1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AArch64TargetTransformInfo.h" 10 #include "AArch64ExpandImm.h" 11 #include "MCTargetDesc/AArch64AddressingModes.h" 12 #include "llvm/Analysis/LoopInfo.h" 13 #include "llvm/Analysis/TargetTransformInfo.h" 14 #include "llvm/CodeGen/BasicTTIImpl.h" 15 #include "llvm/CodeGen/CostTable.h" 16 #include "llvm/CodeGen/TargetLowering.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/IntrinsicsAArch64.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Transforms/InstCombine/InstCombiner.h" 22 #include <algorithm> 23 using namespace llvm; 24 using namespace llvm::PatternMatch; 25 26 #define DEBUG_TYPE "aarch64tti" 27 28 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix", 29 cl::init(true), cl::Hidden); 30 31 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller, 32 const Function *Callee) const { 33 const TargetMachine &TM = getTLI()->getTargetMachine(); 34 35 const FeatureBitset &CallerBits = 36 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 37 const FeatureBitset &CalleeBits = 38 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 39 40 // Inline a callee if its target-features are a subset of the callers 41 // target-features. 42 return (CallerBits & CalleeBits) == CalleeBits; 43 } 44 45 /// Calculate the cost of materializing a 64-bit value. This helper 46 /// method might only calculate a fraction of a larger immediate. Therefore it 47 /// is valid to return a cost of ZERO. 48 InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) { 49 // Check if the immediate can be encoded within an instruction. 50 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64)) 51 return 0; 52 53 if (Val < 0) 54 Val = ~Val; 55 56 // Calculate how many moves we will need to materialize this constant. 57 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; 58 AArch64_IMM::expandMOVImm(Val, 64, Insn); 59 return Insn.size(); 60 } 61 62 /// Calculate the cost of materializing the given constant. 63 InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 64 TTI::TargetCostKind CostKind) { 65 assert(Ty->isIntegerTy()); 66 67 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 68 if (BitSize == 0) 69 return ~0U; 70 71 // Sign-extend all constants to a multiple of 64-bit. 72 APInt ImmVal = Imm; 73 if (BitSize & 0x3f) 74 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU); 75 76 // Split the constant into 64-bit chunks and calculate the cost for each 77 // chunk. 78 InstructionCost Cost = 0; 79 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { 80 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); 81 int64_t Val = Tmp.getSExtValue(); 82 Cost += getIntImmCost(Val); 83 } 84 // We need at least one instruction to materialze the constant. 85 return std::max<InstructionCost>(1, Cost); 86 } 87 88 InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 89 const APInt &Imm, Type *Ty, 90 TTI::TargetCostKind CostKind, 91 Instruction *Inst) { 92 assert(Ty->isIntegerTy()); 93 94 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 95 // There is no cost model for constants with a bit size of 0. Return TCC_Free 96 // here, so that constant hoisting will ignore this constant. 97 if (BitSize == 0) 98 return TTI::TCC_Free; 99 100 unsigned ImmIdx = ~0U; 101 switch (Opcode) { 102 default: 103 return TTI::TCC_Free; 104 case Instruction::GetElementPtr: 105 // Always hoist the base address of a GetElementPtr. 106 if (Idx == 0) 107 return 2 * TTI::TCC_Basic; 108 return TTI::TCC_Free; 109 case Instruction::Store: 110 ImmIdx = 0; 111 break; 112 case Instruction::Add: 113 case Instruction::Sub: 114 case Instruction::Mul: 115 case Instruction::UDiv: 116 case Instruction::SDiv: 117 case Instruction::URem: 118 case Instruction::SRem: 119 case Instruction::And: 120 case Instruction::Or: 121 case Instruction::Xor: 122 case Instruction::ICmp: 123 ImmIdx = 1; 124 break; 125 // Always return TCC_Free for the shift value of a shift instruction. 126 case Instruction::Shl: 127 case Instruction::LShr: 128 case Instruction::AShr: 129 if (Idx == 1) 130 return TTI::TCC_Free; 131 break; 132 case Instruction::Trunc: 133 case Instruction::ZExt: 134 case Instruction::SExt: 135 case Instruction::IntToPtr: 136 case Instruction::PtrToInt: 137 case Instruction::BitCast: 138 case Instruction::PHI: 139 case Instruction::Call: 140 case Instruction::Select: 141 case Instruction::Ret: 142 case Instruction::Load: 143 break; 144 } 145 146 if (Idx == ImmIdx) { 147 int NumConstants = (BitSize + 63) / 64; 148 InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 149 return (Cost <= NumConstants * TTI::TCC_Basic) 150 ? static_cast<int>(TTI::TCC_Free) 151 : Cost; 152 } 153 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 154 } 155 156 InstructionCost 157 AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 158 const APInt &Imm, Type *Ty, 159 TTI::TargetCostKind CostKind) { 160 assert(Ty->isIntegerTy()); 161 162 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 163 // There is no cost model for constants with a bit size of 0. Return TCC_Free 164 // here, so that constant hoisting will ignore this constant. 165 if (BitSize == 0) 166 return TTI::TCC_Free; 167 168 // Most (all?) AArch64 intrinsics do not support folding immediates into the 169 // selected instruction, so we compute the materialization cost for the 170 // immediate directly. 171 if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv) 172 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 173 174 switch (IID) { 175 default: 176 return TTI::TCC_Free; 177 case Intrinsic::sadd_with_overflow: 178 case Intrinsic::uadd_with_overflow: 179 case Intrinsic::ssub_with_overflow: 180 case Intrinsic::usub_with_overflow: 181 case Intrinsic::smul_with_overflow: 182 case Intrinsic::umul_with_overflow: 183 if (Idx == 1) { 184 int NumConstants = (BitSize + 63) / 64; 185 InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 186 return (Cost <= NumConstants * TTI::TCC_Basic) 187 ? static_cast<int>(TTI::TCC_Free) 188 : Cost; 189 } 190 break; 191 case Intrinsic::experimental_stackmap: 192 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 193 return TTI::TCC_Free; 194 break; 195 case Intrinsic::experimental_patchpoint_void: 196 case Intrinsic::experimental_patchpoint_i64: 197 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 198 return TTI::TCC_Free; 199 break; 200 case Intrinsic::experimental_gc_statepoint: 201 if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 202 return TTI::TCC_Free; 203 break; 204 } 205 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 206 } 207 208 TargetTransformInfo::PopcntSupportKind 209 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) { 210 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 211 if (TyWidth == 32 || TyWidth == 64) 212 return TTI::PSK_FastHardware; 213 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount. 214 return TTI::PSK_Software; 215 } 216 217 InstructionCost 218 AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 219 TTI::TargetCostKind CostKind) { 220 auto *RetTy = ICA.getReturnType(); 221 switch (ICA.getID()) { 222 case Intrinsic::umin: 223 case Intrinsic::umax: { 224 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 225 // umin(x,y) -> sub(x,usubsat(x,y)) 226 // umax(x,y) -> add(x,usubsat(y,x)) 227 if (LT.second == MVT::v2i64) 228 return LT.first * 2; 229 LLVM_FALLTHROUGH; 230 } 231 case Intrinsic::smin: 232 case Intrinsic::smax: { 233 static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 234 MVT::v8i16, MVT::v2i32, MVT::v4i32}; 235 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 236 if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; })) 237 return LT.first; 238 break; 239 } 240 case Intrinsic::sadd_sat: 241 case Intrinsic::ssub_sat: 242 case Intrinsic::uadd_sat: 243 case Intrinsic::usub_sat: { 244 static const auto ValidSatTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 245 MVT::v8i16, MVT::v2i32, MVT::v4i32, 246 MVT::v2i64}; 247 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 248 // This is a base cost of 1 for the vadd, plus 3 extract shifts if we 249 // need to extend the type, as it uses shr(qadd(shl, shl)). 