1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AArch64TargetTransformInfo.h" 10 #include "AArch64ExpandImm.h" 11 #include "MCTargetDesc/AArch64AddressingModes.h" 12 #include "llvm/Analysis/IVDescriptors.h" 13 #include "llvm/Analysis/LoopInfo.h" 14 #include "llvm/Analysis/TargetTransformInfo.h" 15 #include "llvm/CodeGen/BasicTTIImpl.h" 16 #include "llvm/CodeGen/CostTable.h" 17 #include "llvm/CodeGen/TargetLowering.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/IntrinsicsAArch64.h" 21 #include "llvm/IR/PatternMatch.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Transforms/InstCombine/InstCombiner.h" 24 #include <algorithm> 25 using namespace llvm; 26 using namespace llvm::PatternMatch; 27 28 #define DEBUG_TYPE "aarch64tti" 29 30 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix", 31 cl::init(true), cl::Hidden); 32 33 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller, 34 const Function *Callee) const { 35 const TargetMachine &TM = getTLI()->getTargetMachine(); 36 37 const FeatureBitset &CallerBits = 38 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 39 const FeatureBitset &CalleeBits = 40 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 41 42 // Inline a callee if its target-features are a subset of the callers 43 // target-features. 44 return (CallerBits & CalleeBits) == CalleeBits; 45 } 46 47 /// Calculate the cost of materializing a 64-bit value. This helper 48 /// method might only calculate a fraction of a larger immediate. Therefore it 49 /// is valid to return a cost of ZERO. 50 InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) { 51 // Check if the immediate can be encoded within an instruction. 52 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64)) 53 return 0; 54 55 if (Val < 0) 56 Val = ~Val; 57 58 // Calculate how many moves we will need to materialize this constant. 59 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; 60 AArch64_IMM::expandMOVImm(Val, 64, Insn); 61 return Insn.size(); 62 } 63 64 /// Calculate the cost of materializing the given constant. 65 InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 66 TTI::TargetCostKind CostKind) { 67 assert(Ty->isIntegerTy()); 68 69 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 70 if (BitSize == 0) 71 return ~0U; 72 73 // Sign-extend all constants to a multiple of 64-bit. 74 APInt ImmVal = Imm; 75 if (BitSize & 0x3f) 76 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU); 77 78 // Split the constant into 64-bit chunks and calculate the cost for each 79 // chunk. 80 InstructionCost Cost = 0; 81 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { 82 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); 83 int64_t Val = Tmp.getSExtValue(); 84 Cost += getIntImmCost(Val); 85 } 86 // We need at least one instruction to materialze the constant. 87 return std::max<InstructionCost>(1, Cost); 88 } 89 90 InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 91 const APInt &Imm, Type *Ty, 92 TTI::TargetCostKind CostKind, 93 Instruction *Inst) { 94 assert(Ty->isIntegerTy()); 95 96 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 97 // There is no cost model for constants with a bit size of 0. Return TCC_Free 98 // here, so that constant hoisting will ignore this constant. 99 if (BitSize == 0) 100 return TTI::TCC_Free; 101 102 unsigned ImmIdx = ~0U; 103 switch (Opcode) { 104 default: 105 return TTI::TCC_Free; 106 case Instruction::GetElementPtr: 107 // Always hoist the base address of a GetElementPtr. 108 if (Idx == 0) 109 return 2 * TTI::TCC_Basic; 110 return TTI::TCC_Free; 111 case Instruction::Store: 112 ImmIdx = 0; 113 break; 114 case Instruction::Add: 115 case Instruction::Sub: 116 case Instruction::Mul: 117 case Instruction::UDiv: 118 case Instruction::SDiv: 119 case Instruction::URem: 120 case Instruction::SRem: 121 case Instruction::And: 122 case Instruction::Or: 123 case Instruction::Xor: 124 case Instruction::ICmp: 125 ImmIdx = 1; 126 break; 127 // Always return TCC_Free for the shift value of a shift instruction. 128 case Instruction::Shl: 129 case Instruction::LShr: 130 case Instruction::AShr: 131 if (Idx == 1) 132 return TTI::TCC_Free; 133 break; 134 case Instruction::Trunc: 135 case Instruction::ZExt: 136 case Instruction::SExt: 137 case Instruction::IntToPtr: 138 case Instruction::PtrToInt: 139 case Instruction::BitCast: 140 case Instruction::PHI: 141 case Instruction::Call: 142 case Instruction::Select: 143 case Instruction::Ret: 144 case Instruction::Load: 145 break; 146 } 147 148 if (Idx == ImmIdx) { 149 int NumConstants = (BitSize + 63) / 64; 150 InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 151 return (Cost <= NumConstants * TTI::TCC_Basic) 152 ? static_cast<int>(TTI::TCC_Free) 153 : Cost; 154 } 155 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 156 } 157 158 InstructionCost 159 AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 160 const APInt &Imm, Type *Ty, 161 TTI::TargetCostKind CostKind) { 162 assert(Ty->isIntegerTy()); 163 164 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 165 // There is no cost model for constants with a bit size of 0. Return TCC_Free 166 // here, so that constant hoisting will ignore this constant. 167 if (BitSize == 0) 168 return TTI::TCC_Free; 169 170 // Most (all?) AArch64 intrinsics do not support folding immediates into the 171 // selected instruction, so we compute the materialization cost for the 172 // immediate directly. 173 if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv) 174 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 175 176 switch (IID) { 177 default: 178 return TTI::TCC_Free; 179 case Intrinsic::sadd_with_overflow: 180 case Intrinsic::uadd_with_overflow: 181 case Intrinsic::ssub_with_overflow: 182 case Intrinsic::usub_with_overflow: 183 case Intrinsic::smul_with_overflow: 184 case Intrinsic::umul_with_overflow: 185 if (Idx == 1) { 186 int NumConstants = (BitSize + 63) / 64; 187 InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 188 return (Cost <= NumConstants * TTI::TCC_Basic) 189 ? static_cast<int>(TTI::TCC_Free) 190 : Cost; 191 } 192 break; 193 case Intrinsic::experimental_stackmap: 194 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 195 return TTI::TCC_Free; 196 break; 197 case Intrinsic::experimental_patchpoint_void: 198 case Intrinsic::experimental_patchpoint_i64: 199 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 200 return TTI::TCC_Free; 201 break; 202 case Intrinsic::experimental_gc_statepoint: 203 if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 204 return TTI::TCC_Free; 205 break; 206 } 207 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 208 } 209 210 TargetTransformInfo::PopcntSupportKind 211 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) { 212 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 213 if (TyWidth == 32 || TyWidth == 64) 214 return TTI::PSK_FastHardware; 215 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount. 216 return TTI::PSK_Software; 217 } 218 219 InstructionCost 220 AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 221 TTI::TargetCostKind CostKind) { 222 auto *RetTy = ICA.getReturnType(); 223 switch (ICA.getID()) { 224 case Intrinsic::umin: 225 case Intrinsic::umax: 226 case Intrinsic::smin: 227 case Intrinsic::smax: { 228 static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 229 MVT::v8i16, MVT::v2i32, MVT::v4i32}; 230 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 231 // v2i64 types get converted to cmp+bif hence the cost of 2 232 if (LT.second == MVT::v2i64) 233 return LT.first * 2; 234 if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; })) 235 return LT.first; 236 break; 237 } 238 case Intrinsic::sadd_sat: 239 case Intrinsic::ssub_sat: 240 case Intrinsic::uadd_sat: 241 case Intrinsic::usub_sat: { 242 static const auto ValidSatTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 243 MVT::v8i16, MVT::v2i32, MVT::v4i32, 244 MVT::v2i64}; 245 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 246 // This is a base cost of 1 for the vadd, plus 3 extract shifts if we 247 // need to extend the type, as it uses shr(qadd(shl, shl)). 