1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AArch64TargetTransformInfo.h"
10 #include "AArch64ExpandImm.h"
11 #include "MCTargetDesc/AArch64AddressingModes.h"
12 #include "llvm/Analysis/IVDescriptors.h"
13 #include "llvm/Analysis/LoopInfo.h"
14 #include "llvm/Analysis/TargetTransformInfo.h"
15 #include "llvm/CodeGen/BasicTTIImpl.h"
16 #include "llvm/CodeGen/CostTable.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/IntrinsicsAArch64.h"
21 #include "llvm/IR/PatternMatch.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Transforms/InstCombine/InstCombiner.h"
24 #include <algorithm>
25 using namespace llvm;
26 using namespace llvm::PatternMatch;
27 
28 #define DEBUG_TYPE "aarch64tti"
29 
30 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
31                                                cl::init(true), cl::Hidden);
32 
33 static cl::opt<unsigned> SVEGatherOverhead("sve-gather-overhead", cl::init(10),
34                                            cl::Hidden);
35 
36 static cl::opt<unsigned> SVEScatterOverhead("sve-scatter-overhead",
37                                             cl::init(10), cl::Hidden);
38 
39 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
40                                          const Function *Callee) const {
41   const TargetMachine &TM = getTLI()->getTargetMachine();
42 
43   const FeatureBitset &CallerBits =
44       TM.getSubtargetImpl(*Caller)->getFeatureBits();
45   const FeatureBitset &CalleeBits =
46       TM.getSubtargetImpl(*Callee)->getFeatureBits();
47 
48   // Inline a callee if its target-features are a subset of the callers
49   // target-features.
50   return (CallerBits & CalleeBits) == CalleeBits;
51 }
52 
53 /// Calculate the cost of materializing a 64-bit value. This helper
54 /// method might only calculate a fraction of a larger immediate. Therefore it
55 /// is valid to return a cost of ZERO.
56 InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) {
57   // Check if the immediate can be encoded within an instruction.
58   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
59     return 0;
60 
61   if (Val < 0)
62     Val = ~Val;
63 
64   // Calculate how many moves we will need to materialize this constant.
65   SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
66   AArch64_IMM::expandMOVImm(Val, 64, Insn);
67   return Insn.size();
68 }
69 
70 /// Calculate the cost of materializing the given constant.
71 InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
72                                               TTI::TargetCostKind CostKind) {
73   assert(Ty->isIntegerTy());
74 
75   unsigned BitSize = Ty->getPrimitiveSizeInBits();
76   if (BitSize == 0)
77     return ~0U;
78 
79   // Sign-extend all constants to a multiple of 64-bit.
80   APInt ImmVal = Imm;
81   if (BitSize & 0x3f)
82     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
83 
84   // Split the constant into 64-bit chunks and calculate the cost for each
85   // chunk.
86   InstructionCost Cost = 0;
87   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
88     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
89     int64_t Val = Tmp.getSExtValue();
90     Cost += getIntImmCost(Val);
91   }
92   // We need at least one instruction to materialze the constant.
93   return std::max<InstructionCost>(1, Cost);
94 }
95 
96 InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
97                                                   const APInt &Imm, Type *Ty,
98                                                   TTI::TargetCostKind CostKind,
99                                                   Instruction *Inst) {
100   assert(Ty->isIntegerTy());
101 
102   unsigned BitSize = Ty->getPrimitiveSizeInBits();
103   // There is no cost model for constants with a bit size of 0. Return TCC_Free
104   // here, so that constant hoisting will ignore this constant.
105   if (BitSize == 0)
106     return TTI::TCC_Free;
107 
108   unsigned ImmIdx = ~0U;
109   switch (Opcode) {
110   default:
111     return TTI::TCC_Free;
112   case Instruction::GetElementPtr:
113     // Always hoist the base address of a GetElementPtr.
114     if (Idx == 0)
115       return 2 * TTI::TCC_Basic;
116     return TTI::TCC_Free;
117   case Instruction::Store:
118     ImmIdx = 0;
119     break;
120   case Instruction::Add:
121   case Instruction::Sub:
122   case Instruction::Mul:
123   case Instruction::UDiv:
124   case Instruction::SDiv:
125   case Instruction::URem:
126   case Instruction::SRem:
127   case Instruction::And:
128   case Instruction::Or:
129   case Instruction::Xor:
130   case Instruction::ICmp:
131     ImmIdx = 1;
132     break;
133   // Always return TCC_Free for the shift value of a shift instruction.
134   case Instruction::Shl:
135   case Instruction::LShr:
136   case Instruction::AShr:
137     if (Idx == 1)
138       return TTI::TCC_Free;
139     break;
140   case Instruction::Trunc:
141   case Instruction::ZExt:
142   case Instruction::SExt:
143   case Instruction::IntToPtr:
144   case Instruction::PtrToInt:
145   case Instruction::BitCast:
146   case Instruction::PHI:
147   case Instruction::Call:
148   case Instruction::Select:
149   case Instruction::Ret:
150   case Instruction::Load:
151     break;
152   }
153 
154   if (Idx == ImmIdx) {
155     int NumConstants = (BitSize + 63) / 64;
156     InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
157     return (Cost <= NumConstants * TTI::TCC_Basic)
158                ? static_cast<int>(TTI::TCC_Free)
159                : Cost;
160   }
161   return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
162 }
163 
164 InstructionCost
165 AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
166                                     const APInt &Imm, Type *Ty,
167                                     TTI::TargetCostKind CostKind) {
168   assert(Ty->isIntegerTy());
169 
170   unsigned BitSize = Ty->getPrimitiveSizeInBits();
171   // There is no cost model for constants with a bit size of 0. Return TCC_Free
172   // here, so that constant hoisting will ignore this constant.
173   if (BitSize == 0)
174     return TTI::TCC_Free;
175 
176   // Most (all?) AArch64 intrinsics do not support folding immediates into the
177   // selected instruction, so we compute the materialization cost for the
178   // immediate directly.
179   if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
180     return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
181 
182   switch (IID) {
183   default:
184     return TTI::TCC_Free;
185   case Intrinsic::sadd_with_overflow:
186   case Intrinsic::uadd_with_overflow:
187   case Intrinsic::ssub_with_overflow:
188   case Intrinsic::usub_with_overflow:
189   case Intrinsic::smul_with_overflow:
190   case Intrinsic::umul_with_overflow:
191     if (Idx == 1) {
192       int NumConstants = (BitSize + 63) / 64;
193       InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
194       return (Cost <= NumConstants * TTI::TCC_Basic)
195                  ? static_cast<int>(TTI::TCC_Free)
196                  : Cost;
197     }
198     break;
199   case Intrinsic::experimental_stackmap:
200     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
201       return TTI::TCC_Free;
202     break;
203   case Intrinsic::experimental_patchpoint_void:
204   case Intrinsic::experimental_patchpoint_i64:
205     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
206       return TTI::TCC_Free;
207     break;
208   case Intrinsic::experimental_gc_statepoint:
209     if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
210       return TTI::TCC_Free;
211     break;
212   }
213   return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
214 }
215 
216 TargetTransformInfo::PopcntSupportKind
217 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
218   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
219   if (TyWidth == 32 || TyWidth == 64)
220     return TTI::PSK_FastHardware;
221   // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
222   return TTI::PSK_Software;
223 }
224 
225 InstructionCost
226 AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
227                                       TTI::TargetCostKind CostKind) {
228   auto *RetTy = ICA.getReturnType();
229   switch (ICA.getID()) {
230   case Intrinsic::umin:
231   case Intrinsic::umax:
232   case Intrinsic::smin:
233   case Intrinsic::smax: {
234     static const auto ValidMinMaxTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
235                                         MVT::v8i16, MVT::v2i32, MVT::v4i32};
236     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
237     // v2i64 types get converted to cmp+bif hence the cost of 2
238     if (LT.second == MVT::v2i64)
239       return LT.first * 2;
240     if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }))
241       return LT.first;
242     break;
243   }
244   case Intrinsic::sadd_sat:
245   case Intrinsic::ssub_sat:
246   case Intrinsic::uadd_sat:
247   case Intrinsic::usub_sat: {
248     static const auto ValidSatTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
249                                      MVT::v8i16, MVT::v2i32, MVT::v4i32,
250                                      MVT::v2i64};
251     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
252     // This is a base cost of 1 for the vadd, plus 3 extract shifts if we
253     // need to extend the type, as it uses shr(qadd(shl, shl)).
254     unsigned Instrs =
255         LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4;
256     if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
257       return LT.first * Instrs;
258     break;
259   }
260   case Intrinsic::abs: {
261     static const auto ValidAbsTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
262                                      MVT::v8i16, MVT::v2i32, MVT::v4i32,
263                                      MVT::v2i64};
264     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
265     if (any_of(ValidAbsTys, [&LT](MVT M) { return M == LT.second; }))
266       return LT.first;
267     break;
268   }
269   case Intrinsic::experimental_stepvector: {
270     InstructionCost Cost = 1; // Cost of the `index' instruction
271     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
272     // Legalisation of illegal vectors involves an `index' instruction plus
273     // (LT.first - 1) vector adds.
274     if (LT.first > 1) {
275       Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext());
276       InstructionCost AddCost =
277           getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind);
278       Cost += AddCost * (LT.first - 1);
279     }
280     return Cost;
281   }
282   case Intrinsic::bitreverse: {
283     static const CostTblEntry BitreverseTbl[] = {
284         {Intrinsic::bitreverse, MVT::i32, 1},
285         {Intrinsic::bitreverse, MVT::i64, 1},
286         {Intrinsic::bitreverse, MVT::v8i8, 1},
287         {Intrinsic::bitreverse, MVT::v16i8, 1},
288         {Intrinsic::bitreverse, MVT::v4i16, 2},
289         {Intrinsic::bitreverse, MVT::v8i16, 2},
290         {Intrinsic::bitreverse, MVT::v2i32, 2},
291         {Intrinsic::bitreverse, MVT::v4i32, 2},
292         {Intrinsic::bitreverse, MVT::v1i64, 2},
293         {Intrinsic::bitreverse, MVT::v2i64, 2},
294     };
295     const auto LegalisationCost = TLI->getTypeLegalizationCost(DL, RetTy);
296     const auto *Entry =
297         CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second);
298     if (Entry) {
299       // Cost Model is using the legal type(i32) that i8 and i16 will be
300       // converted to +1 so that we match the actual lowering cost
301       if (TLI->getValueType(DL, RetTy, true) == MVT::i8 ||
302           TLI->getValueType(DL, RetTy, true) == MVT::i16)
303         return LegalisationCost.first * Entry->Cost + 1;
304 
305       return LegalisationCost.first * Entry->Cost;
306     }
307     break;
308   }
309   case Intrinsic::ctpop: {
310     static const CostTblEntry CtpopCostTbl[] = {
311         {ISD::CTPOP, MVT::v2i64, 4},
312         {ISD::CTPOP, MVT::v4i32, 3},
313         {ISD::CTPOP, MVT::v8i16, 2},
314         {ISD::CTPOP, MVT::v16i8, 1},
315         {ISD::CTPOP, MVT::i64,   4},
316         {ISD::CTPOP, MVT::v2i32, 3},
317         {ISD::CTPOP, MVT::v4i16, 2},
318         {ISD::CTPOP, MVT::v8i8,  1},
319         {ISD::CTPOP, MVT::i32,   5},
320     };
321     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
322     MVT MTy = LT.second;
323     if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) {
324       // Extra cost of +1 when illegal vector types are legalized by promoting
325       // the integer type.