250 unsigned Instrs = 251 LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4; 252 if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; })) 253 return LT.first * Instrs; 254 break; 255 } 256 case Intrinsic::abs: { 257 static const auto ValidAbsTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 258 MVT::v8i16, MVT::v2i32, MVT::v4i32, 259 MVT::v2i64}; 260 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 261 if (any_of(ValidAbsTys, [<](MVT M) { return M == LT.second; })) 262 return LT.first; 263 break; 264 } 265 case Intrinsic::experimental_stepvector: { 266 InstructionCost Cost = 1; // Cost of the `index' instruction 267 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 268 // Legalisation of illegal vectors involves an `index' instruction plus 269 // (LT.first - 1) vector adds. 270 if (LT.first > 1) { 271 Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext()); 272 InstructionCost AddCost = 273 getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind); 274 Cost += AddCost * (LT.first - 1); 275 } 276 return Cost; 277 } 278 default: 279 break; 280 } 281 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 282 } 283 284 /// The function will remove redundant reinterprets casting in the presence 285 /// of the control flow 286 static Optional<Instruction *> processPhiNode(InstCombiner &IC, 287 IntrinsicInst &II) { 288 SmallVector<Instruction *, 32> Worklist; 289 auto RequiredType = II.getType(); 290 291 auto *PN = dyn_cast<PHINode>(II.getArgOperand(0)); 292 assert(PN && "Expected Phi Node!"); 293 294 // Don't create a new Phi unless we can remove the old one. 295 if (!PN->hasOneUse()) 296 return None; 297 298 for (Value *IncValPhi : PN->incoming_values()) { 299 auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi); 300 if (!Reinterpret || 301 Reinterpret->getIntrinsicID() != 302 Intrinsic::aarch64_sve_convert_to_svbool || 303 RequiredType != Reinterpret->getArgOperand(0)->getType()) 304 return None; 305 } 306 307 // Create the new Phi 308 LLVMContext &Ctx = PN->getContext(); 309 IRBuilder<> Builder(Ctx); 310 Builder.SetInsertPoint(PN); 311 PHINode *NPN = Builder.CreatePHI(RequiredType, PN->getNumIncomingValues()); 312 Worklist.push_back(PN); 313 314 for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) { 315 auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I)); 316 NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I)); 317 Worklist.push_back(Reinterpret); 318 } 319 320 // Cleanup Phi Node and reinterprets 321 return IC.replaceInstUsesWith(II, NPN); 322 } 323 324 static Optional<Instruction *> instCombineConvertFromSVBool(InstCombiner &IC, 325 IntrinsicInst &II) { 326 // If the reinterpret instruction operand is a PHI Node 327 if (isa<PHINode>(II.getArgOperand(0))) 328 return processPhiNode(IC, II); 329 330 SmallVector<Instruction *, 32> CandidatesForRemoval; 331 Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr; 332 333 const auto *IVTy = cast<VectorType>(II.getType()); 334 335 // Walk the chain of conversions. 336 while (Cursor) { 337 // If the type of the cursor has fewer lanes than the final result, zeroing 338 // must take place, which breaks the equivalence chain. 339 const auto *CursorVTy = cast<VectorType>(Cursor->getType()); 340 if (CursorVTy->getElementCount().getKnownMinValue() < 341 IVTy->getElementCount().getKnownMinValue()) 342 break; 343 344 // If the cursor has the same type as I, it is a viable replacement. 345 if (Cursor->getType() == IVTy) 346 EarliestReplacement = Cursor; 347 348 auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor); 349 350 // If this is not an SVE conversion intrinsic, this is the end of the chain. 351 if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() == 352 Intrinsic::aarch64_sve_convert_to_svbool || 353 IntrinsicCursor->getIntrinsicID() == 354 Intrinsic::aarch64_sve_convert_from_svbool)) 355 break; 356 357 CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor); 358 Cursor = IntrinsicCursor->getOperand(0); 359 } 360 361 // If no viable replacement in the conversion chain was found, there is 362 // nothing to do. 363 if (!EarliestReplacement) 364 return None; 365 366 return IC.replaceInstUsesWith(II, EarliestReplacement); 367 } 368 369 static Optional<Instruction *> instCombineSVEDup(InstCombiner &IC, 370 IntrinsicInst &II) { 371 IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(1)); 372 if (!Pg) 373 return None; 374 375 if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) 376 return None; 377 378 const auto PTruePattern = 379 cast<ConstantInt>(Pg->getOperand(0))->getZExtValue(); 380 if (PTruePattern != AArch64SVEPredPattern::vl1) 381 return None; 382 383 // The intrinsic is inserting into lane zero so use an insert instead. 384 auto *IdxTy = Type::getInt64Ty(II.getContext()); 385 auto *Insert = InsertElementInst::Create( 386 II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0)); 387 Insert->insertBefore(&II); 388 Insert->takeName(&II); 389 390 return IC.replaceInstUsesWith(II, Insert); 391 } 392 393 static Optional<Instruction *> instCombineSVELast(InstCombiner &IC, 394 IntrinsicInst &II) { 395 Value *Pg = II.getArgOperand(0); 396 Value *Vec = II.getArgOperand(1); 397 bool IsAfter = II.getIntrinsicID() == Intrinsic::aarch64_sve_lasta; 398 399 auto *C = dyn_cast<Constant>(Pg); 400 if (IsAfter && C && C->isNullValue()) { 401 // The intrinsic is extracting lane 0 so use an extract instead. 402 auto *IdxTy = Type::getInt64Ty(II.getContext()); 403 auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0)); 404 Extract->insertBefore(&II); 405 Extract->takeName(&II); 406 return IC.replaceInstUsesWith(II, Extract); 407 } 408 409 auto *IntrPG = dyn_cast<IntrinsicInst>(Pg); 410 if (!IntrPG) 411 return None; 412 413 if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) 414 return None; 415 416 const auto PTruePattern = 417 cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue(); 418 419 // Can the intrinsic's predicate be converted to a known constant index? 420 unsigned Idx; 421 switch (PTruePattern) { 422 default: 423 return None; 424 case AArch64SVEPredPattern::vl1: 425 Idx = 0; 426 break; 427 case AArch64SVEPredPattern::vl2: 428 Idx = 1; 429 break; 430 case AArch64SVEPredPattern::vl3: 431 Idx = 2; 432 break; 433 case AArch64SVEPredPattern::vl4: 434 Idx = 3; 435 break; 436 case AArch64SVEPredPattern::vl5: 437 Idx = 4; 438 break; 439 case AArch64SVEPredPattern::vl6: 440 Idx = 5; 441 break; 442 case AArch64SVEPredPattern::vl7: 443 Idx = 6; 444 break; 445 case AArch64SVEPredPattern::vl8: 446 Idx = 7; 447 break; 448 case AArch64SVEPredPattern::vl16: 449 Idx = 15; 450 break; 451 } 452 453 // Increment the index if extracting the element after the last active 454 // predicate element. 455 if (IsAfter) 456 ++Idx; 457 458 // Ignore extracts whose index is larger than the known minimum vector 459 // length. NOTE: This is an artificial constraint where we prefer to 460 // maintain what the user asked for until an alternative is proven faster. 461 auto *PgVTy = cast<ScalableVectorType>(Pg->getType()); 462 if (Idx >= PgVTy->getMinNumElements()) 463 return None; 464 465 // The intrinsic is extracting a fixed lane so use an extract instead. 466 auto *IdxTy = Type::getInt64Ty(II.getContext()); 467 auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx)); 468 Extract->insertBefore(&II); 469 Extract->takeName(&II); 470 return IC.replaceInstUsesWith(II, Extract); 471 } 472 473 static Optional<Instruction *> instCombineRDFFR(InstCombiner &IC, 474 IntrinsicInst &II) { 475 LLVMContext &Ctx = II.getContext(); 476 IRBuilder<> Builder(Ctx); 477 Builder.SetInsertPoint(&II); 478 // Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr 479 // can work with RDFFR_PP for ptest elimination. 480 auto *AllPat = 481 ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all); 482 auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, 483 {II.getType()}, {AllPat}); 484 auto *RDFFR = 485 Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue}); 486 RDFFR->takeName(&II); 487 return IC.replaceInstUsesWith(II, RDFFR); 488 } 489 490 Optional<Instruction *> 491 AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC, 492 IntrinsicInst &II) const { 493 Intrinsic::ID IID = II.getIntrinsicID(); 494 switch (IID) { 495 default: 496 break; 497 case Intrinsic::aarch64_sve_convert_from_svbool: 498 return instCombineConvertFromSVBool(IC, II); 499 case Intrinsic::aarch64_sve_dup: 500 return instCombineSVEDup(IC, II); 501 case Intrinsic::aarch64_sve_rdffr: 502 return instCombineRDFFR(IC, II); 503 case Intrinsic::aarch64_sve_lasta: 504 case Intrinsic::aarch64_sve_lastb: 505 return instCombineSVELast(IC, II); 506 } 507 508 return None; 509 } 510 511 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode, 512 ArrayRef<const Value *> Args) { 513 514 // A helper that returns a vector type from the given type. The number of 515 // elements in type Ty determine the vector width. 