallVector<Instruction *, 32> CandidatesForRemoval; 490 Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr; 491 492 const auto *IVTy = cast<VectorType>(II.getType()); 493 494 // Walk the chain of conversions. 495 while (Cursor) { 496 // If the type of the cursor has fewer lanes than the final result, zeroing 497 // must take place, which breaks the equivalence chain. 498 const auto *CursorVTy = cast<VectorType>(Cursor->getType()); 499 if (CursorVTy->getElementCount().getKnownMinValue() < 500 IVTy->getElementCount().getKnownMinValue()) 501 break; 502 503 // If the cursor has the same type as I, it is a viable replacement. 504 if (Cursor->getType() == IVTy) 505 EarliestReplacement = Cursor; 506 507 auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor); 508 509 // If this is not an SVE conversion intrinsic, this is the end of the chain. 510 if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() == 511 Intrinsic::aarch64_sve_convert_to_svbool || 512 IntrinsicCursor->getIntrinsicID() == 513 Intrinsic::aarch64_sve_convert_from_svbool)) 514 break; 515 516 CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor); 517 Cursor = IntrinsicCursor->getOperand(0); 518 } 519 520 // If no viable replacement in the conversion chain was found, there is 521 // nothing to do. 522 if (!EarliestReplacement) 523 return None; 524 525 return IC.replaceInstUsesWith(II, EarliestReplacement); 526 } 527 528 static Optional<Instruction *> instCombineSVEDup(InstCombiner &IC, 529 IntrinsicInst &II) { 530 IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(1)); 531 if (!Pg) 532 return None; 533 534 if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) 535 return None; 536 537 const auto PTruePattern = 538 cast<ConstantInt>(Pg->getOperand(0))->getZExtValue(); 539 if (PTruePattern != AArch64SVEPredPattern::vl1) 540 return None; 541 542 // The intrinsic is inserting into lane zero so use an insert instead. 543 auto *IdxTy = Type::getInt64Ty(II.getContext()); 544 auto *Insert = InsertElementInst::Create( 545 II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0)); 546 Insert->insertBefore(&II); 547 Insert->takeName(&II); 548 549 return IC.replaceInstUsesWith(II, Insert); 550 } 551 552 static Optional<Instruction *> instCombineSVEDupX(InstCombiner &IC, 553 IntrinsicInst &II) { 554 // Replace DupX with a regular IR splat. 555 IRBuilder<> Builder(II.getContext()); 556 Builder.SetInsertPoint(&II); 557 auto *RetTy = cast<ScalableVectorType>(II.getType()); 558 Value *Splat = 559 Builder.CreateVectorSplat(RetTy->getElementCount(), II.getArgOperand(0)); 560 Splat->takeName(&II); 561 return IC.replaceInstUsesWith(II, Splat); 562 } 563 564 static Optional<Instruction *> instCombineSVECmpNE(InstCombiner &IC, 565 IntrinsicInst &II) { 566 LLVMContext &Ctx = II.getContext(); 567 IRBuilder<> Builder(Ctx); 568 Builder.SetInsertPoint(&II); 569 570 // Check that the predicate is all active 571 auto *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(0)); 572 if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) 573 return None; 574 575 const auto PTruePattern = 576 cast<ConstantInt>(Pg->getOperand(0))->getZExtValue(); 577 if (PTruePattern != AArch64SVEPredPattern::all) 578 return None; 579 580 // Check that we have a compare of zero.. 581 auto *SplatValue = 582 dyn_cast_or_null<ConstantInt>(getSplatValue(II.getArgOperand(2))); 583 if (!SplatValue || !SplatValue->isZero()) 584 return None; 585 586 // ..against a dupq 587 auto *DupQLane = dyn_cast<IntrinsicInst>(II.getArgOperand(1)); 588 if (!DupQLane || 589 DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane) 590 return None; 591 592 // Where the dupq is a lane 0 replicate of a vector insert 593 if (!cast<ConstantInt>(DupQLane->getArgOperand(1))->isZero()) 594 return None; 595 596 auto *VecIns = dyn_cast<IntrinsicInst>(DupQLane->getArgOperand(0)); 597 if (!VecIns || 598 VecIns->getIntrinsicID() != Intrinsic::experimental_vector_insert) 599 return None; 600 601 // Where the vector insert is a fixed constant vector insert into undef at 602 // index zero 603 if (!isa<UndefValue>(VecIns->getArgOperand(0))) 604 return None; 605 606 if (!cast<ConstantInt>(VecIns->getArgOperand(2))->isZero()) 607 return None; 608 609 auto *ConstVec = dyn_cast<Constant>(VecIns->getArgOperand(1)); 610 if (!ConstVec) 611 return None; 612 613 auto *VecTy = dyn_cast<FixedVectorType>(ConstVec->getType()); 614 auto *OutTy = dyn_cast<ScalableVectorType>(II.getType()); 615 if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements()) 616 return None; 617 618 unsigned NumElts = VecTy->getNumElements(); 619 unsigned PredicateBits = 0; 620 621 // Expand intrinsic operands to a 16-bit byte level predicate 622 for (unsigned I = 0; I < NumElts; ++I) { 623 auto *Arg = dyn_cast<ConstantInt>(ConstVec->getAggregateElement(I)); 624 if (!Arg) 625 return None; 626 if (!Arg->isZero()) 627 PredicateBits |= 1 << (I * (16 / NumElts)); 628 } 629 630 // If all bits are zero bail early with an empty predicate 631 if (PredicateBits == 0) { 632 auto *PFalse = Constant::getNullValue(II.getType()); 633 PFalse->takeName(&II); 634 return IC.replaceInstUsesWith(II, PFalse); 635 } 636 637 // Calculate largest predicate type used (where byte predicate is largest) 638 unsigned Mask = 8; 639 for (unsigned I = 0; I < 16; ++I) 640 if ((PredicateBits & (1 << I)) != 0) 641 Mask |= (I % 8); 642 643 unsigned PredSize = Mask & -Mask; 644 auto *PredType = ScalableVectorType::get( 645 Type::getInt1Ty(Ctx), AArch64::SVEBitsPerBlock / (PredSize * 8)); 646 647 // Ensure all relevant bits are set 648 for (unsigned I = 0; I < 16; I += PredSize) 649 if ((PredicateBits & (1 << I)) == 0) 650 return None; 651 652 auto *PTruePat = 653 ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all); 654 auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, 655 {PredType}, {PTruePat}); 656 auto *ConvertToSVBool = Builder.CreateIntrinsic( 657 Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue}); 658 auto *ConvertFromSVBool = 659 Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, 660 {II.getType()}, {ConvertToSVBool}); 661 662 ConvertFromSVBool->takeName(&II); 663 return IC.replaceInstUsesWith(II, ConvertFromSVBool); 664 } 665 666 static Optional<Instruction *> instCombineSVELast(InstCombiner &IC, 667 IntrinsicInst &II) { 668 IRBuilder<> Builder(II.getContext()); 669 Builder.SetInsertPoint(&II); 670 Value *Pg = II.getArgOperand(0); 671 Value *Vec = II.getArgOperand(1); 672 auto IntrinsicID = II.getIntrinsicID(); 673 bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta; 674 675 // lastX(splat(X)) --> X 676 if (auto *SplatVal = getSplatValue(Vec)) 677 return IC.replaceInstUsesWith(II, SplatVal); 678 679 // If x and/or y is a splat value then: 680 // lastX (binop (x, y)) --> binop(lastX(x), lastX(y)) 681 Value *LHS, *RHS; 682 if (match(Vec, m_OneUse(m_BinOp(m_Value(LHS), m_Value(RHS))))) { 683 if (isSplatValue(LHS) || isSplatValue(RHS)) { 684 auto *OldBinOp = cast<BinaryOperator>(Vec); 685 auto OpC = OldBinOp->getOpcode(); 686 auto *NewLHS = 687 Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, LHS}); 688 auto *NewRHS = 689 Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, RHS}); 690 auto *NewBinOp = BinaryOperator::CreateWithCopiedFlags( 691 OpC, NewLHS, NewRHS, OldBinOp, OldBinOp->getName(), &II); 692 return IC.replaceInstUsesWith(II, NewBinOp); 693 } 694 } 695 696 auto *C = dyn_cast<Constant>(Pg); 697 if (IsAfter && C && C->isNullValue()) { 698 // The intrinsic is extracting lane 0 so use an extract instead. 699 auto *IdxTy = Type::getInt64Ty(II.getContext()); 700 auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0)); 701 Extract->insertBefore(&II); 702 Extract->takeName(&II); 703 return IC.replaceInstUsesWith(II, Extract); 704 } 705 706 auto *IntrPG = dyn_cast<IntrinsicInst>(Pg); 707 if (!IntrPG) 708 return None; 709 710 if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) 711 return None; 712 713 const auto PTruePattern = 714 cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue(); 715 716 // Can the intrinsic's predicate be converted to a known constant index? 717 unsigned MinNumElts = getNumElementsFromSVEPredPattern(PTruePattern); 718 if (!MinNumElts) 719 return None; 720 721 unsigned Idx = MinNumElts - 1; 722 // Increment the index if extracting the element after the last active 723 // predicate element. 724 if (IsAfter) 725 ++Idx; 726 727 // Ignore extracts whose index is larger than the known minimum vector 728 // length. NOTE: This is an artificial constraint where we prefer to 729 // maintain what the user asked for until an alternative is proven faster. 730 auto *PgVTy = cast<ScalableVectorType>(Pg->getType()); 731 if (Idx >= PgVTy->getMinNumElements()) 732 return None; 733 734 // The intrinsic is extracting a fixed lane so use an extract instead. 735 auto *IdxTy = Type::getInt64Ty(II.getContext()); 736 auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx)); 737 Extract->insertBefore(&II); 738 Extract->takeName(&II); 739 return IC.replaceInstUsesWith(II, Extract); 740 } 741 742 static Optional<Instruction *> instCombineRDFFR(InstCombiner &IC, 743 IntrinsicInst &II) { 744 LLVMContext &Ctx = II.getContext(); 745 IRBuilder<> Builder(Ctx); 746 Builder.SetInsertPoint(&II); 747 // Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr 748 // can work with RDFFR_PP for ptest elimination. 749 auto *AllPat = 750 ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all); 751 auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, 752 {II.getType()}, {AllPat}); 753 auto *RDFFR = 754 Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue}); 755 RDFFR->takeName(&II); 756 return IC.replaceInstUsesWith(II, RDFFR); 757 } 758 759 static Optional<Instruction *> 760 instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) { 761 const auto Pattern = cast<ConstantInt>(II.getArgOperand(0))->getZExtValue(); 762 763 if (Pattern == AArch64SVEPredPattern::all) { 764 LLVMContext &Ctx = II.getContext(); 765 IRBuilder<> Builder(Ctx); 766 Builder.SetInsertPoint(&II); 767 768 Constant *StepVal = ConstantInt::get(II.getType(), NumElts); 769 auto *VScale = Builder.CreateVScale(StepVal); 770 VScale->takeName(&II); 771 return IC.replaceInstUsesWith(II, VScale); 772 } 773 774 unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern); 775 776 return MinNumElts && NumElts >= MinNumElts 777 ? Optional<Instruction *>(IC.replaceInstUsesWith( 778 II, ConstantInt::get(II.getType(), MinNumElts))) 779 : None; 780 } 781 782 static Optional<Instruction *> instCombineSVEPTest(InstCombiner &IC, 783 IntrinsicInst &II) { 784 IntrinsicInst *Op1 = dyn_cast<IntrinsicInst>(II.getArgOperand(0)); 785 IntrinsicInst *Op2 = dyn_cast<IntrinsicInst>(II.getArgOperand(1)); 786 787 if (Op1 && Op2 && 788 Op1->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool && 789 Op2->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool && 790 Op1->getArgOperand(0)->getType() == Op2->getArgOperand(0)->getType()) { 791 792 IRBuilder<> Builder(II.getContext()); 793 Builder.SetInsertPoint(&II); 794 795 Value *Ops[] = {Op1->getArgOperand(0), Op2->getArgOperand(0)}; 796 Type *Tys[] = {Op1->getArgOperand(0)->getType()}; 797 798 auto *PTest = Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops); 799 800 PTest->takeName(&II); 801 return IC.replaceInstUsesWith(II, PTest); 802 } 803 804 return None; 805 } 806 807 static Optional<Instruction *> instCombineSVEVectorFMLA(InstCombiner &IC, 808 IntrinsicInst &II) { 809 // fold (fadd p a (fmul p b c)) -> (fma p a b c) 810 Value *P = II.getOperand(0); 811 Value *A = II.getOperand(1); 812 auto FMul = II.getOperand(2); 813 Value *B, *C; 814 if (!match(FMul, m_Intrinsic<Intrinsic::aarch64_sve_fmul>( 815 m_Specific(P), m_Value(B), m_Value(C)))) 816 return None; 817 818 if (!FMul->hasOneUse()) 819 return None; 820 821 llvm::FastMathFlags FAddFlags = II.getFastMathFlags(); 822 // Stop the combine when the flags on the inputs differ in case dropping flags 823 // would lead to us missing out on more beneficial optimizations. 