248 unsigned Instrs = 249 LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4; 250 if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; })) 251 return LT.first * Instrs; 252 break; 253 } 254 case Intrinsic::abs: { 255 static const auto ValidAbsTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 256 MVT::v8i16, MVT::v2i32, MVT::v4i32, 257 MVT::v2i64}; 258 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 259 if (any_of(ValidAbsTys, [<](MVT M) { return M == LT.second; })) 260 return LT.first; 261 break; 262 } 263 case Intrinsic::experimental_stepvector: { 264 InstructionCost Cost = 1; // Cost of the `index' instruction 265 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 266 // Legalisation of illegal vectors involves an `index' instruction plus 267 // (LT.first - 1) vector adds. 268 if (LT.first > 1) { 269 Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext()); 270 InstructionCost AddCost = 271 getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind); 272 Cost += AddCost * (LT.first - 1); 273 } 274 return Cost; 275 } 276 case Intrinsic::bitreverse: { 277 static const CostTblEntry BitreverseTbl[] = { 278 {Intrinsic::bitreverse, MVT::i32, 1}, 279 {Intrinsic::bitreverse, MVT::i64, 1}, 280 {Intrinsic::bitreverse, MVT::v8i8, 1}, 281 {Intrinsic::bitreverse, MVT::v16i8, 1}, 282 {Intrinsic::bitreverse, MVT::v4i16, 2}, 283 {Intrinsic::bitreverse, MVT::v8i16, 2}, 284 {Intrinsic::bitreverse, MVT::v2i32, 2}, 285 {Intrinsic::bitreverse, MVT::v4i32, 2}, 286 {Intrinsic::bitreverse, MVT::v1i64, 2}, 287 {Intrinsic::bitreverse, MVT::v2i64, 2}, 288 }; 289 const auto LegalisationCost = TLI->getTypeLegalizationCost(DL, RetTy); 290 const auto *Entry = 291 CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second); 292 if (Entry) { 293 // Cost Model is using the legal type(i32) that i8 and i16 will be 294 // converted to +1 so that we match the actual lowering cost 295 if (TLI->getValueType(DL, RetTy, true) == MVT::i8 || 296 TLI->getValueType(DL, RetTy, true) == MVT::i16) 297 return LegalisationCost.first * Entry->Cost + 1; 298 299 return LegalisationCost.first * Entry->Cost; 300 } 301 break; 302 } 303 case Intrinsic::ctpop: { 304 static const CostTblEntry CtpopCostTbl[] = { 305 {ISD::CTPOP, MVT::v2i64, 4}, 306 {ISD::CTPOP, MVT::v4i32, 3}, 307 {ISD::CTPOP, MVT::v8i16, 2}, 308 {ISD::CTPOP, MVT::v16i8, 1}, 309 {ISD::CTPOP, MVT::i64, 4}, 310 {ISD::CTPOP, MVT::v2i32, 3}, 311 {ISD::CTPOP, MVT::v4i16, 2}, 312 {ISD::CTPOP, MVT::v8i8, 1}, 313 {ISD::CTPOP, MVT::i32, 5}, 314 }; 315 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 316 MVT MTy = LT.second; 317 if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) { 318 // Extra cost of +1 when illegal vector types are legalized by promoting 319 // the integer type. 320 int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() != 321 RetTy->getScalarSizeInBits() 322 ? 1 323 : 0; 324 return LT.first * Entry->Cost + ExtraCost; 325 } 326 break; 327 } 328 default: 329 break; 330 } 331 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 332 } 333 334 /// The function will remove redundant reinterprets casting in the presence 335 /// of the control flow 336 static Optional<Instruction *> processPhiNode(InstCombiner &IC, 337 IntrinsicInst &II) { 338 SmallVector<Instruction *, 32> Worklist; 339 auto RequiredType = II.getType(); 340 341 auto *PN = dyn_cast<PHINode>(II.getArgOperand(0)); 342 assert(PN && "Expected Phi Node!"); 343 344 // Don't create a new Phi unless we can remove the old one. 345 if (!PN->hasOneUse()) 346 return None; 347 348 for (Value *IncValPhi : PN->incoming_values()) { 349 auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi); 350 if (!Reinterpret || 351 Reinterpret->getIntrinsicID() != 352 Intrinsic::aarch64_sve_convert_to_svbool || 353 RequiredType != Reinterpret->getArgOperand(0)->getType()) 354 return None; 355 } 356 357 // Create the new Phi 358 LLVMContext &Ctx = PN->getContext(); 359 IRBuilder<> Builder(Ctx); 360 Builder.SetInsertPoint(PN); 361 PHINode *NPN = Builder.CreatePHI(RequiredType, PN->getNumIncomingValues()); 362 Worklist.push_back(PN); 363 364 for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) { 365 auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I)); 366 NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I)); 367 Worklist.push_back(Reinterpret); 368 } 369 370 // Cleanup Phi Node and reinterprets 371 return IC.replaceInstUsesWith(II, NPN); 372 } 373 374 static Optional<Instruction *> instCombineConvertFromSVBool(InstCombiner &IC, 375 IntrinsicInst &II) { 376 // If the reinterpret instruction operand is a PHI Node 377 if (isa<PHINode>(II.getArgOperand(0))) 378 return processPhiNode(IC, II); 379 380 SmallVector<Instruction *, 32> CandidatesForRemoval; 381 Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr; 382 383 const auto *IVTy = cast<VectorType>(II.getType()); 384 385 // Walk the chain of conversions. 386 while (Cursor) { 387 // If the type of the cursor has fewer lanes than the final result, zeroing 388 // must take place, which breaks the equivalence chain. 389 const auto *CursorVTy = cast<VectorType>(Cursor->getType()); 390 if (CursorVTy->getElementCount().getKnownMinValue() < 391 IVTy->getElementCount().getKnownMinValue()) 392 break; 393 394 // If the cursor has the same type as I, it is a viable replacement. 395 if (Cursor->getType() == IVTy) 396 EarliestReplacement = Cursor; 397 398 auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor); 399 400 // If this is not an SVE conversion intrinsic, this is the end of the chain. 401 if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() == 402 Intrinsic::aarch64_sve_convert_to_svbool || 403 IntrinsicCursor->getIntrinsicID() == 404 Intrinsic::aarch64_sve_convert_from_svbool)) 405 break; 406 407 CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor); 408 Cursor = IntrinsicCursor->getOperand(0); 409 } 410 411 // If no viable replacement in the conversion chain was found, there is 412 // nothing to do. 413 if (!EarliestReplacement) 414 return None; 415 416 return IC.replaceInstUsesWith(II, EarliestReplacement); 417 } 418 419 static Optional<Instruction *> instCombineSVEDup(InstCombiner &IC, 420 IntrinsicInst &II) { 421 IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(1)); 422 if (!Pg) 423 return None; 424 425 if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) 426 return None; 427 428 const auto PTruePattern = 429 cast<ConstantInt>(Pg->getOperand(0))->getZExtValue(); 430 if (PTruePattern != AArch64SVEPredPattern::vl1) 431 return None; 432 433 // The intrinsic is inserting into lane zero so use an insert instead. 434 auto *IdxTy = Type::getInt64Ty(II.getContext()); 435 auto *Insert = InsertElementInst::Create( 436 II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0)); 437 Insert->insertBefore(&II); 438 Insert->takeName(&II); 439 440 return IC.replaceInstUsesWith(II, Insert); 441 } 442 443 static Optional<Instruction *> instCombineSVEDupX(InstCombiner &IC, 444 IntrinsicInst &II) { 445 // Replace DupX with a regular IR splat. 446 IRBuilder<> Builder(II.getContext()); 447 Builder.SetInsertPoint(&II); 448 auto *RetTy = cast<ScalableVectorType>(II.getType()); 449 Value *Splat = 450 Builder.CreateVectorSplat(RetTy->getElementCount(), II.getArgOperand(0)); 451 Splat->takeName(&II); 452 return IC.replaceInstUsesWith(II, Splat); 453 } 454 455 static Optional<Instruction *> instCombineSVECmpNE(InstCombiner &IC, 456 IntrinsicInst &II) { 457 LLVMContext &Ctx = II.getContext(); 458 IRBuilder<> Builder(Ctx); 459 Builder.SetInsertPoint(&II); 460 461 // Check that the predicate is all active 462 auto *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(0)); 463 if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) 464 return None; 465 466 const auto PTruePattern = 467 cast<ConstantInt>(Pg->getOperand(0))->getZExtValue(); 468 if (PTruePattern != AArch64SVEPredPattern::all) 469 return None; 470 471 // Check that we have a compare of zero.. 472 auto *SplatValue = 473 dyn_cast_or_null<ConstantInt>(getSplatValue(II.getArgOperand(2))); 474 if (!SplatValue || !SplatValue->isZero()) 475 return None; 476 477 // ..against a dupq 478 auto *DupQLane = dyn_cast<IntrinsicInst>(II.getArgOperand(1)); 479 if (!DupQLane || 480 DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane) 481 return None; 482 483 // Where the dupq is a lane 0 replicate of a vector insert 484 if (!cast<ConstantInt>(DupQLane->getArgOperand(1))->isZero()) 485 return None; 486 487 auto *VecIns = dyn_cast<IntrinsicInst>(DupQLane->getArgOperand(0)); 488 if (!VecIns || 489 VecIns->getIntrinsicID() != Intrinsic::experimental_vector_insert) 490 return None; 491 492 // Where the vector insert is a fixed constant vector insert into undef at 493 // index zero 494 if (!isa<UndefValue>(VecIns->getArgOperand(0))) 495 return None; 496 497 if (!cast<ConstantInt>(VecIns->getArgOperand(2))->isZero()) 498 return None; 499 