516 auto toVectorTy = [&](Type *ArgTy) { 517 return VectorType::get(ArgTy->getScalarType(), 518 cast<VectorType>(DstTy)->getElementCount()); 519 }; 520 521 // Exit early if DstTy is not a vector type whose elements are at least 522 // 16-bits wide. 523 if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16) 524 return false; 525 526 // Determine if the operation has a widening variant. We consider both the 527 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the 528 // instructions. 529 // 530 // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we 531 // verify that their extending operands are eliminated during code 532 // generation. 533 switch (Opcode) { 534 case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2). 535 case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2). 536 break; 537 default: 538 return false; 539 } 540 541 // To be a widening instruction (either the "wide" or "long" versions), the 542 // second operand must be a sign- or zero extend having a single user. We 543 // only consider extends having a single user because they may otherwise not 544 // be eliminated. 545 if (Args.size() != 2 || 546 (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) || 547 !Args[1]->hasOneUse()) 548 return false; 549 auto *Extend = cast<CastInst>(Args[1]); 550 551 // Legalize the destination type and ensure it can be used in a widening 552 // operation. 553 auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy); 554 unsigned DstElTySize = DstTyL.second.getScalarSizeInBits(); 555 if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits()) 556 return false; 557 558 // Legalize the source type and ensure it can be used in a widening 559 // operation. 560 auto *SrcTy = toVectorTy(Extend->getSrcTy()); 561 auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy); 562 unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits(); 563 if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits()) 564 return false; 565 566 // Get the total number of vector elements in the legalized types. 567 InstructionCost NumDstEls = 568 DstTyL.first * DstTyL.second.getVectorMinNumElements(); 569 InstructionCost NumSrcEls = 570 SrcTyL.first * SrcTyL.second.getVectorMinNumElements(); 571 572 // Return true if the legalized types have the same number of vector elements 573 // and the destination element type size is twice that of the source type. 574 return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize; 575 } 576 577 InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 578 Type *Src, 579 TTI::CastContextHint CCH, 580 TTI::TargetCostKind CostKind, 581 const Instruction *I) { 582 int ISD = TLI->InstructionOpcodeToISD(Opcode); 583 assert(ISD && "Invalid opcode"); 584 585 // If the cast is observable, and it is used by a widening instruction (e.g., 586 // uaddl, saddw, etc.), it may be free. 587 if (I && I->hasOneUse()) { 588 auto *SingleUser = cast<Instruction>(*I->user_begin()); 589 SmallVector<const Value *, 4> Operands(SingleUser->operand_values()); 590 if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) { 591 // If the cast is the second operand, it is free. We will generate either 592 // a "wide" or "long" version of the widening instruction. 593 if (I == SingleUser->getOperand(1)) 594 return 0; 595 // If the cast is not the second operand, it will be free if it looks the 596 // same as the second operand. In this case, we will generate a "long" 597 // version of the widening instruction. 598 if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1))) 599 if (I->getOpcode() == unsigned(Cast->getOpcode()) && 600 cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy()) 601 return 0; 602 } 603 } 604 605 // TODO: Allow non-throughput costs that aren't binary. 606 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { 607 if (CostKind != TTI::TCK_RecipThroughput) 608 return Cost == 0 ? 0 : 1; 609 return Cost; 610 }; 611 612 EVT SrcTy = TLI->getValueType(DL, Src); 613 EVT DstTy = TLI->getValueType(DL, Dst); 614 615 if (!SrcTy.isSimple() || !DstTy.isSimple()) 616 return AdjustCost( 617 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 618 619 static const TypeConversionCostTblEntry 620 ConversionTbl[] = { 621 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 622 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 623 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 624 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 625 626 // Truncations on nxvmiN 627 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 }, 628 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 }, 629 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 }, 630 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 }, 631 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 }, 632 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 }, 633 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 }, 634 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 }, 635 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 }, 636 { ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 }, 637 { ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 }, 638 { ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 }, 639 { ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 }, 640 { ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 }, 641 { ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 }, 642 643 // The number of shll instructions for the extension. 644 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 645 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 646 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 647 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 648 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 649 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 650 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 651 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 652 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 653 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 654 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 655 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 656 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 657 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 658 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 659 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 660 661 // LowerVectorINT_TO_FP: 662 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 663 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 664 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 665 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 666 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 667 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 668 669 // Complex: to v2f32 670 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 671 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 672 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 673 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 674 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 675 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 676 677 // Complex: to v4f32 678 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 }, 679 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 680 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 681 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 682 683 // Complex: to v8f32 684 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 685 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 686 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 687 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 688 689 // Complex: to v16f32 690 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 691 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 692 693 // Complex: to v2f64 694 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 695 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 696 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 697 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 698 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 699 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 700 701 702 // LowerVectorFP_TO_INT 703 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 }, 704 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 705 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, 706 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, 707 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 708 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, 709 710 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext). 