824 if (FAddFlags != cast<CallInst>(FMul)->getFastMathFlags()) 825 return None; 826 if (!FAddFlags.allowContract()) 827 return None; 828 829 IRBuilder<> Builder(II.getContext()); 830 Builder.SetInsertPoint(&II); 831 auto FMLA = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_fmla, 832 {II.getType()}, {P, A, B, C}, &II); 833 FMLA->setFastMathFlags(FAddFlags); 834 return IC.replaceInstUsesWith(II, FMLA); 835 } 836 837 static bool isAllActivePredicate(Value *Pred) { 838 // Look through convert.from.svbool(convert.to.svbool(...) chain. 839 Value *UncastedPred; 840 if (match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_convert_from_svbool>( 841 m_Intrinsic<Intrinsic::aarch64_sve_convert_to_svbool>( 842 m_Value(UncastedPred))))) 843 // If the predicate has the same or less lanes than the uncasted 844 // predicate then we know the casting has no effect. 845 if (cast<ScalableVectorType>(Pred->getType())->getMinNumElements() <= 846 cast<ScalableVectorType>(UncastedPred->getType())->getMinNumElements()) 847 Pred = UncastedPred; 848 849 return match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>( 850 m_ConstantInt<AArch64SVEPredPattern::all>())); 851 } 852 853 static Optional<Instruction *> 854 instCombineSVELD1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) { 855 IRBuilder<> Builder(II.getContext()); 856 Builder.SetInsertPoint(&II); 857 858 Value *Pred = II.getOperand(0); 859 Value *PtrOp = II.getOperand(1); 860 Type *VecTy = II.getType(); 861 Value *VecPtr = Builder.CreateBitCast(PtrOp, VecTy->getPointerTo()); 862 863 if (isAllActivePredicate(Pred)) { 864 LoadInst *Load = Builder.CreateLoad(VecTy, VecPtr); 865 return IC.replaceInstUsesWith(II, Load); 866 } 867 868 CallInst *MaskedLoad = 869 Builder.CreateMaskedLoad(VecTy, VecPtr, PtrOp->getPointerAlignment(DL), 870 Pred, ConstantAggregateZero::get(VecTy)); 871 return IC.replaceInstUsesWith(II, MaskedLoad); 872 } 873 874 static Optional<Instruction *> 875 instCombineSVEST1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) { 876 IRBuilder<> Builder(II.getContext()); 877 Builder.SetInsertPoint(&II); 878 879 Value *VecOp = II.getOperand(0); 880 Value *Pred = II.getOperand(1); 881 Value *PtrOp = II.getOperand(2); 882 Value *VecPtr = 883 Builder.CreateBitCast(PtrOp, VecOp->getType()->getPointerTo()); 884 885 if (isAllActivePredicate(Pred)) { 886 Builder.CreateStore(VecOp, VecPtr); 887 return IC.eraseInstFromFunction(II); 888 } 889 890 Builder.CreateMaskedStore(VecOp, VecPtr, PtrOp->getPointerAlignment(DL), 891 Pred); 892 return IC.eraseInstFromFunction(II); 893 } 894 895 static Instruction::BinaryOps intrinsicIDToBinOpCode(unsigned Intrinsic) { 896 switch (Intrinsic) { 897 case Intrinsic::aarch64_sve_fmul: 898 return Instruction::BinaryOps::FMul; 899 case Intrinsic::aarch64_sve_fadd: 900 return Instruction::BinaryOps::FAdd; 901 case Intrinsic::aarch64_sve_fsub: 902 return Instruction::BinaryOps::FSub; 903 default: 904 return Instruction::BinaryOpsEnd; 905 } 906 } 907 908 static Optional<Instruction *> instCombineSVEVectorBinOp(InstCombiner &IC, 909 IntrinsicInst &II) { 910 auto *OpPredicate = II.getOperand(0); 911 auto BinOpCode = intrinsicIDToBinOpCode(II.getIntrinsicID()); 912 if (BinOpCode == Instruction::BinaryOpsEnd || 913 !match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>( 914 m_ConstantInt<AArch64SVEPredPattern::all>()))) 915 return None; 916 IRBuilder<> Builder(II.getContext()); 917 Builder.SetInsertPoint(&II); 918 Builder.setFastMathFlags(II.getFastMathFlags()); 919 auto BinOp = 920 Builder.CreateBinOp(BinOpCode, II.getOperand(1), II.getOperand(2)); 921 return IC.replaceInstUsesWith(II, BinOp); 922 } 923 924 static Optional<Instruction *> instCombineSVEVectorFAdd(InstCombiner &IC, 925 IntrinsicInst &II) { 926 if (auto FMLA = instCombineSVEVectorFMLA(IC, II)) 927 return FMLA; 928 return instCombineSVEVectorBinOp(IC, II); 929 } 930 931 static Optional<Instruction *> instCombineSVEVectorMul(InstCombiner &IC, 932 IntrinsicInst &II) { 933 auto *OpPredicate = II.getOperand(0); 934 auto *OpMultiplicand = II.getOperand(1); 935 auto *OpMultiplier = II.getOperand(2); 936 937 IRBuilder<> Builder(II.getContext()); 938 Builder.SetInsertPoint(&II); 939 940 // Return true if a given instruction is a unit splat value, false otherwise. 941 auto IsUnitSplat = [](auto *I) { 942 auto *SplatValue = getSplatValue(I); 943 if (!SplatValue) 944 return false; 945 return match(SplatValue, m_FPOne()) || match(SplatValue, m_One()); 946 }; 947 948 // Return true if a given instruction is an aarch64_sve_dup intrinsic call 949 // with a unit splat value, false otherwise. 950 auto IsUnitDup = [](auto *I) { 951 auto *IntrI = dyn_cast<IntrinsicInst>(I); 952 if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup) 953 return false; 954 955 auto *SplatValue = IntrI->getOperand(2); 956 return match(SplatValue, m_FPOne()) || match(SplatValue, m_One()); 957 }; 958 959 if (IsUnitSplat(OpMultiplier)) { 960 // [f]mul pg %n, (dupx 1) => %n 961 OpMultiplicand->takeName(&II); 962 return IC.replaceInstUsesWith(II, OpMultiplicand); 963 } else if (IsUnitDup(OpMultiplier)) { 964 // [f]mul pg %n, (dup pg 1) => %n 965 auto *DupInst = cast<IntrinsicInst>(OpMultiplier); 966 auto *DupPg = DupInst->getOperand(1); 967 // TODO: this is naive. The optimization is still valid if DupPg 968 // 'encompasses' OpPredicate, not only if they're the same predicate. 969 if (OpPredicate == DupPg) { 970 OpMultiplicand->takeName(&II); 971 return IC.replaceInstUsesWith(II, OpMultiplicand); 972 } 973 } 974 975 return instCombineSVEVectorBinOp(IC, II); 976 } 977 978 static Optional<Instruction *> instCombineSVEUnpack(InstCombiner &IC, 979 IntrinsicInst &II) { 980 IRBuilder<> Builder(II.getContext()); 981 Builder.SetInsertPoint(&II); 982 Value *UnpackArg = II.getArgOperand(0); 983 auto *RetTy = cast<ScalableVectorType>(II.getType()); 984 bool IsSigned = II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi || 985 II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo; 986 987 // Hi = uunpkhi(splat(X)) --> Hi = splat(extend(X)) 988 // Lo = uunpklo(splat(X)) --> Lo = splat(extend(X)) 989 if (auto *ScalarArg = getSplatValue(UnpackArg)) { 990 ScalarArg = 991 Builder.CreateIntCast(ScalarArg, RetTy->getScalarType(), IsSigned); 992 Value *NewVal = 993 Builder.CreateVectorSplat(RetTy->getElementCount(), ScalarArg); 994 NewVal->takeName(&II); 995 return IC.replaceInstUsesWith(II, NewVal); 996 } 997 998 return None; 999 } 1000 static Optional<Instruction *> instCombineSVETBL(InstCombiner &IC, 1001 IntrinsicInst &II) { 1002 auto *OpVal = II.getOperand(0); 1003 auto *OpIndices = II.getOperand(1); 1004 VectorType *VTy = cast<VectorType>(II.getType()); 1005 1006 // Check whether OpIndices is a constant splat value < minimal element count 1007 // of result. 1008 auto *SplatValue = dyn_cast_or_null<ConstantInt>(getSplatValue(OpIndices)); 1009 if (!SplatValue || 1010 SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue())) 1011 return None; 1012 1013 // Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to 1014 // splat_vector(extractelement(OpVal, SplatValue)) for further optimization. 1015 IRBuilder<> Builder(II.getContext()); 1016 Builder.SetInsertPoint(&II); 1017 auto *Extract = Builder.CreateExtractElement(OpVal, SplatValue); 1018 auto *VectorSplat = 1019 Builder.CreateVectorSplat(VTy->getElementCount(), Extract); 1020 1021 VectorSplat->takeName(&II); 1022 return IC.replaceInstUsesWith(II, VectorSplat); 1023 } 1024 1025 static Optional<Instruction *> instCombineSVETupleGet(InstCombiner &IC, 1026 IntrinsicInst &II) { 1027 // Try to remove sequences of tuple get/set. 1028 Value *SetTuple, *SetIndex, *SetValue; 1029 auto *GetTuple = II.getArgOperand(0); 1030 auto *GetIndex = II.getArgOperand(1); 1031 // Check that we have tuple_get(GetTuple, GetIndex) where GetTuple is a 1032 // call to tuple_set i.e. tuple_set(SetTuple, SetIndex, SetValue). 1033 // Make sure that the types of the current intrinsic and SetValue match 1034 // in order to safely remove the sequence. 1035 if (!match(GetTuple, 1036 m_Intrinsic<Intrinsic::aarch64_sve_tuple_set>( 1037 m_Value(SetTuple), m_Value(SetIndex), m_Value(SetValue))) || 1038 SetValue->getType() != II.getType()) 1039 return None; 1040 // Case where we get the same index right after setting it. 1041 // tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex) --> SetValue 1042 if (GetIndex == SetIndex) 1043 return IC.replaceInstUsesWith(II, SetValue); 1044 // If we are getting a different index than what was set in the tuple_set 1045 // intrinsic. We can just set the input tuple to the one up in the chain. 