1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AArch64TargetTransformInfo.h" 10 #include "AArch64ExpandImm.h" 11 #include "MCTargetDesc/AArch64AddressingModes.h" 12 #include "llvm/Analysis/IVDescriptors.h" 13 #include "llvm/Analysis/LoopInfo.h" 14 #include "llvm/Analysis/TargetTransformInfo.h" 15 #include "llvm/CodeGen/BasicTTIImpl.h" 16 #include "llvm/CodeGen/CostTable.h" 17 #include "llvm/CodeGen/TargetLowering.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/IntrinsicsAArch64.h" 21 #include "llvm/IR/PatternMatch.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Transforms/InstCombine/InstCombiner.h" 24 #include <algorithm> 25 using namespace llvm; 26 using namespace llvm::PatternMatch; 27 28 #define DEBUG_TYPE "aarch64tti" 29 30 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix", 31 cl::init(true), cl::Hidden); 32 33 static cl::opt<unsigned> SVEGatherOverhead("sve-gather-overhead", cl::init(10), 34 cl::Hidden); 35 36 static cl::opt<unsigned> SVEScatterOverhead("sve-scatter-overhead", 37 cl::init(10), cl::Hidden); 38 39 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller, 40 const Function *Callee) const { 41 const TargetMachine &TM = getTLI()->getTargetMachine(); 42 43 const FeatureBitset &CallerBits = 44 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 45 const FeatureBitset &CalleeBits = 46 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 47 48 // Inline a callee if its target-features are a subset of the callers 49 // target-features. 50 return (CallerBits & CalleeBits) == CalleeBits; 51 } 52 53 /// Calculate the cost of materializing a 64-bit value. This helper 54 /// method might only calculate a fraction of a larger immediate. Therefore it 55 /// is valid to return a cost of ZERO. 56 InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) { 57 // Check if the immediate can be encoded within an instruction. 58 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64)) 59 return 0; 60 61 if (Val < 0) 62 Val = ~Val; 63 64 // Calculate how many moves we will need to materialize this constant. 65 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; 66 AArch64_IMM::expandMOVImm(Val, 64, Insn); 67 return Insn.size(); 68 } 69 70 /// Calculate the cost of materializing the given constant. 71 InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 72 TTI::TargetCostKind CostKind) { 73 assert(Ty->isIntegerTy()); 74 75 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 76 if (BitSize == 0) 77 return ~0U; 78 79 // Sign-extend all constants to a multiple of 64-bit. 80 APInt ImmVal = Imm; 81 if (BitSize & 0x3f) 82 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU); 83 84 // Split the constant into 64-bit chunks and calculate the cost for each 85 // chunk. 86 InstructionCost Cost = 0; 87 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { 88 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); 89 int64_t Val = Tmp.getSExtValue(); 90 Cost += getIntImmCost(Val); 91 } 92 // We need at least one instruction to materialze the constant. 93 return std::max<InstructionCost>(1, Cost); 94 } 95 96 InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 97 const APInt &Imm, Type *Ty, 98 TTI::TargetCostKind CostKind, 99 Instruction *Inst) { 100 assert(Ty->isIntegerTy()); 101 102 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 103 // There is no cost model for constants with a bit size of 0. Return TCC_Free 104 // here, so that constant hoisting will ignore this constant. 105 if (BitSize == 0) 106 return TTI::TCC_Free; 107 108 unsigned ImmIdx = ~0U; 109 switch (Opcode) { 110 default: 111 return TTI::TCC_Free; 112 case Instruction::GetElementPtr: 113 // Always hoist the base address of a GetElementPtr. 114 if (Idx == 0) 115 return 2 * TTI::TCC_Basic; 116 return TTI::TCC_Free; 117 case Instruction::Store: 118 ImmIdx = 0; 119 break; 120 case Instruction::Add: 121 case Instruction::Sub: 122 case Instruction::Mul: 123 case Instruction::UDiv: 124 case Instruction::SDiv: 125 case Instruction::URem: 126 case Instruction::SRem: 127 case Instruction::And: 128 case Instruction::Or: 129 case Instruction::Xor: 130 case Instruction::ICmp: 131 ImmIdx = 1; 132 break; 133 // Always return TCC_Free for the shift value of a shift instruction. 134 case Instruction::Shl: 135 case Instruction::LShr: 136 case Instruction::AShr: 137 if (Idx == 1) 138 return TTI::TCC_Free; 139 break; 140 case Instruction::Trunc: 141 case Instruction::ZExt: 142 case Instruction::SExt: 143 case Instruction::IntToPtr: 144 case Instruction::PtrToInt: 145 case Instruction::BitCast: 146 case Instruction::PHI: 147 case Instruction::Call: 148 case Instruction::Select: 149 case Instruction::Ret: 150 case Instruction::Load: 151 break; 152 } 153 154 if (Idx == ImmIdx) { 155 int NumConstants = (BitSize + 63) / 64; 156 InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 157 return (Cost <= NumConstants * TTI::TCC_Basic) 158 ? static_cast<int>(TTI::TCC_Free) 159 : Cost; 160 } 161 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 162 } 163 164 InstructionCost 165 AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 166 const APInt &Imm, Type *Ty, 167 TTI::TargetCostKind CostKind) { 168 assert(Ty->isIntegerTy()); 169 170 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 171 // There is no cost model for constants with a bit size of 0. Return TCC_Free 172 // here, so that constant hoisting will ignore this constant. 173 if (BitSize == 0) 174 return TTI::TCC_Free; 175 176 // Most (all?) AArch64 intrinsics do not support folding immediates into the 177 // selected instruction, so we compute the materialization cost for the 178 // immediate directly. 179 if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv) 180 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 181 182 switch (IID) { 183 default: 184 return TTI::TCC_Free; 185 case Intrinsic::sadd_with_overflow: 186 case Intrinsic::uadd_with_overflow: 187 case Intrinsic::ssub_with_overflow: 188 case Intrinsic::usub_with_overflow: 189 case Intrinsic::smul_with_overflow: 190 case Intrinsic::umul_with_overflow: 191 if (Idx == 1) { 192 int NumConstants = (BitSize + 63) / 64; 193 InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 194 return (Cost <= NumConstants * TTI::TCC_Basic) 195 ? static_cast<int>(TTI::TCC_Free) 196 : Cost; 197 } 198 break; 199 case Intrinsic::experimental_stackmap: 200 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 201 return TTI::TCC_Free; 202 break; 203 case Intrinsic::experimental_patchpoint_void: 204 case Intrinsic::experimental_patchpoint_i64: 205 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 206 return TTI::TCC_Free; 207 break; 208 case Intrinsic::experimental_gc_statepoint: 209 if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 210 return TTI::TCC_Free; 211 break; 212 } 213 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 214 } 215 216 TargetTransformInfo::PopcntSupportKind 217 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) { 218 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 219 if (TyWidth == 32 || TyWidth == 64) 220 return TTI::PSK_FastHardware; 221 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount. 222 return TTI::PSK_Software; 223 } 224 225 InstructionCost 226 AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 227 TTI::TargetCostKind CostKind) { 228 auto *RetTy = ICA.getReturnType(); 229 switch (ICA.getID()) { 230 case Intrinsic::umin: 231 case Intrinsic::umax: 232 case Intrinsic::smin: 233 case Intrinsic::smax: { 234 static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 235 MVT::v8i16, MVT::v2i32, MVT::v4i32}; 236 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 237 // v2i64 types get converted to cmp+bif hence the cost of 2 238 if (LT.second == MVT::v2i64) 239 return LT.first * 2; 240 if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; })) 241 return LT.first; 242 break; 243 } 244 case Intrinsic::sadd_sat: 245 case Intrinsic::ssub_sat: 246 case Intrinsic::uadd_sat: 247 case Intrinsic::usub_sat: { 248 static const auto ValidSatTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 249 MVT::v8i16, MVT::v2i32, MVT::v4i32, 250 MVT::v2i64}; 251 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 252 // This is a base cost of 1 for the vadd, plus 3 extract shifts if we 253 // need to extend the type, as it uses shr(qadd(shl, shl)). 254 unsigned Instrs = 255 LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4; 256 if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; })) 257 return LT.first * Instrs; 258 break; 259 } 260 case Intrinsic::abs: { 261 static const auto ValidAbsTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 262 MVT::v8i16, MVT::v2i32, MVT::v4i32, 263 MVT::v2i64}; 264 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 265 if (any_of(ValidAbsTys, [<](MVT M) { return M == LT.second; })) 266 return LT.first; 267 break; 268 } 269 case Intrinsic::experimental_stepvector: { 270 InstructionCost Cost = 1; // Cost of the `index' instruction 271 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 272 // Legalisation of illegal vectors involves an `index' instruction plus 273 // (LT.first - 1) vector adds. 274 if (LT.first > 1) { 275 Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext()); 276 InstructionCost AddCost = 277 getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind); 278 Cost += AddCost * (LT.first - 1); 279 } 280 return Cost; 281 } 282 case Intrinsic::bitreverse: { 283 static const CostTblEntry BitreverseTbl[] = { 284 {Intrinsic::bitreverse, MVT::i32, 1}, 285 {Intrinsic::bitreverse, MVT::i64, 1}, 286 {Intrinsic::bitreverse, MVT::v8i8, 1}, 287 {Intrinsic::bitreverse, MVT::v16i8, 1}, 288 {Intrinsic::bitreverse, MVT::v4i16, 2}, 289 {Intrinsic::bitreverse, MVT::v8i16, 2}, 290 {Intrinsic::bitreverse, MVT::v2i32, 2}, 291 {Intrinsic::bitreverse, MVT::v4i32, 2}, 292 {Intrinsic::bitreverse, MVT::v1i64, 2}, 293 {Intrinsic::bitreverse, MVT::v2i64, 2}, 294 }; 295 const auto LegalisationCost = TLI->getTypeLegalizationCost(DL, RetTy); 296 const auto *Entry = 297 CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second); 298 if (Entry) { 299 // Cost Model is using the legal type(i32) that i8 and i16 will be 300 // converted to +1 so that we match the actual lowering cost 301 if (TLI->getValueType(DL, RetTy, true) == MVT::i8 || 302 TLI->getValueType(DL, RetTy, true) == MVT::i16) 303 return LegalisationCost.first * Entry->Cost + 1; 304 305 return LegalisationCost.first * Entry->Cost; 306 } 307 break; 308 } 309 case Intrinsic::ctpop: { 310 static const CostTblEntry CtpopCostTbl[] = { 311 {ISD::CTPOP, MVT::v2i64, 4}, 312 {ISD::CTPOP, MVT::v4i32, 3}, 313 {ISD::CTPOP, MVT::v8i16, 2}, 314 {ISD::CTPOP, MVT::v16i8, 1}, 315 {ISD::CTPOP, MVT::i64, 4}, 316 {ISD::CTPOP, MVT::v2i32, 3}, 317 {ISD::CTPOP, MVT::v4i16, 2}, 318 {ISD::CTPOP, MVT::v8i8, 1}, 319 {ISD::CTPOP, MVT::i32, 5}, 320 }; 321 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 322 MVT MTy = LT.second; 323 if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) { 324 // Extra cost of +1 when illegal vector types are legalized by promoting 325 // the integer type. 326 int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() != 327 RetTy->getScalarSizeInBits() 328 ? 