711 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 }, 712 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 }, 713 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 }, 714 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 }, 715 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 }, 716 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 }, 717 718 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2 719 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 720 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 }, 721 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 722 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 }, 723 724 // Complex, from nxv2f32. 725 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 }, 726 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 }, 727 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 }, 728 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f32, 1 }, 729 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 }, 730 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 }, 731 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 }, 732 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f32, 1 }, 733 734 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2. 735 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 736 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 }, 737 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 }, 738 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 739 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 }, 740 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 }, 741 742 // Complex, from nxv2f64. 743 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 }, 744 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 }, 745 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 }, 746 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f64, 1 }, 747 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 }, 748 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 }, 749 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 }, 750 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f64, 1 }, 751 752 // Complex, from nxv4f32. 753 { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 }, 754 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 }, 755 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 }, 756 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f32, 1 }, 757 { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 }, 758 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 }, 759 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 }, 760 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f32, 1 }, 761 762 // Complex, from nxv8f64. Illegal -> illegal conversions not required. 763 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 }, 764 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f64, 7 }, 765 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 }, 766 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f64, 7 }, 767 768 // Complex, from nxv4f64. Illegal -> illegal conversions not required. 769 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 }, 770 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 }, 771 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f64, 3 }, 772 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 }, 773 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 }, 774 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f64, 3 }, 775 776 // Complex, from nxv8f32. Illegal -> illegal conversions not required. 777 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 }, 778 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f32, 3 }, 779 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 }, 780 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f32, 3 }, 781 782 // Complex, from nxv8f16. 783 { ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 }, 784 { ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 }, 785 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 }, 786 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f16, 1 }, 787 { ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 }, 788 { ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 }, 789 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 }, 790 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f16, 1 }, 791 792 // Complex, from nxv4f16. 793 { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 }, 794 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 }, 795 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 }, 796 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f16, 1 }, 797 { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 }, 798 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 }, 799 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 }, 800 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f16, 1 }, 801 802 // Complex, from nxv2f16. 803 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 }, 804 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 }, 805 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 }, 806 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f16, 1 }, 807 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 }, 808 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 }, 809 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 }, 810 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f16, 1 }, 811 812 // Truncate from nxvmf32 to nxvmf16. 813 { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 }, 814 { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 }, 815 { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 }, 816 817 // Truncate from nxvmf64 to nxvmf16. 818 { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 }, 819 { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 }, 820 { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 }, 821 822 // Truncate from nxvmf64 to nxvmf32. 823 { ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 }, 824 { ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 }, 825 { ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 }, 826 827 // Extend from nxvmf16 to nxvmf32. 828 { ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1}, 829 { ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1}, 830 { ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2}, 831 832 // Extend from nxvmf16 to nxvmf64. 833 { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1}, 834 { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2}, 835 { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4}, 836 837 // Extend from nxvmf32 to nxvmf64. 838 { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1}, 839 { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2}, 840 { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6}, 841 842 }; 843 844 if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD, 845 DstTy.getSimpleVT(), 846 SrcTy.getSimpleVT())) 847 return AdjustCost(Entry->Cost); 848 849 return AdjustCost( 850 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 851 } 852 853 InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, 854 Type *Dst, 855 VectorType *VecTy, 856 unsigned Index) { 857 858 // Make sure we were given a valid extend opcode. 859 assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) && 860 "Invalid opcode"); 861 862 // We are extending an element we extract from a vector, so the source type 863 // of the extend is the element type of the vector. 864 auto *Src = VecTy->getElementType(); 865 866 // Sign- and zero-extends are for integer types only. 867 assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type"); 868 869 // Get the cost for the extract. We compute the cost (if any) for the extend 870 // below. 