500 auto *ConstVec = dyn_cast<Constant>(VecIns->getArgOperand(1)); 501 if (!ConstVec) 502 return None; 503 504 auto *VecTy = dyn_cast<FixedVectorType>(ConstVec->getType()); 505 auto *OutTy = dyn_cast<ScalableVectorType>(II.getType()); 506 if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements()) 507 return None; 508 509 unsigned NumElts = VecTy->getNumElements(); 510 unsigned PredicateBits = 0; 511 512 // Expand intrinsic operands to a 16-bit byte level predicate 513 for (unsigned I = 0; I < NumElts; ++I) { 514 auto *Arg = dyn_cast<ConstantInt>(ConstVec->getAggregateElement(I)); 515 if (!Arg) 516 return None; 517 if (!Arg->isZero()) 518 PredicateBits |= 1 << (I * (16 / NumElts)); 519 } 520 521 // If all bits are zero bail early with an empty predicate 522 if (PredicateBits == 0) { 523 auto *PFalse = Constant::getNullValue(II.getType()); 524 PFalse->takeName(&II); 525 return IC.replaceInstUsesWith(II, PFalse); 526 } 527 528 // Calculate largest predicate type used (where byte predicate is largest) 529 unsigned Mask = 8; 530 for (unsigned I = 0; I < 16; ++I) 531 if ((PredicateBits & (1 << I)) != 0) 532 Mask |= (I % 8); 533 534 unsigned PredSize = Mask & -Mask; 535 auto *PredType = ScalableVectorType::get( 536 Type::getInt1Ty(Ctx), AArch64::SVEBitsPerBlock / (PredSize * 8)); 537 538 // Ensure all relevant bits are set 539 for (unsigned I = 0; I < 16; I += PredSize) 540 if ((PredicateBits & (1 << I)) == 0) 541 return None; 542 543 auto *PTruePat = 544 ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all); 545 auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, 546 {PredType}, {PTruePat}); 547 auto *ConvertToSVBool = Builder.CreateIntrinsic( 548 Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue}); 549 auto *ConvertFromSVBool = 550 Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, 551 {II.getType()}, {ConvertToSVBool}); 552 553 ConvertFromSVBool->takeName(&II); 554 return IC.replaceInstUsesWith(II, ConvertFromSVBool); 555 } 556 557 static Optional<Instruction *> instCombineSVELast(InstCombiner &IC, 558 IntrinsicInst &II) { 559 IRBuilder<> Builder(II.getContext()); 560 Builder.SetInsertPoint(&II); 561 Value *Pg = II.getArgOperand(0); 562 Value *Vec = II.getArgOperand(1); 563 auto IntrinsicID = II.getIntrinsicID(); 564 bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta; 565 566 // lastX(splat(X)) --> X 567 if (auto *SplatVal = getSplatValue(Vec)) 568 return IC.replaceInstUsesWith(II, SplatVal); 569 570 // If x and/or y is a splat value then: 571 // lastX (binop (x, y)) --> binop(lastX(x), lastX(y)) 572 Value *LHS, *RHS; 573 if (match(Vec, m_OneUse(m_BinOp(m_Value(LHS), m_Value(RHS))))) { 574 if (isSplatValue(LHS) || isSplatValue(RHS)) { 575 auto *OldBinOp = cast<BinaryOperator>(Vec); 576 auto OpC = OldBinOp->getOpcode(); 577 auto *NewLHS = 578 Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, LHS}); 579 auto *NewRHS = 580 Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, RHS}); 581 auto *NewBinOp = BinaryOperator::CreateWithCopiedFlags( 582 OpC, NewLHS, NewRHS, OldBinOp, OldBinOp->getName(), &II); 583 return IC.replaceInstUsesWith(II, NewBinOp); 584 } 585 } 586 587 auto *C = dyn_cast<Constant>(Pg); 588 if (IsAfter && C && C->isNullValue()) { 589 // The intrinsic is extracting lane 0 so use an extract instead. 590 auto *IdxTy = Type::getInt64Ty(II.getContext()); 591 auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0)); 592 Extract->insertBefore(&II); 593 Extract->takeName(&II); 594 return IC.replaceInstUsesWith(II, Extract); 595 } 596 597 auto *IntrPG = dyn_cast<IntrinsicInst>(Pg); 598 if (!IntrPG) 599 return None; 600 601 if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) 602 return None; 603 604 const auto PTruePattern = 605 cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue(); 606 607 // Can the intrinsic's predicate be converted to a known constant index? 608 unsigned MinNumElts = getNumElementsFromSVEPredPattern(PTruePattern); 609 if (!MinNumElts) 610 return None; 611 612 unsigned Idx = MinNumElts - 1; 613 // Increment the index if extracting the element after the last active 614 // predicate element. 615 if (IsAfter) 616 ++Idx; 617 618 // Ignore extracts whose index is larger than the known minimum vector 619 // length. NOTE: This is an artificial constraint where we prefer to 620 // maintain what the user asked for until an alternative is proven faster. 621 auto *PgVTy = cast<ScalableVectorType>(Pg->getType()); 622 if (Idx >= PgVTy->getMinNumElements()) 623 return None; 624 625 // The intrinsic is extracting a fixed lane so use an extract instead. 626 auto *IdxTy = Type::getInt64Ty(II.getContext()); 627 auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx)); 628 Extract->insertBefore(&II); 629 Extract->takeName(&II); 630 return IC.replaceInstUsesWith(II, Extract); 631 } 632 633 static Optional<Instruction *> instCombineRDFFR(InstCombiner &IC, 634 IntrinsicInst &II) { 635 LLVMContext &Ctx = II.getContext(); 636 IRBuilder<> Builder(Ctx); 637 Builder.SetInsertPoint(&II); 638 // Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr 639 // can work with RDFFR_PP for ptest elimination. 640 auto *AllPat = 641 ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all); 642 auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, 643 {II.getType()}, {AllPat}); 644 auto *RDFFR = 645 Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue}); 646 RDFFR->takeName(&II); 647 return IC.replaceInstUsesWith(II, RDFFR); 648 } 649 650 static Optional<Instruction *> 651 instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) { 652 const auto Pattern = cast<ConstantInt>(II.getArgOperand(0))->getZExtValue(); 653 654 if (Pattern == AArch64SVEPredPattern::all) { 655 LLVMContext &Ctx = II.getContext(); 656 IRBuilder<> Builder(Ctx); 657 Builder.SetInsertPoint(&II); 658 659 Constant *StepVal = ConstantInt::get(II.getType(), NumElts); 660 auto *VScale = Builder.CreateVScale(StepVal); 661 VScale->takeName(&II); 662 return IC.replaceInstUsesWith(II, VScale); 663 } 664 665 unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern); 666 667 return MinNumElts && NumElts >= MinNumElts 668 ? Optional<Instruction *>(IC.replaceInstUsesWith( 669 II, ConstantInt::get(II.getType(), MinNumElts))) 670 : None; 671 } 672 673 static Optional<Instruction *> instCombineSVEPTest(InstCombiner &IC, 674 IntrinsicInst &II) { 675 IntrinsicInst *Op1 = dyn_cast<IntrinsicInst>(II.getArgOperand(0)); 676 IntrinsicInst *Op2 = dyn_cast<IntrinsicInst>(II.getArgOperand(1)); 677 678 if (Op1 && Op2 && 679 Op1->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool && 680 Op2->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool && 681 Op1->getArgOperand(0)->getType() == Op2->getArgOperand(0)->getType()) { 682 683 IRBuilder<> Builder(II.getContext()); 684 Builder.SetInsertPoint(&II); 685 686 Value *Ops[] = {Op1->getArgOperand(0), Op2->getArgOperand(0)}; 687 Type *Tys[] = {Op1->getArgOperand(0)->getType()}; 688 689 auto *PTest = Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops); 690 691 PTest->takeName(&II); 692 return IC.replaceInstUsesWith(II, PTest); 693 } 694 695 return None; 696 } 697 698 static Instruction::BinaryOps intrinsicIDToBinOpCode(unsigned Intrinsic) { 699 switch (Intrinsic) { 700 case Intrinsic::aarch64_sve_fmul: 701 return Instruction::BinaryOps::FMul; 702 case Intrinsic::aarch64_sve_fadd: 703 return Instruction::BinaryOps::FAdd; 704 case Intrinsic::aarch64_sve_fsub: 705 return Instruction::BinaryOps::FSub; 706 default: 707 return Instruction::BinaryOpsEnd; 708 } 709 } 710 711 static Optional<Instruction *> instCombineSVEVectorBinOp(InstCombiner &IC, 712 IntrinsicInst &II) { 713 auto BinOpCode = intrinsicIDToBinOpCode(II.getIntrinsicID()); 714 if (BinOpCode == Instruction::BinaryOpsEnd || 715 !match(II.getOperand(0), 716 m_Intrinsic<Intrinsic::aarch64_sve_ptrue>( 717 m_ConstantInt<AArch64SVEPredPattern::all>()))) 718 return None; 719 IRBuilder<> Builder(II.getContext()); 720 Builder.SetInsertPoint(&II); 721 return IC.replaceInstUsesWith( 722 II, Builder.CreateBinOp(BinOpCode, II.getOperand(1), II.getOperand(2))); 723 } 724 725 static Optional<Instruction *> instCombineSVEVectorMul(InstCombiner &IC, 726 IntrinsicInst &II) { 727 auto *OpPredicate = II.getOperand(0); 728 auto *OpMultiplicand = II.getOperand(1); 729 auto *OpMultiplier = II.getOperand(2); 730 731 IRBuilder<> Builder(II.getContext()); 732 Builder.SetInsertPoint(&II); 733 734 // Return true if a given instruction is a unit splat value, false otherwise. 