1 329 : 0; 330 return LT.first * Entry->Cost + ExtraCost; 331 } 332 break; 333 } 334 case Intrinsic::sadd_with_overflow: 335 case Intrinsic::uadd_with_overflow: 336 case Intrinsic::ssub_with_overflow: 337 case Intrinsic::usub_with_overflow: 338 case Intrinsic::smul_with_overflow: 339 case Intrinsic::umul_with_overflow: { 340 static const CostTblEntry WithOverflowCostTbl[] = { 341 {Intrinsic::sadd_with_overflow, MVT::i8, 3}, 342 {Intrinsic::uadd_with_overflow, MVT::i8, 3}, 343 {Intrinsic::sadd_with_overflow, MVT::i16, 3}, 344 {Intrinsic::uadd_with_overflow, MVT::i16, 3}, 345 {Intrinsic::sadd_with_overflow, MVT::i32, 1}, 346 {Intrinsic::uadd_with_overflow, MVT::i32, 1}, 347 {Intrinsic::sadd_with_overflow, MVT::i64, 1}, 348 {Intrinsic::uadd_with_overflow, MVT::i64, 1}, 349 {Intrinsic::ssub_with_overflow, MVT::i8, 3}, 350 {Intrinsic::usub_with_overflow, MVT::i8, 3}, 351 {Intrinsic::ssub_with_overflow, MVT::i16, 3}, 352 {Intrinsic::usub_with_overflow, MVT::i16, 3}, 353 {Intrinsic::ssub_with_overflow, MVT::i32, 1}, 354 {Intrinsic::usub_with_overflow, MVT::i32, 1}, 355 {Intrinsic::ssub_with_overflow, MVT::i64, 1}, 356 {Intrinsic::usub_with_overflow, MVT::i64, 1}, 357 {Intrinsic::smul_with_overflow, MVT::i8, 5}, 358 {Intrinsic::umul_with_overflow, MVT::i8, 4}, 359 {Intrinsic::smul_with_overflow, MVT::i16, 5}, 360 {Intrinsic::umul_with_overflow, MVT::i16, 4}, 361 {Intrinsic::smul_with_overflow, MVT::i32, 2}, // eg umull;tst 362 {Intrinsic::umul_with_overflow, MVT::i32, 2}, // eg umull;cmp sxtw 363 {Intrinsic::smul_with_overflow, MVT::i64, 3}, // eg mul;smulh;cmp 364 {Intrinsic::umul_with_overflow, MVT::i64, 3}, // eg mul;umulh;cmp asr 365 }; 366 EVT MTy = TLI->getValueType(DL, RetTy->getContainedType(0), true); 367 if (MTy.isSimple()) 368 if (const auto *Entry = CostTableLookup(WithOverflowCostTbl, ICA.getID(), 369 MTy.getSimpleVT())) 370 return Entry->Cost; 371 break; 372 } 373 default: 374 break; 375 } 376 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 377 } 378 379 /// The function will remove redundant reinterprets casting in the presence 380 /// of the control flow 381 static Optional<Instruction *> processPhiNode(InstCombiner &IC, 382 IntrinsicInst &II) { 383 SmallVector<Instruction *, 32> Worklist; 384 auto RequiredType = II.getType(); 385 386 auto *PN = dyn_cast<PHINode>(II.getArgOperand(0)); 387 assert(PN && "Expected Phi Node!"); 388 389 // Don't create a new Phi unless we can remove the old one. 390 if (!PN->hasOneUse()) 391 return None; 392 393 for (Value *IncValPhi : PN->incoming_values()) { 394 auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi); 395 if (!Reinterpret || 396 Reinterpret->getIntrinsicID() != 397 Intrinsic::aarch64_sve_convert_to_svbool || 398 RequiredType != Reinterpret->getArgOperand(0)->getType()) 399 return None; 400 } 401 402 // Create the new Phi 403 LLVMContext &Ctx = PN->getContext(); 404 IRBuilder<> Builder(Ctx); 405 Builder.SetInsertPoint(PN); 406 PHINode *NPN = Builder.CreatePHI(RequiredType, PN->getNumIncomingValues()); 407 Worklist.push_back(PN); 408 409 for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) { 410 auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I)); 411 NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I)); 412 Worklist.push_back(Reinterpret); 413 } 414 415 // Cleanup Phi Node and reinterprets 416 return IC.replaceInstUsesWith(II, NPN); 417 } 418 419 static Optional<Instruction *> instCombineConvertFromSVBool(InstCombiner &IC, 420 IntrinsicInst &II) { 421 // If the reinterpret instruction operand is a PHI Node 422 if (isa<PHINode>(II.getArgOperand(0))) 423 return processPhiNode(IC, II); 424 425 SmallVector<Instruction *, 32> CandidatesForRemoval; 426 Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr; 427 428 const auto *IVTy = cast<VectorType>(II.getType()); 429 430 // Walk the chain of conversions. 431 while (Cursor) { 432 // If the type of the cursor has fewer lanes than the final result, zeroing 433 // must take place, which breaks the equivalence chain. 434 const auto *CursorVTy = cast<VectorType>(Cursor->getType()); 435 if (CursorVTy->getElementCount().getKnownMinValue() < 436 IVTy->getElementCount().getKnownMinValue()) 437 break; 438 439 // If the cursor has the same type as I, it is a viable replacement. 440 if (Cursor->getType() == IVTy) 441 EarliestReplacement = Cursor; 442 443 auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor); 444 445 // If this is not an SVE conversion intrinsic, this is the end of the chain. 446 if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() == 447 Intrinsic::aarch64_sve_convert_to_svbool || 448 IntrinsicCursor->getIntrinsicID() == 449 Intrinsic::aarch64_sve_convert_from_svbool)) 450 break; 451 452 CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor); 453 Cursor = IntrinsicCursor->getOperand(0); 454 } 455 456 // If no viable replacement in the conversion chain was found, there is 457 // nothing to do. 458 if (!EarliestReplacement) 459 return None; 460 461 return IC.replaceInstUsesWith(II, EarliestReplacement); 462 } 463 464 static Optional<Instruction *> instCombineSVEDup(InstCombiner &IC, 465 IntrinsicInst &II) { 466 IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(1)); 467 if (!Pg) 468 return None; 469 470 if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) 471 return None; 472 473 const auto PTruePattern = 474 cast<ConstantInt>(Pg->getOperand(0))->getZExtValue(); 475 if (PTruePattern != AArch64SVEPredPattern::vl1) 476 return None; 477 478 // The intrinsic is inserting into lane zero so use an insert instead. 479 auto *IdxTy = Type::getInt64Ty(II.getContext()); 480 auto *Insert = InsertElementInst::Create( 481 II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0)); 482 Insert->insertBefore(&II); 483 Insert->takeName(&II); 484 485 return IC.replaceInstUsesWith(II, Insert); 486 } 487 488 static Optional<Instruction *> instCombineSVEDupX(InstCombiner &IC, 489 IntrinsicInst &II) { 490 // Replace DupX with a regular IR splat. 491 IRBuilder<> Builder(II.getContext()); 492 Builder.SetInsertPoint(&II); 493 auto *RetTy = cast<ScalableVectorType>(II.getType()); 494 Value *Splat = 495 Builder.CreateVectorSplat(RetTy->getElementCount(), II.getArgOperand(0)); 496 Splat->takeName(&II); 497 return IC.replaceInstUsesWith(II, Splat); 498 } 499 500 static Optional<Instruction *> instCombineSVECmpNE(InstCombiner &IC, 501 IntrinsicInst &II) { 502 LLVMContext &Ctx = II.getContext(); 503 IRBuilder<> Builder(Ctx); 504 Builder.SetInsertPoint(&II); 505 506 // Check that the predicate is all active 507 auto *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(0)); 508 if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) 509 return None; 510 511 const auto PTruePattern = 512 cast<ConstantInt>(Pg->getOperand(0))->getZExtValue(); 513 if (PTruePattern != AArch64SVEPredPattern::all) 514 return None; 515 516 // Check that we have a compare of zero.. 517 auto *SplatValue = 518 dyn_cast_or_null<ConstantInt>(getSplatValue(II.getArgOperand(2))); 519 if (!SplatValue || !SplatValue->isZero()) 520 return None; 521 522 // ..against a dupq 523 auto *DupQLane = dyn_cast<IntrinsicInst>(II.getArgOperand(1)); 524 if (!DupQLane || 525 DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane) 526 return None; 527 528 // Where the dupq is a lane 0 replicate of a vector insert 529 if (!cast<ConstantInt>(DupQLane->getArgOperand(1))->isZero()) 530 return None; 531 532 auto *VecIns = dyn_cast<IntrinsicInst>(DupQLane->getArgOperand(0)); 533 if (!VecIns || 534 VecIns->getIntrinsicID() != Intrinsic::experimental_vector_insert) 535 return None; 536 537 // Where the vector insert is a fixed constant vector insert into undef at 538 // index zero 539 if (!isa<UndefValue>(VecIns->getArgOperand(0))) 540 return None; 541 542 if (!cast<ConstantInt>(VecIns->getArgOperand(2))->isZero()) 543 return None; 544 545 auto *ConstVec = dyn_cast<Constant>(VecIns->getArgOperand(1)); 546 if (!ConstVec) 547 return None; 548 549 auto *VecTy = dyn_cast<FixedVectorType>(ConstVec->getType()); 550 auto *OutTy = dyn_cast<ScalableVectorType>(II.getType()); 551 if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements()) 552 return None; 553 554 unsigned NumElts = VecTy->getNumElements(); 555 unsigned PredicateBits = 0; 556 557 // Expand intrinsic operands to a 16-bit byte level predicate 558 for (unsigned I = 0; I < NumElts; ++I) { 559 auto *Arg = dyn_cast<ConstantInt>(ConstVec->getAggregateElement(I)); 560 if (!Arg) 561 return None; 562 if (!Arg->isZero()) 563 PredicateBits |= 1 << (I * (16 / NumElts)); 564 } 565 566 // If all bits are zero bail early with an empty predicate 567 if (PredicateBits == 0) { 568 auto *PFalse = Constant::getNullValue(II.getType()); 569 PFalse->takeName(&II); 570 return IC.replaceInstUsesWith(II, PFalse); 571 } 572 573 // Calculate largest predicate type used (where byte predicate is largest) 574 unsigned Mask = 8; 575 for (unsigned I = 0; I < 16; ++I) 576 if ((PredicateBits & (1 << I)) != 0) 577 Mask |= (I % 8); 578 579 unsigned PredSize = Mask & -Mask; 580 auto *PredType = ScalableVectorType::get( 581 Type::getInt1Ty(Ctx), AArch64::SVEBitsPerBlock / (PredSize * 8)); 582 583 // Ensure all relevant bits are set 584 for (unsigned I = 0; I < 16; I += PredSize) 585 if ((PredicateBits & (1 << I)) == 0) 586 return None; 587 588 auto *PTruePat = 589 ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all); 590 auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, 591 {PredType}, {PTruePat}); 592 auto *ConvertToSVBool = Builder.CreateIntrinsic( 593 Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue}); 594 auto *ConvertFromSVBool = 595 Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, 596 {II.getType()}, {ConvertToSVBool}); 597 598 ConvertFromSVBool->takeName(&II); 599 return IC.replaceInstUsesWith(II, ConvertFromSVBool); 600 } 601 602 static Optional<Instruction *> instCombineSVELast(InstCombiner &IC, 603 IntrinsicInst &II) { 604 IRBuilder<> Builder(II.getContext()); 605 Builder.SetInsertPoint(&II); 606 Value *Pg = II.getArgOperand(0); 607 Value *Vec = II.getArgOperand(1); 608 auto IntrinsicID = II.getIntrinsicID(); 609 bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta; 610 611 // lastX(splat(X)) --> X 612 if (auto *SplatVal = getSplatValue(Vec)) 613 return IC.replaceInstUsesWith(II, SplatVal); 614 615 // If x and/or y is a splat value then: 616 // lastX (binop (x, y)) --> binop(lastX(x), lastX(y)) 617 Value *LHS, *RHS; 618 if (match(Vec, m_OneUse(m_BinOp(m_Value(LHS), m_Value(RHS))))) { 619 if (isSplatValue(LHS) || isSplatValue(RHS)) { 620 auto *OldBinOp = cast<BinaryOperator>(Vec); 621 auto OpC = OldBinOp->getOpcode(); 622 auto *NewLHS = 623 Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, LHS}); 624 auto *NewRHS = 625 Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, RHS}); 626 auto *NewBinOp = BinaryOperator::CreateWithCopiedFlags( 627 OpC, NewLHS, NewRHS, OldBinOp, OldBinOp->getName(), &II); 628 return IC.replaceInstUsesWith(II, NewBinOp); 629 } 630 } 631 632 auto *C = dyn_cast<Constant>(Pg); 633 if (IsAfter && C && C->isNullValue()) { 634 // The intrinsic is extracting lane 0 so use an extract instead. 635 auto *IdxTy = Type::getInt64Ty(II.getContext()); 636 auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0)); 637 Extract->insertBefore(&II); 638 Extract->takeName(&II); 639 return IC.replaceInstUsesWith(II, Extract); 640 } 641 642 auto *IntrPG = dyn_cast<IntrinsicInst>(Pg); 643 if (!IntrPG) 644 return None; 645 646 if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) 647 return None; 648 649 const auto PTruePattern = 650 cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue(); 651 652 // Can the intrinsic's predicate be converted to a known constant index? 653 unsigned MinNumElts = getNumElementsFromSVEPredPattern(PTruePattern); 654 if (!MinNumElts) 655 return None; 656 657 unsigned Idx = MinNumElts - 1; 658 // Increment the index if extracting the element after the last active 659 // predicate element. 660 if (IsAfter) 661 ++Idx; 662 663 // Ignore extracts whose index is larger than the known minimum vector 664 // length. NOTE: This is an artificial constraint where we prefer to 665 // maintain what the user asked for until an alternative is proven faster. 666 auto *PgVTy = cast<ScalableVectorType>(Pg->getType()); 667 if (Idx >= PgVTy->getMinNumElements()) 668 return None; 669 670 // The intrinsic is extracting a fixed lane so use an extract instead. 671 auto *IdxTy = Type::getInt64Ty(II.getContext()); 672 auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx)); 673 Extract->insertBefore(&II); 674 Extract->takeName(&II); 675 return IC.replaceInstUsesWith(II, Extract); 676 } 677 678 static Optional<Instruction *> instCombineRDFFR(InstCombiner &IC, 679 IntrinsicInst &II) { 680 LLVMContext &Ctx = II.getContext(); 681 IRBuilder<> Builder(Ctx); 682 Builder.SetInsertPoint(&II); 683 // Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr 684 // can work with RDFFR_PP for ptest elimination. 