871 InstructionCost Cost = 872 getVectorInstrCost(Instruction::ExtractElement, VecTy, Index); 873 874 // Legalize the types. 875 auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy); 876 auto DstVT = TLI->getValueType(DL, Dst); 877 auto SrcVT = TLI->getValueType(DL, Src); 878 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 879 880 // If the resulting type is still a vector and the destination type is legal, 881 // we may get the extension for free. If not, get the default cost for the 882 // extend. 883 if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT)) 884 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 885 CostKind); 886 887 // The destination type should be larger than the element type. If not, get 888 // the default cost for the extend. 889 if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits()) 890 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 891 CostKind); 892 893 switch (Opcode) { 894 default: 895 llvm_unreachable("Opcode should be either SExt or ZExt"); 896 897 // For sign-extends, we only need a smov, which performs the extension 898 // automatically. 899 case Instruction::SExt: 900 return Cost; 901 902 // For zero-extends, the extend is performed automatically by a umov unless 903 // the destination type is i64 and the element type is i8 or i16. 904 case Instruction::ZExt: 905 if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u) 906 return Cost; 907 } 908 909 // If we are unable to perform the extend for free, get the default cost. 910 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 911 CostKind); 912 } 913 914 InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode, 915 TTI::TargetCostKind CostKind, 916 const Instruction *I) { 917 if (CostKind != TTI::TCK_RecipThroughput) 918 return Opcode == Instruction::PHI ? 0 : 1; 919 assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind"); 920 // Branches are assumed to be predicted. 921 return 0; 922 } 923 924 InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 925 unsigned Index) { 926 assert(Val->isVectorTy() && "This must be a vector type"); 927 928 if (Index != -1U) { 929 // Legalize the type. 930 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); 931 932 // This type is legalized to a scalar type. 933 if (!LT.second.isVector()) 934 return 0; 935 936 // The type may be split. Normalize the index to the new type. 937 unsigned Width = LT.second.getVectorNumElements(); 938 Index = Index % Width; 939 940 // The element at index zero is already inside the vector. 941 if (Index == 0) 942 return 0; 943 } 944 945 // All other insert/extracts cost this much. 946 return ST->getVectorInsertExtractBaseCost(); 947 } 948 949 InstructionCost AArch64TTIImpl::getArithmeticInstrCost( 950 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 951 TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, 952 TTI::OperandValueProperties Opd1PropInfo, 953 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 954 const Instruction *CxtI) { 955 // TODO: Handle more cost kinds. 956 if (CostKind != TTI::TCK_RecipThroughput) 957 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 958 Opd2Info, Opd1PropInfo, 959 Opd2PropInfo, Args, CxtI); 960 961 // Legalize the type. 962 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 963 964 // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.), 965 // add in the widening overhead specified by the sub-target. Since the 966 // extends feeding widening instructions are performed automatically, they 967 // aren't present in the generated code and have a zero cost. By adding a 968 // widening overhead here, we attach the total cost of the combined operation 969 // to the widening instruction. 970 InstructionCost Cost = 0; 971 if (isWideningInstruction(Ty, Opcode, Args)) 972 Cost += ST->getWideningBaseCost(); 973 974 int ISD = TLI->InstructionOpcodeToISD(Opcode); 975 976 switch (ISD) { 977 default: 978 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 979 Opd2Info, 980 Opd1PropInfo, Opd2PropInfo); 981 case ISD::SDIV: 982 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue && 983 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 984 // On AArch64, scalar signed division by constants power-of-two are 985 // normally expanded to the sequence ADD + CMP + SELECT + SRA. 986 // The OperandValue properties many not be same as that of previous 987 // operation; conservatively assume OP_None. 988 Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, 989 Opd1Info, Opd2Info, 990 TargetTransformInfo::OP_None, 991 TargetTransformInfo::OP_None); 992 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, 993 Opd1Info, Opd2Info, 994 TargetTransformInfo::OP_None, 995 TargetTransformInfo::OP_None); 996 Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind, 997 Opd1Info, Opd2Info, 998 TargetTransformInfo::OP_None, 999 TargetTransformInfo::OP_None); 1000 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, 1001 Opd1Info, Opd2Info, 1002 TargetTransformInfo::OP_None, 1003 TargetTransformInfo::OP_None); 1004 return Cost; 1005 } 1006 LLVM_FALLTHROUGH; 1007 case ISD::UDIV: 1008 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) { 1009 auto VT = TLI->getValueType(DL, Ty); 1010 if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) { 1011 // Vector signed division by constant are expanded to the 1012 // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division 1013 // to MULHS + SUB + SRL + ADD + SRL. 1014 InstructionCost MulCost = getArithmeticInstrCost( 1015 Instruction::Mul, Ty, CostKind, Opd1Info, Opd2Info, 1016 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1017 InstructionCost AddCost = getArithmeticInstrCost( 1018 Instruction::Add, Ty, CostKind, Opd1Info, Opd2Info, 1019 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1020 InstructionCost ShrCost = getArithmeticInstrCost( 1021 Instruction::AShr, Ty, CostKind, Opd1Info, Opd2Info, 1022 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1023 return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1; 1024 } 1025 } 1026 1027 Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1028 Opd2Info, 1029 Opd1PropInfo, Opd2PropInfo); 1030 if (Ty->isVectorTy()) { 1031 // On AArch64, vector divisions are not supported natively and are 1032 // expanded into scalar divisions of each pair of elements. 1033 Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind, 1034 Opd1Info, Opd2Info, Opd1PropInfo, 1035 Opd2PropInfo); 1036 Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind, 1037 Opd1Info, Opd2Info, Opd1PropInfo, 1038 Opd2PropInfo); 1039 // TODO: if one of the arguments is scalar, then it's not necessary to 1040 // double the cost of handling the vector elements. 1041 Cost += Cost; 1042 } 1043 return Cost; 1044 1045 case ISD::MUL: 1046 if (LT.second != MVT::v2i64) 1047 return (Cost + 1) * LT.first; 1048 // Since we do not have a MUL.2d instruction, a mul <2 x i64> is expensive 1049 // as elements are extracted from the vectors and the muls scalarized. 1050 // As getScalarizationOverhead is a bit too pessimistic, we estimate the 1051 // cost for a i64 vector directly here, which is: 1052 // - four i64 extracts, 1053 // - two i64 inserts, and 1054 // - two muls. 1055 // So, for a v2i64 with LT.First = 1 the cost is 8, and for a v4i64 with 1056 // LT.first = 2 the cost is 16. 1057 return LT.first * 8; 1058 case ISD::ADD: 1059 case ISD::XOR: 1060 case ISD::OR: 1061 case ISD::AND: 1062 // These nodes are marked as 'custom' for combining purposes only. 1063 // We know that they are legal. See LowerAdd in ISelLowering. 1064 return (Cost + 1) * LT.first; 1065 1066 case ISD::FADD: 1067 // These nodes are marked as 'custom' just to lower them to SVE. 1068 // We know said lowering will incur no additional cost. 1069 if (isa<FixedVectorType>(Ty) && !Ty->getScalarType()->isFP128Ty()) 1070 return (Cost + 2) * LT.first; 1071 1072 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1073 Opd2Info, 1074 Opd1PropInfo, Opd2PropInfo); 1075 } 1076 } 1077 1078 InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty, 1079 ScalarEvolution *SE, 1080 const SCEV *Ptr) { 1081 // Address computations in vectorized code with non-consecutive addresses will 1082 // likely result in more instructions compared to scalar code where the 1083 // computation can more often be merged into the index mode. The resulting 1084 // extra micro-ops can significantly decrease throughput. 