326       int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() !=
327                                             RetTy->getScalarSizeInBits()
328                           ? 1
329                           : 0;
330       return LT.first * Entry->Cost + ExtraCost;
331     }
332     break;
333   }
334   case Intrinsic::sadd_with_overflow:
335   case Intrinsic::uadd_with_overflow:
336   case Intrinsic::ssub_with_overflow:
337   case Intrinsic::usub_with_overflow:
338   case Intrinsic::smul_with_overflow:
339   case Intrinsic::umul_with_overflow: {
340     static const CostTblEntry WithOverflowCostTbl[] = {
341         {Intrinsic::sadd_with_overflow, MVT::i8, 3},
342         {Intrinsic::uadd_with_overflow, MVT::i8, 3},
343         {Intrinsic::sadd_with_overflow, MVT::i16, 3},
344         {Intrinsic::uadd_with_overflow, MVT::i16, 3},
345         {Intrinsic::sadd_with_overflow, MVT::i32, 1},
346         {Intrinsic::uadd_with_overflow, MVT::i32, 1},
347         {Intrinsic::sadd_with_overflow, MVT::i64, 1},
348         {Intrinsic::uadd_with_overflow, MVT::i64, 1},
349         {Intrinsic::ssub_with_overflow, MVT::i8, 3},
350         {Intrinsic::usub_with_overflow, MVT::i8, 3},
351         {Intrinsic::ssub_with_overflow, MVT::i16, 3},
352         {Intrinsic::usub_with_overflow, MVT::i16, 3},
353         {Intrinsic::ssub_with_overflow, MVT::i32, 1},
354         {Intrinsic::usub_with_overflow, MVT::i32, 1},
355         {Intrinsic::ssub_with_overflow, MVT::i64, 1},
356         {Intrinsic::usub_with_overflow, MVT::i64, 1},
357         {Intrinsic::smul_with_overflow, MVT::i8, 5},
358         {Intrinsic::umul_with_overflow, MVT::i8, 4},
359         {Intrinsic::smul_with_overflow, MVT::i16, 5},
360         {Intrinsic::umul_with_overflow, MVT::i16, 4},
361         {Intrinsic::smul_with_overflow, MVT::i32, 2}, // eg umull;tst
362         {Intrinsic::umul_with_overflow, MVT::i32, 2}, // eg umull;cmp sxtw
363         {Intrinsic::smul_with_overflow, MVT::i64, 3}, // eg mul;smulh;cmp
364         {Intrinsic::umul_with_overflow, MVT::i64, 3}, // eg mul;umulh;cmp asr
365     };
366     EVT MTy = TLI->getValueType(DL, RetTy->getContainedType(0), true);
367     if (MTy.isSimple())
368       if (const auto *Entry = CostTableLookup(WithOverflowCostTbl, ICA.getID(),
369                                               MTy.getSimpleVT()))
370         return Entry->Cost;
371     break;
372   }
373   default:
374     break;
375   }
376   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
377 }
378 
379 /// The function will remove redundant reinterprets casting in the presence
380 /// of the control flow
381 static Optional<Instruction *> processPhiNode(InstCombiner &IC,
382                                               IntrinsicInst &II) {
383   SmallVector<Instruction *, 32> Worklist;
384   auto RequiredType = II.getType();
385 
386   auto *PN = dyn_cast<PHINode>(II.getArgOperand(0));
387   assert(PN && "Expected Phi Node!");
388 
389   // Don't create a new Phi unless we can remove the old one.
390   if (!PN->hasOneUse())
391     return None;
392 
393   for (Value *IncValPhi : PN->incoming_values()) {
394     auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi);
395     if (!Reinterpret ||
396         Reinterpret->getIntrinsicID() !=
397             Intrinsic::aarch64_sve_convert_to_svbool ||
398         RequiredType != Reinterpret->getArgOperand(0)->getType())
399       return None;
400   }
401 
402   // Create the new Phi
403   LLVMContext &Ctx = PN->getContext();
404   IRBuilder<> Builder(Ctx);
405   Builder.SetInsertPoint(PN);
406   PHINode *NPN = Builder.CreatePHI(RequiredType, PN->getNumIncomingValues());
407   Worklist.push_back(PN);
408 
409   for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) {
410     auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I));
411     NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I));
412     Worklist.push_back(Reinterpret);
413   }
414 
415   // Cleanup Phi Node and reinterprets
416   return IC.replaceInstUsesWith(II, NPN);
417 }
418 
419 // (from_svbool (binop (to_svbool pred) (svbool_t _) (svbool_t _))))
420 // => (binop (pred) (from_svbool _) (from_svbool _))
421 //
422 // The above transformation eliminates a `to_svbool` in the predicate
423 // operand of bitwise operation `binop` by narrowing the vector width of
424 // the operation. For example, it would convert a `<vscale x 16 x i1>
425 // and` into a `<vscale x 4 x i1> and`. This is profitable because
426 // to_svbool must zero the new lanes during widening, whereas
427 // from_svbool is free.
428 static Optional<Instruction *> tryCombineFromSVBoolBinOp(InstCombiner &IC,
429                                                          IntrinsicInst &II) {
430   auto BinOp = dyn_cast<IntrinsicInst>(II.getOperand(0));
431   if (!BinOp)
432     return None;
433 
434   auto IntrinsicID = BinOp->getIntrinsicID();
435   switch (IntrinsicID) {
436   case Intrinsic::aarch64_sve_and_z:
437   case Intrinsic::aarch64_sve_bic_z:
438   case Intrinsic::aarch64_sve_eor_z:
439   case Intrinsic::aarch64_sve_nand_z:
440   case Intrinsic::aarch64_sve_nor_z:
441   case Intrinsic::aarch64_sve_orn_z:
442   case Intrinsic::aarch64_sve_orr_z:
443     break;
444   default:
445     return None;
446   }
447 
448   auto BinOpPred = BinOp->getOperand(0);
449   auto BinOpOp1 = BinOp->getOperand(1);
450   auto BinOpOp2 = BinOp->getOperand(2);
451 
452   auto PredIntr = dyn_cast<IntrinsicInst>(BinOpPred);
453   if (!PredIntr ||
454       PredIntr->getIntrinsicID() != Intrinsic::aarch64_sve_convert_to_svbool)
455     return None;
456 
457   auto PredOp = PredIntr->getOperand(0);
458   auto PredOpTy = cast<VectorType>(PredOp->getType());
459   if (PredOpTy != II.getType())
460     return None;
461 
462   IRBuilder<> Builder(II.getContext());
463   Builder.SetInsertPoint(&II);
464 
465   SmallVector<Value *> NarrowedBinOpArgs = {PredOp};
466   auto NarrowBinOpOp1 = Builder.CreateIntrinsic(
467       Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp1});
468   NarrowedBinOpArgs.push_back(NarrowBinOpOp1);
469   if (BinOpOp1 == BinOpOp2)
470     NarrowedBinOpArgs.push_back(NarrowBinOpOp1);
471   else
472     NarrowedBinOpArgs.push_back(Builder.CreateIntrinsic(
473         Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp2}));
474 
475   auto NarrowedBinOp =
476       Builder.CreateIntrinsic(IntrinsicID, {PredOpTy}, NarrowedBinOpArgs);
477   return IC.replaceInstUsesWith(II, NarrowedBinOp);
478 }
479 
480 static Optional<Instruction *> instCombineConvertFromSVBool(InstCombiner &IC,
481                                                             IntrinsicInst &II) {
482   // If the reinterpret instruction operand is a PHI Node
483   if (isa<PHINode>(II.getArgOperand(0)))
484     return processPhiNode(IC, II);
485 
486   if (auto BinOpCombine = tryCombineFromSVBoolBinOp(IC, II))
487     return BinOpCombine;
488 
489   SmallVector<Instruction *, 32> CandidatesForRemoval;
490   Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr;
491 
492   const auto *IVTy = cast<VectorType>(II.getType());
493 
494   // Walk the chain of conversions.
495   while (Cursor) {
496     // If the type of the cursor has fewer lanes than the final result, zeroing
497     // must take place, which breaks the equivalence chain.
498     const auto *CursorVTy = cast<VectorType>(Cursor->getType());
499     if (CursorVTy->getElementCount().getKnownMinValue() <
500         IVTy->getElementCount().getKnownMinValue())
501       break;
502 
503     // If the cursor has the same type as I, it is a viable replacement.
504     if (Cursor->getType() == IVTy)
505       EarliestReplacement = Cursor;
506 
507     auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor);
508 
509     // If this is not an SVE conversion intrinsic, this is the end of the chain.
510     if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() ==
511                                   Intrinsic::aarch64_sve_convert_to_svbool ||
512                               IntrinsicCursor->getIntrinsicID() ==
513                                   Intrinsic::aarch64_sve_convert_from_svbool))
514       break;
515 
516     CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor);
517     Cursor = IntrinsicCursor->getOperand(0);
518   }
519 
520   // If no viable replacement in the conversion chain was found, there is
521   // nothing to do.
522   if (!EarliestReplacement)
523     return None;
524 
525   return IC.replaceInstUsesWith(II, EarliestReplacement);
526 }
527 
528 static Optional<Instruction *> instCombineSVEDup(InstCombiner &IC,
529                                                  IntrinsicInst &II) {
530   IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
531   if (!Pg)
532     return None;
533 
534   if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
535     return None;
536 
537   const auto PTruePattern =
538       cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
539   if (PTruePattern != AArch64SVEPredPattern::vl1)
540     return None;
541 
542   // The intrinsic is inserting into lane zero so use an insert instead.
543   auto *IdxTy = Type::getInt64Ty(II.getContext());
544   auto *Insert = InsertElementInst::Create(
545       II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0));
546   Insert->insertBefore(&II);
547   Insert->takeName(&II);
548 
549   return IC.replaceInstUsesWith(II, Insert);
550 }
551 
552 static Optional<Instruction *> instCombineSVEDupX(InstCombiner &IC,
553                                                   IntrinsicInst &II) {
554   // Replace DupX with a regular IR splat.
555   IRBuilder<> Builder(II.getContext());
556   Builder.SetInsertPoint(&II);
557   auto *RetTy = cast<ScalableVectorType>(II.getType());
558   Value *Splat =
559       Builder.CreateVectorSplat(RetTy->getElementCount(), II.getArgOperand(0));
560   Splat->takeName(&II);
561   return IC.replaceInstUsesWith(II, Splat);
562 }
563 
564 static Optional<Instruction *> instCombineSVECmpNE(InstCombiner &IC,
565                                                    IntrinsicInst &II) {
566   LLVMContext &Ctx = II.getContext();
567   IRBuilder<> Builder(Ctx);
568   Builder.SetInsertPoint(&II);
569 
570   // Check that the predicate is all active
571   auto *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(0));
572   if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
573     return None;
574 
575   const auto PTruePattern =
576       cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
577   if (PTruePattern != AArch64SVEPredPattern::all)
578     return None;
579 
580   // Check that we have a compare of zero..
581   auto *SplatValue =
582       dyn_cast_or_null<ConstantInt>(getSplatValue(II.getArgOperand(2)));
583   if (!SplatValue || !SplatValue->isZero())
584     return None;
585 
586   // ..against a dupq
587   auto *DupQLane = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
588   if (!DupQLane ||
589       DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane)
590     return None;
591 
592   // Where the dupq is a lane 0 replicate of a vector insert
593   if (!cast<ConstantInt>(DupQLane->getArgOperand(1))->isZero())
594     return None;
595 
596   auto *VecIns = dyn_cast<IntrinsicInst>(DupQLane->getArgOperand(0));
597   if (!VecIns ||
598       VecIns->getIntrinsicID() != Intrinsic::experimental_vector_insert)
599     return None;
600 
601   // Where the vector insert is a fixed constant vector insert into undef at
602   // index zero
603   if (!isa<UndefValue>(VecIns->getArgOperand(0)))
604     return None;
605 
606   if (!cast<ConstantInt>(VecIns->getArgOperand(2))->isZero())
607     return None;
608 
609   auto *ConstVec = dyn_cast<Constant>(VecIns->getArgOperand(1));
610   if (!ConstVec)
611     return None;
612 
613   auto *VecTy = dyn_cast<FixedVectorType>(ConstVec->getType());
614   auto *OutTy = dyn_cast<ScalableVectorType>(II.getType());
615   if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements())
616     return None;
617 
618   unsigned NumElts = VecTy->getNumElements();
619   unsigned PredicateBits = 0;
620 
621   // Expand intrinsic operands to a 16-bit byte level predicate
622   for (unsigned I = 0; I < NumElts; ++I) {
623     auto *Arg = dyn_cast<ConstantInt>(ConstVec->getAggregateElement(I));
624     if (!Arg)
625       return None;
626     if (!Arg->isZero())
627       PredicateBits |= 1 << (I * (16 / NumElts));
628   }
629 
630   // If all bits are zero bail early with an empty predicate
631   if (PredicateBits == 0) {
632     auto *PFalse = Constant::getNullValue(II.getType());
633     PFalse->takeName(&II);
634     return IC.replaceInstUsesWith(II, PFalse);
635   }
636 
637   // Calculate largest predicate type used (where byte predicate is largest)
638   unsigned Mask = 8;
639   for (unsigned I = 0; I < 16; ++I)
640     if ((PredicateBits & (1 << I)) != 0)
641       Mask |= (I % 8);
642 
643   unsigned PredSize = Mask & -Mask;
644   auto *PredType = ScalableVectorType::get(
645       Type::getInt1Ty(Ctx), AArch64::SVEBitsPerBlock / (PredSize * 8));
646 
647   // Ensure all relevant bits are set
648   for (unsigned I = 0; I < 16; I += PredSize)
649     if ((PredicateBits & (1 << I)) == 0)
650       return None;
651 
652   auto *PTruePat =
653       ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
654   auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
655                                         {PredType}, {PTruePat});
656   auto *ConvertToSVBool = Builder.CreateIntrinsic(
657       Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue});
658   auto *ConvertFromSVBool =
659       Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool,
660                               {II.getType()}, {ConvertToSVBool});
661 
662   ConvertFromSVBool->takeName(&II);
663   return IC.replaceInstUsesWith(II, ConvertFromSVBool);
664 }
665 
666 static Optional<Instruction *> instCombineSVELast(InstCombiner &IC,
667                                                   IntrinsicInst &II) {
668   IRBuilder<> Builder(II.getContext());
669   Builder.SetInsertPoint(&II);
670   Value *Pg = II.getArgOperand(0);
671   Value *Vec = II.getArgOperand(1);
672   auto IntrinsicID = II.getIntrinsicID();
673   bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta;
674 
675   // lastX(splat(X)) --> X
676   if (auto *SplatVal = getSplatValue(Vec))
677     return IC.replaceInstUsesWith(II, SplatVal);
678 
679   // If x and/or y is a splat value then:
680   // lastX (binop (x, y)) --> binop(lastX(x), lastX(y))
681   Value *LHS, *RHS;
682   if (match(Vec, m_OneUse(m_BinOp(m_Value(LHS), m_Value(RHS))))) {
683     if (isSplatValue(LHS) || isSplatValue(RHS)) {
684       auto *OldBinOp = cast<BinaryOperator>(Vec);
685       auto OpC = OldBinOp->getOpcode();
686       auto *NewLHS =
687           Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, LHS});
688       auto *NewRHS =
689           Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, RHS});
690       auto *NewBinOp = BinaryOperator::CreateWithCopiedFlags(
691           OpC, NewLHS, NewRHS, OldBinOp, OldBinOp->getName(), &II);
692       return IC.replaceInstUsesWith(II, NewBinOp);
693     }
694   }
695 
696   auto *C = dyn_cast<Constant>(Pg);
697   if (IsAfter && C && C->isNullValue()) {
698     // The intrinsic is extracting lane 0 so use an extract instead.