685 auto *AllPat = 686 ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all); 687 auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, 688 {II.getType()}, {AllPat}); 689 auto *RDFFR = 690 Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue}); 691 RDFFR->takeName(&II); 692 return IC.replaceInstUsesWith(II, RDFFR); 693 } 694 695 static Optional<Instruction *> 696 instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) { 697 const auto Pattern = cast<ConstantInt>(II.getArgOperand(0))->getZExtValue(); 698 699 if (Pattern == AArch64SVEPredPattern::all) { 700 LLVMContext &Ctx = II.getContext(); 701 IRBuilder<> Builder(Ctx); 702 Builder.SetInsertPoint(&II); 703 704 Constant *StepVal = ConstantInt::get(II.getType(), NumElts); 705 auto *VScale = Builder.CreateVScale(StepVal); 706 VScale->takeName(&II); 707 return IC.replaceInstUsesWith(II, VScale); 708 } 709 710 unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern); 711 712 return MinNumElts && NumElts >= MinNumElts 713 ? Optional<Instruction *>(IC.replaceInstUsesWith( 714 II, ConstantInt::get(II.getType(), MinNumElts))) 715 : None; 716 } 717 718 static Optional<Instruction *> instCombineSVEPTest(InstCombiner &IC, 719 IntrinsicInst &II) { 720 IntrinsicInst *Op1 = dyn_cast<IntrinsicInst>(II.getArgOperand(0)); 721 IntrinsicInst *Op2 = dyn_cast<IntrinsicInst>(II.getArgOperand(1)); 722 723 if (Op1 && Op2 && 724 Op1->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool && 725 Op2->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool && 726 Op1->getArgOperand(0)->getType() == Op2->getArgOperand(0)->getType()) { 727 728 IRBuilder<> Builder(II.getContext()); 729 Builder.SetInsertPoint(&II); 730 731 Value *Ops[] = {Op1->getArgOperand(0), Op2->getArgOperand(0)}; 732 Type *Tys[] = {Op1->getArgOperand(0)->getType()}; 733 734 auto *PTest = Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops); 735 736 PTest->takeName(&II); 737 return IC.replaceInstUsesWith(II, PTest); 738 } 739 740 return None; 741 } 742 743 static Optional<Instruction *> instCombineSVEVectorFMLA(InstCombiner &IC, 744 IntrinsicInst &II) { 745 // fold (fadd p a (fmul p b c)) -> (fma p a b c) 746 Value *P = II.getOperand(0); 747 Value *A = II.getOperand(1); 748 auto FMul = II.getOperand(2); 749 Value *B, *C; 750 if (!match(FMul, m_Intrinsic<Intrinsic::aarch64_sve_fmul>( 751 m_Specific(P), m_Value(B), m_Value(C)))) 752 return None; 753 754 if (!FMul->hasOneUse()) 755 return None; 756 757 llvm::FastMathFlags FAddFlags = II.getFastMathFlags(); 758 // Stop the combine when the flags on the inputs differ in case dropping flags 759 // would lead to us missing out on more beneficial optimizations. 760 if (FAddFlags != cast<CallInst>(FMul)->getFastMathFlags()) 761 return None; 762 if (!FAddFlags.allowContract()) 763 return None; 764 765 IRBuilder<> Builder(II.getContext()); 766 Builder.SetInsertPoint(&II); 767 auto FMLA = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_fmla, 768 {II.getType()}, {P, A, B, C}, &II); 769 FMLA->setFastMathFlags(FAddFlags); 770 return IC.replaceInstUsesWith(II, FMLA); 771 } 772 773 static bool isAllActivePredicate(Value *Pred) { 774 // Look through convert.from.svbool(convert.to.svbool(...) chain. 775 Value *UncastedPred; 776 if (match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_convert_from_svbool>( 777 m_Intrinsic<Intrinsic::aarch64_sve_convert_to_svbool>( 778 m_Value(UncastedPred))))) 779 // If the predicate has the same or less lanes than the uncasted 780 // predicate then we know the casting has no effect. 781 if (cast<ScalableVectorType>(Pred->getType())->getMinNumElements() <= 782 cast<ScalableVectorType>(UncastedPred->getType())->getMinNumElements()) 783 Pred = UncastedPred; 784 785 return match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>( 786 m_ConstantInt<AArch64SVEPredPattern::all>())); 787 } 788 789 static Optional<Instruction *> 790 instCombineSVELD1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) { 791 IRBuilder<> Builder(II.getContext()); 792 Builder.SetInsertPoint(&II); 793 794 Value *Pred = II.getOperand(0); 795 Value *PtrOp = II.getOperand(1); 796 Type *VecTy = II.getType(); 797 Value *VecPtr = Builder.CreateBitCast(PtrOp, VecTy->getPointerTo()); 798 799 if (isAllActivePredicate(Pred)) { 800 LoadInst *Load = Builder.CreateLoad(VecTy, VecPtr); 801 return IC.replaceInstUsesWith(II, Load); 802 } 803 804 CallInst *MaskedLoad = 805 Builder.CreateMaskedLoad(VecTy, VecPtr, PtrOp->getPointerAlignment(DL), 806 Pred, ConstantAggregateZero::get(VecTy)); 807 return IC.replaceInstUsesWith(II, MaskedLoad); 808 } 809 810 static Optional<Instruction *> 811 instCombineSVEST1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) { 812 IRBuilder<> Builder(II.getContext()); 813 Builder.SetInsertPoint(&II); 814 815 Value *VecOp = II.getOperand(0); 816 Value *Pred = II.getOperand(1); 817 Value *PtrOp = II.getOperand(2); 818 Value *VecPtr = 819 Builder.CreateBitCast(PtrOp, VecOp->getType()->getPointerTo()); 820 821 if (isAllActivePredicate(Pred)) { 822 Builder.CreateStore(VecOp, VecPtr); 823 return IC.eraseInstFromFunction(II); 824 } 825 826 Builder.CreateMaskedStore(VecOp, VecPtr, PtrOp->getPointerAlignment(DL), 827 Pred); 828 return IC.eraseInstFromFunction(II); 829 } 830 831 static Instruction::BinaryOps intrinsicIDToBinOpCode(unsigned Intrinsic) { 832 switch (Intrinsic) { 833 case Intrinsic::aarch64_sve_fmul: 834 return Instruction::BinaryOps::FMul; 835 case Intrinsic::aarch64_sve_fadd: 836 return Instruction::BinaryOps::FAdd; 837 case Intrinsic::aarch64_sve_fsub: 838 return Instruction::BinaryOps::FSub; 839 default: 840 return Instruction::BinaryOpsEnd; 841 } 842 } 843 844 static Optional<Instruction *> instCombineSVEVectorBinOp(InstCombiner &IC, 845 IntrinsicInst &II) { 846 auto *OpPredicate = II.getOperand(0); 847 auto BinOpCode = intrinsicIDToBinOpCode(II.getIntrinsicID()); 848 if (BinOpCode == Instruction::BinaryOpsEnd || 849 !match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>( 850 m_ConstantInt<AArch64SVEPredPattern::all>()))) 851 return None; 852 IRBuilder<> Builder(II.getContext()); 853 Builder.SetInsertPoint(&II); 854 Builder.setFastMathFlags(II.getFastMathFlags()); 855 auto BinOp = 856 Builder.CreateBinOp(BinOpCode, II.getOperand(1), II.getOperand(2)); 857 return IC.replaceInstUsesWith(II, BinOp); 858 } 859 860 static Optional<Instruction *> instCombineSVEVectorFAdd(InstCombiner &IC, 861 IntrinsicInst &II) { 862 if (auto FMLA = instCombineSVEVectorFMLA(IC, II)) 863 return FMLA; 864 return instCombineSVEVectorBinOp(IC, II); 865 } 866 867 static Optional<Instruction *> instCombineSVEVectorMul(InstCombiner &IC, 868 IntrinsicInst &II) { 869 auto *OpPredicate = II.getOperand(0); 870 auto *OpMultiplicand = II.getOperand(1); 871 auto *OpMultiplier = II.getOperand(2); 872 873 IRBuilder<> Builder(II.getContext()); 874 Builder.SetInsertPoint(&II); 875 876 // Return true if a given instruction is a unit splat value, false otherwise. 877 auto IsUnitSplat = [](auto *I) { 878 auto *SplatValue = getSplatValue(I); 879 if (!SplatValue) 880 return false; 881 return match(SplatValue, m_FPOne()) || match(SplatValue, m_One()); 882 }; 883 884 // Return true if a given instruction is an aarch64_sve_dup intrinsic call 885 // with a unit splat value, false otherwise. 886 auto IsUnitDup = [](auto *I) { 887 auto *IntrI = dyn_cast<IntrinsicInst>(I); 888 if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup) 889 return false; 890 891 auto *SplatValue = IntrI->getOperand(2); 892 return match(SplatValue, m_FPOne()) || match(SplatValue, m_One()); 893 }; 894 895 if (IsUnitSplat(OpMultiplier)) { 896 // [f]mul pg %n, (dupx 1) => %n 897 OpMultiplicand->takeName(&II); 898 return IC.replaceInstUsesWith(II, OpMultiplicand); 899 } else if (IsUnitDup(OpMultiplier)) { 900 // [f]mul pg %n, (dup pg 1) => %n 901 auto *DupInst = cast<IntrinsicInst>(OpMultiplier); 902 auto *DupPg = DupInst->getOperand(1); 903 // TODO: this is naive. The optimization is still valid if DupPg 904 // 'encompasses' OpPredicate, not only if they're the same predicate. 905 if (OpPredicate == DupPg) { 906 OpMultiplicand->takeName(&II); 907 return IC.replaceInstUsesWith(II, OpMultiplicand); 908 } 909 } 910 911 return instCombineSVEVectorBinOp(IC, II); 912 } 913 914 static Optional<Instruction *> instCombineSVEUnpack(InstCombiner &IC, 915 IntrinsicInst &II) { 916 IRBuilder<> Builder(II.getContext()); 917 Builder.SetInsertPoint(&II); 918 Value *UnpackArg = II.getArgOperand(0); 919 auto *RetTy = cast<ScalableVectorType>(II.getType()); 920 bool IsSigned = II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi || 921 II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo; 922 923 // Hi = uunpkhi(splat(X)) --> Hi = splat(extend(X)) 924 // Lo = uunpklo(splat(X)) --> Lo = splat(extend(X)) 925 if (auto *ScalarArg = getSplatValue(UnpackArg)) { 926 ScalarArg = 927 Builder.CreateIntCast(ScalarArg, RetTy->getScalarType(), IsSigned); 928 Value *NewVal = 929 Builder.CreateVectorSplat(RetTy->getElementCount(), ScalarArg); 930 NewVal->takeName(&II); 931 return IC.replaceInstUsesWith(II, NewVal); 932 } 933 934 return None; 935 } 936 static Optional<Instruction *> instCombineSVETBL(InstCombiner &IC, 937 IntrinsicInst &II) { 938 auto *OpVal = II.getOperand(0); 939 auto *OpIndices = II.getOperand(1); 940 VectorType *VTy = cast<VectorType>(II.getType()); 941 942 // Check whether OpIndices is a constant splat value < minimal element count 943 // of result. 944 auto *SplatValue = dyn_cast_or_null<ConstantInt>(getSplatValue(OpIndices)); 945 if (!SplatValue || 946 SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue())) 947 return None; 948 949 // Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to 950 // splat_vector(extractelement(OpVal, SplatValue)) for further optimization. 951 IRBuilder<> Builder(II.getContext()); 952 Builder.SetInsertPoint(&II); 953 auto *Extract = Builder.CreateExtractElement(OpVal, SplatValue); 954 auto *VectorSplat = 955 Builder.CreateVectorSplat(VTy->getElementCount(), Extract); 956 957 VectorSplat->takeName(&II); 958 return IC.replaceInstUsesWith(II, VectorSplat); 959 } 960 961 static Optional<Instruction *> instCombineSVETupleGet(InstCombiner &IC, 962 IntrinsicInst &II) { 963 // Try to remove sequences of tuple get/set. 964 Value *SetTuple, *SetIndex, *SetValue; 965 auto *GetTuple = II.getArgOperand(0); 966 auto *GetIndex = II.getArgOperand(1); 967 // Check that we have tuple_get(GetTuple, GetIndex) where GetTuple is a 968 // call to tuple_set i.e. tuple_set(SetTuple, SetIndex, SetValue). 969 // Make sure that the types of the current intrinsic and SetValue match 970 // in order to safely remove the sequence. 971 if (!match(GetTuple, 972 m_Intrinsic<Intrinsic::aarch64_sve_tuple_set>( 973 m_Value(SetTuple), m_Value(SetIndex), m_Value(SetValue))) || 974 SetValue->getType() != II.getType()) 975 return None; 976 // Case where we get the same index right after setting it. 977 // tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex) --> SetValue 978 if (GetIndex == SetIndex) 979 return IC.replaceInstUsesWith(II, SetValue); 980 // If we are getting a different index than what was set in the tuple_set 981 // intrinsic. We can just set the input tuple to the one up in the chain. 982 // tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex) 983 // --> tuple_get(SetTuple, GetIndex) 984 return IC.replaceOperand(II, 0, SetTuple); 985 } 986 987 static Optional<Instruction *> instCombineSVEZip(InstCombiner &IC, 988 IntrinsicInst &II) { 989 // zip1(uzp1(A, B), uzp2(A, B)) --> A 990 // zip2(uzp1(A, B), uzp2(A, B)) --> B 991 Value *A, *B; 992 if (match(II.getArgOperand(0), 993 m_Intrinsic<Intrinsic::aarch64_sve_uzp1>(m_Value(A), m_Value(B))) && 994 match(II.getArgOperand(1), m_Intrinsic<Intrinsic::aarch64_sve_uzp2>( 995 m_Specific(A), m_Specific(B)))) 996 return IC.replaceInstUsesWith( 997 II, (II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ? A : B)); 998 999 return None; 1000 } 1001 1002 static Optional<Instruction *> instCombineLD1GatherIndex(InstCombiner &IC, 1003 IntrinsicInst &II) { 1004 Value *Mask = II.getOperand(0); 1005 Value *BasePtr = II.getOperand(1); 1006 Value *Index = II.getOperand(2); 1007 Type *Ty = II.getType(); 1008 Type *BasePtrTy = BasePtr->getType(); 1009 Value *PassThru = ConstantAggregateZero::get(Ty); 1010 1011 // Contiguous gather => masked load. 1012 // (sve.ld1.gather.index Mask BasePtr (sve.index IndexBase 1)) 1013 // => (masked.load (gep BasePtr IndexBase) Align Mask zeroinitializer) 1014 Value *IndexBase; 1015 if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>( 1016 m_Value(IndexBase), m_SpecificInt(1)))) { 1017 IRBuilder<> Builder(II.getContext()); 1018 Builder.SetInsertPoint(&II); 1019 1020 Align Alignment = 1021 BasePtr->getPointerAlignment(II.getModule()->getDataLayout()); 1022 1023 Type *VecPtrTy = PointerType::getUnqual(Ty); 1024 Value *Ptr = Builder.CreateGEP(BasePtrTy->getPointerElementType(), BasePtr, 1025 IndexBase); 1026 Ptr = Builder.CreateBitCast(Ptr, VecPtrTy); 1027 CallInst *MaskedLoad = 1028 Builder.CreateMaskedLoad(Ty, Ptr, Alignment, Mask, PassThru); 1029 MaskedLoad->takeName(&II); 1030 return IC.replaceInstUsesWith(II, MaskedLoad); 1031 } 1032 1033 return None; 1034 } 1035 1036 static Optional<Instruction *> instCombineST1ScatterIndex(InstCombiner &IC, 1037 IntrinsicInst &II) { 1038 Value *Val = II.getOperand(0); 1039 Value *Mask = II.getOperand(1); 1040 Value *BasePtr = II.getOperand(2); 1041 Value *Index = II.getOperand(3); 1042 Type *Ty = Val->getType(); 1043 Type *BasePtrTy = BasePtr->getType(); 1044 1045 // Contiguous scatter => masked store. 