1085 unsigned NumVectorInstToHideOverhead = 10; 1086 int MaxMergeDistance = 64; 1087 1088 if (Ty->isVectorTy() && SE && 1089 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 1090 return NumVectorInstToHideOverhead; 1091 1092 // In many cases the address computation is not merged into the instruction 1093 // addressing mode. 1094 return 1; 1095 } 1096 1097 InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 1098 Type *CondTy, 1099 CmpInst::Predicate VecPred, 1100 TTI::TargetCostKind CostKind, 1101 const Instruction *I) { 1102 // TODO: Handle other cost kinds. 1103 if (CostKind != TTI::TCK_RecipThroughput) 1104 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, 1105 I); 1106 1107 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1108 // We don't lower some vector selects well that are wider than the register 1109 // width. 1110 if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) { 1111 // We would need this many instructions to hide the scalarization happening. 1112 const int AmortizationCost = 20; 1113 1114 // If VecPred is not set, check if we can get a predicate from the context 1115 // instruction, if its type matches the requested ValTy. 1116 if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) { 1117 CmpInst::Predicate CurrentPred; 1118 if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(), 1119 m_Value()))) 1120 VecPred = CurrentPred; 1121 } 1122 // Check if we have a compare/select chain that can be lowered using CMxx & 1123 // BFI pair. 1124 if (CmpInst::isIntPredicate(VecPred)) { 1125 static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 1126 MVT::v8i16, MVT::v2i32, MVT::v4i32, 1127 MVT::v2i64}; 1128 auto LT = TLI->getTypeLegalizationCost(DL, ValTy); 1129 if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; })) 1130 return LT.first; 1131 } 1132 1133 static const TypeConversionCostTblEntry 1134 VectorSelectTbl[] = { 1135 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 }, 1136 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 }, 1137 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 }, 1138 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost }, 1139 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost }, 1140 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost } 1141 }; 1142 1143 EVT SelCondTy = TLI->getValueType(DL, CondTy); 1144 EVT SelValTy = TLI->getValueType(DL, ValTy); 1145 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 1146 if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD, 1147 SelCondTy.getSimpleVT(), 1148 SelValTy.getSimpleVT())) 1149 return Entry->Cost; 1150 } 1151 } 1152 // The base case handles scalable vectors fine for now, since it treats the 1153 // cost as 1 * legalization cost. 1154 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 1155 } 1156 1157 AArch64TTIImpl::TTI::MemCmpExpansionOptions 1158 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 1159 TTI::MemCmpExpansionOptions Options; 1160 if (ST->requiresStrictAlign()) { 1161 // TODO: Add cost modeling for strict align. Misaligned loads expand to 1162 // a bunch of instructions when strict align is enabled. 1163 return Options; 1164 } 1165 Options.AllowOverlappingLoads = true; 1166 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 1167 Options.NumLoadsPerBlock = Options.MaxNumLoads; 1168 // TODO: Though vector loads usually perform well on AArch64, in some targets 1169 // they may wake up the FP unit, which raises the power consumption. Perhaps 1170 // they could be used with no holds barred (-O3). 1171 Options.LoadSizes = {8, 4, 2, 1}; 1172 return Options; 1173 } 1174 1175 InstructionCost 1176 AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 1177 Align Alignment, unsigned AddressSpace, 1178 TTI::TargetCostKind CostKind) { 1179 if (!isa<ScalableVectorType>(Src)) 1180 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1181 CostKind); 1182 auto LT = TLI->getTypeLegalizationCost(DL, Src); 1183 return LT.first * 2; 1184 } 1185 1186 InstructionCost AArch64TTIImpl::getGatherScatterOpCost( 1187 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 1188 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) { 1189 1190 if (!isa<ScalableVectorType>(DataTy)) 1191 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 1192 Alignment, CostKind, I); 1193 auto *VT = cast<VectorType>(DataTy); 1194 auto LT = TLI->getTypeLegalizationCost(DL, DataTy); 1195 ElementCount LegalVF = LT.second.getVectorElementCount(); 1196 Optional<unsigned> MaxNumVScale = getMaxVScale(); 1197 assert(MaxNumVScale && "Expected valid max vscale value"); 1198 1199 InstructionCost MemOpCost = 1200 getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind, I); 1201 unsigned MaxNumElementsPerGather = 1202 MaxNumVScale.getValue() * LegalVF.getKnownMinValue(); 1203 return LT.first * MaxNumElementsPerGather * MemOpCost; 1204 } 1205 1206 bool AArch64TTIImpl::useNeonVector(const Type *Ty) const { 1207 return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors(); 1208 } 1209 1210 InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty, 1211 MaybeAlign Alignment, 1212 unsigned AddressSpace, 1213 TTI::TargetCostKind CostKind, 1214 const Instruction *I) { 1215 // Type legalization can't handle structs 1216 if (TLI->getValueType(DL, Ty, true) == MVT::Other) 1217 return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace, 1218 CostKind); 1219 1220 auto LT = TLI->getTypeLegalizationCost(DL, Ty); 1221 1222 // TODO: consider latency as well for TCK_SizeAndLatency. 1223 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) 1224 return LT.first; 1225 1226 if (CostKind != TTI::TCK_RecipThroughput) 1227 return 1; 1228 1229 if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store && 1230 LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) { 1231 // Unaligned stores are extremely inefficient. We don't split all 1232 // unaligned 128-bit stores because the negative impact that has shown in 1233 // practice on inlined block copy code. 1234 // We make such stores expensive so that we will only vectorize if there 1235 // are 6 other instructions getting vectorized. 1236 const int AmortizationCost = 6; 1237 1238 return LT.first * 2 * AmortizationCost; 1239 } 1240 1241 if (useNeonVector(Ty) && 1242 cast<VectorType>(Ty)->getElementType()->isIntegerTy(8)) { 1243 unsigned ProfitableNumElements; 1244 if (Opcode == Instruction::Store) 1245 // We use a custom trunc store lowering so v.4b should be profitable. 1246 ProfitableNumElements = 4; 1247 else 1248 // We scalarize the loads because there is not v.4b register and we 1249 // have to promote the elements to v.2. 1250 ProfitableNumElements = 8; 1251 1252 if (cast<FixedVectorType>(Ty)->getNumElements() < ProfitableNumElements) { 1253 unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements(); 1254 unsigned NumVectorizableInstsToAmortize = NumVecElts * 2; 1255 // We generate 2 instructions per vector element. 1256 return NumVectorizableInstsToAmortize * NumVecElts * 2; 1257 } 1258 } 1259 1260 return LT.first; 1261 } 1262 1263 InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost( 1264 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1265 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 1266 bool UseMaskForCond, bool UseMaskForGaps) { 1267 assert(Factor >= 2 && "Invalid interleave factor"); 1268 auto *VecVTy = cast<FixedVectorType>(VecTy); 1269 1270 if (!UseMaskForCond && !UseMaskForGaps && 1271 Factor <= TLI->getMaxSupportedInterleaveFactor()) { 1272 unsigned NumElts = VecVTy->getNumElements(); 1273 auto *SubVecTy = 1274 FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor); 1275 1276 // ldN/stN only support legal vector types of size 64 or 128 in bits. 1277 // Accesses having vector types that are a multiple of 128 bits can be 1278 // matched to more than one ldN/stN instruction. 