699     auto *IdxTy = Type::getInt64Ty(II.getContext());
700     auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0));
701     Extract->insertBefore(&II);
702     Extract->takeName(&II);
703     return IC.replaceInstUsesWith(II, Extract);
704   }
705 
706   auto *IntrPG = dyn_cast<IntrinsicInst>(Pg);
707   if (!IntrPG)
708     return None;
709 
710   if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
711     return None;
712 
713   const auto PTruePattern =
714       cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue();
715 
716   // Can the intrinsic's predicate be converted to a known constant index?
717   unsigned MinNumElts = getNumElementsFromSVEPredPattern(PTruePattern);
718   if (!MinNumElts)
719     return None;
720 
721   unsigned Idx = MinNumElts - 1;
722   // Increment the index if extracting the element after the last active
723   // predicate element.
724   if (IsAfter)
725     ++Idx;
726 
727   // Ignore extracts whose index is larger than the known minimum vector
728   // length. NOTE: This is an artificial constraint where we prefer to
729   // maintain what the user asked for until an alternative is proven faster.
730   auto *PgVTy = cast<ScalableVectorType>(Pg->getType());
731   if (Idx >= PgVTy->getMinNumElements())
732     return None;
733 
734   // The intrinsic is extracting a fixed lane so use an extract instead.
735   auto *IdxTy = Type::getInt64Ty(II.getContext());
736   auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx));
737   Extract->insertBefore(&II);
738   Extract->takeName(&II);
739   return IC.replaceInstUsesWith(II, Extract);
740 }
741 
742 static Optional<Instruction *> instCombineRDFFR(InstCombiner &IC,
743                                                 IntrinsicInst &II) {
744   LLVMContext &Ctx = II.getContext();
745   IRBuilder<> Builder(Ctx);
746   Builder.SetInsertPoint(&II);
747   // Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr
748   // can work with RDFFR_PP for ptest elimination.
749   auto *AllPat =
750       ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
751   auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
752                                         {II.getType()}, {AllPat});
753   auto *RDFFR =
754       Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue});
755   RDFFR->takeName(&II);
756   return IC.replaceInstUsesWith(II, RDFFR);
757 }
758 
759 static Optional<Instruction *>
760 instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) {
761   const auto Pattern = cast<ConstantInt>(II.getArgOperand(0))->getZExtValue();
762 
763   if (Pattern == AArch64SVEPredPattern::all) {
764     LLVMContext &Ctx = II.getContext();
765     IRBuilder<> Builder(Ctx);
766     Builder.SetInsertPoint(&II);
767 
768     Constant *StepVal = ConstantInt::get(II.getType(), NumElts);
769     auto *VScale = Builder.CreateVScale(StepVal);
770     VScale->takeName(&II);
771     return IC.replaceInstUsesWith(II, VScale);
772   }
773 
774   unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern);
775 
776   return MinNumElts && NumElts >= MinNumElts
777              ? Optional<Instruction *>(IC.replaceInstUsesWith(
778                    II, ConstantInt::get(II.getType(), MinNumElts)))
779              : None;
780 }
781 
782 static Optional<Instruction *> instCombineSVEPTest(InstCombiner &IC,
783                                                    IntrinsicInst &II) {
784   IntrinsicInst *Op1 = dyn_cast<IntrinsicInst>(II.getArgOperand(0));
785   IntrinsicInst *Op2 = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
786 
787   if (Op1 && Op2 &&
788       Op1->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
789       Op2->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
790       Op1->getArgOperand(0)->getType() == Op2->getArgOperand(0)->getType()) {
791 
792     IRBuilder<> Builder(II.getContext());
793     Builder.SetInsertPoint(&II);
794 
795     Value *Ops[] = {Op1->getArgOperand(0), Op2->getArgOperand(0)};
796     Type *Tys[] = {Op1->getArgOperand(0)->getType()};
797 
798     auto *PTest = Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops);
799 
800     PTest->takeName(&II);
801     return IC.replaceInstUsesWith(II, PTest);
802   }
803 
804   return None;
805 }
806 
807 static Optional<Instruction *> instCombineSVEVectorFMLA(InstCombiner &IC,
808                                                         IntrinsicInst &II) {
809   // fold (fadd p a (fmul p b c)) -> (fma p a b c)
810   Value *P = II.getOperand(0);
811   Value *A = II.getOperand(1);
812   auto FMul = II.getOperand(2);
813   Value *B, *C;
814   if (!match(FMul, m_Intrinsic<Intrinsic::aarch64_sve_fmul>(
815                        m_Specific(P), m_Value(B), m_Value(C))))
816     return None;
817 
818   if (!FMul->hasOneUse())
819     return None;
820 
821   llvm::FastMathFlags FAddFlags = II.getFastMathFlags();
822   // Stop the combine when the flags on the inputs differ in case dropping flags
823   // would lead to us missing out on more beneficial optimizations.
824   if (FAddFlags != cast<CallInst>(FMul)->getFastMathFlags())
825     return None;
826   if (!FAddFlags.allowContract())
827     return None;
828 
829   IRBuilder<> Builder(II.getContext());
830   Builder.SetInsertPoint(&II);
831   auto FMLA = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_fmla,
832                                       {II.getType()}, {P, A, B, C}, &II);
833   FMLA->setFastMathFlags(FAddFlags);
834   return IC.replaceInstUsesWith(II, FMLA);
835 }
836 
837 static bool isAllActivePredicate(Value *Pred) {
838   // Look through convert.from.svbool(convert.to.svbool(...) chain.
839   Value *UncastedPred;
840   if (match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_convert_from_svbool>(
841                       m_Intrinsic<Intrinsic::aarch64_sve_convert_to_svbool>(
842                           m_Value(UncastedPred)))))
843     // If the predicate has the same or less lanes than the uncasted
844     // predicate then we know the casting has no effect.
845     if (cast<ScalableVectorType>(Pred->getType())->getMinNumElements() <=
846         cast<ScalableVectorType>(UncastedPred->getType())->getMinNumElements())
847       Pred = UncastedPred;
848 
849   return match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
850                          m_ConstantInt<AArch64SVEPredPattern::all>()));
851 }
852 
853 static Optional<Instruction *>
854 instCombineSVELD1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
855   IRBuilder<> Builder(II.getContext());
856   Builder.SetInsertPoint(&II);
857 
858   Value *Pred = II.getOperand(0);
859   Value *PtrOp = II.getOperand(1);
860   Type *VecTy = II.getType();
861   Value *VecPtr = Builder.CreateBitCast(PtrOp, VecTy->getPointerTo());
862 
863   if (isAllActivePredicate(Pred)) {
864     LoadInst *Load = Builder.CreateLoad(VecTy, VecPtr);
865     Load->copyMetadata(II);
866     return IC.replaceInstUsesWith(II, Load);
867   }
868 
869   CallInst *MaskedLoad =
870       Builder.CreateMaskedLoad(VecTy, VecPtr, PtrOp->getPointerAlignment(DL),
871                                Pred, ConstantAggregateZero::get(VecTy));
872   MaskedLoad->copyMetadata(II);
873   return IC.replaceInstUsesWith(II, MaskedLoad);
874 }
875 
876 static Optional<Instruction *>
877 instCombineSVEST1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
878   IRBuilder<> Builder(II.getContext());
879   Builder.SetInsertPoint(&II);
880 
881   Value *VecOp = II.getOperand(0);
882   Value *Pred = II.getOperand(1);
883   Value *PtrOp = II.getOperand(2);
884   Value *VecPtr =
885       Builder.CreateBitCast(PtrOp, VecOp->getType()->getPointerTo());
886 
887   if (isAllActivePredicate(Pred)) {
888     StoreInst *Store = Builder.CreateStore(VecOp, VecPtr);
889     Store->copyMetadata(II);
890     return IC.eraseInstFromFunction(II);
891   }
892 
893   CallInst *MaskedStore = Builder.CreateMaskedStore(
894       VecOp, VecPtr, PtrOp->getPointerAlignment(DL), Pred);
895   MaskedStore->copyMetadata(II);
896   return IC.eraseInstFromFunction(II);
897 }
898 
899 static Instruction::BinaryOps intrinsicIDToBinOpCode(unsigned Intrinsic) {
900   switch (Intrinsic) {
901   case Intrinsic::aarch64_sve_fmul:
902     return Instruction::BinaryOps::FMul;
903   case Intrinsic::aarch64_sve_fadd:
904     return Instruction::BinaryOps::FAdd;
905   case Intrinsic::aarch64_sve_fsub:
906     return Instruction::BinaryOps::FSub;
907   default:
908     return Instruction::BinaryOpsEnd;
909   }
910 }
911 
912 static Optional<Instruction *> instCombineSVEVectorBinOp(InstCombiner &IC,
913                                                          IntrinsicInst &II) {
914   auto *OpPredicate = II.getOperand(0);
915   auto BinOpCode = intrinsicIDToBinOpCode(II.getIntrinsicID());
916   if (BinOpCode == Instruction::BinaryOpsEnd ||
917       !match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
918                               m_ConstantInt<AArch64SVEPredPattern::all>())))
919     return None;
920   IRBuilder<> Builder(II.getContext());
921   Builder.SetInsertPoint(&II);
922   Builder.setFastMathFlags(II.getFastMathFlags());
923   auto BinOp =
924       Builder.CreateBinOp(BinOpCode, II.getOperand(1), II.getOperand(2));
925   return IC.replaceInstUsesWith(II, BinOp);
926 }
927 
928 static Optional<Instruction *> instCombineSVEVectorFAdd(InstCombiner &IC,
929                                                         IntrinsicInst &II) {
930   if (auto FMLA = instCombineSVEVectorFMLA(IC, II))
931     return FMLA;
932   return instCombineSVEVectorBinOp(IC, II);
933 }
934 
935 static Optional<Instruction *> instCombineSVEVectorMul(InstCombiner &IC,
936                                                        IntrinsicInst &II) {
937   auto *OpPredicate = II.getOperand(0);
938   auto *OpMultiplicand = II.getOperand(1);
939   auto *OpMultiplier = II.getOperand(2);
940 
941   IRBuilder<> Builder(II.getContext());
942   Builder.SetInsertPoint(&II);
943 
944   // Return true if a given instruction is a unit splat value, false otherwise.
945   auto IsUnitSplat = [](auto *I) {
946     auto *SplatValue = getSplatValue(I);
947     if (!SplatValue)
948       return false;
949     return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
950   };
951 
952   // Return true if a given instruction is an aarch64_sve_dup intrinsic call
953   // with a unit splat value, false otherwise.
954   auto IsUnitDup = [](auto *I) {
955     auto *IntrI = dyn_cast<IntrinsicInst>(I);
956     if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup)
957       return false;
958 
959     auto *SplatValue = IntrI->getOperand(2);
960     return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
961   };
962 
963   if (IsUnitSplat(OpMultiplier)) {
964     // [f]mul pg %n, (dupx 1) => %n
965     OpMultiplicand->takeName(&II);
966     return IC.replaceInstUsesWith(II, OpMultiplicand);
967   } else if (IsUnitDup(OpMultiplier)) {
968     // [f]mul pg %n, (dup pg 1) => %n
969     auto *DupInst = cast<IntrinsicInst>(OpMultiplier);
970     auto *DupPg = DupInst->getOperand(1);
971     // TODO: this is naive. The optimization is still valid if DupPg
972     // 'encompasses' OpPredicate, not only if they're the same predicate.