1046 // tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex) 1047 // --> tuple_get(SetTuple, GetIndex) 1048 return IC.replaceOperand(II, 0, SetTuple); 1049 } 1050 1051 static Optional<Instruction *> instCombineSVEZip(InstCombiner &IC, 1052 IntrinsicInst &II) { 1053 // zip1(uzp1(A, B), uzp2(A, B)) --> A 1054 // zip2(uzp1(A, B), uzp2(A, B)) --> B 1055 Value *A, *B; 1056 if (match(II.getArgOperand(0), 1057 m_Intrinsic<Intrinsic::aarch64_sve_uzp1>(m_Value(A), m_Value(B))) && 1058 match(II.getArgOperand(1), m_Intrinsic<Intrinsic::aarch64_sve_uzp2>( 1059 m_Specific(A), m_Specific(B)))) 1060 return IC.replaceInstUsesWith( 1061 II, (II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ? A : B)); 1062 1063 return None; 1064 } 1065 1066 static Optional<Instruction *> instCombineLD1GatherIndex(InstCombiner &IC, 1067 IntrinsicInst &II) { 1068 Value *Mask = II.getOperand(0); 1069 Value *BasePtr = II.getOperand(1); 1070 Value *Index = II.getOperand(2); 1071 Type *Ty = II.getType(); 1072 Type *BasePtrTy = BasePtr->getType(); 1073 Value *PassThru = ConstantAggregateZero::get(Ty); 1074 1075 // Contiguous gather => masked load. 1076 // (sve.ld1.gather.index Mask BasePtr (sve.index IndexBase 1)) 1077 // => (masked.load (gep BasePtr IndexBase) Align Mask zeroinitializer) 1078 Value *IndexBase; 1079 if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>( 1080 m_Value(IndexBase), m_SpecificInt(1)))) { 1081 IRBuilder<> Builder(II.getContext()); 1082 Builder.SetInsertPoint(&II); 1083 1084 Align Alignment = 1085 BasePtr->getPointerAlignment(II.getModule()->getDataLayout()); 1086 1087 Type *VecPtrTy = PointerType::getUnqual(Ty); 1088 Value *Ptr = Builder.CreateGEP(BasePtrTy->getPointerElementType(), BasePtr, 1089 IndexBase); 1090 Ptr = Builder.CreateBitCast(Ptr, VecPtrTy); 1091 CallInst *MaskedLoad = 1092 Builder.CreateMaskedLoad(Ty, Ptr, Alignment, Mask, PassThru); 1093 MaskedLoad->takeName(&II); 1094 return IC.replaceInstUsesWith(II, MaskedLoad); 1095 } 1096 1097 return None; 1098 } 1099 1100 static Optional<Instruction *> instCombineST1ScatterIndex(InstCombiner &IC, 1101 IntrinsicInst &II) { 1102 Value *Val = II.getOperand(0); 1103 Value *Mask = II.getOperand(1); 1104 Value *BasePtr = II.getOperand(2); 1105 Value *Index = II.getOperand(3); 1106 Type *Ty = Val->getType(); 1107 Type *BasePtrTy = BasePtr->getType(); 1108 1109 // Contiguous scatter => masked store. 1110 // (sve.ld1.scatter.index Value Mask BasePtr (sve.index IndexBase 1)) 1111 // => (masked.store Value (gep BasePtr IndexBase) Align Mask) 1112 Value *IndexBase; 1113 if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>( 1114 m_Value(IndexBase), m_SpecificInt(1)))) { 1115 IRBuilder<> Builder(II.getContext()); 1116 Builder.SetInsertPoint(&II); 1117 1118 Align Alignment = 1119 BasePtr->getPointerAlignment(II.getModule()->getDataLayout()); 1120 1121 Value *Ptr = Builder.CreateGEP(BasePtrTy->getPointerElementType(), BasePtr, 1122 IndexBase); 1123 Type *VecPtrTy = PointerType::getUnqual(Ty); 1124 Ptr = Builder.CreateBitCast(Ptr, VecPtrTy); 1125 1126 (void)Builder.CreateMaskedStore(Val, Ptr, Alignment, Mask); 1127 1128 return IC.eraseInstFromFunction(II); 1129 } 1130 1131 return None; 1132 } 1133 1134 static Optional<Instruction *> instCombineSVESDIV(InstCombiner &IC, 1135 IntrinsicInst &II) { 1136 IRBuilder<> Builder(II.getContext()); 1137 Builder.SetInsertPoint(&II); 1138 Type *Int32Ty = Builder.getInt32Ty(); 1139 Value *Pred = II.getOperand(0); 1140 Value *Vec = II.getOperand(1); 1141 Value *DivVec = II.getOperand(2); 1142 1143 Value *SplatValue = getSplatValue(DivVec); 1144 ConstantInt *SplatConstantInt = dyn_cast_or_null<ConstantInt>(SplatValue); 1145 if (!SplatConstantInt) 1146 return None; 1147 APInt Divisor = SplatConstantInt->getValue(); 1148 1149 if (Divisor.isPowerOf2()) { 1150 Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2()); 1151 auto ASRD = Builder.CreateIntrinsic( 1152 Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2}); 1153 return IC.replaceInstUsesWith(II, ASRD); 1154 } 1155 if (Divisor.isNegatedPowerOf2()) { 1156 Divisor.negate(); 1157 Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2()); 1158 auto ASRD = Builder.CreateIntrinsic( 1159 Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2}); 1160 auto NEG = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_neg, 1161 {ASRD->getType()}, {ASRD, Pred, ASRD}); 1162 return IC.replaceInstUsesWith(II, NEG); 1163 } 1164 1165 return None; 1166 } 1167 1168 Optional<Instruction *> 1169 AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC, 1170 IntrinsicInst &II) const { 1171 Intrinsic::ID IID = II.getIntrinsicID(); 1172 switch (IID) { 1173 default: 1174 break; 1175 case Intrinsic::aarch64_sve_convert_from_svbool: 1176 return instCombineConvertFromSVBool(IC, II); 1177 case Intrinsic::aarch64_sve_dup: 1178 return instCombineSVEDup(IC, II); 1179 case Intrinsic::aarch64_sve_dup_x: 1180 return instCombineSVEDupX(IC, II); 1181 case Intrinsic::aarch64_sve_cmpne: 1182 case Intrinsic::aarch64_sve_cmpne_wide: 1183 return instCombineSVECmpNE(IC, II); 1184 case Intrinsic::aarch64_sve_rdffr: 1185 return instCombineRDFFR(IC, II); 1186 case Intrinsic::aarch64_sve_lasta: 1187 case Intrinsic::aarch64_sve_lastb: 1188 return instCombineSVELast(IC, II); 1189 case Intrinsic::aarch64_sve_cntd: 1190 return instCombineSVECntElts(IC, II, 2); 1191 case Intrinsic::aarch64_sve_cntw: 1192 return instCombineSVECntElts(IC, II, 4); 1193 case Intrinsic::aarch64_sve_cnth: 1194 return instCombineSVECntElts(IC, II, 8); 1195 case Intrinsic::aarch64_sve_cntb: 1196 return instCombineSVECntElts(IC, II, 16); 1197 case Intrinsic::aarch64_sve_ptest_any: 1198 case Intrinsic::aarch64_sve_ptest_first: 1199 case Intrinsic::aarch64_sve_ptest_last: 1200 return instCombineSVEPTest(IC, II); 1201 case Intrinsic::aarch64_sve_mul: 1202 case Intrinsic::aarch64_sve_fmul: 1203 return instCombineSVEVectorMul(IC, II); 1204 case Intrinsic::aarch64_sve_fadd: 1205 return instCombineSVEVectorFAdd(IC, II); 1206 case Intrinsic::aarch64_sve_fsub: 1207 return instCombineSVEVectorBinOp(IC, II); 1208 case Intrinsic::aarch64_sve_tbl: 1209 return instCombineSVETBL(IC, II); 1210 case Intrinsic::aarch64_sve_uunpkhi: 1211 case Intrinsic::aarch64_sve_uunpklo: 1212 case Intrinsic::aarch64_sve_sunpkhi: 1213 case Intrinsic::aarch64_sve_sunpklo: 1214 return instCombineSVEUnpack(IC, II); 1215 case Intrinsic::aarch64_sve_tuple_get: 1216 return instCombineSVETupleGet(IC, II); 1217 case Intrinsic::aarch64_sve_zip1: 1218 case Intrinsic::aarch64_sve_zip2: 1219 return instCombineSVEZip(IC, II); 1220 case Intrinsic::aarch64_sve_ld1_gather_index: 1221 return instCombineLD1GatherIndex(IC, II); 1222 case Intrinsic::aarch64_sve_st1_scatter_index: 1223 return instCombineST1ScatterIndex(IC, II); 1224 case Intrinsic::aarch64_sve_ld1: 1225 return instCombineSVELD1(IC, II, DL); 1226 case Intrinsic::aarch64_sve_st1: 1227 return instCombineSVEST1(IC, II, DL); 1228 case Intrinsic::aarch64_sve_sdiv: 1229 return instCombineSVESDIV(IC, II); 1230 } 1231 1232 return None; 1233 } 1234 1235 Optional<Value *> AArch64TTIImpl::simplifyDemandedVectorEltsIntrinsic( 1236 InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts, 1237 APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, 1238 std::function<void(Instruction *, unsigned, APInt, APInt &)> 1239 SimplifyAndSetOp) const { 1240 switch (II.getIntrinsicID()) { 1241 default: 1242 break; 1243 case Intrinsic::aarch64_neon_fcvtxn: 1244 case Intrinsic::aarch64_neon_rshrn: 1245 case Intrinsic::aarch64_neon_sqrshrn: 1246 case Intrinsic::aarch64_neon_sqrshrun: 1247 case Intrinsic::aarch64_neon_sqshrn: 1248 case Intrinsic::aarch64_neon_sqshrun: 1249 case Intrinsic::aarch64_neon_sqxtn: 1250 case Intrinsic::aarch64_neon_sqxtun: 1251 case Intrinsic::aarch64_neon_uqrshrn: 1252 case Intrinsic::aarch64_neon_uqshrn: 1253 case Intrinsic::aarch64_neon_uqxtn: 1254 SimplifyAndSetOp(&II, 0, OrigDemandedElts, UndefElts); 1255 break; 1256 } 1257 1258 return None; 1259 } 1260 1261 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode, 1262 ArrayRef<const Value *> Args) { 1263 1264 // A helper that returns a vector type from the given type. The number of 1265 // elements in type Ty determine the vector width. 1266 auto toVectorTy = [&](Type *ArgTy) { 1267 return VectorType::get(ArgTy->getScalarType(), 1268 cast<VectorType>(DstTy)->getElementCount()); 1269 }; 1270 1271 // Exit early if DstTy is not a vector type whose elements are at least 1272 // 16-bits wide. 1273 if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16) 1274 return false; 1275 1276 // Determine if the operation has a widening variant. We consider both the 1277 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the 1278 // instructions. 1279 // 1280 // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we 1281 // verify that their extending operands are eliminated during code 1282 // generation. 1283 switch (Opcode) { 1284 case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2). 1285 case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2). 1286 break; 1287 default: 1288 return false; 1289 } 1290 1291 // To be a widening instruction (either the "wide" or "long" versions), the 1292 // second operand must be a sign- or zero extend having a single user. We 1293 // only consider extends having a single user because they may otherwise not 1294 // be eliminated. 1295 if (Args.size() != 2 || 1296 (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) || 1297 !Args[1]->hasOneUse()) 1298 return false; 1299 auto *Extend = cast<CastInst>(Args[1]); 1300 1301 // Legalize the destination type and ensure it can be used in a widening 1302 // operation. 1303 auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy); 1304 unsigned DstElTySize = DstTyL.second.getScalarSizeInBits(); 1305 if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits()) 1306 return false; 1307 1308 // Legalize the source type and ensure it can be used in a widening 1309 // operation. 1310 auto *SrcTy = toVectorTy(Extend->getSrcTy()); 1311 auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy); 1312 unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits(); 1313 if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits()) 1314 return false; 1315 1316 // Get the total number of vector elements in the legalized types. 1317 InstructionCost NumDstEls = 1318 DstTyL.first * DstTyL.second.getVectorMinNumElements(); 1319 InstructionCost NumSrcEls = 1320 SrcTyL.first * SrcTyL.second.getVectorMinNumElements(); 1321 1322 // Return true if the legalized types have the same number of vector elements 1323 // and the destination element type size is twice that of the source type. 1324 return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize; 1325 } 1326 1327 InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 1328 Type *Src, 1329 TTI::CastContextHint CCH, 1330 TTI::TargetCostKind CostKind, 1331 const Instruction *I) { 1332 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1333 assert(ISD && "Invalid opcode"); 1334 1335 // If the cast is observable, and it is used by a widening instruction (e.g., 1336 // uaddl, saddw, etc.), it may be free. 1337 if (I && I->hasOneUse()) { 1338 auto *SingleUser = cast<Instruction>(*I->user_begin()); 1339 SmallVector<const Value *, 4> Operands(SingleUser->operand_values()); 1340 if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) { 1341 // If the cast is the second operand, it is free. We will generate either 1342 // a "wide" or "long" version of the widening instruction. 