735 auto IsUnitSplat = [](auto *I) { 736 auto *SplatValue = getSplatValue(I); 737 if (!SplatValue) 738 return false; 739 return match(SplatValue, m_FPOne()) || match(SplatValue, m_One()); 740 }; 741 742 // Return true if a given instruction is an aarch64_sve_dup intrinsic call 743 // with a unit splat value, false otherwise. 744 auto IsUnitDup = [](auto *I) { 745 auto *IntrI = dyn_cast<IntrinsicInst>(I); 746 if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup) 747 return false; 748 749 auto *SplatValue = IntrI->getOperand(2); 750 return match(SplatValue, m_FPOne()) || match(SplatValue, m_One()); 751 }; 752 753 // The OpMultiplier variable should always point to the dup (if any), so 754 // swap if necessary. 755 if (IsUnitDup(OpMultiplicand) || IsUnitSplat(OpMultiplicand)) 756 std::swap(OpMultiplier, OpMultiplicand); 757 758 if (IsUnitSplat(OpMultiplier)) { 759 // [f]mul pg (dupx 1) %n => %n 760 OpMultiplicand->takeName(&II); 761 return IC.replaceInstUsesWith(II, OpMultiplicand); 762 } else if (IsUnitDup(OpMultiplier)) { 763 // [f]mul pg (dup pg 1) %n => %n 764 auto *DupInst = cast<IntrinsicInst>(OpMultiplier); 765 auto *DupPg = DupInst->getOperand(1); 766 // TODO: this is naive. The optimization is still valid if DupPg 767 // 'encompasses' OpPredicate, not only if they're the same predicate. 768 if (OpPredicate == DupPg) { 769 OpMultiplicand->takeName(&II); 770 return IC.replaceInstUsesWith(II, OpMultiplicand); 771 } 772 } 773 774 return instCombineSVEVectorBinOp(IC, II); 775 } 776 777 static Optional<Instruction *> instCombineSVEUnpack(InstCombiner &IC, 778 IntrinsicInst &II) { 779 IRBuilder<> Builder(II.getContext()); 780 Builder.SetInsertPoint(&II); 781 Value *UnpackArg = II.getArgOperand(0); 782 auto *RetTy = cast<ScalableVectorType>(II.getType()); 783 bool IsSigned = II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi || 784 II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo; 785 786 // Hi = uunpkhi(splat(X)) --> Hi = splat(extend(X)) 787 // Lo = uunpklo(splat(X)) --> Lo = splat(extend(X)) 788 if (auto *ScalarArg = getSplatValue(UnpackArg)) { 789 ScalarArg = 790 Builder.CreateIntCast(ScalarArg, RetTy->getScalarType(), IsSigned); 791 Value *NewVal = 792 Builder.CreateVectorSplat(RetTy->getElementCount(), ScalarArg); 793 NewVal->takeName(&II); 794 return IC.replaceInstUsesWith(II, NewVal); 795 } 796 797 return None; 798 } 799 static Optional<Instruction *> instCombineSVETBL(InstCombiner &IC, 800 IntrinsicInst &II) { 801 auto *OpVal = II.getOperand(0); 802 auto *OpIndices = II.getOperand(1); 803 VectorType *VTy = cast<VectorType>(II.getType()); 804 805 // Check whether OpIndices is a constant splat value < minimal element count 806 // of result. 807 auto *SplatValue = dyn_cast_or_null<ConstantInt>(getSplatValue(OpIndices)); 808 if (!SplatValue || 809 SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue())) 810 return None; 811 812 // Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to 813 // splat_vector(extractelement(OpVal, SplatValue)) for further optimization. 814 IRBuilder<> Builder(II.getContext()); 815 Builder.SetInsertPoint(&II); 816 auto *Extract = Builder.CreateExtractElement(OpVal, SplatValue); 817 auto *VectorSplat = 818 Builder.CreateVectorSplat(VTy->getElementCount(), Extract); 819 820 VectorSplat->takeName(&II); 821 return IC.replaceInstUsesWith(II, VectorSplat); 822 } 823 824 static Optional<Instruction *> instCombineSVETupleGet(InstCombiner &IC, 825 IntrinsicInst &II) { 826 // Try to remove sequences of tuple get/set. 827 Value *SetTuple, *SetIndex, *SetValue; 828 auto *GetTuple = II.getArgOperand(0); 829 auto *GetIndex = II.getArgOperand(1); 830 // Check that we have tuple_get(GetTuple, GetIndex) where GetTuple is a 831 // call to tuple_set i.e. tuple_set(SetTuple, SetIndex, SetValue). 832 // Make sure that the types of the current intrinsic and SetValue match 833 // in order to safely remove the sequence. 834 if (!match(GetTuple, 835 m_Intrinsic<Intrinsic::aarch64_sve_tuple_set>( 836 m_Value(SetTuple), m_Value(SetIndex), m_Value(SetValue))) || 837 SetValue->getType() != II.getType()) 838 return None; 839 // Case where we get the same index right after setting it. 840 // tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex) --> SetValue 841 if (GetIndex == SetIndex) 842 return IC.replaceInstUsesWith(II, SetValue); 843 // If we are getting a different index than what was set in the tuple_set 844 // intrinsic. We can just set the input tuple to the one up in the chain. 845 // tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex) 846 // --> tuple_get(SetTuple, GetIndex) 847 return IC.replaceOperand(II, 0, SetTuple); 848 } 849 850 static Optional<Instruction *> instCombineSVEZip(InstCombiner &IC, 851 IntrinsicInst &II) { 852 // zip1(uzp1(A, B), uzp2(A, B)) --> A 853 // zip2(uzp1(A, B), uzp2(A, B)) --> B 854 Value *A, *B; 855 if (match(II.getArgOperand(0), 856 m_Intrinsic<Intrinsic::aarch64_sve_uzp1>(m_Value(A), m_Value(B))) && 857 match(II.getArgOperand(1), m_Intrinsic<Intrinsic::aarch64_sve_uzp2>( 858 m_Specific(A), m_Specific(B)))) 859 return IC.replaceInstUsesWith( 860 II, (II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ? A : B)); 861 862 return None; 863 } 864 865 Optional<Instruction *> 866 AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC, 867 IntrinsicInst &II) const { 868 Intrinsic::ID IID = II.getIntrinsicID(); 869 switch (IID) { 870 default: 871 break; 872 case Intrinsic::aarch64_sve_convert_from_svbool: 873 return instCombineConvertFromSVBool(IC, II); 874 case Intrinsic::aarch64_sve_dup: 875 return instCombineSVEDup(IC, II); 876 case Intrinsic::aarch64_sve_dup_x: 877 return instCombineSVEDupX(IC, II); 878 case Intrinsic::aarch64_sve_cmpne: 879 case Intrinsic::aarch64_sve_cmpne_wide: 880 return instCombineSVECmpNE(IC, II); 881 case Intrinsic::aarch64_sve_rdffr: 882 return instCombineRDFFR(IC, II); 883 case Intrinsic::aarch64_sve_lasta: 884 case Intrinsic::aarch64_sve_lastb: 885 return instCombineSVELast(IC, II); 886 case Intrinsic::aarch64_sve_cntd: 887 return instCombineSVECntElts(IC, II, 2); 888 case Intrinsic::aarch64_sve_cntw: 889 return instCombineSVECntElts(IC, II, 4); 890 case Intrinsic::aarch64_sve_cnth: 891 return instCombineSVECntElts(IC, II, 8); 892 case Intrinsic::aarch64_sve_cntb: 893 return instCombineSVECntElts(IC, II, 16); 894 case Intrinsic::aarch64_sve_ptest_any: 895 case Intrinsic::aarch64_sve_ptest_first: 896 case Intrinsic::aarch64_sve_ptest_last: 897 return instCombineSVEPTest(IC, II); 898 case Intrinsic::aarch64_sve_mul: 899 case Intrinsic::aarch64_sve_fmul: 900 return instCombineSVEVectorMul(IC, II); 901 case Intrinsic::aarch64_sve_fadd: 902 case Intrinsic::aarch64_sve_fsub: 903 return instCombineSVEVectorBinOp(IC, II); 904 case Intrinsic::aarch64_sve_tbl: 905 return instCombineSVETBL(IC, II); 906 case Intrinsic::aarch64_sve_uunpkhi: 907 case Intrinsic::aarch64_sve_uunpklo: 908 case Intrinsic::aarch64_sve_sunpkhi: 909 case Intrinsic::aarch64_sve_sunpklo: 910 return instCombineSVEUnpack(IC, II); 911 case Intrinsic::aarch64_sve_tuple_get: 912 return instCombineSVETupleGet(IC, II); 913 case Intrinsic::aarch64_sve_zip1: 914 case Intrinsic::aarch64_sve_zip2: 915 return instCombineSVEZip(IC, II); 916 } 917 918 return None; 919 } 920 921 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode, 922 ArrayRef<const Value *> Args) { 923 924 // A helper that returns a vector type from the given type. The number of 925 // elements in type Ty determine the vector width. 926 auto toVectorTy = [&](Type *ArgTy) { 927 return VectorType::get(ArgTy->getScalarType(), 928 cast<VectorType>(DstTy)->getElementCount()); 929 }; 930 931 // Exit early if DstTy is not a vector type whose elements are at least 932 // 16-bits wide. 933 if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16) 934 return false; 935 936 // Determine if the operation has a widening variant. We consider both the 937 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the 938 // instructions. 939 // 940 // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we 941 // verify that their extending operands are eliminated during code 942 // generation. 943 switch (Opcode) { 944 case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2). 945 case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2). 946 break; 947 default: 948 return false; 949 } 950 951 // To be a widening instruction (either the "wide" or "long" versions), the 952 // second operand must be a sign- or zero extend having a single user. We 953 // only consider extends having a single user because they may otherwise not 954 // be eliminated. 