973     if (OpPredicate == DupPg) {
974       OpMultiplicand->takeName(&II);
975       return IC.replaceInstUsesWith(II, OpMultiplicand);
976     }
977   }
978 
979   return instCombineSVEVectorBinOp(IC, II);
980 }
981 
982 static Optional<Instruction *> instCombineSVEUnpack(InstCombiner &IC,
983                                                     IntrinsicInst &II) {
984   IRBuilder<> Builder(II.getContext());
985   Builder.SetInsertPoint(&II);
986   Value *UnpackArg = II.getArgOperand(0);
987   auto *RetTy = cast<ScalableVectorType>(II.getType());
988   bool IsSigned = II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi ||
989                   II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo;
990 
991   // Hi = uunpkhi(splat(X)) --> Hi = splat(extend(X))
992   // Lo = uunpklo(splat(X)) --> Lo = splat(extend(X))
993   if (auto *ScalarArg = getSplatValue(UnpackArg)) {
994     ScalarArg =
995         Builder.CreateIntCast(ScalarArg, RetTy->getScalarType(), IsSigned);
996     Value *NewVal =
997         Builder.CreateVectorSplat(RetTy->getElementCount(), ScalarArg);
998     NewVal->takeName(&II);
999     return IC.replaceInstUsesWith(II, NewVal);
1000   }
1001 
1002   return None;
1003 }
1004 static Optional<Instruction *> instCombineSVETBL(InstCombiner &IC,
1005                                                  IntrinsicInst &II) {
1006   auto *OpVal = II.getOperand(0);
1007   auto *OpIndices = II.getOperand(1);
1008   VectorType *VTy = cast<VectorType>(II.getType());
1009 
1010   // Check whether OpIndices is a constant splat value < minimal element count
1011   // of result.
1012   auto *SplatValue = dyn_cast_or_null<ConstantInt>(getSplatValue(OpIndices));
1013   if (!SplatValue ||
1014       SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue()))
1015     return None;
1016 
1017   // Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to
1018   // splat_vector(extractelement(OpVal, SplatValue)) for further optimization.
1019   IRBuilder<> Builder(II.getContext());
1020   Builder.SetInsertPoint(&II);
1021   auto *Extract = Builder.CreateExtractElement(OpVal, SplatValue);
1022   auto *VectorSplat =
1023       Builder.CreateVectorSplat(VTy->getElementCount(), Extract);
1024 
1025   VectorSplat->takeName(&II);
1026   return IC.replaceInstUsesWith(II, VectorSplat);
1027 }
1028 
1029 static Optional<Instruction *> instCombineSVETupleGet(InstCombiner &IC,
1030                                                       IntrinsicInst &II) {
1031   // Try to remove sequences of tuple get/set.
1032   Value *SetTuple, *SetIndex, *SetValue;
1033   auto *GetTuple = II.getArgOperand(0);
1034   auto *GetIndex = II.getArgOperand(1);
1035   // Check that we have tuple_get(GetTuple, GetIndex) where GetTuple is a
1036   // call to tuple_set i.e. tuple_set(SetTuple, SetIndex, SetValue).
1037   // Make sure that the types of the current intrinsic and SetValue match
1038   // in order to safely remove the sequence.
1039   if (!match(GetTuple,
1040              m_Intrinsic<Intrinsic::aarch64_sve_tuple_set>(
1041                  m_Value(SetTuple), m_Value(SetIndex), m_Value(SetValue))) ||
1042       SetValue->getType() != II.getType())
1043     return None;
1044   // Case where we get the same index right after setting it.
1045   // tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex) --> SetValue
1046   if (GetIndex == SetIndex)
1047     return IC.replaceInstUsesWith(II, SetValue);
1048   // If we are getting a different index than what was set in the tuple_set
1049   // intrinsic. We can just set the input tuple to the one up in the chain.
1050   // tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex)
1051   // --> tuple_get(SetTuple, GetIndex)
1052   return IC.replaceOperand(II, 0, SetTuple);
1053 }
1054 
1055 static Optional<Instruction *> instCombineSVEZip(InstCombiner &IC,
1056                                                  IntrinsicInst &II) {
1057   // zip1(uzp1(A, B), uzp2(A, B)) --> A
1058   // zip2(uzp1(A, B), uzp2(A, B)) --> B
1059   Value *A, *B;
1060   if (match(II.getArgOperand(0),
1061             m_Intrinsic<Intrinsic::aarch64_sve_uzp1>(m_Value(A), m_Value(B))) &&
1062       match(II.getArgOperand(1), m_Intrinsic<Intrinsic::aarch64_sve_uzp2>(
1063                                      m_Specific(A), m_Specific(B))))
1064     return IC.replaceInstUsesWith(
1065         II, (II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ? A : B));
1066 
1067   return None;
1068 }
1069 
1070 static Optional<Instruction *> instCombineLD1GatherIndex(InstCombiner &IC,
1071                                                          IntrinsicInst &II) {
1072   Value *Mask = II.getOperand(0);
1073   Value *BasePtr = II.getOperand(1);
1074   Value *Index = II.getOperand(2);
1075   Type *Ty = II.getType();
1076   Value *PassThru = ConstantAggregateZero::get(Ty);
1077 
1078   // Contiguous gather => masked load.
1079   // (sve.ld1.gather.index Mask BasePtr (sve.index IndexBase 1))
1080   // => (masked.load (gep BasePtr IndexBase) Align Mask zeroinitializer)
1081   Value *IndexBase;
1082   if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
1083                        m_Value(IndexBase), m_SpecificInt(1)))) {
1084     IRBuilder<> Builder(II.getContext());
1085     Builder.SetInsertPoint(&II);
1086 
1087     Align Alignment =
1088         BasePtr->getPointerAlignment(II.getModule()->getDataLayout());
1089 
1090     Type *VecPtrTy = PointerType::getUnqual(Ty);
1091     Value *Ptr = Builder.CreateGEP(
1092         cast<VectorType>(Ty)->getElementType(), BasePtr, IndexBase);
1093     Ptr = Builder.CreateBitCast(Ptr, VecPtrTy);
1094     CallInst *MaskedLoad =
1095         Builder.CreateMaskedLoad(Ty, Ptr, Alignment, Mask, PassThru);
1096     MaskedLoad->takeName(&II);
1097     return IC.replaceInstUsesWith(II, MaskedLoad);
1098   }
1099 
1100   return None;
1101 }
1102 
1103 static Optional<Instruction *> instCombineST1ScatterIndex(InstCombiner &IC,
1104                                                           IntrinsicInst &II) {
1105   Value *Val = II.getOperand(0);
1106   Value *Mask = II.getOperand(1);
1107   Value *BasePtr = II.getOperand(2);
1108   Value *Index = II.getOperand(3);
1109   Type *Ty = Val->getType();
1110 
1111   // Contiguous scatter => masked store.
1112   // (sve.st1.scatter.index Value Mask BasePtr (sve.index IndexBase 1))
1113   // => (masked.store Value (gep BasePtr IndexBase) Align Mask)
1114   Value *IndexBase;
1115   if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
1116                        m_Value(IndexBase), m_SpecificInt(1)))) {
1117     IRBuilder<> Builder(II.getContext());
1118     Builder.SetInsertPoint(&II);
1119 
1120     Align Alignment =
1121         BasePtr->getPointerAlignment(II.getModule()->getDataLayout());
1122 
1123     Value *Ptr = Builder.CreateGEP(
1124         cast<VectorType>(Ty)->getElementType(), BasePtr, IndexBase);
1125     Type *VecPtrTy = PointerType::getUnqual(Ty);
1126     Ptr = Builder.CreateBitCast(Ptr, VecPtrTy);
1127 
1128     (void)Builder.CreateMaskedStore(Val, Ptr, Alignment, Mask);
1129 
1130     return IC.eraseInstFromFunction(II);
1131   }
1132 
1133   return None;
1134 }
1135 
1136 static Optional<Instruction *> instCombineSVESDIV(InstCombiner &IC,
1137                                                   IntrinsicInst &II) {
1138   IRBuilder<> Builder(II.getContext());
1139   Builder.SetInsertPoint(&II);
1140   Type *Int32Ty = Builder.getInt32Ty();
1141   Value *Pred = II.getOperand(0);
1142   Value *Vec = II.getOperand(1);
1143   Value *DivVec = II.getOperand(2);
1144 
1145   Value *SplatValue = getSplatValue(DivVec);
1146   ConstantInt *SplatConstantInt = dyn_cast_or_null<ConstantInt>(SplatValue);
1147   if (!SplatConstantInt)
1148     return None;
1149   APInt Divisor = SplatConstantInt->getValue();
1150 
1151   if (Divisor.isPowerOf2()) {
1152     Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2());
1153     auto ASRD = Builder.CreateIntrinsic(
1154         Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
1155     return IC.replaceInstUsesWith(II, ASRD);
1156   }
1157   if (Divisor.isNegatedPowerOf2()) {
1158     Divisor.negate();
1159     Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2());
1160     auto ASRD = Builder.CreateIntrinsic(
1161         Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
1162     auto NEG = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_neg,
1163                                        {ASRD->getType()}, {ASRD, Pred, ASRD});
1164     return IC.replaceInstUsesWith(II, NEG);
1165   }
1166 
1167   return None;
1168 }
1169 
1170 Optional<Instruction *>
1171 AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC,
1172                                      IntrinsicInst &II) const {
1173   Intrinsic::ID IID = II.getIntrinsicID();
1174   switch (IID) {
1175   default:
1176     break;
1177   case Intrinsic::aarch64_sve_convert_from_svbool:
1178     return instCombineConvertFromSVBool(IC, II);
1179   case Intrinsic::aarch64_sve_dup:
1180     return instCombineSVEDup(IC, II);
1181   case Intrinsic::aarch64_sve_dup_x:
1182     return instCombineSVEDupX(IC, II);
1183   case Intrinsic::aarch64_sve_cmpne:
1184   case Intrinsic::aarch64_sve_cmpne_wide:
1185     return instCombineSVECmpNE(IC, II);
1186   case Intrinsic::aarch64_sve_rdffr:
1187     return instCombineRDFFR(IC, II);
1188   case Intrinsic::aarch64_sve_lasta:
1189   case Intrinsic::aarch64_sve_lastb:
1190     return instCombineSVELast(IC, II);
1191   case Intrinsic::aarch64_sve_cntd:
1192     return instCombineSVECntElts(IC, II, 2);
1193   case Intrinsic::aarch64_sve_cntw:
1194     return instCombineSVECntElts(IC, II, 4);
1195   case Intrinsic::aarch64_sve_cnth:
1196     return instCombineSVECntElts(IC, II, 8);
1197   case Intrinsic::aarch64_sve_cntb:
1198     return instCombineSVECntElts(IC, II, 16);
1199   case Intrinsic::aarch64_sve_ptest_any:
1200   case Intrinsic::aarch64_sve_ptest_first:
1201   case Intrinsic::aarch64_sve_ptest_last:
1202     return instCombineSVEPTest(IC, II);
1203   case Intrinsic::aarch64_sve_mul:
1204   case Intrinsic::aarch64_sve_fmul:
1205     return instCombineSVEVectorMul(IC, II);
1206   case Intrinsic::aarch64_sve_fadd:
1207     return instCombineSVEVectorFAdd(IC, II);
1208   case Intrinsic::aarch64_sve_fsub:
1209     return instCombineSVEVectorBinOp(IC, II);
1210   case Intrinsic::aarch64_sve_tbl:
1211     return instCombineSVETBL(IC, II);
1212   case Intrinsic::aarch64_sve_uunpkhi:
1213   case Intrinsic::aarch64_sve_uunpklo:
1214   case Intrinsic::aarch64_sve_sunpkhi:
1215   case Intrinsic::aarch64_sve_sunpklo:
1216     return instCombineSVEUnpack(IC, II);
1217   case Intrinsic::aarch64_sve_tuple_get:
1218     return instCombineSVETupleGet(IC, II);
1219   case Intrinsic::aarch64_sve_zip1:
1220   case Intrinsic::aarch64_sve_zip2:
1221     return instCombineSVEZip(IC, II);
1222   case Intrinsic::aarch64_sve_ld1_gather_index:
1223     return instCombineLD1GatherIndex(IC, II);
1224   case Intrinsic::aarch64_sve_st1_scatter_index:
1225     return instCombineST1ScatterIndex(IC, II);
1226   case Intrinsic::aarch64_sve_ld1:
1227     return instCombineSVELD1(IC, II, DL);
1228   case Intrinsic::aarch64_sve_st1:
1229     return instCombineSVEST1(IC, II, DL);
1230   case Intrinsic::aarch64_sve_sdiv:
1231     return instCombineSVESDIV(IC, II);
1232   }
1233 
1234   return None;
1235 }
1236 
1237 Optional<Value *> AArch64TTIImpl::simplifyDemandedVectorEltsIntrinsic(
1238     InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts,
1239     APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
1240     std::function<void(Instruction *, unsigned, APInt, APInt &)>
1241         SimplifyAndSetOp) const {
1242   switch (II.getIntrinsicID()) {
1243   default:
1244     break;
1245   case Intrinsic::aarch64_neon_fcvtxn:
1246   case Intrinsic::aarch64_neon_rshrn:
1247   case Intrinsic::aarch64_neon_sqrshrn:
1248   case Intrinsic::aarch64_neon_sqrshrun:
1249   case Intrinsic::aarch64_neon_sqshrn:
1250   case Intrinsic::aarch64_neon_sqshrun:
1251   case Intrinsic::aarch64_neon_sqxtn:
1252   case Intrinsic::aarch64_neon_sqxtun:
1253   case Intrinsic::aarch64_neon_uqrshrn:
1254   case Intrinsic::aarch64_neon_uqshrn:
1255   case Intrinsic::aarch64_neon_uqxtn:
1256     SimplifyAndSetOp(&II, 0, OrigDemandedElts, UndefElts);
1257     break;
1258   }
1259 
1260   return None;
1261 }
1262 
1263 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
1264                                            ArrayRef<const Value *> Args) {
1265 
1266   // A helper that returns a vector type from the given type. The number of
1267   // elements in type Ty determine the vector width.