1343 if (I == SingleUser->getOperand(1)) 1344 return 0; 1345 // If the cast is not the second operand, it will be free if it looks the 1346 // same as the second operand. In this case, we will generate a "long" 1347 // version of the widening instruction. 1348 if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1))) 1349 if (I->getOpcode() == unsigned(Cast->getOpcode()) && 1350 cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy()) 1351 return 0; 1352 } 1353 } 1354 1355 // TODO: Allow non-throughput costs that aren't binary. 1356 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { 1357 if (CostKind != TTI::TCK_RecipThroughput) 1358 return Cost == 0 ? 0 : 1; 1359 return Cost; 1360 }; 1361 1362 EVT SrcTy = TLI->getValueType(DL, Src); 1363 EVT DstTy = TLI->getValueType(DL, Dst); 1364 1365 if (!SrcTy.isSimple() || !DstTy.isSimple()) 1366 return AdjustCost( 1367 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 1368 1369 static const TypeConversionCostTblEntry 1370 ConversionTbl[] = { 1371 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 1372 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 1373 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 1374 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 1375 1376 // Truncations on nxvmiN 1377 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 }, 1378 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 }, 1379 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 }, 1380 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 }, 1381 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 }, 1382 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 }, 1383 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 }, 1384 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 }, 1385 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 }, 1386 { ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 1 }, 1387 { ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 }, 1388 { ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 }, 1389 { ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 }, 1390 { ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 }, 1391 { ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 }, 1392 { ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 }, 1393 1394 // The number of shll instructions for the extension. 1395 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 1396 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 1397 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 1398 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 1399 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 1400 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 1401 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 1402 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 1403 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 1404 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 1405 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 1406 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 1407 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 1408 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 1409 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 1410 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 1411 1412 // LowerVectorINT_TO_FP: 1413 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 1414 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 1415 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 1416 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 1417 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 1418 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 1419 1420 // Complex: to v2f32 1421 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 1422 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 1423 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 1424 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 1425 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 1426 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 1427 1428 // Complex: to v4f32 1429 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 }, 1430 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 1431 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 1432 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 1433 1434 // Complex: to v8f32 1435 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 1436 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 1437 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 1438 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 1439 1440 // Complex: to v16f32 1441 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 1442 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 1443 1444 // Complex: to v2f64 1445 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 1446 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 1447 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 1448 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 1449 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 1450 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 1451 1452 1453 // LowerVectorFP_TO_INT 1454 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 }, 1455 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 1456 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, 1457 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, 1458 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 1459 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, 1460 1461 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext). 1462 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 }, 1463 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 }, 1464 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 }, 1465 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 }, 1466 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 }, 1467 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 }, 1468 1469 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2 1470 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 1471 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 }, 1472 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 1473 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 }, 1474 1475 // Complex, from nxv2f32. 1476 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 }, 1477 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 }, 1478 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 }, 1479 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f32, 1 }, 1480 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 }, 1481 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 }, 1482 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 }, 1483 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f32, 1 }, 1484 1485 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2. 1486 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 1487 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 }, 1488 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 }, 1489 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 1490 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 }, 1491 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 }, 1492 1493 // Complex, from nxv2f64. 1494 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 }, 1495 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 }, 1496 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 }, 1497 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f64, 1 }, 1498 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 }, 1499 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 }, 1500 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 }, 1501 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f64, 1 }, 1502 1503 // Complex, from nxv4f32. 1504 { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 }, 1505 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 }, 1506 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 }, 1507 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f32, 1 }, 1508 { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 }, 1509 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 }, 1510 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 }, 1511 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f32, 1 }, 1512 1513 // Complex, from nxv8f64. Illegal -> illegal conversions not required. 1514 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 }, 1515 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f64, 7 }, 1516 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 }, 1517 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f64, 7 }, 1518 1519 // Complex, from nxv4f64. Illegal -> illegal conversions not required. 1520 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 }, 1521 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 }, 1522 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f64, 3 }, 1523 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 }, 1524 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 }, 1525 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f64, 3 }, 1526 1527 // Complex, from nxv8f32. Illegal -> illegal conversions not required. 1528 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 }, 1529 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f32, 3 }, 1530 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 }, 1531 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f32, 3 }, 1532 1533 // Complex, from nxv8f16. 1534 { ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 }, 1535 { ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 }, 1536 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 }, 1537 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f16, 1 }, 1538 { ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 }, 1539 { ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 }, 1540 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 }, 1541 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f16, 1 }, 1542 1543 // Complex, from nxv4f16. 1544 { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 }, 1545 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 }, 1546 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 }, 1547 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f16, 1 }, 1548 { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 }, 1549 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 }, 1550 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 }, 1551 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f16, 1 }, 1552 1553 // Complex, from nxv2f16. 