955 if (Args.size() != 2 || 956 (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) || 957 !Args[1]->hasOneUse()) 958 return false; 959 auto *Extend = cast<CastInst>(Args[1]); 960 961 // Legalize the destination type and ensure it can be used in a widening 962 // operation. 963 auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy); 964 unsigned DstElTySize = DstTyL.second.getScalarSizeInBits(); 965 if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits()) 966 return false; 967 968 // Legalize the source type and ensure it can be used in a widening 969 // operation. 970 auto *SrcTy = toVectorTy(Extend->getSrcTy()); 971 auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy); 972 unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits(); 973 if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits()) 974 return false; 975 976 // Get the total number of vector elements in the legalized types. 977 InstructionCost NumDstEls = 978 DstTyL.first * DstTyL.second.getVectorMinNumElements(); 979 InstructionCost NumSrcEls = 980 SrcTyL.first * SrcTyL.second.getVectorMinNumElements(); 981 982 // Return true if the legalized types have the same number of vector elements 983 // and the destination element type size is twice that of the source type. 984 return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize; 985 } 986 987 InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 988 Type *Src, 989 TTI::CastContextHint CCH, 990 TTI::TargetCostKind CostKind, 991 const Instruction *I) { 992 int ISD = TLI->InstructionOpcodeToISD(Opcode); 993 assert(ISD && "Invalid opcode"); 994 995 // If the cast is observable, and it is used by a widening instruction (e.g., 996 // uaddl, saddw, etc.), it may be free. 997 if (I && I->hasOneUse()) { 998 auto *SingleUser = cast<Instruction>(*I->user_begin()); 999 SmallVector<const Value *, 4> Operands(SingleUser->operand_values()); 1000 if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) { 1001 // If the cast is the second operand, it is free. We will generate either 1002 // a "wide" or "long" version of the widening instruction. 1003 if (I == SingleUser->getOperand(1)) 1004 return 0; 1005 // If the cast is not the second operand, it will be free if it looks the 1006 // same as the second operand. In this case, we will generate a "long" 1007 // version of the widening instruction. 1008 if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1))) 1009 if (I->getOpcode() == unsigned(Cast->getOpcode()) && 1010 cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy()) 1011 return 0; 1012 } 1013 } 1014 1015 // TODO: Allow non-throughput costs that aren't binary. 1016 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { 1017 if (CostKind != TTI::TCK_RecipThroughput) 1018 return Cost == 0 ? 0 : 1; 1019 return Cost; 1020 }; 1021 1022 EVT SrcTy = TLI->getValueType(DL, Src); 1023 EVT DstTy = TLI->getValueType(DL, Dst); 1024 1025 if (!SrcTy.isSimple() || !DstTy.isSimple()) 1026 return AdjustCost( 1027 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 1028 1029 static const TypeConversionCostTblEntry 1030 ConversionTbl[] = { 1031 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 1032 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 1033 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 1034 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 1035 1036 // Truncations on nxvmiN 1037 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 }, 1038 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 }, 1039 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 }, 1040 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 }, 1041 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 }, 1042 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 }, 1043 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 }, 1044 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 }, 1045 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 }, 1046 { ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 1 }, 1047 { ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 }, 1048 { ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 }, 1049 { ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 }, 1050 { ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 }, 1051 { ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 }, 1052 { ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 }, 1053 1054 // The number of shll instructions for the extension. 1055 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 1056 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 1057 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 1058 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 1059 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 1060 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 1061 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 1062 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 1063 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 1064 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 1065 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 1066 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 1067 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 1068 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 1069 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 1070 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 1071 1072 // LowerVectorINT_TO_FP: 1073 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 1074 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 1075 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 1076 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 1077 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 1078 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 1079 1080 // Complex: to v2f32 1081 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 1082 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 1083 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 1084 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 1085 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 1086 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 1087 1088 // Complex: to v4f32 1089 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 }, 1090 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 1091 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 1092 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 1093 1094 // Complex: to v8f32 1095 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 1096 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 1097 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 1098 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 1099 1100 // Complex: to v16f32 1101 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 1102 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 1103 1104 // Complex: to v2f64 1105 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 1106 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 1107 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 1108 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 1109 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 1110 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 1111 1112 1113 // LowerVectorFP_TO_INT 1114 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 }, 1115 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 1116 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, 1117 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, 1118 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 1119 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, 1120 1121 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext). 1122 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 }, 1123 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 }, 1124 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 }, 1125 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 }, 1126 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 }, 1127 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 }, 1128 1129 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2 1130 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 1131 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 }, 1132 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 1133 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 }, 1134 1135 // Complex, from nxv2f32. 