1268   auto toVectorTy = [&](Type *ArgTy) {
1269     return VectorType::get(ArgTy->getScalarType(),
1270                            cast<VectorType>(DstTy)->getElementCount());
1271   };
1272 
1273   // Exit early if DstTy is not a vector type whose elements are at least
1274   // 16-bits wide.
1275   if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16)
1276     return false;
1277 
1278   // Determine if the operation has a widening variant. We consider both the
1279   // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
1280   // instructions.
1281   //
1282   // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
1283   //       verify that their extending operands are eliminated during code
1284   //       generation.
1285   switch (Opcode) {
1286   case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
1287   case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
1288     break;
1289   default:
1290     return false;
1291   }
1292 
1293   // To be a widening instruction (either the "wide" or "long" versions), the
1294   // second operand must be a sign- or zero extend having a single user. We
1295   // only consider extends having a single user because they may otherwise not
1296   // be eliminated.
1297   if (Args.size() != 2 ||
1298       (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) ||
1299       !Args[1]->hasOneUse())
1300     return false;
1301   auto *Extend = cast<CastInst>(Args[1]);
1302 
1303   // Legalize the destination type and ensure it can be used in a widening
1304   // operation.
1305   auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy);
1306   unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
1307   if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
1308     return false;
1309 
1310   // Legalize the source type and ensure it can be used in a widening
1311   // operation.
1312   auto *SrcTy = toVectorTy(Extend->getSrcTy());
1313   auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy);
1314   unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
1315   if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
1316     return false;
1317 
1318   // Get the total number of vector elements in the legalized types.
1319   InstructionCost NumDstEls =
1320       DstTyL.first * DstTyL.second.getVectorMinNumElements();
1321   InstructionCost NumSrcEls =
1322       SrcTyL.first * SrcTyL.second.getVectorMinNumElements();
1323 
1324   // Return true if the legalized types have the same number of vector elements
1325   // and the destination element type size is twice that of the source type.
1326   return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
1327 }
1328 
1329 InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
1330                                                  Type *Src,
1331                                                  TTI::CastContextHint CCH,
1332                                                  TTI::TargetCostKind CostKind,
1333                                                  const Instruction *I) {
1334   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1335   assert(ISD && "Invalid opcode");
1336 
1337   // If the cast is observable, and it is used by a widening instruction (e.g.,
1338   // uaddl, saddw, etc.), it may be free.
1339   if (I && I->hasOneUse()) {
1340     auto *SingleUser = cast<Instruction>(*I->user_begin());
1341     SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
1342     if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
1343       // If the cast is the second operand, it is free. We will generate either
1344       // a "wide" or "long" version of the widening instruction.
1345       if (I == SingleUser->getOperand(1))
1346         return 0;
1347       // If the cast is not the second operand, it will be free if it looks the
1348       // same as the second operand. In this case, we will generate a "long"
1349       // version of the widening instruction.
1350       if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
1351         if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
1352             cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
1353           return 0;
1354     }
1355   }
1356 
1357   // TODO: Allow non-throughput costs that aren't binary.
1358   auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
1359     if (CostKind != TTI::TCK_RecipThroughput)
1360       return Cost == 0 ? 0 : 1;
1361     return Cost;
1362   };
1363 
1364   EVT SrcTy = TLI->getValueType(DL, Src);
1365   EVT DstTy = TLI->getValueType(DL, Dst);
1366 
1367   if (!SrcTy.isSimple() || !DstTy.isSimple())
1368     return AdjustCost(
1369         BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
1370 
1371   static const TypeConversionCostTblEntry
1372   ConversionTbl[] = {
1373     { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32,  1 },
1374     { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64,  0 },
1375     { ISD::TRUNCATE, MVT::v8i8,  MVT::v8i32,  3 },
1376     { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
1377 
1378     // Truncations on nxvmiN
1379     { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 },
1380     { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 },
1381     { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 },
1382     { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 },
1383     { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 },
1384     { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 },
1385     { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 },
1386     { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 },
1387     { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 },
1388     { ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 1 },
1389     { ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 },
1390     { ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 },
1391     { ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 },
1392     { ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 },
1393     { ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 },
1394     { ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 },
1395 
1396     // The number of shll instructions for the extension.
1397     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1398     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1399     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
1400     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
1401     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
1402     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
1403     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
1404     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
1405     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
1406     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
1407     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
1408     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
1409     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1410     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1411     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
1412     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
1413 
1414     // LowerVectorINT_TO_FP:
1415     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
1416     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1417     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
1418     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
1419     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1420     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
1421 
1422     // Complex: to v2f32
1423     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
1424     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
1425     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
1426     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
1427     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
1428     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
1429 
1430     // Complex: to v4f32
1431     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
1432     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
1433     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
1434     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
1435 
1436     // Complex: to v8f32
1437     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
1438     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
1439     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
1440     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
1441 
1442     // Complex: to v16f32
1443     { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
1444     { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
1445 
1446     // Complex: to v2f64
1447     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
1448     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
1449     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
1450     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
1451     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
1452     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
1453 
1454 
1455     // LowerVectorFP_TO_INT
1456     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
1457     { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
1458     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
1459     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
1460     { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
1461     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
1462 
1463     // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
1464     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
1465     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
1466     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
1467     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
1468     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
1469     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },
1470 
1471     // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
1472     { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
1473     { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
1474     { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
1475     { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },
1476 
1477     // Complex, from nxv2f32.
1478     { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
1479     { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
1480     { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
1481     { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f32, 1 },
1482     { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
1483     { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
1484     { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
1485     { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f32, 1 },
1486 
1487     // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
1488     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
1489     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
1490     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
1491     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
1492     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
1493     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
1494 
1495     // Complex, from nxv2f64.
1496     { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
1497     { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
1498     { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
1499     { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f64, 1 },
1500     { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
1501     { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
1502     { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
1503     { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f64, 1 },
1504 
1505     // Complex, from nxv4f32.
1506     { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
1507     { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
1508     { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
1509     { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f32, 1 },
1510     { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
1511     { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
1512     { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
1513     { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f32, 1 },
1514 
1515     // Complex, from nxv8f64. Illegal -> illegal conversions not required.
1516     { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
1517     { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f64, 7 },
1518     { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
1519     { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f64, 7 },
1520 
1521     // Complex, from nxv4f64. Illegal -> illegal conversions not required.
1522     { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
1523     { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
1524     { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f64, 3 },
1525     { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
1526     { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
1527     { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f64, 3 },
1528 
1529     // Complex, from nxv8f32. Illegal -> illegal conversions not required.
1530     { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
1531     { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f32, 3 },
1532     { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
1533     { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f32, 3 },
1534 
1535     // Complex, from nxv8f16.
1536     { ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
1537     { ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
1538     { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
1539     { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f16, 1 },
1540     { ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
1541     { ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
1542     { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
1543     { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f16, 1 },
1544 
1545     // Complex, from nxv4f16.
1546     { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
1547     { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
1548     { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
1549     { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f16, 1 },
1550     { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
1551     { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
1552     { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
1553     { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f16, 1 },
1554 
1555     // Complex, from nxv2f16.
1556     { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
1557     { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
1558     { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
1559     { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f16, 1 },
1560     { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
1561     { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
1562     { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
1563     { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f16, 1 },
1564 
1565     // Truncate from nxvmf32 to nxvmf16.
1566     { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 },
1567     { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 },
1568     { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 },
1569 
1570     // Truncate from nxvmf64 to nxvmf16.
1571     { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 },
1572     { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 },
1573     { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 },
1574 
1575     // Truncate from nxvmf64 to nxvmf32.
1576     { ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 },
1577     { ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 },
1578     { ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 },
1579 
1580     // Extend from nxvmf16 to nxvmf32.
1581     { ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1},
1582     { ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1},
1583     { ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2},
1584 
1585     // Extend from nxvmf16 to nxvmf64.
1586     { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1},
1587     { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2},
1588     { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4},
1589 
1590     // Extend from nxvmf32 to nxvmf64.
1591     { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1},
1592     { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2},
1593     { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6},
1594 
1595     // Bitcasts from float to integer
1596     { ISD::BITCAST, MVT::nxv2f16, MVT::nxv2i16, 0 },
1597     { ISD::BITCAST, MVT::nxv4f16, MVT::nxv4i16, 0 },
1598     { ISD::BITCAST, MVT::nxv2f32, MVT::nxv2i32, 0 },
1599 
1600     // Bitcasts from integer to float
1601     { ISD::BITCAST, MVT::nxv2i16, MVT::nxv2f16, 0 },
1602     { ISD::BITCAST, MVT::nxv4i16, MVT::nxv4f16, 0 },
1603     { ISD::BITCAST, MVT::nxv2i32, MVT::nxv2f32, 0 },
1604   };
1605 
1606   if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
1607                                                  DstTy.getSimpleVT(),
1608                                                  SrcTy.getSimpleVT()))
1609     return AdjustCost(Entry->Cost);
1610 
1611   return AdjustCost(
1612       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
1613 }
1614 
1615 InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode,
1616                                                          Type *Dst,
1617                                                          VectorType *VecTy,
1618                                                          unsigned Index) {
1619 
1620   // Make sure we were given a valid extend opcode.
1621   assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
1622          "Invalid opcode");
1623 
1624   // We are extending an element we extract from a vector, so the source type
1625   // of the extend is the element type of the vector.
1626   auto *Src = VecTy->getElementType();
1627 
1628   // Sign- and zero-extends are for integer types only.
1629   assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
1630 
1631   // Get the cost for the extract. We compute the cost (if any) for the extend
1632   // below.
1633   InstructionCost Cost =
1634       getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);
1635 
1636   // Legalize the types.
1637   auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
1638   auto DstVT = TLI->getValueType(DL, Dst);
1639   auto SrcVT = TLI->getValueType(DL, Src);
1640   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1641 
1642   // If the resulting type is still a vector and the destination type is legal,
1643   // we may get the extension for free. If not, get the default cost for the
1644   // extend.
1645   if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
1646     return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
1647                                    CostKind);
1648 
1649   // The destination type should be larger than the element type. If not, get
1650   // the default cost for the extend.
1651   if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits())
1652     return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
1653                                    CostKind);
1654 
1655   switch (Opcode) {
1656   default:
1657     llvm_unreachable("Opcode should be either SExt or ZExt");
1658 
1659   // For sign-extends, we only need a smov, which performs the extension
1660   // automatically.
1661   case Instruction::SExt:
1662     return Cost;
1663 
1664   // For zero-extends, the extend is performed automatically by a umov unless
1665   // the destination type is i64 and the element type is i8 or i16.
1666   case Instruction::ZExt:
1667     if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
1668       return Cost;
1669   }
1670 
1671   // If we are unable to perform the extend for free, get the default cost.
1672   return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
1673                                  CostKind);
1674 }
1675 
1676 InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode,
1677                                                TTI::TargetCostKind CostKind,
1678                                                const Instruction *I) {
1679   if (CostKind != TTI::TCK_RecipThroughput)
1680     return Opcode == Instruction::PHI ? 0 : 1;
1681   assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind");
1682   // Branches are assumed to be predicted.
1683   return 0;
1684 }
1685 
1686 InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
1687                                                    unsigned Index) {
1688   assert(Val->isVectorTy() && "This must be a vector type");
1689 
1690   if (Index != -1U) {
1691     // Legalize the type.
1692     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
1693 
1694     // This type is legalized to a scalar type.
1695     if (!LT.second.isVector())
1696       return 0;
1697 
1698     // The type may be split. For fixed-width vectors we can normalize the
1699     // index to the new type.
1700     if (LT.second.isFixedLengthVector()) {
1701       unsigned Width = LT.second.getVectorNumElements();
1702       Index = Index % Width;
1703     }
1704 
1705     // The element at index zero is already inside the vector.
1706     if (Index == 0)
1707       return 0;
1708   }
1709 
1710   // All other insert/extracts cost this much.
1711   return ST->getVectorInsertExtractBaseCost();
1712 }
1713 
1714 InstructionCost AArch64TTIImpl::getArithmeticInstrCost(
1715     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
1716     TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
1717     TTI::OperandValueProperties Opd1PropInfo,
1718     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
1719     const Instruction *CxtI) {
1720   // TODO: Handle more cost kinds.
1721   if (CostKind != TTI::TCK_RecipThroughput)
1722     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
1723                                          Opd2Info, Opd1PropInfo,
1724                                          Opd2PropInfo, Args, CxtI);
1725 
1726   // Legalize the type.
1727   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
1728 
1729   // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
1730   // add in the widening overhead specified by the sub-target. Since the
1731   // extends feeding widening instructions are performed automatically, they
1732   // aren't present in the generated code and have a zero cost. By adding a
1733   // widening overhead here, we attach the total cost of the combined operation
1734   // to the widening instruction.
1735   InstructionCost Cost = 0;
1736   if (isWideningInstruction(Ty, Opcode, Args))
1737     Cost += ST->getWideningBaseCost();
1738 
1739   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1740 
1741   switch (ISD) {
1742   default:
1743     return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
1744                                                 Opd2Info,
1745                                                 Opd1PropInfo, Opd2PropInfo);
1746   case ISD::SDIV:
1747     if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
1748         Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
1749       // On AArch64, scalar signed division by constants power-of-two are
1750       // normally expanded to the sequence ADD + CMP + SELECT + SRA.