1554 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 }, 1555 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 }, 1556 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 }, 1557 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f16, 1 }, 1558 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 }, 1559 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 }, 1560 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 }, 1561 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f16, 1 }, 1562 1563 // Truncate from nxvmf32 to nxvmf16. 1564 { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 }, 1565 { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 }, 1566 { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 }, 1567 1568 // Truncate from nxvmf64 to nxvmf16. 1569 { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 }, 1570 { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 }, 1571 { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 }, 1572 1573 // Truncate from nxvmf64 to nxvmf32. 1574 { ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 }, 1575 { ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 }, 1576 { ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 }, 1577 1578 // Extend from nxvmf16 to nxvmf32. 1579 { ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1}, 1580 { ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1}, 1581 { ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2}, 1582 1583 // Extend from nxvmf16 to nxvmf64. 1584 { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1}, 1585 { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2}, 1586 { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4}, 1587 1588 // Extend from nxvmf32 to nxvmf64. 1589 { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1}, 1590 { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2}, 1591 { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6}, 1592 1593 }; 1594 1595 if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD, 1596 DstTy.getSimpleVT(), 1597 SrcTy.getSimpleVT())) 1598 return AdjustCost(Entry->Cost); 1599 1600 return AdjustCost( 1601 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 1602 } 1603 1604 InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, 1605 Type *Dst, 1606 VectorType *VecTy, 1607 unsigned Index) { 1608 1609 // Make sure we were given a valid extend opcode. 1610 assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) && 1611 "Invalid opcode"); 1612 1613 // We are extending an element we extract from a vector, so the source type 1614 // of the extend is the element type of the vector. 1615 auto *Src = VecTy->getElementType(); 1616 1617 // Sign- and zero-extends are for integer types only. 1618 assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type"); 1619 1620 // Get the cost for the extract. We compute the cost (if any) for the extend 1621 // below. 1622 InstructionCost Cost = 1623 getVectorInstrCost(Instruction::ExtractElement, VecTy, Index); 1624 1625 // Legalize the types. 1626 auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy); 1627 auto DstVT = TLI->getValueType(DL, Dst); 1628 auto SrcVT = TLI->getValueType(DL, Src); 1629 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1630 1631 // If the resulting type is still a vector and the destination type is legal, 1632 // we may get the extension for free. If not, get the default cost for the 1633 // extend. 1634 if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT)) 1635 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 1636 CostKind); 1637 1638 // The destination type should be larger than the element type. If not, get 1639 // the default cost for the extend. 1640 if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits()) 1641 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 1642 CostKind); 1643 1644 switch (Opcode) { 1645 default: 1646 llvm_unreachable("Opcode should be either SExt or ZExt"); 1647 1648 // For sign-extends, we only need a smov, which performs the extension 1649 // automatically. 1650 case Instruction::SExt: 1651 return Cost; 1652 1653 // For zero-extends, the extend is performed automatically by a umov unless 1654 // the destination type is i64 and the element type is i8 or i16. 1655 case Instruction::ZExt: 1656 if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u) 1657 return Cost; 1658 } 1659 1660 // If we are unable to perform the extend for free, get the default cost. 1661 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 1662 CostKind); 1663 } 1664 1665 InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode, 1666 TTI::TargetCostKind CostKind, 1667 const Instruction *I) { 1668 if (CostKind != TTI::TCK_RecipThroughput) 1669 return Opcode == Instruction::PHI ? 0 : 1; 1670 assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind"); 1671 // Branches are assumed to be predicted. 1672 return 0; 1673 } 1674 1675 InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 1676 unsigned Index) { 1677 assert(Val->isVectorTy() && "This must be a vector type"); 1678 1679 if (Index != -1U) { 1680 // Legalize the type. 1681 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); 1682 1683 // This type is legalized to a scalar type. 1684 if (!LT.second.isVector()) 1685 return 0; 1686 1687 // The type may be split. For fixed-width vectors we can normalize the 1688 // index to the new type. 1689 if (LT.second.isFixedLengthVector()) { 1690 unsigned Width = LT.second.getVectorNumElements(); 1691 Index = Index % Width; 1692 } 1693 1694 // The element at index zero is already inside the vector. 1695 if (Index == 0) 1696 return 0; 1697 } 1698 1699 // All other insert/extracts cost this much. 1700 return ST->getVectorInsertExtractBaseCost(); 1701 } 1702 1703 InstructionCost AArch64TTIImpl::getArithmeticInstrCost( 1704 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 1705 TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, 1706 TTI::OperandValueProperties Opd1PropInfo, 1707 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 1708 const Instruction *CxtI) { 1709 // TODO: Handle more cost kinds. 1710 if (CostKind != TTI::TCK_RecipThroughput) 1711 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1712 Opd2Info, Opd1PropInfo, 1713 Opd2PropInfo, Args, CxtI); 1714 1715 // Legalize the type. 1716 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 1717 1718 // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.), 1719 // add in the widening overhead specified by the sub-target. Since the 1720 // extends feeding widening instructions are performed automatically, they 1721 // aren't present in the generated code and have a zero cost. By adding a 1722 // widening overhead here, we attach the total cost of the combined operation 1723 // to the widening instruction. 1724 InstructionCost Cost = 0; 1725 if (isWideningInstruction(Ty, Opcode, Args)) 1726 Cost += ST->getWideningBaseCost(); 1727 1728 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1729 1730 switch (ISD) { 1731 default: 1732 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1733 Opd2Info, 1734 Opd1PropInfo, Opd2PropInfo); 1735 case ISD::SDIV: 1736 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue && 1737 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 1738 // On AArch64, scalar signed division by constants power-of-two are 1739 // normally expanded to the sequence ADD + CMP + SELECT + SRA. 1740 // The OperandValue properties many not be same as that of previous 1741 // operation; conservatively assume OP_None. 1742 Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, 1743 Opd1Info, Opd2Info, 1744 TargetTransformInfo::OP_None, 1745 TargetTransformInfo::OP_None); 1746 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, 1747 Opd1Info, Opd2Info, 1748 TargetTransformInfo::OP_None, 1749 TargetTransformInfo::OP_None); 1750 Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind, 1751 Opd1Info, Opd2Info, 1752 TargetTransformInfo::OP_None, 1753 TargetTransformInfo::OP_None); 1754 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, 1755 Opd1Info, Opd2Info, 1756 TargetTransformInfo::OP_None, 1757 TargetTransformInfo::OP_None); 1758 return Cost; 1759 } 1760 LLVM_FALLTHROUGH; 1761 case ISD::UDIV: 1762 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) { 1763 auto VT = TLI->getValueType(DL, Ty); 1764 if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) { 1765 // Vector signed division by constant are expanded to the 1766 // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division 1767 // to MULHS + SUB + SRL + ADD + SRL. 1768 InstructionCost MulCost = getArithmeticInstrCost( 1769 Instruction::Mul, Ty, CostKind, Opd1Info, Opd2Info, 1770 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1771 InstructionCost AddCost = getArithmeticInstrCost( 1772 Instruction::Add, Ty, CostKind, Opd1Info, Opd2Info, 1773 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1774 InstructionCost ShrCost = getArithmeticInstrCost( 1775 Instruction::AShr, Ty, CostKind, Opd1Info, Opd2Info, 1776 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1777 return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1; 1778 } 1779 } 1780 1781 Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1782 Opd2Info, 1783 Opd1PropInfo, Opd2PropInfo); 1784 if (Ty->isVectorTy()) { 1785 // On AArch64, vector divisions are not supported natively and are 1786 // expanded into scalar divisions of each pair of elements. 1787 Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind, 1788 Opd1Info, Opd2Info, Opd1PropInfo, 1789 Opd2PropInfo); 1790 Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind, 1791 Opd1Info, Opd2Info, Opd1PropInfo, 1792 Opd2PropInfo); 1793 // TODO: if one of the arguments is scalar, then it's not necessary to 1794 // double the cost of handling the vector elements. 1795 Cost += Cost; 1796 } 1797 return Cost; 1798 1799 case ISD::MUL: 1800 if (LT.second != MVT::v2i64) 1801 return (Cost + 1) * LT.first; 1802 // Since we do not have a MUL.2d instruction, a mul <2 x i64> is expensive 1803 // as elements are extracted from the vectors and the muls scalarized. 1804 // As getScalarizationOverhead is a bit too pessimistic, we estimate the 1805 // cost for a i64 vector directly here, which is: 1806 // - four i64 extracts, 1807 // - two i64 inserts, and 1808 // - two muls. 1809 // So, for a v2i64 with LT.First = 1 the cost is 8, and for a v4i64 with 1810 // LT.first = 2 the cost is 16. 1811 return LT.first * 8; 1812 case ISD::ADD: 1813 case ISD::XOR: 1814 case ISD::OR: 1815 case ISD::AND: 1816 // These nodes are marked as 'custom' for combining purposes only. 1817 // We know that they are legal. See LowerAdd in ISelLowering. 