1136 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 }, 1137 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 }, 1138 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 }, 1139 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f32, 1 }, 1140 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 }, 1141 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 }, 1142 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 }, 1143 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f32, 1 }, 1144 1145 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2. 1146 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 1147 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 }, 1148 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 }, 1149 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 1150 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 }, 1151 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 }, 1152 1153 // Complex, from nxv2f64. 1154 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 }, 1155 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 }, 1156 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 }, 1157 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f64, 1 }, 1158 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 }, 1159 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 }, 1160 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 }, 1161 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f64, 1 }, 1162 1163 // Complex, from nxv4f32. 1164 { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 }, 1165 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 }, 1166 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 }, 1167 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f32, 1 }, 1168 { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 }, 1169 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 }, 1170 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 }, 1171 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f32, 1 }, 1172 1173 // Complex, from nxv8f64. Illegal -> illegal conversions not required. 1174 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 }, 1175 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f64, 7 }, 1176 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 }, 1177 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f64, 7 }, 1178 1179 // Complex, from nxv4f64. Illegal -> illegal conversions not required. 1180 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 }, 1181 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 }, 1182 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f64, 3 }, 1183 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 }, 1184 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 }, 1185 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f64, 3 }, 1186 1187 // Complex, from nxv8f32. Illegal -> illegal conversions not required. 1188 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 }, 1189 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f32, 3 }, 1190 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 }, 1191 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f32, 3 }, 1192 1193 // Complex, from nxv8f16. 1194 { ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 }, 1195 { ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 }, 1196 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 }, 1197 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f16, 1 }, 1198 { ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 }, 1199 { ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 }, 1200 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 }, 1201 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f16, 1 }, 1202 1203 // Complex, from nxv4f16. 1204 { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 }, 1205 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 }, 1206 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 }, 1207 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f16, 1 }, 1208 { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 }, 1209 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 }, 1210 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 }, 1211 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f16, 1 }, 1212 1213 // Complex, from nxv2f16. 1214 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 }, 1215 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 }, 1216 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 }, 1217 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f16, 1 }, 1218 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 }, 1219 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 }, 1220 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 }, 1221 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f16, 1 }, 1222 1223 // Truncate from nxvmf32 to nxvmf16. 1224 { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 }, 1225 { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 }, 1226 { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 }, 1227 1228 // Truncate from nxvmf64 to nxvmf16. 1229 { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 }, 1230 { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 }, 1231 { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 }, 1232 1233 // Truncate from nxvmf64 to nxvmf32. 1234 { ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 }, 1235 { ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 }, 1236 { ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 }, 1237 1238 // Extend from nxvmf16 to nxvmf32. 1239 { ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1}, 1240 { ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1}, 1241 { ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2}, 1242 1243 // Extend from nxvmf16 to nxvmf64. 1244 { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1}, 1245 { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2}, 1246 { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4}, 1247 1248 // Extend from nxvmf32 to nxvmf64. 1249 { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1}, 1250 { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2}, 1251 { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6}, 1252 1253 }; 1254 1255 if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD, 1256 DstTy.getSimpleVT(), 1257 SrcTy.getSimpleVT())) 1258 return AdjustCost(Entry->Cost); 1259 1260 return AdjustCost( 1261 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 1262 } 1263 1264 InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, 1265 Type *Dst, 1266 VectorType *VecTy, 1267 unsigned Index) { 1268 1269 // Make sure we were given a valid extend opcode. 1270 assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) && 1271 "Invalid opcode"); 1272 1273 // We are extending an element we extract from a vector, so the source type 1274 // of the extend is the element type of the vector. 1275 auto *Src = VecTy->getElementType(); 1276 1277 // Sign- and zero-extends are for integer types only. 1278 assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type"); 1279 1280 // Get the cost for the extract. We compute the cost (if any) for the extend 1281 // below. 1282 InstructionCost Cost = 1283 getVectorInstrCost(Instruction::ExtractElement, VecTy, Index); 1284 1285 // Legalize the types. 1286 auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy); 1287 auto DstVT = TLI->getValueType(DL, Dst); 1288 auto SrcVT = TLI->getValueType(DL, Src); 1289 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1290 1291 // If the resulting type is still a vector and the destination type is legal, 1292 // we may get the extension for free. If not, get the default cost for the 1293 // extend. 1294 if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT)) 1295 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 1296 CostKind); 1297 1298 // The destination type should be larger than the element type. If not, get 1299 // the default cost for the extend. 1300 if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits()) 1301 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 1302 CostKind); 1303 1304 switch (Opcode) { 1305 default: 1306 llvm_unreachable("Opcode should be either SExt or ZExt"); 1307 1308 // For sign-extends, we only need a smov, which performs the extension 1309 // automatically. 1310 case Instruction::SExt: 1311 return Cost; 1312 1313 // For zero-extends, the extend is performed automatically by a umov unless 1314 // the destination type is i64 and the element type is i8 or i16. 