1751       // The OperandValue properties many not be same as that of previous
1752       // operation; conservatively assume OP_None.
1753       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind,
1754                                      Opd1Info, Opd2Info,
1755                                      TargetTransformInfo::OP_None,
1756                                      TargetTransformInfo::OP_None);
1757       Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind,
1758                                      Opd1Info, Opd2Info,
1759                                      TargetTransformInfo::OP_None,
1760                                      TargetTransformInfo::OP_None);
1761       Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind,
1762                                      Opd1Info, Opd2Info,
1763                                      TargetTransformInfo::OP_None,
1764                                      TargetTransformInfo::OP_None);
1765       Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
1766                                      Opd1Info, Opd2Info,
1767                                      TargetTransformInfo::OP_None,
1768                                      TargetTransformInfo::OP_None);
1769       return Cost;
1770     }
1771     LLVM_FALLTHROUGH;
1772   case ISD::UDIV:
1773     if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) {
1774       auto VT = TLI->getValueType(DL, Ty);
1775       if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
1776         // Vector signed division by constant are expanded to the
1777         // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
1778         // to MULHS + SUB + SRL + ADD + SRL.
1779         InstructionCost MulCost = getArithmeticInstrCost(
1780             Instruction::Mul, Ty, CostKind, Opd1Info, Opd2Info,
1781             TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1782         InstructionCost AddCost = getArithmeticInstrCost(
1783             Instruction::Add, Ty, CostKind, Opd1Info, Opd2Info,
1784             TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1785         InstructionCost ShrCost = getArithmeticInstrCost(
1786             Instruction::AShr, Ty, CostKind, Opd1Info, Opd2Info,
1787             TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1788         return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
1789       }
1790     }
1791 
1792     Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
1793                                           Opd2Info,
1794                                           Opd1PropInfo, Opd2PropInfo);
1795     if (Ty->isVectorTy()) {
1796       // On AArch64, vector divisions are not supported natively and are
1797       // expanded into scalar divisions of each pair of elements.
1798       Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind,
1799                                      Opd1Info, Opd2Info, Opd1PropInfo,
1800                                      Opd2PropInfo);
1801       Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind,
1802                                      Opd1Info, Opd2Info, Opd1PropInfo,
1803                                      Opd2PropInfo);
1804       // TODO: if one of the arguments is scalar, then it's not necessary to
1805       // double the cost of handling the vector elements.
1806       Cost += Cost;
1807     }
1808     return Cost;
1809 
1810   case ISD::MUL:
1811     if (LT.second != MVT::v2i64)
1812       return (Cost + 1) * LT.first;
1813     // Since we do not have a MUL.2d instruction, a mul <2 x i64> is expensive
1814     // as elements are extracted from the vectors and the muls scalarized.
1815     // As getScalarizationOverhead is a bit too pessimistic, we estimate the
1816     // cost for a i64 vector directly here, which is:
1817     // - four i64 extracts,
1818     // - two i64 inserts, and
1819     // - two muls.
1820     // So, for a v2i64 with LT.First = 1 the cost is 8, and for a v4i64 with
1821     // LT.first = 2 the cost is 16.
1822     return LT.first * 8;
1823   case ISD::ADD:
1824   case ISD::XOR:
1825   case ISD::OR:
1826   case ISD::AND:
1827     // These nodes are marked as 'custom' for combining purposes only.
1828     // We know that they are legal. See LowerAdd in ISelLowering.
1829     return (Cost + 1) * LT.first;
1830 
1831   case ISD::FADD:
1832   case ISD::FSUB:
1833   case ISD::FMUL:
1834   case ISD::FDIV:
1835   case ISD::FNEG:
1836     // These nodes are marked as 'custom' just to lower them to SVE.
1837     // We know said lowering will incur no additional cost.
1838     if (!Ty->getScalarType()->isFP128Ty())
1839       return (Cost + 2) * LT.first;
1840 
1841     return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
1842                                                 Opd2Info,
1843                                                 Opd1PropInfo, Opd2PropInfo);
1844   }
1845 }
1846 
1847 InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty,
1848                                                           ScalarEvolution *SE,
1849                                                           const SCEV *Ptr) {
1850   // Address computations in vectorized code with non-consecutive addresses will
1851   // likely result in more instructions compared to scalar code where the
1852   // computation can more often be merged into the index mode. The resulting
1853   // extra micro-ops can significantly decrease throughput.
1854   unsigned NumVectorInstToHideOverhead = 10;
1855   int MaxMergeDistance = 64;
1856 
1857   if (Ty->isVectorTy() && SE &&
1858       !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
1859     return NumVectorInstToHideOverhead;
1860 
1861   // In many cases the address computation is not merged into the instruction
1862   // addressing mode.
1863   return 1;
1864 }
1865 
1866 InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
1867                                                    Type *CondTy,
1868                                                    CmpInst::Predicate VecPred,
1869                                                    TTI::TargetCostKind CostKind,
1870                                                    const Instruction *I) {
1871   // TODO: Handle other cost kinds.
1872   if (CostKind != TTI::TCK_RecipThroughput)
1873     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
1874                                      I);
1875 
1876   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1877   // We don't lower some vector selects well that are wider than the register
1878   // width.
1879   if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) {
1880     // We would need this many instructions to hide the scalarization happening.
1881     const int AmortizationCost = 20;
1882 
1883     // If VecPred is not set, check if we can get a predicate from the context
1884     // instruction, if its type matches the requested ValTy.
1885     if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) {
1886       CmpInst::Predicate CurrentPred;
1887       if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(),
1888                             m_Value())))
1889         VecPred = CurrentPred;
1890     }
1891     // Check if we have a compare/select chain that can be lowered using
1892     // a (F)CMxx & BFI pair.
1893     if (CmpInst::isIntPredicate(VecPred) || VecPred == CmpInst::FCMP_OLE ||
1894         VecPred == CmpInst::FCMP_OLT || VecPred == CmpInst::FCMP_OGT ||
1895         VecPred == CmpInst::FCMP_OGE || VecPred == CmpInst::FCMP_OEQ ||
1896         VecPred == CmpInst::FCMP_UNE) {
1897       static const auto ValidMinMaxTys = {
1898           MVT::v8i8,  MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32,
1899           MVT::v4i32, MVT::v2i64, MVT::v2f32, MVT::v4f32, MVT::v2f64};
1900       static const auto ValidFP16MinMaxTys = {MVT::v4f16, MVT::v8f16};
1901 
1902       auto LT = TLI->getTypeLegalizationCost(DL, ValTy);
1903       if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }) ||
1904           (ST->hasFullFP16() &&
1905            any_of(ValidFP16MinMaxTys, [&LT](MVT M) { return M == LT.second; })))
1906         return LT.first;
1907     }
1908 
1909     static const TypeConversionCostTblEntry
1910     VectorSelectTbl[] = {
1911       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
1912       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
1913       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
1914       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
1915       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
1916       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
1917     };
1918 
1919     EVT SelCondTy = TLI->getValueType(DL, CondTy);
1920     EVT SelValTy = TLI->getValueType(DL, ValTy);
1921     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
1922       if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
1923                                                      SelCondTy.getSimpleVT(),
1924                                                      SelValTy.getSimpleVT()))
1925         return Entry->Cost;
1926     }
1927   }
1928   // The base case handles scalable vectors fine for now, since it treats the
1929   // cost as 1 * legalization cost.
1930   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
1931 }
1932 
1933 AArch64TTIImpl::TTI::MemCmpExpansionOptions
1934 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
1935   TTI::MemCmpExpansionOptions Options;
1936   if (ST->requiresStrictAlign()) {
1937     // TODO: Add cost modeling for strict align. Misaligned loads expand to
1938     // a bunch of instructions when strict align is enabled.
1939     return Options;
1940   }
1941   Options.AllowOverlappingLoads = true;
1942   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
1943   Options.NumLoadsPerBlock = Options.MaxNumLoads;
1944   // TODO: Though vector loads usually perform well on AArch64, in some targets
1945   // they may wake up the FP unit, which raises the power consumption.  Perhaps
1946   // they could be used with no holds barred (-O3).
1947   Options.LoadSizes = {8, 4, 2, 1};
1948   return Options;
1949 }
1950 
1951 InstructionCost
1952 AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
1953                                       Align Alignment, unsigned AddressSpace,
1954                                       TTI::TargetCostKind CostKind) {
1955   if (useNeonVector(Src))
1956     return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1957                                         CostKind);
1958   auto LT = TLI->getTypeLegalizationCost(DL, Src);
1959   if (!LT.first.isValid())
1960     return InstructionCost::getInvalid();
1961 
1962   // The code-generator is currently not able to handle scalable vectors
1963   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
1964   // it. This change will be removed when code-generation for these types is
1965   // sufficiently reliable.
1966   if (cast<VectorType>(Src)->getElementCount() == ElementCount::getScalable(1))
1967     return InstructionCost::getInvalid();
1968 
1969   return LT.first * 2;
1970 }
1971 
1972 static unsigned getSVEGatherScatterOverhead(unsigned Opcode) {
1973   return Opcode == Instruction::Load ? SVEGatherOverhead : SVEScatterOverhead;
1974 }
1975 
1976 InstructionCost AArch64TTIImpl::getGatherScatterOpCost(
1977     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1978     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
1979   if (useNeonVector(DataTy))
1980     return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
1981                                          Alignment, CostKind, I);
1982   auto *VT = cast<VectorType>(DataTy);
1983   auto LT = TLI->getTypeLegalizationCost(DL, DataTy);
1984   if (!LT.first.isValid())
1985     return InstructionCost::getInvalid();
1986 
1987   // The code-generator is currently not able to handle scalable vectors
1988   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
1989   // it. This change will be removed when code-generation for these types is
1990   // sufficiently reliable.
1991   if (cast<VectorType>(DataTy)->getElementCount() ==
1992       ElementCount::getScalable(1))
1993     return InstructionCost::getInvalid();
1994 
1995   ElementCount LegalVF = LT.second.getVectorElementCount();
1996   InstructionCost MemOpCost =
1997       getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind, I);
1998   // Add on an overhead cost for using gathers/scatters.
1999   // TODO: At the moment this is applied unilaterally for all CPUs, but at some
2000   // point we may want a per-CPU overhead.
2001   MemOpCost *= getSVEGatherScatterOverhead(Opcode);
2002   return LT.first * MemOpCost * getMaxNumElements(LegalVF);
2003 }
2004 
2005 bool AArch64TTIImpl::useNeonVector(const Type *Ty) const {
2006   return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors();
2007 }
2008 
2009 InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
2010                                                 MaybeAlign Alignment,
2011                                                 unsigned AddressSpace,
2012                                                 TTI::TargetCostKind CostKind,
2013                                                 const Instruction *I) {
2014   EVT VT = TLI->getValueType(DL, Ty, true);
2015   // Type legalization can't handle structs
2016   if (VT == MVT::Other)
2017     return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
2018                                   CostKind);
2019 
2020   auto LT = TLI->getTypeLegalizationCost(DL, Ty);
2021   if (!LT.first.isValid())
2022     return InstructionCost::getInvalid();
2023 
2024   // The code-generator is currently not able to handle scalable vectors
2025   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
2026   // it. This change will be removed when code-generation for these types is
2027   // sufficiently reliable.
2028   if (auto *VTy = dyn_cast<ScalableVectorType>(Ty))
2029     if (VTy->getElementCount() == ElementCount::getScalable(1))
2030       return InstructionCost::getInvalid();
2031 
2032   // TODO: consider latency as well for TCK_SizeAndLatency.
2033   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
2034     return LT.first;
2035 
2036   if (CostKind != TTI::TCK_RecipThroughput)
2037     return 1;
2038 
2039   if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
2040       LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
2041     // Unaligned stores are extremely inefficient. We don't split all
2042     // unaligned 128-bit stores because the negative impact that has shown in
2043     // practice on inlined block copy code.
2044     // We make such stores expensive so that we will only vectorize if there
2045     // are 6 other instructions getting vectorized.
2046     const int AmortizationCost = 6;
2047 
2048     return LT.first * 2 * AmortizationCost;
2049   }
2050 
2051   // Check truncating stores and extending loads.
2052   if (useNeonVector(Ty) &&
2053       Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) {
2054     // v4i8 types are lowered to scalar a load/store and sshll/xtn.
2055     if (VT == MVT::v4i8)
2056       return 2;
2057     // Otherwise we need to scalarize.
2058     return cast<FixedVectorType>(Ty)->getNumElements() * 2;
2059   }
2060 
2061   return LT.first;
2062 }
2063 
2064 InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost(
2065     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
2066     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
2067     bool UseMaskForCond, bool UseMaskForGaps) {
2068   assert(Factor >= 2 && "Invalid interleave factor");
2069   auto *VecVTy = cast<FixedVectorType>(VecTy);
2070 
2071   if (!UseMaskForCond && !UseMaskForGaps &&
2072       Factor <= TLI->getMaxSupportedInterleaveFactor()) {
2073     unsigned NumElts = VecVTy->getNumElements();
2074     auto *SubVecTy =
2075         FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
2076 
2077     // ldN/stN only support legal vector types of size 64 or 128 in bits.