1818 return (Cost + 1) * LT.first; 1819 1820 case ISD::FADD: 1821 case ISD::FSUB: 1822 case ISD::FMUL: 1823 case ISD::FDIV: 1824 case ISD::FNEG: 1825 // These nodes are marked as 'custom' just to lower them to SVE. 1826 // We know said lowering will incur no additional cost. 1827 if (!Ty->getScalarType()->isFP128Ty()) 1828 return (Cost + 2) * LT.first; 1829 1830 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1831 Opd2Info, 1832 Opd1PropInfo, Opd2PropInfo); 1833 } 1834 } 1835 1836 InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty, 1837 ScalarEvolution *SE, 1838 const SCEV *Ptr) { 1839 // Address computations in vectorized code with non-consecutive addresses will 1840 // likely result in more instructions compared to scalar code where the 1841 // computation can more often be merged into the index mode. The resulting 1842 // extra micro-ops can significantly decrease throughput. 1843 unsigned NumVectorInstToHideOverhead = 10; 1844 int MaxMergeDistance = 64; 1845 1846 if (Ty->isVectorTy() && SE && 1847 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 1848 return NumVectorInstToHideOverhead; 1849 1850 // In many cases the address computation is not merged into the instruction 1851 // addressing mode. 1852 return 1; 1853 } 1854 1855 InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 1856 Type *CondTy, 1857 CmpInst::Predicate VecPred, 1858 TTI::TargetCostKind CostKind, 1859 const Instruction *I) { 1860 // TODO: Handle other cost kinds. 1861 if (CostKind != TTI::TCK_RecipThroughput) 1862 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, 1863 I); 1864 1865 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1866 // We don't lower some vector selects well that are wider than the register 1867 // width. 1868 if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) { 1869 // We would need this many instructions to hide the scalarization happening. 1870 const int AmortizationCost = 20; 1871 1872 // If VecPred is not set, check if we can get a predicate from the context 1873 // instruction, if its type matches the requested ValTy. 1874 if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) { 1875 CmpInst::Predicate CurrentPred; 1876 if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(), 1877 m_Value()))) 1878 VecPred = CurrentPred; 1879 } 1880 // Check if we have a compare/select chain that can be lowered using CMxx & 1881 // BFI pair. 1882 if (CmpInst::isIntPredicate(VecPred)) { 1883 static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 1884 MVT::v8i16, MVT::v2i32, MVT::v4i32, 1885 MVT::v2i64}; 1886 auto LT = TLI->getTypeLegalizationCost(DL, ValTy); 1887 if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; })) 1888 return LT.first; 1889 } 1890 1891 static const TypeConversionCostTblEntry 1892 VectorSelectTbl[] = { 1893 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 }, 1894 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 }, 1895 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 }, 1896 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost }, 1897 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost }, 1898 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost } 1899 }; 1900 1901 EVT SelCondTy = TLI->getValueType(DL, CondTy); 1902 EVT SelValTy = TLI->getValueType(DL, ValTy); 1903 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 1904 if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD, 1905 SelCondTy.getSimpleVT(), 1906 SelValTy.getSimpleVT())) 1907 return Entry->Cost; 1908 } 1909 } 1910 // The base case handles scalable vectors fine for now, since it treats the 1911 // cost as 1 * legalization cost. 1912 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 1913 } 1914 1915 AArch64TTIImpl::TTI::MemCmpExpansionOptions 1916 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 1917 TTI::MemCmpExpansionOptions Options; 1918 if (ST->requiresStrictAlign()) { 1919 // TODO: Add cost modeling for strict align. Misaligned loads expand to 1920 // a bunch of instructions when strict align is enabled. 1921 return Options; 1922 } 1923 Options.AllowOverlappingLoads = true; 1924 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 1925 Options.NumLoadsPerBlock = Options.MaxNumLoads; 1926 // TODO: Though vector loads usually perform well on AArch64, in some targets 1927 // they may wake up the FP unit, which raises the power consumption. Perhaps 1928 // they could be used with no holds barred (-O3). 1929 Options.LoadSizes = {8, 4, 2, 1}; 1930 return Options; 1931 } 1932 1933 InstructionCost 1934 AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 1935 Align Alignment, unsigned AddressSpace, 1936 TTI::TargetCostKind CostKind) { 1937 if (useNeonVector(Src)) 1938 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1939 CostKind); 1940 auto LT = TLI->getTypeLegalizationCost(DL, Src); 1941 if (!LT.first.isValid()) 1942 return InstructionCost::getInvalid(); 1943 1944 // The code-generator is currently not able to handle scalable vectors 1945 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting 1946 // it. This change will be removed when code-generation for these types is 1947 // sufficiently reliable. 1948 if (cast<VectorType>(Src)->getElementCount() == ElementCount::getScalable(1)) 1949 return InstructionCost::getInvalid(); 1950 1951 return LT.first * 2; 1952 } 1953 1954 static unsigned getSVEGatherScatterOverhead(unsigned Opcode) { 1955 return Opcode == Instruction::Load ? SVEGatherOverhead : SVEScatterOverhead; 1956 } 1957 1958 InstructionCost AArch64TTIImpl::getGatherScatterOpCost( 1959 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 1960 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) { 1961 if (useNeonVector(DataTy)) 1962 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 1963 Alignment, CostKind, I); 1964 auto *VT = cast<VectorType>(DataTy); 1965 auto LT = TLI->getTypeLegalizationCost(DL, DataTy); 1966 if (!LT.first.isValid()) 1967 return InstructionCost::getInvalid(); 1968 1969 // The code-generator is currently not able to handle scalable vectors 1970 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting 1971 // it. This change will be removed when code-generation for these types is 1972 // sufficiently reliable. 1973 if (cast<VectorType>(DataTy)->getElementCount() == 1974 ElementCount::getScalable(1)) 1975 return InstructionCost::getInvalid(); 1976 1977 ElementCount LegalVF = LT.second.getVectorElementCount(); 1978 InstructionCost MemOpCost = 1979 getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind, I); 1980 // Add on an overhead cost for using gathers/scatters. 1981 // TODO: At the moment this is applied unilaterally for all CPUs, but at some 1982 // point we may want a per-CPU overhead. 1983 MemOpCost *= getSVEGatherScatterOverhead(Opcode); 1984 return LT.first * MemOpCost * getMaxNumElements(LegalVF); 1985 } 1986 1987 bool AArch64TTIImpl::useNeonVector(const Type *Ty) const { 1988 return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors(); 1989 } 1990 1991 InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty, 1992 MaybeAlign Alignment, 1993 unsigned AddressSpace, 1994 TTI::TargetCostKind CostKind, 1995 const Instruction *I) { 1996 EVT VT = TLI->getValueType(DL, Ty, true); 1997 // Type legalization can't handle structs 1998 if (VT == MVT::Other) 1999 return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace, 2000 CostKind); 2001 2002 auto LT = TLI->getTypeLegalizationCost(DL, Ty); 2003 if (!LT.first.isValid()) 2004 return InstructionCost::getInvalid(); 2005 2006 // The code-generator is currently not able to handle scalable vectors 2007 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting 2008 // it. This change will be removed when code-generation for these types is 2009 // sufficiently reliable. 2010 if (auto *VTy = dyn_cast<ScalableVectorType>(Ty)) 2011 if (VTy->getElementCount() == ElementCount::getScalable(1)) 2012 return InstructionCost::getInvalid(); 2013 2014 // TODO: consider latency as well for TCK_SizeAndLatency. 2015 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) 2016 return LT.first; 2017 2018 if (CostKind != TTI::TCK_RecipThroughput) 2019 return 1; 2020 2021 if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store && 2022 LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) { 2023 // Unaligned stores are extremely inefficient. We don't split all 2024 // unaligned 128-bit stores because the negative impact that has shown in 2025 // practice on inlined block copy code. 2026 // We make such stores expensive so that we will only vectorize if there 2027 // are 6 other instructions getting vectorized. 2028 const int AmortizationCost = 6; 2029 2030 return LT.first * 2 * AmortizationCost; 2031 } 2032 2033 // Check truncating stores and extending loads. 2034 if (useNeonVector(Ty) && 2035 Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) { 2036 // v4i8 types are lowered to scalar a load/store and sshll/xtn. 2037 if (VT == MVT::v4i8) 2038 return 2; 2039 // Otherwise we need to scalarize. 2040 return cast<FixedVectorType>(Ty)->getNumElements() * 2; 2041 } 2042 2043 return LT.first; 2044 } 2045 2046 InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost( 2047 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 2048 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 2049 bool UseMaskForCond, bool UseMaskForGaps) { 2050 assert(Factor >= 2 && "Invalid interleave factor"); 2051 auto *VecVTy = cast<FixedVectorType>(VecTy); 2052 2053 if (!UseMaskForCond && !UseMaskForGaps && 2054 Factor <= TLI->getMaxSupportedInterleaveFactor()) { 2055 unsigned NumElts = VecVTy->getNumElements(); 2056 auto *SubVecTy = 2057 FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor); 2058 2059 // ldN/stN only support legal vector types of size 64 or 128 in bits. 2060 // Accesses having vector types that are a multiple of 128 bits can be 2061 // matched to more than one ldN/stN instruction. 2062 bool UseScalable; 2063 if (NumElts % Factor == 0 && 2064 TLI->isLegalInterleavedAccessType(SubVecTy, DL, UseScalable)) 2065 return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL, UseScalable); 2066 } 2067 2068 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 2069 Alignment, AddressSpace, CostKind, 2070 UseMaskForCond, UseMaskForGaps); 2071 } 2072 2073 InstructionCost 2074 AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { 2075 InstructionCost Cost = 0; 2076 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 2077 for (auto *I : Tys) { 2078 if (!I->isVectorTy()) 2079 continue; 2080 if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() == 2081 128) 2082 Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) + 2083 getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind); 2084 } 2085 return Cost; 2086 } 2087 2088 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) { 2089 return ST->getMaxInterleaveFactor(); 2090 } 2091 2092 // For Falkor, we want to avoid having too many strided loads in a loop since 2093 // that can exhaust the HW prefetcher resources. We adjust the unroller 2094 // MaxCount preference below to attempt to ensure unrolling doesn't create too 2095 // many strided loads. 