1046 // (sve.ld1.scatter.index Value Mask BasePtr (sve.index IndexBase 1)) 1047 // => (masked.store Value (gep BasePtr IndexBase) Align Mask) 1048 Value *IndexBase; 1049 if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>( 1050 m_Value(IndexBase), m_SpecificInt(1)))) { 1051 IRBuilder<> Builder(II.getContext()); 1052 Builder.SetInsertPoint(&II); 1053 1054 Align Alignment = 1055 BasePtr->getPointerAlignment(II.getModule()->getDataLayout()); 1056 1057 Value *Ptr = Builder.CreateGEP(BasePtrTy->getPointerElementType(), BasePtr, 1058 IndexBase); 1059 Type *VecPtrTy = PointerType::getUnqual(Ty); 1060 Ptr = Builder.CreateBitCast(Ptr, VecPtrTy); 1061 1062 (void)Builder.CreateMaskedStore(Val, Ptr, Alignment, Mask); 1063 1064 return IC.eraseInstFromFunction(II); 1065 } 1066 1067 return None; 1068 } 1069 1070 static Optional<Instruction *> instCombineSVESDIV(InstCombiner &IC, 1071 IntrinsicInst &II) { 1072 IRBuilder<> Builder(II.getContext()); 1073 Builder.SetInsertPoint(&II); 1074 Type *Int32Ty = Builder.getInt32Ty(); 1075 Value *Pred = II.getOperand(0); 1076 Value *Vec = II.getOperand(1); 1077 Value *DivVec = II.getOperand(2); 1078 1079 Value *SplatValue = getSplatValue(DivVec); 1080 ConstantInt *SplatConstantInt = dyn_cast_or_null<ConstantInt>(SplatValue); 1081 if (!SplatConstantInt) 1082 return None; 1083 APInt Divisor = SplatConstantInt->getValue(); 1084 1085 if (Divisor.isPowerOf2()) { 1086 Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2()); 1087 auto ASRD = Builder.CreateIntrinsic( 1088 Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2}); 1089 return IC.replaceInstUsesWith(II, ASRD); 1090 } 1091 if (Divisor.isNegatedPowerOf2()) { 1092 Divisor.negate(); 1093 Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2()); 1094 auto ASRD = Builder.CreateIntrinsic( 1095 Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2}); 1096 auto NEG = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_neg, 1097 {ASRD->getType()}, {ASRD, Pred, ASRD}); 1098 return IC.replaceInstUsesWith(II, NEG); 1099 } 1100 1101 return None; 1102 } 1103 1104 Optional<Instruction *> 1105 AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC, 1106 IntrinsicInst &II) const { 1107 Intrinsic::ID IID = II.getIntrinsicID(); 1108 switch (IID) { 1109 default: 1110 break; 1111 case Intrinsic::aarch64_sve_convert_from_svbool: 1112 return instCombineConvertFromSVBool(IC, II); 1113 case Intrinsic::aarch64_sve_dup: 1114 return instCombineSVEDup(IC, II); 1115 case Intrinsic::aarch64_sve_dup_x: 1116 return instCombineSVEDupX(IC, II); 1117 case Intrinsic::aarch64_sve_cmpne: 1118 case Intrinsic::aarch64_sve_cmpne_wide: 1119 return instCombineSVECmpNE(IC, II); 1120 case Intrinsic::aarch64_sve_rdffr: 1121 return instCombineRDFFR(IC, II); 1122 case Intrinsic::aarch64_sve_lasta: 1123 case Intrinsic::aarch64_sve_lastb: 1124 return instCombineSVELast(IC, II); 1125 case Intrinsic::aarch64_sve_cntd: 1126 return instCombineSVECntElts(IC, II, 2); 1127 case Intrinsic::aarch64_sve_cntw: 1128 return instCombineSVECntElts(IC, II, 4); 1129 case Intrinsic::aarch64_sve_cnth: 1130 return instCombineSVECntElts(IC, II, 8); 1131 case Intrinsic::aarch64_sve_cntb: 1132 return instCombineSVECntElts(IC, II, 16); 1133 case Intrinsic::aarch64_sve_ptest_any: 1134 case Intrinsic::aarch64_sve_ptest_first: 1135 case Intrinsic::aarch64_sve_ptest_last: 1136 return instCombineSVEPTest(IC, II); 1137 case Intrinsic::aarch64_sve_mul: 1138 case Intrinsic::aarch64_sve_fmul: 1139 return instCombineSVEVectorMul(IC, II); 1140 case Intrinsic::aarch64_sve_fadd: 1141 return instCombineSVEVectorFAdd(IC, II); 1142 case Intrinsic::aarch64_sve_fsub: 1143 return instCombineSVEVectorBinOp(IC, II); 1144 case Intrinsic::aarch64_sve_tbl: 1145 return instCombineSVETBL(IC, II); 1146 case Intrinsic::aarch64_sve_uunpkhi: 1147 case Intrinsic::aarch64_sve_uunpklo: 1148 case Intrinsic::aarch64_sve_sunpkhi: 1149 case Intrinsic::aarch64_sve_sunpklo: 1150 return instCombineSVEUnpack(IC, II); 1151 case Intrinsic::aarch64_sve_tuple_get: 1152 return instCombineSVETupleGet(IC, II); 1153 case Intrinsic::aarch64_sve_zip1: 1154 case Intrinsic::aarch64_sve_zip2: 1155 return instCombineSVEZip(IC, II); 1156 case Intrinsic::aarch64_sve_ld1_gather_index: 1157 return instCombineLD1GatherIndex(IC, II); 1158 case Intrinsic::aarch64_sve_st1_scatter_index: 1159 return instCombineST1ScatterIndex(IC, II); 1160 case Intrinsic::aarch64_sve_ld1: 1161 return instCombineSVELD1(IC, II, DL); 1162 case Intrinsic::aarch64_sve_st1: 1163 return instCombineSVEST1(IC, II, DL); 1164 case Intrinsic::aarch64_sve_sdiv: 1165 return instCombineSVESDIV(IC, II); 1166 } 1167 1168 return None; 1169 } 1170 1171 Optional<Value *> AArch64TTIImpl::simplifyDemandedVectorEltsIntrinsic( 1172 InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts, 1173 APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, 1174 std::function<void(Instruction *, unsigned, APInt, APInt &)> 1175 SimplifyAndSetOp) const { 1176 switch (II.getIntrinsicID()) { 1177 default: 1178 break; 1179 case Intrinsic::aarch64_neon_fcvtxn: 1180 case Intrinsic::aarch64_neon_rshrn: 1181 case Intrinsic::aarch64_neon_sqrshrn: 1182 case Intrinsic::aarch64_neon_sqrshrun: 1183 case Intrinsic::aarch64_neon_sqshrn: 1184 case Intrinsic::aarch64_neon_sqshrun: 1185 case Intrinsic::aarch64_neon_sqxtn: 1186 case Intrinsic::aarch64_neon_sqxtun: 1187 case Intrinsic::aarch64_neon_uqrshrn: 1188 case Intrinsic::aarch64_neon_uqshrn: 1189 case Intrinsic::aarch64_neon_uqxtn: 1190 SimplifyAndSetOp(&II, 0, OrigDemandedElts, UndefElts); 1191 break; 1192 } 1193 1194 return None; 1195 } 1196 1197 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode, 1198 ArrayRef<const Value *> Args) { 1199 1200 // A helper that returns a vector type from the given type. The number of 1201 // elements in type Ty determine the vector width. 1202 auto toVectorTy = [&](Type *ArgTy) { 1203 return VectorType::get(ArgTy->getScalarType(), 1204 cast<VectorType>(DstTy)->getElementCount()); 1205 }; 1206 1207 // Exit early if DstTy is not a vector type whose elements are at least 1208 // 16-bits wide. 1209 if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16) 1210 return false; 1211 1212 // Determine if the operation has a widening variant. We consider both the 1213 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the 1214 // instructions. 1215 // 1216 // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we 1217 // verify that their extending operands are eliminated during code 1218 // generation. 1219 switch (Opcode) { 1220 case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2). 1221 case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2). 1222 break; 1223 default: 1224 return false; 1225 } 1226 1227 // To be a widening instruction (either the "wide" or "long" versions), the 1228 // second operand must be a sign- or zero extend having a single user. We 1229 // only consider extends having a single user because they may otherwise not 1230 // be eliminated. 1231 if (Args.size() != 2 || 1232 (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) || 1233 !Args[1]->hasOneUse()) 1234 return false; 1235 auto *Extend = cast<CastInst>(Args[1]); 1236 1237 // Legalize the destination type and ensure it can be used in a widening 1238 // operation. 1239 auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy); 1240 unsigned DstElTySize = DstTyL.second.getScalarSizeInBits(); 1241 if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits()) 1242 return false; 1243 1244 // Legalize the source type and ensure it can be used in a widening 1245 // operation. 1246 auto *SrcTy = toVectorTy(Extend->getSrcTy()); 1247 auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy); 1248 unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits(); 1249 if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits()) 1250 return false; 1251 1252 // Get the total number of vector elements in the legalized types. 1253 InstructionCost NumDstEls = 1254 DstTyL.first * DstTyL.second.getVectorMinNumElements(); 1255 InstructionCost NumSrcEls = 1256 SrcTyL.first * SrcTyL.second.getVectorMinNumElements(); 1257 1258 // Return true if the legalized types have the same number of vector elements 1259 // and the destination element type size is twice that of the source type. 1260 return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize; 1261 } 1262 1263 InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 1264 Type *Src, 1265 TTI::CastContextHint CCH, 1266 TTI::TargetCostKind CostKind, 1267 const Instruction *I) { 1268 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1269 assert(ISD && "Invalid opcode"); 1270 1271 // If the cast is observable, and it is used by a widening instruction (e.g., 1272 // uaddl, saddw, etc.), it may be free. 1273 if (I && I->hasOneUse()) { 1274 auto *SingleUser = cast<Instruction>(*I->user_begin()); 1275 SmallVector<const Value *, 4> Operands(SingleUser->operand_values()); 1276 if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) { 1277 // If the cast is the second operand, it is free. We will generate either 1278 // a "wide" or "long" version of the widening instruction. 1279 if (I == SingleUser->getOperand(1)) 1280 return 0; 1281 // If the cast is not the second operand, it will be free if it looks the 1282 // same as the second operand. In this case, we will generate a "long" 1283 // version of the widening instruction. 1284 if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1))) 1285 if (I->getOpcode() == unsigned(Cast->getOpcode()) && 1286 cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy()) 1287 return 0; 1288 } 1289 } 1290 1291 // TODO: Allow non-throughput costs that aren't binary. 1292 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { 1293 if (CostKind != TTI::TCK_RecipThroughput) 1294 return Cost == 0 ? 0 : 1; 1295 return Cost; 1296 }; 1297 1298 EVT SrcTy = TLI->getValueType(DL, Src); 1299 EVT DstTy = TLI->getValueType(DL, Dst); 1300 1301 if (!SrcTy.isSimple() || !DstTy.isSimple()) 1302 return AdjustCost( 1303 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 1304 1305 static const TypeConversionCostTblEntry 1306 ConversionTbl[] = { 1307 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 1308 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 1309 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 1310 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 1311 1312 // Truncations on nxvmiN 1313 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 }, 1314 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 }, 1315 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 }, 1316 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 }, 1317 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 }, 1318 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 }, 1319 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 }, 1320 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 }, 1321 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 }, 1322 { ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 1 }, 1323 { ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 }, 1324 { ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 }, 1325 { ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 }, 1326 { ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 }, 1327 { ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 }, 1328 { ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 }, 1329 1330 // The number of shll instructions for the extension. 