1279 if (NumElts % Factor == 0 && 1280 TLI->isLegalInterleavedAccessType(SubVecTy, DL)) 1281 return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL); 1282 } 1283 1284 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1285 Alignment, AddressSpace, CostKind, 1286 UseMaskForCond, UseMaskForGaps); 1287 } 1288 1289 InstructionCost 1290 AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { 1291 InstructionCost Cost = 0; 1292 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1293 for (auto *I : Tys) { 1294 if (!I->isVectorTy()) 1295 continue; 1296 if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() == 1297 128) 1298 Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) + 1299 getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind); 1300 } 1301 return Cost; 1302 } 1303 1304 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) { 1305 return ST->getMaxInterleaveFactor(); 1306 } 1307 1308 // For Falkor, we want to avoid having too many strided loads in a loop since 1309 // that can exhaust the HW prefetcher resources. We adjust the unroller 1310 // MaxCount preference below to attempt to ensure unrolling doesn't create too 1311 // many strided loads. 1312 static void 1313 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1314 TargetTransformInfo::UnrollingPreferences &UP) { 1315 enum { MaxStridedLoads = 7 }; 1316 auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) { 1317 int StridedLoads = 0; 1318 // FIXME? We could make this more precise by looking at the CFG and 1319 // e.g. not counting loads in each side of an if-then-else diamond. 1320 for (const auto BB : L->blocks()) { 1321 for (auto &I : *BB) { 1322 LoadInst *LMemI = dyn_cast<LoadInst>(&I); 1323 if (!LMemI) 1324 continue; 1325 1326 Value *PtrValue = LMemI->getPointerOperand(); 1327 if (L->isLoopInvariant(PtrValue)) 1328 continue; 1329 1330 const SCEV *LSCEV = SE.getSCEV(PtrValue); 1331 const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV); 1332 if (!LSCEVAddRec || !LSCEVAddRec->isAffine()) 1333 continue; 1334 1335 // FIXME? We could take pairing of unrolled load copies into account 1336 // by looking at the AddRec, but we would probably have to limit this 1337 // to loops with no stores or other memory optimization barriers. 1338 ++StridedLoads; 1339 // We've seen enough strided loads that seeing more won't make a 1340 // difference. 1341 if (StridedLoads > MaxStridedLoads / 2) 1342 return StridedLoads; 1343 } 1344 } 1345 return StridedLoads; 1346 }; 1347 1348 int StridedLoads = countStridedLoads(L, SE); 1349 LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads 1350 << " strided loads\n"); 1351 // Pick the largest power of 2 unroll count that won't result in too many 1352 // strided loads. 1353 if (StridedLoads) { 1354 UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads); 1355 LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to " 1356 << UP.MaxCount << '\n'); 1357 } 1358 } 1359 1360 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1361 TTI::UnrollingPreferences &UP) { 1362 // Enable partial unrolling and runtime unrolling. 1363 BaseT::getUnrollingPreferences(L, SE, UP); 1364 1365 // For inner loop, it is more likely to be a hot one, and the runtime check 1366 // can be promoted out from LICM pass, so the overhead is less, let's try 1367 // a larger threshold to unroll more loops. 1368 if (L->getLoopDepth() > 1) 1369 UP.PartialThreshold *= 2; 1370 1371 // Disable partial & runtime unrolling on -Os. 1372 UP.PartialOptSizeThreshold = 0; 1373 1374 if (ST->getProcFamily() == AArch64Subtarget::Falkor && 1375 EnableFalkorHWPFUnrollFix) 1376 getFalkorUnrollingPreferences(L, SE, UP); 1377 1378 // Scan the loop: don't unroll loops with calls as this could prevent 1379 // inlining. Don't unroll vector loops either, as they don't benefit much from 1380 // unrolling. 1381 for (auto *BB : L->getBlocks()) { 1382 for (auto &I : *BB) { 1383 // Don't unroll vectorised loop. 1384 if (I.getType()->isVectorTy()) 1385 return; 1386 1387 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 1388 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 1389 if (!isLoweredToCall(F)) 1390 continue; 1391 } 1392 return; 1393 } 1394 } 1395 } 1396 1397 // Enable runtime unrolling for in-order models 1398 // If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by 1399 // checking for that case, we can ensure that the default behaviour is 1400 // unchanged 1401 if (ST->getProcFamily() != AArch64Subtarget::Others && 1402 !ST->getSchedModel().isOutOfOrder()) { 1403 UP.Runtime = true; 1404 UP.Partial = true; 1405 UP.UpperBound = true; 1406 UP.UnrollRemainder = true; 1407 UP.DefaultUnrollRuntimeCount = 4; 1408 } 1409 } 1410 1411 void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 1412 TTI::PeelingPreferences &PP) { 1413 BaseT::getPeelingPreferences(L, SE, PP); 1414 } 1415 1416 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 1417 Type *ExpectedType) { 1418 switch (Inst->getIntrinsicID()) { 1419 default: 1420 return nullptr; 1421 case Intrinsic::aarch64_neon_st2: 1422 case Intrinsic::aarch64_neon_st3: 1423 case Intrinsic::aarch64_neon_st4: { 1424 // Create a struct type 1425 StructType *ST = dyn_cast<StructType>(ExpectedType); 1426 if (!ST) 1427 return nullptr; 1428 unsigned NumElts = Inst->getNumArgOperands() - 1; 1429 if (ST->getNumElements() != NumElts) 1430 return nullptr; 1431 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1432 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i)) 1433 return nullptr; 1434 } 1435 Value *Res = UndefValue::get(ExpectedType); 1436 IRBuilder<> Builder(Inst); 1437 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1438 Value *L = Inst->getArgOperand(i); 1439 Res = Builder.CreateInsertValue(Res, L, i); 1440 } 1441 return Res; 1442 } 1443 case Intrinsic::aarch64_neon_ld2: 1444 case Intrinsic::aarch64_neon_ld3: 1445 case Intrinsic::aarch64_neon_ld4: 1446 if (Inst->getType() == ExpectedType) 1447 return Inst; 1448 return nullptr; 1449 } 1450 } 1451 1452 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 1453 MemIntrinsicInfo &Info) { 1454 switch (Inst->getIntrinsicID()) { 1455 default: 1456 break; 1457 case Intrinsic::aarch64_neon_ld2: 1458 case Intrinsic::aarch64_neon_ld3: 1459 case Intrinsic::aarch64_neon_ld4: 1460 Info.ReadMem = true; 1461 Info.WriteMem = false; 1462 Info.PtrVal = Inst->getArgOperand(0); 1463 break; 1464 case Intrinsic::aarch64_neon_st2: 1465 case Intrinsic::aarch64_neon_st3: 1466 case Intrinsic::aarch64_neon_st4: 1467 Info.ReadMem = false; 1468 Info.WriteMem = true; 1469 Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1); 1470 break; 1471 } 1472 1473 switch (Inst->getIntrinsicID()) { 1474 default: 1475 return false; 1476 case Intrinsic::aarch64_neon_ld2: 1477 case Intrinsic::aarch64_neon_st2: 1478 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS; 1479 break; 1480 case Intrinsic::aarch64_neon_ld3: 1481 case Intrinsic::aarch64_neon_st3: 1482 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS; 1483 break; 1484 case Intrinsic::aarch64_neon_ld4: 1485 case Intrinsic::aarch64_neon_st4: 1486 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS; 1487 break; 1488 } 1489 return true; 1490 } 1491 1492 /// See if \p I should be considered for address type promotion. We check if \p 1493 /// I is a sext with right type and used in memory accesses. If it used in a 1494 /// "complex" getelementptr, we allow it to be promoted without finding other 1495 /// sext instructions that sign extended the same initial value. A getelementptr 1496 /// is considered as "complex" if it has more than 2 operands. 1497 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion( 1498 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) { 1499 bool Considerable = false; 1500 AllowPromotionWithoutCommonHeader = false; 1501 if (!isa<SExtInst>(&I)) 1502 return false; 1503 Type *ConsideredSExtType = 1504 Type::getInt64Ty(I.getParent()->getParent()->getContext()); 1505 if (I.getType() != ConsideredSExtType) 1506 return false; 1507 // See if the sext is the one with the right type and used in at least one 1508 // GetElementPtrInst. 