2078     // Accesses having vector types that are a multiple of 128 bits can be
2079     // matched to more than one ldN/stN instruction.
2080     bool UseScalable;
2081     if (NumElts % Factor == 0 &&
2082         TLI->isLegalInterleavedAccessType(SubVecTy, DL, UseScalable))
2083       return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL, UseScalable);
2084   }
2085 
2086   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2087                                            Alignment, AddressSpace, CostKind,
2088                                            UseMaskForCond, UseMaskForGaps);
2089 }
2090 
2091 InstructionCost
2092 AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
2093   InstructionCost Cost = 0;
2094   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
2095   for (auto *I : Tys) {
2096     if (!I->isVectorTy())
2097       continue;
2098     if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() ==
2099         128)
2100       Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) +
2101               getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind);
2102   }
2103   return Cost;
2104 }
2105 
2106 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
2107   return ST->getMaxInterleaveFactor();
2108 }
2109 
2110 // For Falkor, we want to avoid having too many strided loads in a loop since
2111 // that can exhaust the HW prefetcher resources.  We adjust the unroller
2112 // MaxCount preference below to attempt to ensure unrolling doesn't create too
2113 // many strided loads.
2114 static void
2115 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
2116                               TargetTransformInfo::UnrollingPreferences &UP) {
2117   enum { MaxStridedLoads = 7 };
2118   auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
2119     int StridedLoads = 0;
2120     // FIXME? We could make this more precise by looking at the CFG and
2121     // e.g. not counting loads in each side of an if-then-else diamond.
2122     for (const auto BB : L->blocks()) {
2123       for (auto &I : *BB) {
2124         LoadInst *LMemI = dyn_cast<LoadInst>(&I);
2125         if (!LMemI)
2126           continue;
2127 
2128         Value *PtrValue = LMemI->getPointerOperand();
2129         if (L->isLoopInvariant(PtrValue))
2130           continue;
2131 
2132         const SCEV *LSCEV = SE.getSCEV(PtrValue);
2133         const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
2134         if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
2135           continue;
2136 
2137         // FIXME? We could take pairing of unrolled load copies into account
2138         // by looking at the AddRec, but we would probably have to limit this
2139         // to loops with no stores or other memory optimization barriers.
2140         ++StridedLoads;
2141         // We've seen enough strided loads that seeing more won't make a
2142         // difference.
2143         if (StridedLoads > MaxStridedLoads / 2)
2144           return StridedLoads;
2145       }
2146     }
2147     return StridedLoads;
2148   };
2149 
2150   int StridedLoads = countStridedLoads(L, SE);
2151   LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
2152                     << " strided loads\n");
2153   // Pick the largest power of 2 unroll count that won't result in too many
2154   // strided loads.
2155   if (StridedLoads) {
2156     UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
2157     LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
2158                       << UP.MaxCount << '\n');
2159   }
2160 }
2161 
2162 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
2163                                              TTI::UnrollingPreferences &UP,
2164                                              OptimizationRemarkEmitter *ORE) {
2165   // Enable partial unrolling and runtime unrolling.
2166   BaseT::getUnrollingPreferences(L, SE, UP, ORE);
2167 
2168   UP.UpperBound = true;
2169 
2170   // For inner loop, it is more likely to be a hot one, and the runtime check
2171   // can be promoted out from LICM pass, so the overhead is less, let's try
2172   // a larger threshold to unroll more loops.
2173   if (L->getLoopDepth() > 1)
2174     UP.PartialThreshold *= 2;
2175 
2176   // Disable partial & runtime unrolling on -Os.
2177   UP.PartialOptSizeThreshold = 0;
2178 
2179   if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
2180       EnableFalkorHWPFUnrollFix)
2181     getFalkorUnrollingPreferences(L, SE, UP);
2182 
2183   // Scan the loop: don't unroll loops with calls as this could prevent
2184   // inlining. Don't unroll vector loops either, as they don't benefit much from
2185   // unrolling.
2186   for (auto *BB : L->getBlocks()) {
2187     for (auto &I : *BB) {
2188       // Don't unroll vectorised loop.
2189       if (I.getType()->isVectorTy())
2190         return;
2191 
2192       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
2193         if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
2194           if (!isLoweredToCall(F))
2195             continue;
2196         }
2197         return;
2198       }
2199     }
2200   }
2201 
2202   // Enable runtime unrolling for in-order models
2203   // If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by
2204   // checking for that case, we can ensure that the default behaviour is
2205   // unchanged
2206   if (ST->getProcFamily() != AArch64Subtarget::Others &&
2207       !ST->getSchedModel().isOutOfOrder()) {
2208     UP.Runtime = true;
2209     UP.Partial = true;
2210     UP.UnrollRemainder = true;
2211     UP.DefaultUnrollRuntimeCount = 4;
2212 
2213     UP.UnrollAndJam = true;
2214     UP.UnrollAndJamInnerLoopThreshold = 60;
2215   }
2216 }
2217 
2218 void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
2219                                            TTI::PeelingPreferences &PP) {
2220   BaseT::getPeelingPreferences(L, SE, PP);
2221 }
2222 
2223 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
2224                                                          Type *ExpectedType) {
2225   switch (Inst->getIntrinsicID()) {
2226   default:
2227     return nullptr;
2228   case Intrinsic::aarch64_neon_st2:
2229   case Intrinsic::aarch64_neon_st3:
2230   case Intrinsic::aarch64_neon_st4: {
2231     // Create a struct type
2232     StructType *ST = dyn_cast<StructType>(ExpectedType);
2233     if (!ST)
2234       return nullptr;
2235     unsigned NumElts = Inst->arg_size() - 1;
2236     if (ST->getNumElements() != NumElts)
2237       return nullptr;
2238     for (unsigned i = 0, e = NumElts; i != e; ++i) {
2239       if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
2240         return nullptr;
2241     }
2242     Value *Res = UndefValue::get(ExpectedType);
2243     IRBuilder<> Builder(Inst);
2244     for (unsigned i = 0, e = NumElts; i != e; ++i) {
2245       Value *L = Inst->getArgOperand(i);
2246       Res = Builder.CreateInsertValue(Res, L, i);
2247     }
2248     return Res;
2249   }
2250   case Intrinsic::aarch64_neon_ld2:
2251   case Intrinsic::aarch64_neon_ld3:
2252   case Intrinsic::aarch64_neon_ld4:
2253     if (Inst->getType() == ExpectedType)
2254       return Inst;
2255     return nullptr;
2256   }
2257 }
2258 
2259 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
2260                                         MemIntrinsicInfo &Info) {
2261   switch (Inst->getIntrinsicID()) {
2262   default:
2263     break;
2264   case Intrinsic::aarch64_neon_ld2:
2265   case Intrinsic::aarch64_neon_ld3:
2266   case Intrinsic::aarch64_neon_ld4:
2267     Info.ReadMem = true;
2268     Info.WriteMem = false;
2269     Info.PtrVal = Inst->getArgOperand(0);
2270     break;
2271   case Intrinsic::aarch64_neon_st2:
2272   case Intrinsic::aarch64_neon_st3:
2273   case Intrinsic::aarch64_neon_st4:
2274     Info.ReadMem = false;
2275     Info.WriteMem = true;
2276     Info.PtrVal = Inst->getArgOperand(Inst->arg_size() - 1);
2277     break;
2278   }
2279 
2280   switch (Inst->getIntrinsicID()) {
2281   default:
2282     return false;
2283   case Intrinsic::aarch64_neon_ld2:
2284   case Intrinsic::aarch64_neon_st2:
2285     Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
2286     break;
2287   case Intrinsic::aarch64_neon_ld3:
2288   case Intrinsic::aarch64_neon_st3:
2289     Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
2290     break;
2291   case Intrinsic::aarch64_neon_ld4:
2292   case Intrinsic::aarch64_neon_st4:
2293     Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
2294     break;
2295   }
2296   return true;
2297 }
2298 
2299 /// See if \p I should be considered for address type promotion. We check if \p
2300 /// I is a sext with right type and used in memory accesses. If it used in a
2301 /// "complex" getelementptr, we allow it to be promoted without finding other
2302 /// sext instructions that sign extended the same initial value. A getelementptr
2303 /// is considered as "complex" if it has more than 2 operands.
2304 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
2305     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
2306   bool Considerable = false;
2307   AllowPromotionWithoutCommonHeader = false;
2308   if (!isa<SExtInst>(&I))
2309     return false;
2310   Type *ConsideredSExtType =
2311       Type::getInt64Ty(I.getParent()->getParent()->getContext());
2312   if (I.getType() != ConsideredSExtType)
2313     return false;
2314   // See if the sext is the one with the right type and used in at least one
2315   // GetElementPtrInst.
2316   for (const User *U : I.users()) {
2317     if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
2318       Considerable = true;
2319       // A getelementptr is considered as "complex" if it has more than 2
2320       // operands. We will promote a SExt used in such complex GEP as we
2321       // expect some computation to be merged if they are done on 64 bits.
2322       if (GEPInst->getNumOperands() > 2) {
2323         AllowPromotionWithoutCommonHeader = true;
2324         break;
2325       }
2326     }
2327   }
2328   return Considerable;
2329 }
2330 
2331 bool AArch64TTIImpl::isLegalToVectorizeReduction(
2332     const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
2333   if (!VF.isScalable())
2334     return true;
2335 
2336   Type *Ty = RdxDesc.getRecurrenceType();
2337   if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty))
2338     return false;
2339 
2340   switch (RdxDesc.getRecurrenceKind()) {
2341   case RecurKind::Add:
2342   case RecurKind::FAdd:
2343   case RecurKind::And:
2344   case RecurKind::Or:
2345   case RecurKind::Xor:
2346   case RecurKind::SMin:
2347   case RecurKind::SMax:
2348   case RecurKind::UMin:
2349   case RecurKind::UMax:
2350   case RecurKind::FMin:
2351   case RecurKind::FMax:
2352   case RecurKind::SelectICmp:
2353   case RecurKind::SelectFCmp:
2354   case RecurKind::FMulAdd:
2355     return true;
2356   default:
2357     return false;
2358   }
2359 }
2360 
2361 InstructionCost
2362 AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
2363                                        bool IsUnsigned,
2364                                        TTI::TargetCostKind CostKind) {
2365   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
2366 
2367   if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16())
2368     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
2369 
2370   assert((isa<ScalableVectorType>(Ty) == isa<ScalableVectorType>(CondTy)) &&
2371          "Both vector needs to be equally scalable");
2372 
2373   InstructionCost LegalizationCost = 0;
2374   if (LT.first > 1) {
2375     Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext());
2376     unsigned MinMaxOpcode =
2377         Ty->isFPOrFPVectorTy()
2378             ? Intrinsic::maxnum
2379             : (IsUnsigned ? Intrinsic::umin : Intrinsic::smin);
2380     IntrinsicCostAttributes Attrs(MinMaxOpcode, LegalVTy, {LegalVTy, LegalVTy});
2381     LegalizationCost = getIntrinsicInstrCost(Attrs, CostKind) * (LT.first - 1);
2382   }
2383 
2384   return LegalizationCost + /*Cost of horizontal reduction*/ 2;
2385 }
2386 
2387 InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE(
2388     unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) {
2389   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2390   InstructionCost LegalizationCost = 0;
2391   if (LT.first > 1) {
2392     Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext());
2393     LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind);
2394     LegalizationCost *= LT.first - 1;
2395   }
2396 
2397   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2398   assert(ISD && "Invalid opcode");
2399   // Add the final reduction cost for the legal horizontal reduction
2400   switch (ISD) {
2401   case ISD::ADD:
2402   case ISD::AND:
2403   case ISD::OR:
2404   case ISD::XOR:
2405   case ISD::FADD:
2406     return LegalizationCost + 2;
2407   default:
2408     return InstructionCost::getInvalid();
2409   }
2410 }
2411 
2412 InstructionCost
2413 AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
2414                                            Optional<FastMathFlags> FMF,
2415                                            TTI::TargetCostKind CostKind) {
2416   if (TTI::requiresOrderedReduction(FMF)) {
2417     if (auto *FixedVTy = dyn_cast<FixedVectorType>(ValTy)) {
2418       InstructionCost BaseCost =
2419           BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
2420       // Add on extra cost to reflect the extra overhead on some CPUs. We still
2421       // end up vectorizing for more computationally intensive loops.
2422       return BaseCost + FixedVTy->getNumElements();
2423     }
2424 
2425     if (Opcode != Instruction::FAdd)
2426       return InstructionCost::getInvalid();
2427 
2428     auto *VTy = cast<ScalableVectorType>(ValTy);
2429     InstructionCost Cost =
2430         getArithmeticInstrCost(Opcode, VTy->getScalarType(), CostKind);
2431     Cost *= getMaxNumElements(VTy->getElementCount());
2432     return Cost;
2433   }
2434 
2435   if (isa<ScalableVectorType>(ValTy))
2436     return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind);
2437 
2438   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2439   MVT MTy = LT.second;
2440   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2441   assert(ISD && "Invalid opcode");
2442 
2443   // Horizontal adds can use the 'addv' instruction. We model the cost of these
2444   // instructions as twice a normal vector add, plus 1 for each legalization
2445   // step (LT.first). This is the only arithmetic vector reduction operation for
2446   // which we have an instruction.