2096 static void 2097 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE, 2098 TargetTransformInfo::UnrollingPreferences &UP) { 2099 enum { MaxStridedLoads = 7 }; 2100 auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) { 2101 int StridedLoads = 0; 2102 // FIXME? We could make this more precise by looking at the CFG and 2103 // e.g. not counting loads in each side of an if-then-else diamond. 2104 for (const auto BB : L->blocks()) { 2105 for (auto &I : *BB) { 2106 LoadInst *LMemI = dyn_cast<LoadInst>(&I); 2107 if (!LMemI) 2108 continue; 2109 2110 Value *PtrValue = LMemI->getPointerOperand(); 2111 if (L->isLoopInvariant(PtrValue)) 2112 continue; 2113 2114 const SCEV *LSCEV = SE.getSCEV(PtrValue); 2115 const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV); 2116 if (!LSCEVAddRec || !LSCEVAddRec->isAffine()) 2117 continue; 2118 2119 // FIXME? We could take pairing of unrolled load copies into account 2120 // by looking at the AddRec, but we would probably have to limit this 2121 // to loops with no stores or other memory optimization barriers. 2122 ++StridedLoads; 2123 // We've seen enough strided loads that seeing more won't make a 2124 // difference. 2125 if (StridedLoads > MaxStridedLoads / 2) 2126 return StridedLoads; 2127 } 2128 } 2129 return StridedLoads; 2130 }; 2131 2132 int StridedLoads = countStridedLoads(L, SE); 2133 LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads 2134 << " strided loads\n"); 2135 // Pick the largest power of 2 unroll count that won't result in too many 2136 // strided loads. 2137 if (StridedLoads) { 2138 UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads); 2139 LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to " 2140 << UP.MaxCount << '\n'); 2141 } 2142 } 2143 2144 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 2145 TTI::UnrollingPreferences &UP, 2146 OptimizationRemarkEmitter *ORE) { 2147 // Enable partial unrolling and runtime unrolling. 2148 BaseT::getUnrollingPreferences(L, SE, UP, ORE); 2149 2150 UP.UpperBound = true; 2151 2152 // For inner loop, it is more likely to be a hot one, and the runtime check 2153 // can be promoted out from LICM pass, so the overhead is less, let's try 2154 // a larger threshold to unroll more loops. 2155 if (L->getLoopDepth() > 1) 2156 UP.PartialThreshold *= 2; 2157 2158 // Disable partial & runtime unrolling on -Os. 2159 UP.PartialOptSizeThreshold = 0; 2160 2161 if (ST->getProcFamily() == AArch64Subtarget::Falkor && 2162 EnableFalkorHWPFUnrollFix) 2163 getFalkorUnrollingPreferences(L, SE, UP); 2164 2165 // Scan the loop: don't unroll loops with calls as this could prevent 2166 // inlining. Don't unroll vector loops either, as they don't benefit much from 2167 // unrolling. 2168 for (auto *BB : L->getBlocks()) { 2169 for (auto &I : *BB) { 2170 // Don't unroll vectorised loop. 2171 if (I.getType()->isVectorTy()) 2172 return; 2173 2174 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 2175 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 2176 if (!isLoweredToCall(F)) 2177 continue; 2178 } 2179 return; 2180 } 2181 } 2182 } 2183 2184 // Enable runtime unrolling for in-order models 2185 // If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by 2186 // checking for that case, we can ensure that the default behaviour is 2187 // unchanged 2188 if (ST->getProcFamily() != AArch64Subtarget::Others && 2189 !ST->getSchedModel().isOutOfOrder()) { 2190 UP.Runtime = true; 2191 UP.Partial = true; 2192 UP.UnrollRemainder = true; 2193 UP.DefaultUnrollRuntimeCount = 4; 2194 2195 UP.UnrollAndJam = true; 2196 UP.UnrollAndJamInnerLoopThreshold = 60; 2197 } 2198 } 2199 2200 void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 2201 TTI::PeelingPreferences &PP) { 2202 BaseT::getPeelingPreferences(L, SE, PP); 2203 } 2204 2205 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 2206 Type *ExpectedType) { 2207 switch (Inst->getIntrinsicID()) { 2208 default: 2209 return nullptr; 2210 case Intrinsic::aarch64_neon_st2: 2211 case Intrinsic::aarch64_neon_st3: 2212 case Intrinsic::aarch64_neon_st4: { 2213 // Create a struct type 2214 StructType *ST = dyn_cast<StructType>(ExpectedType); 2215 if (!ST) 2216 return nullptr; 2217 unsigned NumElts = Inst->arg_size() - 1; 2218 if (ST->getNumElements() != NumElts) 2219 return nullptr; 2220 for (unsigned i = 0, e = NumElts; i != e; ++i) { 2221 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i)) 2222 return nullptr; 2223 } 2224 Value *Res = UndefValue::get(ExpectedType); 2225 IRBuilder<> Builder(Inst); 2226 for (unsigned i = 0, e = NumElts; i != e; ++i) { 2227 Value *L = Inst->getArgOperand(i); 2228 Res = Builder.CreateInsertValue(Res, L, i); 2229 } 2230 return Res; 2231 } 2232 case Intrinsic::aarch64_neon_ld2: 2233 case Intrinsic::aarch64_neon_ld3: 2234 case Intrinsic::aarch64_neon_ld4: 2235 if (Inst->getType() == ExpectedType) 2236 return Inst; 2237 return nullptr; 2238 } 2239 } 2240 2241 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 2242 MemIntrinsicInfo &Info) { 2243 switch (Inst->getIntrinsicID()) { 2244 default: 2245 break; 2246 case Intrinsic::aarch64_neon_ld2: 2247 case Intrinsic::aarch64_neon_ld3: 2248 case Intrinsic::aarch64_neon_ld4: 2249 Info.ReadMem = true; 2250 Info.WriteMem = false; 2251 Info.PtrVal = Inst->getArgOperand(0); 2252 break; 2253 case Intrinsic::aarch64_neon_st2: 2254 case Intrinsic::aarch64_neon_st3: 2255 case Intrinsic::aarch64_neon_st4: 2256 Info.ReadMem = false; 2257 Info.WriteMem = true; 2258 Info.PtrVal = Inst->getArgOperand(Inst->arg_size() - 1); 2259 break; 2260 } 2261 2262 switch (Inst->getIntrinsicID()) { 2263 default: 2264 return false; 2265 case Intrinsic::aarch64_neon_ld2: 2266 case Intrinsic::aarch64_neon_st2: 2267 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS; 2268 break; 2269 case Intrinsic::aarch64_neon_ld3: 2270 case Intrinsic::aarch64_neon_st3: 2271 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS; 2272 break; 2273 case Intrinsic::aarch64_neon_ld4: 2274 case Intrinsic::aarch64_neon_st4: 2275 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS; 2276 break; 2277 } 2278 return true; 2279 } 2280 2281 /// See if \p I should be considered for address type promotion. We check if \p 2282 /// I is a sext with right type and used in memory accesses. If it used in a 2283 /// "complex" getelementptr, we allow it to be promoted without finding other 2284 /// sext instructions that sign extended the same initial value. A getelementptr 2285 /// is considered as "complex" if it has more than 2 operands. 2286 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion( 2287 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) { 2288 bool Considerable = false; 2289 AllowPromotionWithoutCommonHeader = false; 2290 if (!isa<SExtInst>(&I)) 2291 return false; 2292 Type *ConsideredSExtType = 2293 Type::getInt64Ty(I.getParent()->getParent()->getContext()); 2294 if (I.getType() != ConsideredSExtType) 2295 return false; 2296 // See if the sext is the one with the right type and used in at least one 2297 // GetElementPtrInst. 2298 for (const User *U : I.users()) { 2299 if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) { 2300 Considerable = true; 2301 // A getelementptr is considered as "complex" if it has more than 2 2302 // operands. We will promote a SExt used in such complex GEP as we 2303 // expect some computation to be merged if they are done on 64 bits. 2304 if (GEPInst->getNumOperands() > 2) { 2305 AllowPromotionWithoutCommonHeader = true; 2306 break; 2307 } 2308 } 2309 } 2310 return Considerable; 2311 } 2312 2313 bool AArch64TTIImpl::isLegalToVectorizeReduction( 2314 const RecurrenceDescriptor &RdxDesc, ElementCount VF) const { 2315 if (!VF.isScalable()) 2316 return true; 2317 2318 Type *Ty = RdxDesc.getRecurrenceType(); 2319 if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty)) 2320 return false; 2321 2322 switch (RdxDesc.getRecurrenceKind()) { 2323 case RecurKind::Add: 2324 case RecurKind::FAdd: 2325 case RecurKind::And: 2326 case RecurKind::Or: 2327 case RecurKind::Xor: 2328 case RecurKind::SMin: 2329 case RecurKind::SMax: 2330 case RecurKind::UMin: 2331 case RecurKind::UMax: 2332 case RecurKind::FMin: 2333 case RecurKind::FMax: 2334 case RecurKind::SelectICmp: 2335 case RecurKind::SelectFCmp: 2336 case RecurKind::FMulAdd: 2337 return true; 2338 default: 2339 return false; 2340 } 2341 } 2342 2343 InstructionCost 2344 AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 2345 bool IsUnsigned, 2346 TTI::TargetCostKind CostKind) { 2347 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 2348 2349 if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16()) 2350 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind); 2351 2352 assert((isa<ScalableVectorType>(Ty) == isa<ScalableVectorType>(CondTy)) && 2353 "Both vector needs to be equally scalable"); 2354 2355 InstructionCost LegalizationCost = 0; 2356 if (LT.first > 1) { 2357 Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext()); 2358 unsigned MinMaxOpcode = 2359 Ty->isFPOrFPVectorTy() 2360 ? Intrinsic::maxnum 2361 : (IsUnsigned ? Intrinsic::umin : Intrinsic::smin); 2362 IntrinsicCostAttributes Attrs(MinMaxOpcode, LegalVTy, {LegalVTy, LegalVTy}); 2363 LegalizationCost = getIntrinsicInstrCost(Attrs, CostKind) * (LT.first - 1); 2364 } 2365 2366 return LegalizationCost + /*Cost of horizontal reduction*/ 2; 2367 } 2368 2369 InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE( 2370 unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) { 2371 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 2372 InstructionCost LegalizationCost = 0; 2373 if (LT.first > 1) { 2374 Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext()); 2375 LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind); 2376 LegalizationCost *= LT.first - 1; 2377 } 2378 2379 int ISD = TLI->InstructionOpcodeToISD(Opcode); 2380 assert(ISD && "Invalid opcode"); 2381 // Add the final reduction cost for the legal horizontal reduction 2382 switch (ISD) { 2383 case ISD::ADD: 2384 case ISD::AND: 2385 case ISD::OR: 2386 case ISD::XOR: 2387 case ISD::FADD: 2388 return LegalizationCost + 2; 2389 default: 2390 return InstructionCost::getInvalid(); 2391 } 2392 } 2393 2394 InstructionCost 2395 AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, 2396 Optional<FastMathFlags> FMF, 2397 TTI::TargetCostKind CostKind) { 2398 if (TTI::requiresOrderedReduction(FMF)) { 2399 if (auto *FixedVTy = dyn_cast<FixedVectorType>(ValTy)) { 2400 InstructionCost BaseCost = 2401 BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 2402 // Add on extra cost to reflect the extra overhead on some CPUs. We still 2403 // end up vectorizing for more computationally intensive loops. 