1331 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 1332 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 1333 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 1334 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 1335 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 1336 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 1337 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 1338 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 1339 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 1340 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 1341 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 1342 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 1343 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 1344 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 1345 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 1346 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 1347 1348 // LowerVectorINT_TO_FP: 1349 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 1350 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 1351 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 1352 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 1353 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 1354 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 1355 1356 // Complex: to v2f32 1357 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 1358 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 1359 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 1360 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 1361 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 1362 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 1363 1364 // Complex: to v4f32 1365 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 }, 1366 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 1367 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 1368 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 1369 1370 // Complex: to v8f32 1371 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 1372 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 1373 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 1374 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 1375 1376 // Complex: to v16f32 1377 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 1378 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 1379 1380 // Complex: to v2f64 1381 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 1382 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 1383 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 1384 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 1385 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 1386 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 1387 1388 1389 // LowerVectorFP_TO_INT 1390 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 }, 1391 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 1392 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, 1393 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, 1394 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 1395 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, 1396 1397 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext). 1398 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 }, 1399 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 }, 1400 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 }, 1401 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 }, 1402 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 }, 1403 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 }, 1404 1405 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2 1406 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 1407 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 }, 1408 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 1409 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 }, 1410 1411 // Complex, from nxv2f32. 1412 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 }, 1413 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 }, 1414 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 }, 1415 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f32, 1 }, 1416 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 }, 1417 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 }, 1418 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 }, 1419 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f32, 1 }, 1420 1421 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2. 1422 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 1423 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 }, 1424 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 }, 1425 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 1426 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 }, 1427 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 }, 1428 1429 // Complex, from nxv2f64. 1430 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 }, 1431 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 }, 1432 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 }, 1433 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f64, 1 }, 1434 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 }, 1435 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 }, 1436 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 }, 1437 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f64, 1 }, 1438 1439 // Complex, from nxv4f32. 1440 { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 }, 1441 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 }, 1442 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 }, 1443 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f32, 1 }, 1444 { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 }, 1445 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 }, 1446 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 }, 1447 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f32, 1 }, 1448 1449 // Complex, from nxv8f64. Illegal -> illegal conversions not required. 1450 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 }, 1451 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f64, 7 }, 1452 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 }, 1453 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f64, 7 }, 1454 1455 // Complex, from nxv4f64. Illegal -> illegal conversions not required. 1456 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 }, 1457 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 }, 1458 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f64, 3 }, 1459 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 }, 1460 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 }, 1461 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f64, 3 }, 1462 1463 // Complex, from nxv8f32. Illegal -> illegal conversions not required. 1464 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 }, 1465 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f32, 3 }, 1466 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 }, 1467 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f32, 3 }, 1468 1469 // Complex, from nxv8f16. 1470 { ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 }, 1471 { ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 }, 1472 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 }, 1473 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f16, 1 }, 1474 { ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 }, 1475 { ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 }, 1476 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 }, 1477 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f16, 1 }, 1478 1479 // Complex, from nxv4f16. 1480 { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 }, 1481 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 }, 1482 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 }, 1483 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f16, 1 }, 1484 { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 }, 1485 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 }, 1486 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 }, 1487 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f16, 1 }, 1488 1489 // Complex, from nxv2f16. 1490 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 }, 1491 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 }, 1492 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 }, 1493 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f16, 1 }, 1494 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 }, 1495 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 }, 1496 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 }, 1497 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f16, 1 }, 1498 1499 // Truncate from nxvmf32 to nxvmf16. 1500 { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 }, 1501 { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 }, 1502 { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 }, 1503 1504 // Truncate from nxvmf64 to nxvmf16. 1505 { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 }, 1506 { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 }, 1507 { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 }, 1508 1509 // Truncate from nxvmf64 to nxvmf32. 1510 { ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 }, 1511 { ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 }, 1512 { ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 }, 1513 1514 // Extend from nxvmf16 to nxvmf32. 1515 { ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1}, 1516 { ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1}, 1517 { ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2}, 1518 1519 // Extend from nxvmf16 to nxvmf64. 1520 { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1}, 1521 { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2}, 1522 { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4}, 1523 1524 // Extend from nxvmf32 to nxvmf64. 1525 { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1}, 1526 { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2}, 1527 { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6}, 1528 1529 }; 1530 1531 if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD, 1532 DstTy.getSimpleVT(), 1533 SrcTy.getSimpleVT())) 1534 return AdjustCost(Entry->Cost); 1535 1536 return AdjustCost( 1537 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 1538 } 1539 1540 InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, 1541 Type *Dst, 1542 VectorType *VecTy, 1543 unsigned Index) { 1544 1545 // Make sure we were given a valid extend opcode. 1546 assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) && 1547 "Invalid opcode"); 1548 1549 // We are extending an element we extract from a vector, so the source type 1550 // of the extend is the element type of the vector. 1551 auto *Src = VecTy->getElementType(); 1552 1553 // Sign- and zero-extends are for integer types only. 1554 assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type"); 1555 1556 // Get the cost for the extract. We compute the cost (if any) for the extend 1557 // below. 1558 InstructionCost Cost = 1559 getVectorInstrCost(Instruction::ExtractElement, VecTy, Index); 1560 1561 // Legalize the types. 1562 auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy); 1563 auto DstVT = TLI->getValueType(DL, Dst); 1564 auto SrcVT = TLI->getValueType(DL, Src); 1565 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1566 1567 // If the resulting type is still a vector and the destination type is legal, 1568 // we may get the extension for free. If not, get the default cost for the 1569 // extend. 1570 if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT)) 1571 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 1572 CostKind); 1573 1574 // The destination type should be larger than the element type. If not, get 1575 // the default cost for the extend. 1576 if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits()) 1577 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 1578 CostKind); 1579 1580 switch (Opcode) { 1581 default: 1582 llvm_unreachable("Opcode should be either SExt or ZExt"); 1583 1584 // For sign-extends, we only need a smov, which performs the extension 1585 // automatically. 1586 case Instruction::SExt: 1587 return Cost; 1588 1589 // For zero-extends, the extend is performed automatically by a umov unless 1590 // the destination type is i64 and the element type is i8 or i16. 1591 case Instruction::ZExt: 1592 if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u) 1593 return Cost; 1594 } 1595 1596 // If we are unable to perform the extend for free, get the default cost. 1597 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 1598 CostKind); 1599 } 1600 1601 InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode, 1602 TTI::TargetCostKind CostKind, 1603 const Instruction *I) { 1604 if (CostKind != TTI::TCK_RecipThroughput) 1605 return Opcode == Instruction::PHI ? 0 : 1; 1606 assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind"); 1607 // Branches are assumed to be predicted. 1608 return 0; 1609 } 1610 1611 InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 1612 unsigned Index) { 1613 assert(Val->isVectorTy() && "This must be a vector type"); 1614 1615 if (Index != -1U) { 1616 // Legalize the type. 1617 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); 1618 1619 // This type is legalized to a scalar type. 1620 if (!LT.second.isVector()) 1621 return 0; 1622 1623 // The type may be split. For fixed-width vectors we can normalize the 1624 // index to the new type. 1625 if (LT.second.isFixedLengthVector()) { 1626 unsigned Width = LT.second.getVectorNumElements(); 1627 Index = Index % Width; 1628 } 1629 1630 // The element at index zero is already inside the vector. 