1315 case Instruction::ZExt: 1316 if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u) 1317 return Cost; 1318 } 1319 1320 // If we are unable to perform the extend for free, get the default cost. 1321 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 1322 CostKind); 1323 } 1324 1325 InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode, 1326 TTI::TargetCostKind CostKind, 1327 const Instruction *I) { 1328 if (CostKind != TTI::TCK_RecipThroughput) 1329 return Opcode == Instruction::PHI ? 0 : 1; 1330 assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind"); 1331 // Branches are assumed to be predicted. 1332 return 0; 1333 } 1334 1335 InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 1336 unsigned Index) { 1337 assert(Val->isVectorTy() && "This must be a vector type"); 1338 1339 if (Index != -1U) { 1340 // Legalize the type. 1341 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); 1342 1343 // This type is legalized to a scalar type. 1344 if (!LT.second.isVector()) 1345 return 0; 1346 1347 // The type may be split. Normalize the index to the new type. 1348 unsigned Width = LT.second.getVectorNumElements(); 1349 Index = Index % Width; 1350 1351 // The element at index zero is already inside the vector. 1352 if (Index == 0) 1353 return 0; 1354 } 1355 1356 // All other insert/extracts cost this much. 1357 return ST->getVectorInsertExtractBaseCost(); 1358 } 1359 1360 InstructionCost AArch64TTIImpl::getArithmeticInstrCost( 1361 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 1362 TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, 1363 TTI::OperandValueProperties Opd1PropInfo, 1364 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 1365 const Instruction *CxtI) { 1366 // TODO: Handle more cost kinds. 1367 if (CostKind != TTI::TCK_RecipThroughput) 1368 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1369 Opd2Info, Opd1PropInfo, 1370 Opd2PropInfo, Args, CxtI); 1371 1372 // Legalize the type. 1373 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 1374 1375 // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.), 1376 // add in the widening overhead specified by the sub-target. Since the 1377 // extends feeding widening instructions are performed automatically, they 1378 // aren't present in the generated code and have a zero cost. By adding a 1379 // widening overhead here, we attach the total cost of the combined operation 1380 // to the widening instruction. 1381 InstructionCost Cost = 0; 1382 if (isWideningInstruction(Ty, Opcode, Args)) 1383 Cost += ST->getWideningBaseCost(); 1384 1385 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1386 1387 switch (ISD) { 1388 default: 1389 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1390 Opd2Info, 1391 Opd1PropInfo, Opd2PropInfo); 1392 case ISD::SDIV: 1393 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue && 1394 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 1395 // On AArch64, scalar signed division by constants power-of-two are 1396 // normally expanded to the sequence ADD + CMP + SELECT + SRA. 1397 // The OperandValue properties many not be same as that of previous 1398 // operation; conservatively assume OP_None. 1399 Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, 1400 Opd1Info, Opd2Info, 1401 TargetTransformInfo::OP_None, 1402 TargetTransformInfo::OP_None); 1403 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, 1404 Opd1Info, Opd2Info, 1405 TargetTransformInfo::OP_None, 1406 TargetTransformInfo::OP_None); 1407 Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind, 1408 Opd1Info, Opd2Info, 1409 TargetTransformInfo::OP_None, 1410 TargetTransformInfo::OP_None); 1411 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, 1412 Opd1Info, Opd2Info, 1413 TargetTransformInfo::OP_None, 1414 TargetTransformInfo::OP_None); 1415 return Cost; 1416 } 1417 LLVM_FALLTHROUGH; 1418 case ISD::UDIV: 1419 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) { 1420 auto VT = TLI->getValueType(DL, Ty); 1421 if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) { 1422 // Vector signed division by constant are expanded to the 1423 // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division 1424 // to MULHS + SUB + SRL + ADD + SRL. 1425 InstructionCost MulCost = getArithmeticInstrCost( 1426 Instruction::Mul, Ty, CostKind, Opd1Info, Opd2Info, 1427 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1428 InstructionCost AddCost = getArithmeticInstrCost( 1429 Instruction::Add, Ty, CostKind, Opd1Info, Opd2Info, 1430 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1431 InstructionCost ShrCost = getArithmeticInstrCost( 1432 Instruction::AShr, Ty, CostKind, Opd1Info, Opd2Info, 1433 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1434 return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1; 1435 } 1436 } 1437 1438 Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1439 Opd2Info, 1440 Opd1PropInfo, Opd2PropInfo); 1441 if (Ty->isVectorTy()) { 1442 // On AArch64, vector divisions are not supported natively and are 1443 // expanded into scalar divisions of each pair of elements. 1444 Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind, 1445 Opd1Info, Opd2Info, Opd1PropInfo, 1446 Opd2PropInfo); 1447 Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind, 1448 Opd1Info, Opd2Info, Opd1PropInfo, 1449 Opd2PropInfo); 1450 // TODO: if one of the arguments is scalar, then it's not necessary to 1451 // double the cost of handling the vector elements. 1452 Cost += Cost; 1453 } 1454 return Cost; 1455 1456 case ISD::MUL: 1457 if (LT.second != MVT::v2i64) 1458 return (Cost + 1) * LT.first; 1459 // Since we do not have a MUL.2d instruction, a mul <2 x i64> is expensive 1460 // as elements are extracted from the vectors and the muls scalarized. 1461 // As getScalarizationOverhead is a bit too pessimistic, we estimate the 1462 // cost for a i64 vector directly here, which is: 1463 // - four i64 extracts, 1464 // - two i64 inserts, and 1465 // - two muls. 1466 // So, for a v2i64 with LT.First = 1 the cost is 8, and for a v4i64 with 1467 // LT.first = 2 the cost is 16. 1468 return LT.first * 8; 1469 case ISD::ADD: 1470 case ISD::XOR: 1471 case ISD::OR: 1472 case ISD::AND: 1473 // These nodes are marked as 'custom' for combining purposes only. 1474 // We know that they are legal. See LowerAdd in ISelLowering. 1475 return (Cost + 1) * LT.first; 1476 1477 case ISD::FADD: 1478 case ISD::FSUB: 1479 case ISD::FMUL: 1480 case ISD::FDIV: 1481 case ISD::FNEG: 1482 // These nodes are marked as 'custom' just to lower them to SVE. 1483 // We know said lowering will incur no additional cost. 1484 if (!Ty->getScalarType()->isFP128Ty()) 1485 return (Cost + 2) * LT.first; 1486 1487 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1488 Opd2Info, 1489 Opd1PropInfo, Opd2PropInfo); 1490 } 1491 } 1492 1493 InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty, 1494 ScalarEvolution *SE, 1495 const SCEV *Ptr) { 1496 // Address computations in vectorized code with non-consecutive addresses will 1497 // likely result in more instructions compared to scalar code where the 1498 // computation can more often be merged into the index mode. The resulting 1499 // extra micro-ops can significantly decrease throughput. 1500 unsigned NumVectorInstToHideOverhead = 10; 1501 int MaxMergeDistance = 64; 1502 1503 if (Ty->isVectorTy() && SE && 1504 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 1505 return NumVectorInstToHideOverhead; 1506 1507 // In many cases the address computation is not merged into the instruction 1508 // addressing mode. 1509 return 1; 1510 } 1511 1512 InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 1513 Type *CondTy, 1514 CmpInst::Predicate VecPred, 1515 TTI::TargetCostKind CostKind, 1516 const Instruction *I) { 1517 // TODO: Handle other cost kinds. 1518 if (CostKind != TTI::TCK_RecipThroughput) 1519 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, 1520 I); 1521 1522 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1523 // We don't lower some vector selects well that are wider than the register 1524 // width. 1525 if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) { 1526 // We would need this many instructions to hide the scalarization happening. 1527 const int AmortizationCost = 20; 1528 1529 // If VecPred is not set, check if we can get a predicate from the context 1530 // instruction, if its type matches the requested ValTy. 