2404 return BaseCost + FixedVTy->getNumElements(); 2405 } 2406 2407 if (Opcode != Instruction::FAdd) 2408 return InstructionCost::getInvalid(); 2409 2410 auto *VTy = cast<ScalableVectorType>(ValTy); 2411 InstructionCost Cost = 2412 getArithmeticInstrCost(Opcode, VTy->getScalarType(), CostKind); 2413 Cost *= getMaxNumElements(VTy->getElementCount()); 2414 return Cost; 2415 } 2416 2417 if (isa<ScalableVectorType>(ValTy)) 2418 return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind); 2419 2420 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 2421 MVT MTy = LT.second; 2422 int ISD = TLI->InstructionOpcodeToISD(Opcode); 2423 assert(ISD && "Invalid opcode"); 2424 2425 // Horizontal adds can use the 'addv' instruction. We model the cost of these 2426 // instructions as twice a normal vector add, plus 1 for each legalization 2427 // step (LT.first). This is the only arithmetic vector reduction operation for 2428 // which we have an instruction. 2429 // OR, XOR and AND costs should match the codegen from: 2430 // OR: llvm/test/CodeGen/AArch64/reduce-or.ll 2431 // XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll 2432 // AND: llvm/test/CodeGen/AArch64/reduce-and.ll 2433 static const CostTblEntry CostTblNoPairwise[]{ 2434 {ISD::ADD, MVT::v8i8, 2}, 2435 {ISD::ADD, MVT::v16i8, 2}, 2436 {ISD::ADD, MVT::v4i16, 2}, 2437 {ISD::ADD, MVT::v8i16, 2}, 2438 {ISD::ADD, MVT::v4i32, 2}, 2439 {ISD::OR, MVT::v8i8, 15}, 2440 {ISD::OR, MVT::v16i8, 17}, 2441 {ISD::OR, MVT::v4i16, 7}, 2442 {ISD::OR, MVT::v8i16, 9}, 2443 {ISD::OR, MVT::v2i32, 3}, 2444 {ISD::OR, MVT::v4i32, 5}, 2445 {ISD::OR, MVT::v2i64, 3}, 2446 {ISD::XOR, MVT::v8i8, 15}, 2447 {ISD::XOR, MVT::v16i8, 17}, 2448 {ISD::XOR, MVT::v4i16, 7}, 2449 {ISD::XOR, MVT::v8i16, 9}, 2450 {ISD::XOR, MVT::v2i32, 3}, 2451 {ISD::XOR, MVT::v4i32, 5}, 2452 {ISD::XOR, MVT::v2i64, 3}, 2453 {ISD::AND, MVT::v8i8, 15}, 2454 {ISD::AND, MVT::v16i8, 17}, 2455 {ISD::AND, MVT::v4i16, 7}, 2456 {ISD::AND, MVT::v8i16, 9}, 2457 {ISD::AND, MVT::v2i32, 3}, 2458 {ISD::AND, MVT::v4i32, 5}, 2459 {ISD::AND, MVT::v2i64, 3}, 2460 }; 2461 switch (ISD) { 2462 default: 2463 break; 2464 case ISD::ADD: 2465 if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy)) 2466 return (LT.first - 1) + Entry->Cost; 2467 break; 2468 case ISD::XOR: 2469 case ISD::AND: 2470 case ISD::OR: 2471 const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy); 2472 if (!Entry) 2473 break; 2474 auto *ValVTy = cast<FixedVectorType>(ValTy); 2475 if (!ValVTy->getElementType()->isIntegerTy(1) && 2476 MTy.getVectorNumElements() <= ValVTy->getNumElements() && 2477 isPowerOf2_32(ValVTy->getNumElements())) { 2478 InstructionCost ExtraCost = 0; 2479 if (LT.first != 1) { 2480 // Type needs to be split, so there is an extra cost of LT.first - 1 2481 // arithmetic ops. 2482 auto *Ty = FixedVectorType::get(ValTy->getElementType(), 2483 MTy.getVectorNumElements()); 2484 ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind); 2485 ExtraCost *= LT.first - 1; 2486 } 2487 return Entry->Cost + ExtraCost; 2488 } 2489 break; 2490 } 2491 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 2492 } 2493 2494 InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) { 2495 static const CostTblEntry ShuffleTbl[] = { 2496 { TTI::SK_Splice, MVT::nxv16i8, 1 }, 2497 { TTI::SK_Splice, MVT::nxv8i16, 1 }, 2498 { TTI::SK_Splice, MVT::nxv4i32, 1 }, 2499 { TTI::SK_Splice, MVT::nxv2i64, 1 }, 2500 { TTI::SK_Splice, MVT::nxv2f16, 1 }, 2501 { TTI::SK_Splice, MVT::nxv4f16, 1 }, 2502 { TTI::SK_Splice, MVT::nxv8f16, 1 }, 2503 { TTI::SK_Splice, MVT::nxv2bf16, 1 }, 2504 { TTI::SK_Splice, MVT::nxv4bf16, 1 }, 2505 { TTI::SK_Splice, MVT::nxv8bf16, 1 }, 2506 { TTI::SK_Splice, MVT::nxv2f32, 1 }, 2507 { TTI::SK_Splice, MVT::nxv4f32, 1 }, 2508 { TTI::SK_Splice, MVT::nxv2f64, 1 }, 2509 }; 2510 2511 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 2512 Type *LegalVTy = EVT(LT.second).getTypeForEVT(Tp->getContext()); 2513 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 2514 EVT PromotedVT = LT.second.getScalarType() == MVT::i1 2515 ? TLI->getPromotedVTForPredicate(EVT(LT.second)) 2516 : LT.second; 2517 Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Tp->getContext()); 2518 InstructionCost LegalizationCost = 0; 2519 if (Index < 0) { 2520 LegalizationCost = 2521 getCmpSelInstrCost(Instruction::ICmp, PromotedVTy, PromotedVTy, 2522 CmpInst::BAD_ICMP_PREDICATE, CostKind) + 2523 getCmpSelInstrCost(Instruction::Select, PromotedVTy, LegalVTy, 2524 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2525 } 2526 2527 // Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp 2528 // Cost performed on a promoted type. 2529 if (LT.second.getScalarType() == MVT::i1) { 2530 LegalizationCost += 2531 getCastInstrCost(Instruction::ZExt, PromotedVTy, LegalVTy, 2532 TTI::CastContextHint::None, CostKind) + 2533 getCastInstrCost(Instruction::Trunc, LegalVTy, PromotedVTy, 2534 TTI::CastContextHint::None, CostKind); 2535 } 2536 const auto *Entry = 2537 CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT()); 2538 assert(Entry && "Illegal Type for Splice"); 2539 LegalizationCost += Entry->Cost; 2540 return LegalizationCost * LT.first; 2541 } 2542 2543 InstructionCost AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 2544 VectorType *Tp, 2545 ArrayRef<int> Mask, int Index, 2546 VectorType *SubTp) { 2547 Kind = improveShuffleKindFromMask(Kind, Mask); 2548 if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose || 2549 Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc || 2550 Kind == TTI::SK_Reverse) { 2551 static const CostTblEntry ShuffleTbl[] = { 2552 // Broadcast shuffle kinds can be performed with 'dup'. 2553 { TTI::SK_Broadcast, MVT::v8i8, 1 }, 2554 { TTI::SK_Broadcast, MVT::v16i8, 1 }, 2555 { TTI::SK_Broadcast, MVT::v4i16, 1 }, 2556 { TTI::SK_Broadcast, MVT::v8i16, 1 }, 2557 { TTI::SK_Broadcast, MVT::v2i32, 1 }, 2558 { TTI::SK_Broadcast, MVT::v4i32, 1 }, 2559 { TTI::SK_Broadcast, MVT::v2i64, 1 }, 2560 { TTI::SK_Broadcast, MVT::v2f32, 1 }, 2561 { TTI::SK_Broadcast, MVT::v4f32, 1 }, 2562 { TTI::SK_Broadcast, MVT::v2f64, 1 }, 2563 // Transpose shuffle kinds can be performed with 'trn1/trn2' and 2564 // 'zip1/zip2' instructions. 2565 { TTI::SK_Transpose, MVT::v8i8, 1 }, 2566 { TTI::SK_Transpose, MVT::v16i8, 1 }, 2567 { TTI::SK_Transpose, MVT::v4i16, 1 }, 2568 { TTI::SK_Transpose, MVT::v8i16, 1 }, 2569 { TTI::SK_Transpose, MVT::v2i32, 1 }, 2570 { TTI::SK_Transpose, MVT::v4i32, 1 }, 2571 { TTI::SK_Transpose, MVT::v2i64, 1 }, 2572 { TTI::SK_Transpose, MVT::v2f32, 1 }, 2573 { TTI::SK_Transpose, MVT::v4f32, 1 }, 2574 { TTI::SK_Transpose, MVT::v2f64, 1 }, 2575 // Select shuffle kinds. 2576 // TODO: handle vXi8/vXi16. 2577 { TTI::SK_Select, MVT::v2i32, 1 }, // mov. 2578 { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar). 2579 { TTI::SK_Select, MVT::v2i64, 1 }, // mov. 2580 { TTI::SK_Select, MVT::v2f32, 1 }, // mov. 2581 { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar). 2582 { TTI::SK_Select, MVT::v2f64, 1 }, // mov. 2583 // PermuteSingleSrc shuffle kinds. 2584 { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov. 2585 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case. 2586 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov. 2587 { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov. 2588 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case. 2589 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov. 2590 { TTI::SK_PermuteSingleSrc, MVT::v4i16, 3 }, // perfectshuffle worst case. 2591 { TTI::SK_PermuteSingleSrc, MVT::v4f16, 3 }, // perfectshuffle worst case. 2592 { TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3 }, // perfectshuffle worst case. 2593 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 8 }, // constpool + load + tbl 2594 { TTI::SK_PermuteSingleSrc, MVT::v8f16, 8 }, // constpool + load + tbl 2595 { TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8 }, // constpool + load + tbl 2596 { TTI::SK_PermuteSingleSrc, MVT::v8i8, 8 }, // constpool + load + tbl 2597 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 8 }, // constpool + load + tbl 2598 // Reverse can be lowered with `rev`. 2599 { TTI::SK_Reverse, MVT::v2i32, 1 }, // mov. 2600 { TTI::SK_Reverse, MVT::v4i32, 2 }, // REV64; EXT 2601 { TTI::SK_Reverse, MVT::v2i64, 1 }, // mov. 2602 { TTI::SK_Reverse, MVT::v2f32, 1 }, // mov. 2603 { TTI::SK_Reverse, MVT::v4f32, 2 }, // REV64; EXT 2604 { TTI::SK_Reverse, MVT::v2f64, 1 }, // mov. 2605 // Broadcast shuffle kinds for scalable vectors 2606 { TTI::SK_Broadcast, MVT::nxv16i8, 1 }, 2607 { TTI::SK_Broadcast, MVT::nxv8i16, 1 }, 2608 { TTI::SK_Broadcast, MVT::nxv4i32, 1 }, 2609 { TTI::SK_Broadcast, MVT::nxv2i64, 1 }, 2610 { TTI::SK_Broadcast, MVT::nxv2f16, 1 }, 2611 { TTI::SK_Broadcast, MVT::nxv4f16, 1 }, 2612 { TTI::SK_Broadcast, MVT::nxv8f16, 1 }, 2613 { TTI::SK_Broadcast, MVT::nxv2bf16, 1 }, 2614 { TTI::SK_Broadcast, MVT::nxv4bf16, 1 }, 2615 { TTI::SK_Broadcast, MVT::nxv8bf16, 1 }, 2616 { TTI::SK_Broadcast, MVT::nxv2f32, 1 }, 2617 { TTI::SK_Broadcast, MVT::nxv4f32, 1 }, 2618 { TTI::SK_Broadcast, MVT::nxv2f64, 1 }, 2619 { TTI::SK_Broadcast, MVT::nxv16i1, 1 }, 2620 { TTI::SK_Broadcast, MVT::nxv8i1, 1 }, 2621 { TTI::SK_Broadcast, MVT::nxv4i1, 1 }, 2622 { TTI::SK_Broadcast, MVT::nxv2i1, 1 }, 2623 // Handle the cases for vector.reverse with scalable vectors 2624 { TTI::SK_Reverse, MVT::nxv16i8, 1 }, 2625 { TTI::SK_Reverse, MVT::nxv8i16, 1 }, 2626 { TTI::SK_Reverse, MVT::nxv4i32, 1 }, 2627 { TTI::SK_Reverse, MVT::nxv2i64, 1 }, 2628 { TTI::SK_Reverse, MVT::nxv2f16, 1 }, 2629 { TTI::SK_Reverse, MVT::nxv4f16, 1 }, 2630 { TTI::SK_Reverse, MVT::nxv8f16, 1 }, 2631 { TTI::SK_Reverse, MVT::nxv2bf16, 1 }, 2632 { TTI::SK_Reverse, MVT::nxv4bf16, 1 }, 2633 { TTI::SK_Reverse, MVT::nxv8bf16, 1 }, 2634 { TTI::SK_Reverse, MVT::nxv2f32, 1 }, 2635 { TTI::SK_Reverse, MVT::nxv4f32, 1 }, 2636 { TTI::SK_Reverse, MVT::nxv2f64, 1 }, 2637 { TTI::SK_Reverse, MVT::nxv16i1, 1 }, 2638 { TTI::SK_Reverse, MVT::nxv8i1, 1 }, 2639 { TTI::SK_Reverse, MVT::nxv4i1, 1 }, 2640 { TTI::SK_Reverse, MVT::nxv2i1, 1 }, 2641 }; 2642 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 2643 if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second)) 2644 return LT.first * Entry->Cost; 2645 } 2646 if (Kind == TTI::SK_Splice && isa<ScalableVectorType>(Tp)) 2647 return getSpliceCost(Tp, Index); 2648 return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp); 2649 } 2650