1631 if (Index == 0) 1632 return 0; 1633 } 1634 1635 // All other insert/extracts cost this much. 1636 return ST->getVectorInsertExtractBaseCost(); 1637 } 1638 1639 InstructionCost AArch64TTIImpl::getArithmeticInstrCost( 1640 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 1641 TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, 1642 TTI::OperandValueProperties Opd1PropInfo, 1643 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 1644 const Instruction *CxtI) { 1645 // TODO: Handle more cost kinds. 1646 if (CostKind != TTI::TCK_RecipThroughput) 1647 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1648 Opd2Info, Opd1PropInfo, 1649 Opd2PropInfo, Args, CxtI); 1650 1651 // Legalize the type. 1652 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 1653 1654 // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.), 1655 // add in the widening overhead specified by the sub-target. Since the 1656 // extends feeding widening instructions are performed automatically, they 1657 // aren't present in the generated code and have a zero cost. By adding a 1658 // widening overhead here, we attach the total cost of the combined operation 1659 // to the widening instruction. 1660 InstructionCost Cost = 0; 1661 if (isWideningInstruction(Ty, Opcode, Args)) 1662 Cost += ST->getWideningBaseCost(); 1663 1664 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1665 1666 switch (ISD) { 1667 default: 1668 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1669 Opd2Info, 1670 Opd1PropInfo, Opd2PropInfo); 1671 case ISD::SDIV: 1672 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue && 1673 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 1674 // On AArch64, scalar signed division by constants power-of-two are 1675 // normally expanded to the sequence ADD + CMP + SELECT + SRA. 1676 // The OperandValue properties many not be same as that of previous 1677 // operation; conservatively assume OP_None. 1678 Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, 1679 Opd1Info, Opd2Info, 1680 TargetTransformInfo::OP_None, 1681 TargetTransformInfo::OP_None); 1682 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, 1683 Opd1Info, Opd2Info, 1684 TargetTransformInfo::OP_None, 1685 TargetTransformInfo::OP_None); 1686 Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind, 1687 Opd1Info, Opd2Info, 1688 TargetTransformInfo::OP_None, 1689 TargetTransformInfo::OP_None); 1690 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, 1691 Opd1Info, Opd2Info, 1692 TargetTransformInfo::OP_None, 1693 TargetTransformInfo::OP_None); 1694 return Cost; 1695 } 1696 LLVM_FALLTHROUGH; 1697 case ISD::UDIV: 1698 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) { 1699 auto VT = TLI->getValueType(DL, Ty); 1700 if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) { 1701 // Vector signed division by constant are expanded to the 1702 // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division 1703 // to MULHS + SUB + SRL + ADD + SRL. 1704 InstructionCost MulCost = getArithmeticInstrCost( 1705 Instruction::Mul, Ty, CostKind, Opd1Info, Opd2Info, 1706 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1707 InstructionCost AddCost = getArithmeticInstrCost( 1708 Instruction::Add, Ty, CostKind, Opd1Info, Opd2Info, 1709 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1710 InstructionCost ShrCost = getArithmeticInstrCost( 1711 Instruction::AShr, Ty, CostKind, Opd1Info, Opd2Info, 1712 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1713 return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1; 1714 } 1715 } 1716 1717 Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1718 Opd2Info, 1719 Opd1PropInfo, Opd2PropInfo); 1720 if (Ty->isVectorTy()) { 1721 // On AArch64, vector divisions are not supported natively and are 1722 // expanded into scalar divisions of each pair of elements. 1723 Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind, 1724 Opd1Info, Opd2Info, Opd1PropInfo, 1725 Opd2PropInfo); 1726 Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind, 1727 Opd1Info, Opd2Info, Opd1PropInfo, 1728 Opd2PropInfo); 1729 // TODO: if one of the arguments is scalar, then it's not necessary to 1730 // double the cost of handling the vector elements. 1731 Cost += Cost; 1732 } 1733 return Cost; 1734 1735 case ISD::MUL: 1736 if (LT.second != MVT::v2i64) 1737 return (Cost + 1) * LT.first; 1738 // Since we do not have a MUL.2d instruction, a mul <2 x i64> is expensive 1739 // as elements are extracted from the vectors and the muls scalarized. 1740 // As getScalarizationOverhead is a bit too pessimistic, we estimate the 1741 // cost for a i64 vector directly here, which is: 1742 // - four i64 extracts, 1743 // - two i64 inserts, and 1744 // - two muls. 1745 // So, for a v2i64 with LT.First = 1 the cost is 8, and for a v4i64 with 1746 // LT.first = 2 the cost is 16. 1747 return LT.first * 8; 1748 case ISD::ADD: 1749 case ISD::XOR: 1750 case ISD::OR: 1751 case ISD::AND: 1752 // These nodes are marked as 'custom' for combining purposes only. 1753 // We know that they are legal. See LowerAdd in ISelLowering. 1754 return (Cost + 1) * LT.first; 1755 1756 case ISD::FADD: 1757 case ISD::FSUB: 1758 case ISD::FMUL: 1759 case ISD::FDIV: 1760 case ISD::FNEG: 1761 // These nodes are marked as 'custom' just to lower them to SVE. 1762 // We know said lowering will incur no additional cost. 1763 if (!Ty->getScalarType()->isFP128Ty()) 1764 return (Cost + 2) * LT.first; 1765 1766 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1767 Opd2Info, 1768 Opd1PropInfo, Opd2PropInfo); 1769 } 1770 } 1771 1772 InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty, 1773 ScalarEvolution *SE, 1774 const SCEV *Ptr) { 1775 // Address computations in vectorized code with non-consecutive addresses will 1776 // likely result in more instructions compared to scalar code where the 1777 // computation can more often be merged into the index mode. The resulting 1778 // extra micro-ops can significantly decrease throughput. 1779 unsigned NumVectorInstToHideOverhead = 10; 1780 int MaxMergeDistance = 64; 1781 1782 if (Ty->isVectorTy() && SE && 1783 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 1784 return NumVectorInstToHideOverhead; 1785 1786 // In many cases the address computation is not merged into the instruction 1787 // addressing mode. 1788 return 1; 1789 } 1790 1791 InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 1792 Type *CondTy, 1793 CmpInst::Predicate VecPred, 1794 TTI::TargetCostKind CostKind, 1795 const Instruction *I) { 1796 // TODO: Handle other cost kinds. 1797 if (CostKind != TTI::TCK_RecipThroughput) 1798 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, 1799 I); 1800 1801 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1802 // We don't lower some vector selects well that are wider than the register 1803 // width. 1804 if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) { 1805 // We would need this many instructions to hide the scalarization happening. 1806 const int AmortizationCost = 20; 1807 1808 // If VecPred is not set, check if we can get a predicate from the context 1809 // instruction, if its type matches the requested ValTy. 1810 if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) { 1811 CmpInst::Predicate CurrentPred; 1812 if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(), 1813 m_Value()))) 1814 VecPred = CurrentPred; 1815 } 1816 // Check if we have a compare/select chain that can be lowered using CMxx & 1817 // BFI pair. 1818 if (CmpInst::isIntPredicate(VecPred)) { 1819 static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 1820 MVT::v8i16, MVT::v2i32, MVT::v4i32, 1821 MVT::v2i64}; 1822 auto LT = TLI->getTypeLegalizationCost(DL, ValTy); 1823 if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; })) 1824 return LT.first; 1825 } 1826 1827 static const TypeConversionCostTblEntry 1828 VectorSelectTbl[] = { 1829 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 }, 1830 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 }, 1831 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 }, 1832 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost }, 1833 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost }, 1834 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost } 1835 }; 1836 1837 EVT SelCondTy = TLI->getValueType(DL, CondTy); 1838 EVT SelValTy = TLI->getValueType(DL, ValTy); 1839 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 1840 if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD, 1841 SelCondTy.getSimpleVT(), 1842 SelValTy.getSimpleVT())) 1843 return Entry->Cost; 1844 } 1845 } 1846 // The base case handles scalable vectors fine for now, since it treats the 1847 // cost as 1 * legalization cost. 1848 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 1849 } 1850 1851 AArch64TTIImpl::TTI::MemCmpExpansionOptions 1852 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 1853 TTI::MemCmpExpansionOptions Options; 1854 if (ST->requiresStrictAlign()) { 1855 // TODO: Add cost modeling for strict align. Misaligned loads expand to 1856 // a bunch of instructions when strict align is enabled. 1857 return Options; 1858 } 1859 Options.AllowOverlappingLoads = true; 1860 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 1861 Options.NumLoadsPerBlock = Options.MaxNumLoads; 1862 // TODO: Though vector loads usually perform well on AArch64, in some targets 1863 // they may wake up the FP unit, which raises the power consumption. Perhaps 1864 // they could be used with no holds barred (-O3). 1865 Options.LoadSizes = {8, 4, 2, 1}; 1866 return Options; 1867 } 1868 1869 InstructionCost 1870 AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 1871 Align Alignment, unsigned AddressSpace, 1872 TTI::TargetCostKind CostKind) { 1873 if (useNeonVector(Src)) 1874 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1875 CostKind); 1876 auto LT = TLI->getTypeLegalizationCost(DL, Src); 1877 if (!LT.first.isValid()) 1878 return InstructionCost::getInvalid(); 1879 1880 // The code-generator is currently not able to handle scalable vectors 1881 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting 1882 // it. This change will be removed when code-generation for these types is 1883 // sufficiently reliable. 1884 if (cast<VectorType>(Src)->getElementCount() == ElementCount::getScalable(1)) 1885 return InstructionCost::getInvalid(); 1886 1887 return LT.first * 2; 1888 } 1889 1890 static unsigned getSVEGatherScatterOverhead(unsigned Opcode) { 1891 return Opcode == Instruction::Load ? SVEGatherOverhead : SVEScatterOverhead; 1892 } 1893 1894 InstructionCost AArch64TTIImpl::getGatherScatterOpCost( 1895 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 1896 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) { 1897 if (useNeonVector(DataTy)) 1898 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 1899 Alignment, CostKind, I); 1900 auto *VT = cast<VectorType>(DataTy); 1901 auto LT = TLI->getTypeLegalizationCost(DL, DataTy); 1902 if (!LT.first.isValid()) 1903 return InstructionCost::getInvalid(); 1904 1905 // The code-generator is currently not able to handle scalable vectors 1906 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting 1907 // it. This change will be removed when code-generation for these types is 1908 // sufficiently reliable. 1909 if (cast<VectorType>(DataTy)->getElementCount() == 1910 ElementCount::getScalable(1)) 1911 return InstructionCost::getInvalid(); 1912 1913 ElementCount LegalVF = LT.second.getVectorElementCount(); 1914 InstructionCost MemOpCost = 1915 getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind, I); 1916 // Add on an overhead cost for using gathers/scatters. 1917 // TODO: At the moment this is applied unilaterally for all CPUs, but at some 1918 // point we may want a per-CPU overhead. 