1509 for (const User *U : I.users()) { 1510 if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) { 1511 Considerable = true; 1512 // A getelementptr is considered as "complex" if it has more than 2 1513 // operands. We will promote a SExt used in such complex GEP as we 1514 // expect some computation to be merged if they are done on 64 bits. 1515 if (GEPInst->getNumOperands() > 2) { 1516 AllowPromotionWithoutCommonHeader = true; 1517 break; 1518 } 1519 } 1520 } 1521 return Considerable; 1522 } 1523 1524 bool AArch64TTIImpl::isLegalToVectorizeReduction(RecurrenceDescriptor RdxDesc, 1525 ElementCount VF) const { 1526 if (!VF.isScalable()) 1527 return true; 1528 1529 Type *Ty = RdxDesc.getRecurrenceType(); 1530 if (Ty->isBFloatTy() || !isLegalElementTypeForSVE(Ty)) 1531 return false; 1532 1533 switch (RdxDesc.getRecurrenceKind()) { 1534 case RecurKind::Add: 1535 case RecurKind::FAdd: 1536 case RecurKind::And: 1537 case RecurKind::Or: 1538 case RecurKind::Xor: 1539 case RecurKind::SMin: 1540 case RecurKind::SMax: 1541 case RecurKind::UMin: 1542 case RecurKind::UMax: 1543 case RecurKind::FMin: 1544 case RecurKind::FMax: 1545 return true; 1546 default: 1547 return false; 1548 } 1549 } 1550 1551 InstructionCost 1552 AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 1553 bool IsPairwise, bool IsUnsigned, 1554 TTI::TargetCostKind CostKind) { 1555 if (!isa<ScalableVectorType>(Ty)) 1556 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned, 1557 CostKind); 1558 assert((isa<ScalableVectorType>(Ty) && isa<ScalableVectorType>(CondTy)) && 1559 "Both vector needs to be scalable"); 1560 1561 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 1562 InstructionCost LegalizationCost = 0; 1563 if (LT.first > 1) { 1564 Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext()); 1565 unsigned CmpOpcode = 1566 Ty->isFPOrFPVectorTy() ? Instruction::FCmp : Instruction::ICmp; 1567 LegalizationCost = 1568 getCmpSelInstrCost(CmpOpcode, LegalVTy, LegalVTy, 1569 CmpInst::BAD_ICMP_PREDICATE, CostKind) + 1570 getCmpSelInstrCost(Instruction::Select, LegalVTy, LegalVTy, 1571 CmpInst::BAD_ICMP_PREDICATE, CostKind); 1572 LegalizationCost *= LT.first - 1; 1573 } 1574 1575 return LegalizationCost + /*Cost of horizontal reduction*/ 2; 1576 } 1577 1578 InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE( 1579 unsigned Opcode, VectorType *ValTy, bool IsPairwise, 1580 TTI::TargetCostKind CostKind) { 1581 assert(!IsPairwise && "Cannot be pair wise to continue"); 1582 1583 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 1584 InstructionCost LegalizationCost = 0; 1585 if (LT.first > 1) { 1586 Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext()); 1587 LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind); 1588 LegalizationCost *= LT.first - 1; 1589 } 1590 1591 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1592 assert(ISD && "Invalid opcode"); 1593 // Add the final reduction cost for the legal horizontal reduction 1594 switch (ISD) { 1595 case ISD::ADD: 1596 case ISD::AND: 1597 case ISD::OR: 1598 case ISD::XOR: 1599 case ISD::FADD: 1600 return LegalizationCost + 2; 1601 default: 1602 return InstructionCost::getInvalid(); 1603 } 1604 } 1605 1606 InstructionCost 1607 AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, 1608 bool IsPairwiseForm, 1609 TTI::TargetCostKind CostKind) { 1610 1611 if (isa<ScalableVectorType>(ValTy)) 1612 return getArithmeticReductionCostSVE(Opcode, ValTy, IsPairwiseForm, 1613 CostKind); 1614 if (IsPairwiseForm) 1615 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm, 1616 CostKind); 1617 1618 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 1619 MVT MTy = LT.second; 1620 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1621 assert(ISD && "Invalid opcode"); 1622 1623 // Horizontal adds can use the 'addv' instruction. We model the cost of these 1624 // instructions as normal vector adds. This is the only arithmetic vector 1625 // reduction operation for which we have an instruction. 1626 static const CostTblEntry CostTblNoPairwise[]{ 1627 {ISD::ADD, MVT::v8i8, 1}, 1628 {ISD::ADD, MVT::v16i8, 1}, 1629 {ISD::ADD, MVT::v4i16, 1}, 1630 {ISD::ADD, MVT::v8i16, 1}, 1631 {ISD::ADD, MVT::v4i32, 1}, 1632 }; 1633 1634 if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy)) 1635 return LT.first * Entry->Cost; 1636 1637 return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm, 1638 CostKind); 1639 } 1640 1641 InstructionCost AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 1642 VectorType *Tp, 1643 ArrayRef<int> Mask, int Index, 1644 VectorType *SubTp) { 1645 Kind = improveShuffleKindFromMask(Kind, Mask); 1646 if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose || 1647 Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc || 1648 Kind == TTI::SK_Reverse) { 1649 static const CostTblEntry ShuffleTbl[] = { 1650 // Broadcast shuffle kinds can be performed with 'dup'. 1651 { TTI::SK_Broadcast, MVT::v8i8, 1 }, 1652 { TTI::SK_Broadcast, MVT::v16i8, 1 }, 1653 { TTI::SK_Broadcast, MVT::v4i16, 1 }, 1654 { TTI::SK_Broadcast, MVT::v8i16, 1 }, 1655 { TTI::SK_Broadcast, MVT::v2i32, 1 }, 1656 { TTI::SK_Broadcast, MVT::v4i32, 1 }, 1657 { TTI::SK_Broadcast, MVT::v2i64, 1 }, 1658 { TTI::SK_Broadcast, MVT::v2f32, 1 }, 1659 { TTI::SK_Broadcast, MVT::v4f32, 1 }, 1660 { TTI::SK_Broadcast, MVT::v2f64, 1 }, 1661 // Transpose shuffle kinds can be performed with 'trn1/trn2' and 1662 // 'zip1/zip2' instructions. 1663 { TTI::SK_Transpose, MVT::v8i8, 1 }, 1664 { TTI::SK_Transpose, MVT::v16i8, 1 }, 1665 { TTI::SK_Transpose, MVT::v4i16, 1 }, 1666 { TTI::SK_Transpose, MVT::v8i16, 1 }, 1667 { TTI::SK_Transpose, MVT::v2i32, 1 }, 1668 { TTI::SK_Transpose, MVT::v4i32, 1 }, 1669 { TTI::SK_Transpose, MVT::v2i64, 1 }, 1670 { TTI::SK_Transpose, MVT::v2f32, 1 }, 1671 { TTI::SK_Transpose, MVT::v4f32, 1 }, 1672 { TTI::SK_Transpose, MVT::v2f64, 1 }, 1673 // Select shuffle kinds. 1674 // TODO: handle vXi8/vXi16. 1675 { TTI::SK_Select, MVT::v2i32, 1 }, // mov. 1676 { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar). 1677 { TTI::SK_Select, MVT::v2i64, 1 }, // mov. 1678 { TTI::SK_Select, MVT::v2f32, 1 }, // mov. 1679 { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar). 1680 { TTI::SK_Select, MVT::v2f64, 1 }, // mov. 1681 // PermuteSingleSrc shuffle kinds. 1682 // TODO: handle vXi8/vXi16. 1683 { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov. 1684 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case. 1685 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov. 1686 { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov. 1687 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case. 1688 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov. 1689 // Reverse can be lowered with `rev`. 1690 { TTI::SK_Reverse, MVT::v2i32, 1 }, // mov. 1691 { TTI::SK_Reverse, MVT::v4i32, 2 }, // REV64; EXT 1692 { TTI::SK_Reverse, MVT::v2i64, 1 }, // mov. 1693 { TTI::SK_Reverse, MVT::v2f32, 1 }, // mov. 1694 { TTI::SK_Reverse, MVT::v4f32, 2 }, // REV64; EXT 1695 { TTI::SK_Reverse, MVT::v2f64, 1 }, // mov. 1696 // Broadcast shuffle kinds for scalable vectors 1697 { TTI::SK_Broadcast, MVT::nxv16i8, 1 }, 1698 { TTI::SK_Broadcast, MVT::nxv8i16, 1 }, 1699 { TTI::SK_Broadcast, MVT::nxv4i32, 1 }, 1700 { TTI::SK_Broadcast, MVT::nxv2i64, 1 }, 1701 { TTI::SK_Broadcast, MVT::nxv2f16, 1 }, 1702 { TTI::SK_Broadcast, MVT::nxv4f16, 1 }, 1703 { TTI::SK_Broadcast, MVT::nxv8f16, 1 }, 1704 { TTI::SK_Broadcast, MVT::nxv2bf16, 1 }, 1705 { TTI::SK_Broadcast, MVT::nxv4bf16, 1 }, 1706 { TTI::SK_Broadcast, MVT::nxv8bf16, 1 }, 1707 { TTI::SK_Broadcast, MVT::nxv2f32, 1 }, 1708 { TTI::SK_Broadcast, MVT::nxv4f32, 1 }, 1709 { TTI::SK_Broadcast, MVT::nxv2f64, 1 }, 1710 { TTI::SK_Broadcast, MVT::nxv16i1, 1 }, 1711 { TTI::SK_Broadcast, MVT::nxv8i1, 1 }, 1712 { TTI::SK_Broadcast, MVT::nxv4i1, 1 }, 1713 { TTI::SK_Broadcast, MVT::nxv2i1, 1 }, 1714 // Handle the cases for vector.reverse with scalable vectors 1715 { TTI::SK_Reverse, MVT::nxv16i8, 1 }, 1716 { TTI::SK_Reverse, MVT::nxv8i16, 1 }, 1717 { TTI::SK_Reverse, MVT::nxv4i32, 1 }, 1718 { TTI::SK_Reverse, MVT::nxv2i64, 1 }, 1719 { TTI::SK_Reverse, MVT::nxv2f16, 1 }, 1720 { TTI::SK_Reverse, MVT::nxv4f16, 1 }, 1721 { TTI::SK_Reverse, MVT::nxv8f16, 1 }, 1722 { TTI::SK_Reverse, MVT::nxv2bf16, 1 }, 1723 { TTI::SK_Reverse, MVT::nxv4bf16, 1 }, 1724 { TTI::SK_Reverse, MVT::nxv8bf16, 1 }, 1725 { TTI::SK_Reverse, MVT::nxv2f32, 1 }, 1726 { TTI::SK_Reverse, MVT::nxv4f32, 1 }, 1727 { TTI::SK_Reverse, MVT::nxv2f64, 1 }, 1728 { TTI::SK_Reverse, MVT::nxv16i1, 1 }, 1729 { TTI::SK_Reverse, MVT::nxv8i1, 1 }, 1730 { TTI::SK_Reverse, MVT::nxv4i1, 1 }, 1731 { TTI::SK_Reverse, MVT::nxv2i1, 1 }, 1732 }; 1733 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 1734 if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second)) 1735 return LT.first * Entry->Cost; 1736 } 1737 1738 return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp); 1739 } 1740