2447   // OR, XOR and AND costs should match the codegen from:
2448   // OR: llvm/test/CodeGen/AArch64/reduce-or.ll
2449   // XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll
2450   // AND: llvm/test/CodeGen/AArch64/reduce-and.ll
2451   static const CostTblEntry CostTblNoPairwise[]{
2452       {ISD::ADD, MVT::v8i8,   2},
2453       {ISD::ADD, MVT::v16i8,  2},
2454       {ISD::ADD, MVT::v4i16,  2},
2455       {ISD::ADD, MVT::v8i16,  2},
2456       {ISD::ADD, MVT::v4i32,  2},
2457       {ISD::OR,  MVT::v8i8,  15},
2458       {ISD::OR,  MVT::v16i8, 17},
2459       {ISD::OR,  MVT::v4i16,  7},
2460       {ISD::OR,  MVT::v8i16,  9},
2461       {ISD::OR,  MVT::v2i32,  3},
2462       {ISD::OR,  MVT::v4i32,  5},
2463       {ISD::OR,  MVT::v2i64,  3},
2464       {ISD::XOR, MVT::v8i8,  15},
2465       {ISD::XOR, MVT::v16i8, 17},
2466       {ISD::XOR, MVT::v4i16,  7},
2467       {ISD::XOR, MVT::v8i16,  9},
2468       {ISD::XOR, MVT::v2i32,  3},
2469       {ISD::XOR, MVT::v4i32,  5},
2470       {ISD::XOR, MVT::v2i64,  3},
2471       {ISD::AND, MVT::v8i8,  15},
2472       {ISD::AND, MVT::v16i8, 17},
2473       {ISD::AND, MVT::v4i16,  7},
2474       {ISD::AND, MVT::v8i16,  9},
2475       {ISD::AND, MVT::v2i32,  3},
2476       {ISD::AND, MVT::v4i32,  5},
2477       {ISD::AND, MVT::v2i64,  3},
2478   };
2479   switch (ISD) {
2480   default:
2481     break;
2482   case ISD::ADD:
2483     if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
2484       return (LT.first - 1) + Entry->Cost;
2485     break;
2486   case ISD::XOR:
2487   case ISD::AND:
2488   case ISD::OR:
2489     const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy);
2490     if (!Entry)
2491       break;
2492     auto *ValVTy = cast<FixedVectorType>(ValTy);
2493     if (!ValVTy->getElementType()->isIntegerTy(1) &&
2494         MTy.getVectorNumElements() <= ValVTy->getNumElements() &&
2495         isPowerOf2_32(ValVTy->getNumElements())) {
2496       InstructionCost ExtraCost = 0;
2497       if (LT.first != 1) {
2498         // Type needs to be split, so there is an extra cost of LT.first - 1
2499         // arithmetic ops.
2500         auto *Ty = FixedVectorType::get(ValTy->getElementType(),
2501                                         MTy.getVectorNumElements());
2502         ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
2503         ExtraCost *= LT.first - 1;
2504       }
2505       return Entry->Cost + ExtraCost;
2506     }
2507     break;
2508   }
2509   return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
2510 }
2511 
2512 InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) {
2513   static const CostTblEntry ShuffleTbl[] = {
2514       { TTI::SK_Splice, MVT::nxv16i8,  1 },
2515       { TTI::SK_Splice, MVT::nxv8i16,  1 },
2516       { TTI::SK_Splice, MVT::nxv4i32,  1 },
2517       { TTI::SK_Splice, MVT::nxv2i64,  1 },
2518       { TTI::SK_Splice, MVT::nxv2f16,  1 },
2519       { TTI::SK_Splice, MVT::nxv4f16,  1 },
2520       { TTI::SK_Splice, MVT::nxv8f16,  1 },
2521       { TTI::SK_Splice, MVT::nxv2bf16, 1 },
2522       { TTI::SK_Splice, MVT::nxv4bf16, 1 },
2523       { TTI::SK_Splice, MVT::nxv8bf16, 1 },
2524       { TTI::SK_Splice, MVT::nxv2f32,  1 },
2525       { TTI::SK_Splice, MVT::nxv4f32,  1 },
2526       { TTI::SK_Splice, MVT::nxv2f64,  1 },
2527   };
2528 
2529   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
2530   Type *LegalVTy = EVT(LT.second).getTypeForEVT(Tp->getContext());
2531   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
2532   EVT PromotedVT = LT.second.getScalarType() == MVT::i1
2533                        ? TLI->getPromotedVTForPredicate(EVT(LT.second))
2534                        : LT.second;
2535   Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Tp->getContext());
2536   InstructionCost LegalizationCost = 0;
2537   if (Index < 0) {
2538     LegalizationCost =
2539         getCmpSelInstrCost(Instruction::ICmp, PromotedVTy, PromotedVTy,
2540                            CmpInst::BAD_ICMP_PREDICATE, CostKind) +
2541         getCmpSelInstrCost(Instruction::Select, PromotedVTy, LegalVTy,
2542                            CmpInst::BAD_ICMP_PREDICATE, CostKind);
2543   }
2544 
2545   // Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp
2546   // Cost performed on a promoted type.
2547   if (LT.second.getScalarType() == MVT::i1) {
2548     LegalizationCost +=
2549         getCastInstrCost(Instruction::ZExt, PromotedVTy, LegalVTy,
2550                          TTI::CastContextHint::None, CostKind) +
2551         getCastInstrCost(Instruction::Trunc, LegalVTy, PromotedVTy,
2552                          TTI::CastContextHint::None, CostKind);
2553   }
2554   const auto *Entry =
2555       CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT());
2556   assert(Entry && "Illegal Type for Splice");
2557   LegalizationCost += Entry->Cost;
2558   return LegalizationCost * LT.first;
2559 }
2560 
2561 InstructionCost AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
2562                                                VectorType *Tp,
2563                                                ArrayRef<int> Mask, int Index,
2564                                                VectorType *SubTp) {
2565   Kind = improveShuffleKindFromMask(Kind, Mask);
2566   if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
2567       Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc ||
2568       Kind == TTI::SK_Reverse) {
2569     static const CostTblEntry ShuffleTbl[] = {
2570       // Broadcast shuffle kinds can be performed with 'dup'.
2571       { TTI::SK_Broadcast, MVT::v8i8,  1 },
2572       { TTI::SK_Broadcast, MVT::v16i8, 1 },
2573       { TTI::SK_Broadcast, MVT::v4i16, 1 },
2574       { TTI::SK_Broadcast, MVT::v8i16, 1 },
2575       { TTI::SK_Broadcast, MVT::v2i32, 1 },
2576       { TTI::SK_Broadcast, MVT::v4i32, 1 },
2577       { TTI::SK_Broadcast, MVT::v2i64, 1 },
2578       { TTI::SK_Broadcast, MVT::v2f32, 1 },
2579       { TTI::SK_Broadcast, MVT::v4f32, 1 },
2580       { TTI::SK_Broadcast, MVT::v2f64, 1 },
2581       // Transpose shuffle kinds can be performed with 'trn1/trn2' and
2582       // 'zip1/zip2' instructions.
2583       { TTI::SK_Transpose, MVT::v8i8,  1 },
2584       { TTI::SK_Transpose, MVT::v16i8, 1 },
2585       { TTI::SK_Transpose, MVT::v4i16, 1 },
2586       { TTI::SK_Transpose, MVT::v8i16, 1 },
2587       { TTI::SK_Transpose, MVT::v2i32, 1 },
2588       { TTI::SK_Transpose, MVT::v4i32, 1 },
2589       { TTI::SK_Transpose, MVT::v2i64, 1 },
2590       { TTI::SK_Transpose, MVT::v2f32, 1 },
2591       { TTI::SK_Transpose, MVT::v4f32, 1 },
2592       { TTI::SK_Transpose, MVT::v2f64, 1 },
2593       // Select shuffle kinds.
2594       // TODO: handle vXi8/vXi16.
2595       { TTI::SK_Select, MVT::v2i32, 1 }, // mov.
2596       { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar).
2597       { TTI::SK_Select, MVT::v2i64, 1 }, // mov.
2598       { TTI::SK_Select, MVT::v2f32, 1 }, // mov.
2599       { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar).
2600       { TTI::SK_Select, MVT::v2f64, 1 }, // mov.
2601       // PermuteSingleSrc shuffle kinds.
2602       { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov.
2603       { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case.
2604       { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov.
2605       { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov.
2606       { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case.
2607       { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov.
2608       { TTI::SK_PermuteSingleSrc, MVT::v4i16, 3 }, // perfectshuffle worst case.
2609       { TTI::SK_PermuteSingleSrc, MVT::v4f16, 3 }, // perfectshuffle worst case.
2610       { TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3 }, // perfectshuffle worst case.
2611       { TTI::SK_PermuteSingleSrc, MVT::v8i16, 8 }, // constpool + load + tbl
2612       { TTI::SK_PermuteSingleSrc, MVT::v8f16, 8 }, // constpool + load + tbl
2613       { TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8 }, // constpool + load + tbl
2614       { TTI::SK_PermuteSingleSrc, MVT::v8i8, 8 }, // constpool + load + tbl
2615       { TTI::SK_PermuteSingleSrc, MVT::v16i8, 8 }, // constpool + load + tbl
2616       // Reverse can be lowered with `rev`.
2617       { TTI::SK_Reverse, MVT::v2i32, 1 }, // mov.
2618       { TTI::SK_Reverse, MVT::v4i32, 2 }, // REV64; EXT
2619       { TTI::SK_Reverse, MVT::v2i64, 1 }, // mov.
2620       { TTI::SK_Reverse, MVT::v2f32, 1 }, // mov.
2621       { TTI::SK_Reverse, MVT::v4f32, 2 }, // REV64; EXT
2622       { TTI::SK_Reverse, MVT::v2f64, 1 }, // mov.
2623       // Broadcast shuffle kinds for scalable vectors
2624       { TTI::SK_Broadcast, MVT::nxv16i8,  1 },
2625       { TTI::SK_Broadcast, MVT::nxv8i16,  1 },
2626       { TTI::SK_Broadcast, MVT::nxv4i32,  1 },
2627       { TTI::SK_Broadcast, MVT::nxv2i64,  1 },
2628       { TTI::SK_Broadcast, MVT::nxv2f16,  1 },
2629       { TTI::SK_Broadcast, MVT::nxv4f16,  1 },
2630       { TTI::SK_Broadcast, MVT::nxv8f16,  1 },
2631       { TTI::SK_Broadcast, MVT::nxv2bf16, 1 },
2632       { TTI::SK_Broadcast, MVT::nxv4bf16, 1 },
2633       { TTI::SK_Broadcast, MVT::nxv8bf16, 1 },
2634       { TTI::SK_Broadcast, MVT::nxv2f32,  1 },
2635       { TTI::SK_Broadcast, MVT::nxv4f32,  1 },
2636       { TTI::SK_Broadcast, MVT::nxv2f64,  1 },
2637       { TTI::SK_Broadcast, MVT::nxv16i1,  1 },
2638       { TTI::SK_Broadcast, MVT::nxv8i1,   1 },
2639       { TTI::SK_Broadcast, MVT::nxv4i1,   1 },
2640       { TTI::SK_Broadcast, MVT::nxv2i1,   1 },
2641       // Handle the cases for vector.reverse with scalable vectors
2642       { TTI::SK_Reverse, MVT::nxv16i8,  1 },
2643       { TTI::SK_Reverse, MVT::nxv8i16,  1 },
2644       { TTI::SK_Reverse, MVT::nxv4i32,  1 },
2645       { TTI::SK_Reverse, MVT::nxv2i64,  1 },
2646       { TTI::SK_Reverse, MVT::nxv2f16,  1 },
2647       { TTI::SK_Reverse, MVT::nxv4f16,  1 },
2648       { TTI::SK_Reverse, MVT::nxv8f16,  1 },
2649       { TTI::SK_Reverse, MVT::nxv2bf16, 1 },
2650       { TTI::SK_Reverse, MVT::nxv4bf16, 1 },
2651       { TTI::SK_Reverse, MVT::nxv8bf16, 1 },
2652       { TTI::SK_Reverse, MVT::nxv2f32,  1 },
2653       { TTI::SK_Reverse, MVT::nxv4f32,  1 },
2654       { TTI::SK_Reverse, MVT::nxv2f64,  1 },
2655       { TTI::SK_Reverse, MVT::nxv16i1,  1 },
2656       { TTI::SK_Reverse, MVT::nxv8i1,   1 },
2657       { TTI::SK_Reverse, MVT::nxv4i1,   1 },
2658       { TTI::SK_Reverse, MVT::nxv2i1,   1 },
2659     };
2660     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
2661     if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
2662       return LT.first * Entry->Cost;
2663   }
2664   if (Kind == TTI::SK_Splice && isa<ScalableVectorType>(Tp))
2665     return getSpliceCost(Tp, Index);
2666   return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp);
2667 }
2668