1919 MemOpCost *= getSVEGatherScatterOverhead(Opcode); 1920 return LT.first * MemOpCost * getMaxNumElements(LegalVF); 1921 } 1922 1923 bool AArch64TTIImpl::useNeonVector(const Type *Ty) const { 1924 return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors(); 1925 } 1926 1927 InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty, 1928 MaybeAlign Alignment, 1929 unsigned AddressSpace, 1930 TTI::TargetCostKind CostKind, 1931 const Instruction *I) { 1932 EVT VT = TLI->getValueType(DL, Ty, true); 1933 // Type legalization can't handle structs 1934 if (VT == MVT::Other) 1935 return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace, 1936 CostKind); 1937 1938 auto LT = TLI->getTypeLegalizationCost(DL, Ty); 1939 if (!LT.first.isValid()) 1940 return InstructionCost::getInvalid(); 1941 1942 // The code-generator is currently not able to handle scalable vectors 1943 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting 1944 // it. This change will be removed when code-generation for these types is 1945 // sufficiently reliable. 1946 if (auto *VTy = dyn_cast<ScalableVectorType>(Ty)) 1947 if (VTy->getElementCount() == ElementCount::getScalable(1)) 1948 return InstructionCost::getInvalid(); 1949 1950 // TODO: consider latency as well for TCK_SizeAndLatency. 1951 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) 1952 return LT.first; 1953 1954 if (CostKind != TTI::TCK_RecipThroughput) 1955 return 1; 1956 1957 if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store && 1958 LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) { 1959 // Unaligned stores are extremely inefficient. We don't split all 1960 // unaligned 128-bit stores because the negative impact that has shown in 1961 // practice on inlined block copy code. 1962 // We make such stores expensive so that we will only vectorize if there 1963 // are 6 other instructions getting vectorized. 1964 const int AmortizationCost = 6; 1965 1966 return LT.first * 2 * AmortizationCost; 1967 } 1968 1969 // Check truncating stores and extending loads. 1970 if (useNeonVector(Ty) && 1971 Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) { 1972 // v4i8 types are lowered to scalar a load/store and sshll/xtn. 1973 if (VT == MVT::v4i8) 1974 return 2; 1975 // Otherwise we need to scalarize. 1976 return cast<FixedVectorType>(Ty)->getNumElements() * 2; 1977 } 1978 1979 return LT.first; 1980 } 1981 1982 InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost( 1983 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1984 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 1985 bool UseMaskForCond, bool UseMaskForGaps) { 1986 assert(Factor >= 2 && "Invalid interleave factor"); 1987 auto *VecVTy = cast<FixedVectorType>(VecTy); 1988 1989 if (!UseMaskForCond && !UseMaskForGaps && 1990 Factor <= TLI->getMaxSupportedInterleaveFactor()) { 1991 unsigned NumElts = VecVTy->getNumElements(); 1992 auto *SubVecTy = 1993 FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor); 1994 1995 // ldN/stN only support legal vector types of size 64 or 128 in bits. 1996 // Accesses having vector types that are a multiple of 128 bits can be 1997 // matched to more than one ldN/stN instruction. 1998 bool UseScalable; 1999 if (NumElts % Factor == 0 && 2000 TLI->isLegalInterleavedAccessType(SubVecTy, DL, UseScalable)) 2001 return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL, UseScalable); 2002 } 2003 2004 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 2005 Alignment, AddressSpace, CostKind, 2006 UseMaskForCond, UseMaskForGaps); 2007 } 2008 2009 InstructionCost 2010 AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { 2011 InstructionCost Cost = 0; 2012 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 2013 for (auto *I : Tys) { 2014 if (!I->isVectorTy()) 2015 continue; 2016 if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() == 2017 128) 2018 Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) + 2019 getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind); 2020 } 2021 return Cost; 2022 } 2023 2024 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) { 2025 return ST->getMaxInterleaveFactor(); 2026 } 2027 2028 // For Falkor, we want to avoid having too many strided loads in a loop since 2029 // that can exhaust the HW prefetcher resources. We adjust the unroller 2030 // MaxCount preference below to attempt to ensure unrolling doesn't create too 2031 // many strided loads. 2032 static void 2033 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE, 2034 TargetTransformInfo::UnrollingPreferences &UP) { 2035 enum { MaxStridedLoads = 7 }; 2036 auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) { 2037 int StridedLoads = 0; 2038 // FIXME? We could make this more precise by looking at the CFG and 2039 // e.g. not counting loads in each side of an if-then-else diamond. 2040 for (const auto BB : L->blocks()) { 2041 for (auto &I : *BB) { 2042 LoadInst *LMemI = dyn_cast<LoadInst>(&I); 2043 if (!LMemI) 2044 continue; 2045 2046 Value *PtrValue = LMemI->getPointerOperand(); 2047 if (L->isLoopInvariant(PtrValue)) 2048 continue; 2049 2050 const SCEV *LSCEV = SE.getSCEV(PtrValue); 2051 const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV); 2052 if (!LSCEVAddRec || !LSCEVAddRec->isAffine()) 2053 continue; 2054 2055 // FIXME? We could take pairing of unrolled load copies into account 2056 // by looking at the AddRec, but we would probably have to limit this 2057 // to loops with no stores or other memory optimization barriers. 2058 ++StridedLoads; 2059 // We've seen enough strided loads that seeing more won't make a 2060 // difference. 2061 if (StridedLoads > MaxStridedLoads / 2) 2062 return StridedLoads; 2063 } 2064 } 2065 return StridedLoads; 2066 }; 2067 2068 int StridedLoads = countStridedLoads(L, SE); 2069 LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads 2070 << " strided loads\n"); 2071 // Pick the largest power of 2 unroll count that won't result in too many 2072 // strided loads. 2073 if (StridedLoads) { 2074 UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads); 2075 LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to " 2076 << UP.MaxCount << '\n'); 2077 } 2078 } 2079 2080 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 2081 TTI::UnrollingPreferences &UP, 2082 OptimizationRemarkEmitter *ORE) { 2083 // Enable partial unrolling and runtime unrolling. 2084 BaseT::getUnrollingPreferences(L, SE, UP, ORE); 2085 2086 UP.UpperBound = true; 2087 2088 // For inner loop, it is more likely to be a hot one, and the runtime check 2089 // can be promoted out from LICM pass, so the overhead is less, let's try 2090 // a larger threshold to unroll more loops. 2091 if (L->getLoopDepth() > 1) 2092 UP.PartialThreshold *= 2; 2093 2094 // Disable partial & runtime unrolling on -Os. 2095 UP.PartialOptSizeThreshold = 0; 2096 2097 if (ST->getProcFamily() == AArch64Subtarget::Falkor && 2098 EnableFalkorHWPFUnrollFix) 2099 getFalkorUnrollingPreferences(L, SE, UP); 2100 2101 // Scan the loop: don't unroll loops with calls as this could prevent 2102 // inlining. Don't unroll vector loops either, as they don't benefit much from 2103 // unrolling. 2104 for (auto *BB : L->getBlocks()) { 2105 for (auto &I : *BB) { 2106 // Don't unroll vectorised loop. 2107 if (I.getType()->isVectorTy()) 2108 return; 2109 2110 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 2111 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 2112 if (!isLoweredToCall(F)) 2113 continue; 2114 } 2115 return; 2116 } 2117 } 2118 } 2119 2120 // Enable runtime unrolling for in-order models 2121 // If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by 2122 // checking for that case, we can ensure that the default behaviour is 2123 // unchanged 2124 if (ST->getProcFamily() != AArch64Subtarget::Others && 2125 !ST->getSchedModel().isOutOfOrder()) { 2126 UP.Runtime = true; 2127 UP.Partial = true; 2128 UP.UnrollRemainder = true; 2129 UP.DefaultUnrollRuntimeCount = 4; 2130 2131 UP.UnrollAndJam = true; 2132 UP.UnrollAndJamInnerLoopThreshold = 60; 2133 } 2134 } 2135 2136 void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 2137 TTI::PeelingPreferences &PP) { 2138 BaseT::getPeelingPreferences(L, SE, PP); 2139 } 2140 2141 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 2142 Type *ExpectedType) { 2143 switch (Inst->getIntrinsicID()) { 2144 default: 2145 return nullptr; 2146 case Intrinsic::aarch64_neon_st2: 2147 case Intrinsic::aarch64_neon_st3: 2148 case Intrinsic::aarch64_neon_st4: { 2149 // Create a struct type 2150 StructType *ST = dyn_cast<StructType>(ExpectedType); 2151 if (!ST) 2152 return nullptr; 2153 unsigned NumElts = Inst->arg_size() - 1; 2154 if (ST->getNumElements() != NumElts) 2155 return nullptr; 2156 for (unsigned i = 0, e = NumElts; i != e; ++i) { 2157 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i)) 2158 return nullptr; 2159 } 2160 Value *Res = UndefValue::get(ExpectedType); 2161 IRBuilder<> Builder(Inst); 2162 for (unsigned i = 0, e = NumElts; i != e; ++i) { 2163 Value *L = Inst->getArgOperand(i); 2164 Res = Builder.CreateInsertValue(Res, L, i); 2165 } 2166 return Res; 2167 } 2168 case Intrinsic::aarch64_neon_ld2: 2169 case Intrinsic::aarch64_neon_ld3: 2170 case Intrinsic::aarch64_neon_ld4: 2171 if (Inst->getType() == ExpectedType) 2172 return Inst; 2173 return nullptr; 2174 } 2175 } 2176 2177 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 2178 MemIntrinsicInfo &Info) { 2179 switch (Inst->getIntrinsicID()) { 2180 default: 2181 break; 2182 case Intrinsic::aarch64_neon_ld2: 2183 case Intrinsic::aarch64_neon_ld3: 2184 case Intrinsic::aarch64_neon_ld4: 2185 Info.ReadMem = true; 2186 Info.WriteMem = false; 2187 Info.PtrVal = Inst->getArgOperand(0); 2188 break; 2189 case Intrinsic::aarch64_neon_st2: 2190 case Intrinsic::aarch64_neon_st3: 2191 case Intrinsic::aarch64_neon_st4: 2192 Info.ReadMem = false; 2193 Info.WriteMem = true; 2194 Info.PtrVal = Inst->getArgOperand(Inst->arg_size() - 1); 2195 break; 2196 } 2197 2198 switch (Inst->getIntrinsicID()) { 2199 default: 2200 return false; 2201 case Intrinsic::aarch64_neon_ld2: 2202 case Intrinsic::aarch64_neon_st2: 2203 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS; 2204 break; 2205 case Intrinsic::aarch64_neon_ld3: 2206 case Intrinsic::aarch64_neon_st3: 2207 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS; 2208 break; 2209 case Intrinsic::aarch64_neon_ld4: 2210 case Intrinsic::aarch64_neon_st4: 2211 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS; 2212 break; 2213 } 2214 return true; 2215 } 2216 2217 /// See if \p I should be considered for address type promotion. We check if \p 2218 /// I is a sext with right type and used in memory accesses. If it used in a 2219 /// "complex" getelementptr, we allow it to be promoted without finding other 2220 /// sext instructions that sign extended the same initial value. A getelementptr 2221 /// is considered as "complex" if it has more than 2 operands. 2222 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion( 2223 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) { 2224 bool Considerable = false; 2225 AllowPromotionWithoutCommonHeader = false; 2226 if (!isa<SExtInst>(&I)) 2227 return false; 2228 Type *ConsideredSExtType = 2229 Type::getInt64Ty(I.getParent()->getParent()->getContext()); 2230 if (I.getType() != ConsideredSExtType) 2231 return false; 2232 // See if the sext is the one with the right type and used in at least one 2233 // GetElementPtrInst. 2234 for (const User *U : I.users()) { 2235 if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) { 2236 Considerable = true; 2237 // A getelementptr is considered as "complex" if it has more than 2 2238 // operands. We will promote a SExt used in such complex GEP as we 2239 // expect some computation to be merged if they are done on 64 bits. 2240 if (GEPInst->getNumOperands() > 2) { 2241 AllowPromotionWithoutCommonHeader = true; 2242 break; 2243 } 2244 } 2245 } 2246 return Considerable; 2247 } 2248 2249 bool AArch64TTIImpl::isLegalToVectorizeReduction( 2250 const RecurrenceDescriptor &RdxDesc, ElementCount VF) const { 2251 if (!VF.isScalable()) 2252 return true; 2253 2254 Type *Ty = RdxDesc.getRecurrenceType(); 2255 if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty)) 2256 return false; 2257 2258 switch (RdxDesc.getRecurrenceKind()) { 2259 case RecurKind::Add: 2260 case RecurKind::FAdd: 2261 case RecurKind::And: 2262 case RecurKind::Or: 2263 case RecurKind::Xor: 2264 case RecurKind::SMin: 2265 case RecurKind::SMax: 2266 case RecurKind::UMin: 2267 case RecurKind::UMax: 2268 case RecurKind::FMin: 2269 case RecurKind::FMax: 2270 case RecurKind::SelectICmp: 2271 case RecurKind::SelectFCmp: 2272 case RecurKind::FMulAdd: 2273 return true; 2274 default: 2275 return false; 2276 } 2277 } 2278 2279 InstructionCost 2280 AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 2281 bool IsUnsigned, 2282 TTI::TargetCostKind CostKind) { 2283 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 2284 2285 if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16()) 2286 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind); 2287 2288 assert((isa<ScalableVectorType>(Ty) == isa<ScalableVectorType>(CondTy)) && 2289 "Both vector needs to be equally scalable"); 2290 2291 InstructionCost LegalizationCost = 0; 2292 if (LT.first > 1) { 2293 Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext()); 2294 unsigned MinMaxOpcode = 2295 Ty->isFPOrFPVectorTy() 2296 ? Intrinsic::maxnum 2297 : (IsUnsigned ? Intrinsic::umin : Intrinsic::smin); 2298 IntrinsicCostAttributes Attrs(MinMaxOpcode, LegalVTy, {LegalVTy, LegalVTy}); 2299 LegalizationCost = getIntrinsicInstrCost(Attrs, CostKind) * (LT.first - 1); 2300 } 2301 2302 return LegalizationCost + /*Cost of horizontal reduction*/ 2; 2303 } 2304 2305 InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE( 2306 unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) { 2307 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 2308 InstructionCost LegalizationCost = 0; 2309 if (LT.first > 1) { 2310 Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext()); 2311 LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind); 2312 LegalizationCost *= LT.first - 1; 2313 } 2314 2315 int ISD = TLI->InstructionOpcodeToISD(Opcode); 2316 assert(ISD && "Invalid opcode"); 2317 // Add the final reduction cost for the legal horizontal reduction 2318 switch (ISD) { 2319 case ISD::ADD: 2320 case ISD::AND: 2321 case ISD::OR: 2322 case ISD::XOR: 2323 case ISD::FADD: 2324 return LegalizationCost + 2; 2325 default: 2326 return InstructionCost::getInvalid(); 2327 } 2328 } 2329 2330 InstructionCost 2331 AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, 2332 Optional<FastMathFlags> FMF, 2333 TTI::TargetCostKind CostKind) { 2334 if (TTI::requiresOrderedReduction(FMF)) { 2335 if (auto *FixedVTy = dyn_cast<FixedVectorType>(ValTy)) { 2336 InstructionCost BaseCost = 2337 BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 2338 // Add on extra cost to reflect the extra overhead on some CPUs. We still 2339 // end up vectorizing for more computationally intensive loops. 2340 return BaseCost + FixedVTy->getNumElements(); 2341 } 2342 2343 if (Opcode != Instruction::FAdd) 2344 return InstructionCost::getInvalid(); 2345 2346 auto *VTy = cast<ScalableVectorType>(ValTy); 2347 InstructionCost Cost = 2348 getArithmeticInstrCost(Opcode, VTy->getScalarType(), CostKind); 2349 Cost *= getMaxNumElements(VTy->getElementCount()); 2350 return Cost; 2351 } 2352 2353 if (isa<ScalableVectorType>(ValTy)) 2354 return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind); 2355 2356 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 2357 MVT MTy = LT.second; 2358 int ISD = TLI->InstructionOpcodeToISD(Opcode); 2359 assert(ISD && "Invalid opcode"); 2360 2361 // Horizontal adds can use the 'addv' instruction. We model the cost of these 2362 // instructions as twice a normal vector add, plus 1 for each legalization 2363 // step (LT.first). This is the only arithmetic vector reduction operation for 2364 // which we have an instruction. 2365 // OR, XOR and AND costs should match the codegen from: 2366 // OR: llvm/test/CodeGen/AArch64/reduce-or.ll 2367 // XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll 2368 // AND: llvm/test/CodeGen/AArch64/reduce-and.ll 2369 static const CostTblEntry CostTblNoPairwise[]{ 2370 {ISD::ADD, MVT::v8i8, 2}, 2371 {ISD::ADD, MVT::v16i8, 2}, 2372 {ISD::ADD, MVT::v4i16, 2}, 2373 {ISD::ADD, MVT::v8i16, 2}, 2374 {ISD::ADD, MVT::v4i32, 2}, 2375 {ISD::OR, MVT::v8i8, 15}, 2376 {ISD::OR, MVT::v16i8, 17}, 2377 {ISD::OR, MVT::v4i16, 7}, 2378 {ISD::OR, MVT::v8i16, 9}, 2379 {ISD::OR, MVT::v2i32, 3}, 2380 {ISD::OR, MVT::v4i32, 5}, 2381 {ISD::OR, MVT::v2i64, 3}, 2382 {ISD::XOR, MVT::v8i8, 15}, 2383 {ISD::XOR, MVT::v16i8, 17}, 2384 {ISD::XOR, MVT::v4i16, 7}, 2385 {ISD::XOR, MVT::v8i16, 9}, 2386 {ISD::XOR, MVT::v2i32, 3}, 2387 {ISD::XOR, MVT::v4i32, 5}, 2388 {ISD::XOR, MVT::v2i64, 3}, 2389 {ISD::AND, MVT::v8i8, 15}, 2390 {ISD::AND, MVT::v16i8, 17}, 2391 {ISD::AND, MVT::v4i16, 7}, 2392 {ISD::AND, MVT::v8i16, 9}, 2393 {ISD::AND, MVT::v2i32, 3}, 2394 {ISD::AND, MVT::v4i32, 5}, 2395 {ISD::AND, MVT::v2i64, 3}, 2396 }; 2397 switch (ISD) { 2398 default: 2399 break; 2400 case ISD::ADD: 2401 if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy)) 2402 return (LT.first - 1) + Entry->Cost; 2403 break; 2404 case ISD::XOR: 2405 case ISD::AND: 2406 case ISD::OR: 2407 const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy); 2408 if (!Entry) 2409 break; 2410 auto *ValVTy = cast<FixedVectorType>(ValTy); 2411 if (!ValVTy->getElementType()->isIntegerTy(1) && 2412 MTy.getVectorNumElements() <= ValVTy->getNumElements() && 2413 isPowerOf2_32(ValVTy->getNumElements())) { 2414 InstructionCost ExtraCost = 0; 2415 if (LT.first != 1) { 2416 // Type needs to be split, so there is an extra cost of LT.first - 1 2417 // arithmetic ops. 2418 auto *Ty = FixedVectorType::get(ValTy->getElementType(), 2419 MTy.getVectorNumElements()); 2420 ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind); 2421 ExtraCost *= LT.first - 1; 2422 } 2423 return Entry->Cost + ExtraCost; 2424 } 2425 break; 2426 } 2427 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 2428 } 2429 2430 InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) { 2431 static const CostTblEntry ShuffleTbl[] = { 2432 { TTI::SK_Splice, MVT::nxv16i8, 1 }, 2433 { TTI::SK_Splice, MVT::nxv8i16, 1 }, 2434 { TTI::SK_Splice, MVT::nxv4i32, 1 }, 2435 { TTI::SK_Splice, MVT::nxv2i64, 1 }, 2436 { TTI::SK_Splice, MVT::nxv2f16, 1 }, 2437 { TTI::SK_Splice, MVT::nxv4f16, 1 }, 2438 { TTI::SK_Splice, MVT::nxv8f16, 1 }, 2439 { TTI::SK_Splice, MVT::nxv2bf16, 1 }, 2440 { TTI::SK_Splice, MVT::nxv4bf16, 1 }, 2441 { TTI::SK_Splice, MVT::nxv8bf16, 1 }, 2442 { TTI::SK_Splice, MVT::nxv2f32, 1 }, 2443 { TTI::SK_Splice, MVT::nxv4f32, 1 }, 2444 { TTI::SK_Splice, MVT::nxv2f64, 1 }, 2445 }; 2446 2447 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 2448 Type *LegalVTy = EVT(LT.second).getTypeForEVT(Tp->getContext()); 2449 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 2450 EVT PromotedVT = LT.second.getScalarType() == MVT::i1 2451 ? TLI->getPromotedVTForPredicate(EVT(LT.second)) 2452 : LT.second; 2453 Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Tp->getContext()); 2454 InstructionCost LegalizationCost = 0; 2455 if (Index < 0) { 2456 LegalizationCost = 2457 getCmpSelInstrCost(Instruction::ICmp, PromotedVTy, PromotedVTy, 2458 CmpInst::BAD_ICMP_PREDICATE, CostKind) + 2459 getCmpSelInstrCost(Instruction::Select, PromotedVTy, LegalVTy, 2460 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2461 } 2462 2463 // Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp 2464 // Cost performed on a promoted type. 2465 if (LT.second.getScalarType() == MVT::i1) { 2466 LegalizationCost += 2467 getCastInstrCost(Instruction::ZExt, PromotedVTy, LegalVTy, 2468 TTI::CastContextHint::None, CostKind) + 2469 getCastInstrCost(Instruction::Trunc, LegalVTy, PromotedVTy, 2470 TTI::CastContextHint::None, CostKind); 2471 } 2472 const auto *Entry = 2473 CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT()); 2474 assert(Entry && "Illegal Type for Splice"); 2475 LegalizationCost += Entry->Cost; 2476 return LegalizationCost * LT.first; 2477 } 2478 2479 InstructionCost AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 2480 VectorType *Tp, 2481 ArrayRef<int> Mask, int Index, 2482 VectorType *SubTp) { 2483 Kind = improveShuffleKindFromMask(Kind, Mask); 2484 if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose || 2485 Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc || 2486 Kind == TTI::SK_Reverse) { 2487 static const CostTblEntry ShuffleTbl[] = { 2488 // Broadcast shuffle kinds can be performed with 'dup'. 2489 { TTI::SK_Broadcast, MVT::v8i8, 1 }, 2490 { TTI::SK_Broadcast, MVT::v16i8, 1 }, 2491 { TTI::SK_Broadcast, MVT::v4i16, 1 }, 2492 { TTI::SK_Broadcast, MVT::v8i16, 1 }, 2493 { TTI::SK_Broadcast, MVT::v2i32, 1 }, 2494 { TTI::SK_Broadcast, MVT::v4i32, 1 }, 2495 { TTI::SK_Broadcast, MVT::v2i64, 1 }, 2496 { TTI::SK_Broadcast, MVT::v2f32, 1 }, 2497 { TTI::SK_Broadcast, MVT::v4f32, 1 }, 2498 { TTI::SK_Broadcast, MVT::v2f64, 1 }, 2499 // Transpose shuffle kinds can be performed with 'trn1/trn2' and 2500 // 'zip1/zip2' instructions. 2501 { TTI::SK_Transpose, MVT::v8i8, 1 }, 2502 { TTI::SK_Transpose, MVT::v16i8, 1 }, 2503 { TTI::SK_Transpose, MVT::v4i16, 1 }, 2504 { TTI::SK_Transpose, MVT::v8i16, 1 }, 2505 { TTI::SK_Transpose, MVT::v2i32, 1 }, 2506 { TTI::SK_Transpose, MVT::v4i32, 1 }, 2507 { TTI::SK_Transpose, MVT::v2i64, 1 }, 2508 { TTI::SK_Transpose, MVT::v2f32, 1 }, 2509 { TTI::SK_Transpose, MVT::v4f32, 1 }, 2510 { TTI::SK_Transpose, MVT::v2f64, 1 }, 2511 // Select shuffle kinds. 2512 // TODO: handle vXi8/vXi16. 2513 { TTI::SK_Select, MVT::v2i32, 1 }, // mov. 2514 { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar). 2515 { TTI::SK_Select, MVT::v2i64, 1 }, // mov. 2516 { TTI::SK_Select, MVT::v2f32, 1 }, // mov. 2517 { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar). 2518 { TTI::SK_Select, MVT::v2f64, 1 }, // mov. 2519 // PermuteSingleSrc shuffle kinds. 2520 { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov. 2521 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case. 2522 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov. 2523 { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov. 2524 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case. 2525 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov. 2526 { TTI::SK_PermuteSingleSrc, MVT::v4i16, 3 }, // perfectshuffle worst case. 2527 { TTI::SK_PermuteSingleSrc, MVT::v4f16, 3 }, // perfectshuffle worst case. 2528 { TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3 }, // perfectshuffle worst case. 2529 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 8 }, // constpool + load + tbl 2530 { TTI::SK_PermuteSingleSrc, MVT::v8f16, 8 }, // constpool + load + tbl 2531 { TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8 }, // constpool + load + tbl 2532 { TTI::SK_PermuteSingleSrc, MVT::v8i8, 8 }, // constpool + load + tbl 2533 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 8 }, // constpool + load + tbl 2534 // Reverse can be lowered with `rev`. 2535 { TTI::SK_Reverse, MVT::v2i32, 1 }, // mov. 2536 { TTI::SK_Reverse, MVT::v4i32, 2 }, // REV64; EXT 2537 { TTI::SK_Reverse, MVT::v2i64, 1 }, // mov. 2538 { TTI::SK_Reverse, MVT::v2f32, 1 }, // mov. 2539 { TTI::SK_Reverse, MVT::v4f32, 2 }, // REV64; EXT 2540 { TTI::SK_Reverse, MVT::v2f64, 1 }, // mov. 2541 // Broadcast shuffle kinds for scalable vectors 2542 { TTI::SK_Broadcast, MVT::nxv16i8, 1 }, 2543 { TTI::SK_Broadcast, MVT::nxv8i16, 1 }, 2544 { TTI::SK_Broadcast, MVT::nxv4i32, 1 }, 2545 { TTI::SK_Broadcast, MVT::nxv2i64, 1 }, 2546 { TTI::SK_Broadcast, MVT::nxv2f16, 1 }, 2547 { TTI::SK_Broadcast, MVT::nxv4f16, 1 }, 2548 { TTI::SK_Broadcast, MVT::nxv8f16, 1 }, 2549 { TTI::SK_Broadcast, MVT::nxv2bf16, 1 }, 2550 { TTI::SK_Broadcast, MVT::nxv4bf16, 1 }, 2551 { TTI::SK_Broadcast, MVT::nxv8bf16, 1 }, 2552 { TTI::SK_Broadcast, MVT::nxv2f32, 1 }, 2553 { TTI::SK_Broadcast, MVT::nxv4f32, 1 }, 2554 { TTI::SK_Broadcast, MVT::nxv2f64, 1 }, 2555 { TTI::SK_Broadcast, MVT::nxv16i1, 1 }, 2556 { TTI::SK_Broadcast, MVT::nxv8i1, 1 }, 2557 { TTI::SK_Broadcast, MVT::nxv4i1, 1 }, 2558 { TTI::SK_Broadcast, MVT::nxv2i1, 1 }, 2559 // Handle the cases for vector.reverse with scalable vectors 2560 { TTI::SK_Reverse, MVT::nxv16i8, 1 }, 2561 { TTI::SK_Reverse, MVT::nxv8i16, 1 }, 2562 { TTI::SK_Reverse, MVT::nxv4i32, 1 }, 2563 { TTI::SK_Reverse, MVT::nxv2i64, 1 }, 2564 { TTI::SK_Reverse, MVT::nxv2f16, 1 }, 2565 { TTI::SK_Reverse, MVT::nxv4f16, 1 }, 2566 { TTI::SK_Reverse, MVT::nxv8f16, 1 }, 2567 { TTI::SK_Reverse, MVT::nxv2bf16, 1 }, 2568 { TTI::SK_Reverse, MVT::nxv4bf16, 1 }, 2569 { TTI::SK_Reverse, MVT::nxv8bf16, 1 }, 2570 { TTI::SK_Reverse, MVT::nxv2f32, 1 }, 2571 { TTI::SK_Reverse, MVT::nxv4f32, 1 }, 2572 { TTI::SK_Reverse, MVT::nxv2f64, 1 }, 2573 { TTI::SK_Reverse, MVT::nxv16i1, 1 }, 2574 { TTI::SK_Reverse, MVT::nxv8i1, 1 }, 2575 { TTI::SK_Reverse, MVT::nxv4i1, 1 }, 2576 { TTI::SK_Reverse, MVT::nxv2i1, 1 }, 2577 }; 2578 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 2579 if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second)) 2580 return LT.first * Entry->Cost; 2581 } 2582 if (Kind == TTI::SK_Splice && isa<ScalableVectorType>(Tp)) 2583 return getSpliceCost(Tp, Index); 2584 return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp); 2585 } 2586