1531 if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) { 1532 CmpInst::Predicate CurrentPred; 1533 if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(), 1534 m_Value()))) 1535 VecPred = CurrentPred; 1536 } 1537 // Check if we have a compare/select chain that can be lowered using CMxx & 1538 // BFI pair. 1539 if (CmpInst::isIntPredicate(VecPred)) { 1540 static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 1541 MVT::v8i16, MVT::v2i32, MVT::v4i32, 1542 MVT::v2i64}; 1543 auto LT = TLI->getTypeLegalizationCost(DL, ValTy); 1544 if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; })) 1545 return LT.first; 1546 } 1547 1548 static const TypeConversionCostTblEntry 1549 VectorSelectTbl[] = { 1550 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 }, 1551 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 }, 1552 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 }, 1553 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost }, 1554 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost }, 1555 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost } 1556 }; 1557 1558 EVT SelCondTy = TLI->getValueType(DL, CondTy); 1559 EVT SelValTy = TLI->getValueType(DL, ValTy); 1560 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 1561 if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD, 1562 SelCondTy.getSimpleVT(), 1563 SelValTy.getSimpleVT())) 1564 return Entry->Cost; 1565 } 1566 } 1567 // The base case handles scalable vectors fine for now, since it treats the 1568 // cost as 1 * legalization cost. 1569 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 1570 } 1571 1572 AArch64TTIImpl::TTI::MemCmpExpansionOptions 1573 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 1574 TTI::MemCmpExpansionOptions Options; 1575 if (ST->requiresStrictAlign()) { 1576 // TODO: Add cost modeling for strict align. Misaligned loads expand to 1577 // a bunch of instructions when strict align is enabled. 1578 return Options; 1579 } 1580 Options.AllowOverlappingLoads = true; 1581 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 1582 Options.NumLoadsPerBlock = Options.MaxNumLoads; 1583 // TODO: Though vector loads usually perform well on AArch64, in some targets 1584 // they may wake up the FP unit, which raises the power consumption. Perhaps 1585 // they could be used with no holds barred (-O3). 1586 Options.LoadSizes = {8, 4, 2, 1}; 1587 return Options; 1588 } 1589 1590 InstructionCost 1591 AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 1592 Align Alignment, unsigned AddressSpace, 1593 TTI::TargetCostKind CostKind) { 1594 if (!isa<ScalableVectorType>(Src)) 1595 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1596 CostKind); 1597 auto LT = TLI->getTypeLegalizationCost(DL, Src); 1598 if (!LT.first.isValid()) 1599 return InstructionCost::getInvalid(); 1600 1601 // The code-generator is currently not able to handle scalable vectors 1602 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting 1603 // it. This change will be removed when code-generation for these types is 1604 // sufficiently reliable. 1605 if (cast<VectorType>(Src)->getElementCount() == ElementCount::getScalable(1)) 1606 return InstructionCost::getInvalid(); 1607 1608 return LT.first * 2; 1609 } 1610 1611 InstructionCost AArch64TTIImpl::getGatherScatterOpCost( 1612 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 1613 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) { 1614 if (useNeonVector(DataTy)) 1615 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 1616 Alignment, CostKind, I); 1617 auto *VT = cast<VectorType>(DataTy); 1618 auto LT = TLI->getTypeLegalizationCost(DL, DataTy); 1619 if (!LT.first.isValid()) 1620 return InstructionCost::getInvalid(); 1621 1622 // The code-generator is currently not able to handle scalable vectors 1623 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting 1624 // it. This change will be removed when code-generation for these types is 1625 // sufficiently reliable. 1626 if (cast<VectorType>(DataTy)->getElementCount() == 1627 ElementCount::getScalable(1)) 1628 return InstructionCost::getInvalid(); 1629 1630 ElementCount LegalVF = LT.second.getVectorElementCount(); 1631 InstructionCost MemOpCost = 1632 getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind, I); 1633 return LT.first * MemOpCost * getMaxNumElements(LegalVF, I->getFunction()); 1634 } 1635 1636 bool AArch64TTIImpl::useNeonVector(const Type *Ty) const { 1637 return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors(); 1638 } 1639 1640 InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty, 1641 MaybeAlign Alignment, 1642 unsigned AddressSpace, 1643 TTI::TargetCostKind CostKind, 1644 const Instruction *I) { 1645 EVT VT = TLI->getValueType(DL, Ty, true); 1646 // Type legalization can't handle structs 1647 if (VT == MVT::Other) 1648 return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace, 1649 CostKind); 1650 1651 auto LT = TLI->getTypeLegalizationCost(DL, Ty); 1652 if (!LT.first.isValid()) 1653 return InstructionCost::getInvalid(); 1654 1655 // The code-generator is currently not able to handle scalable vectors 1656 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting 1657 // it. This change will be removed when code-generation for these types is 1658 // sufficiently reliable. 1659 if (auto *VTy = dyn_cast<ScalableVectorType>(Ty)) 1660 if (VTy->getElementCount() == ElementCount::getScalable(1)) 1661 return InstructionCost::getInvalid(); 1662 1663 // TODO: consider latency as well for TCK_SizeAndLatency. 1664 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) 1665 return LT.first; 1666 1667 if (CostKind != TTI::TCK_RecipThroughput) 1668 return 1; 1669 1670 if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store && 1671 LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) { 1672 // Unaligned stores are extremely inefficient. We don't split all 1673 // unaligned 128-bit stores because the negative impact that has shown in 1674 // practice on inlined block copy code. 1675 // We make such stores expensive so that we will only vectorize if there 1676 // are 6 other instructions getting vectorized. 1677 const int AmortizationCost = 6; 1678 1679 return LT.first * 2 * AmortizationCost; 1680 } 1681 1682 // Check truncating stores and extending loads. 1683 if (useNeonVector(Ty) && 1684 Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) { 1685 // v4i8 types are lowered to scalar a load/store and sshll/xtn. 1686 if (VT == MVT::v4i8) 1687 return 2; 1688 // Otherwise we need to scalarize. 1689 return cast<FixedVectorType>(Ty)->getNumElements() * 2; 1690 } 1691 1692 return LT.first; 1693 } 1694 1695 InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost( 1696 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1697 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 1698 bool UseMaskForCond, bool UseMaskForGaps) { 1699 assert(Factor >= 2 && "Invalid interleave factor"); 1700 auto *VecVTy = cast<FixedVectorType>(VecTy); 1701 1702 if (!UseMaskForCond && !UseMaskForGaps && 1703 Factor <= TLI->getMaxSupportedInterleaveFactor()) { 1704 unsigned NumElts = VecVTy->getNumElements(); 1705 auto *SubVecTy = 1706 FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor); 1707 1708 // ldN/stN only support legal vector types of size 64 or 128 in bits. 1709 // Accesses having vector types that are a multiple of 128 bits can be 1710 // matched to more than one ldN/stN instruction. 1711 if (NumElts % Factor == 0 && 1712 TLI->isLegalInterleavedAccessType(SubVecTy, DL)) 1713 return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL); 1714 } 1715 1716 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 1717 Alignment, AddressSpace, CostKind, 1718 UseMaskForCond, UseMaskForGaps); 1719 } 1720 1721 InstructionCost 1722 AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { 1723 InstructionCost Cost = 0; 1724 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1725 for (auto *I : Tys) { 1726 if (!I->isVectorTy()) 1727 continue; 1728 if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() == 1729 128) 1730 Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) + 1731 getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind); 1732 } 1733 return Cost; 1734 } 1735 1736 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) { 1737 return ST->getMaxInterleaveFactor(); 1738 } 1739 1740 // For Falkor, we want to avoid having too many strided loads in a loop since 1741 // that can exhaust the HW prefetcher resources. We adjust the unroller 1742 // MaxCount preference below to attempt to ensure unrolling doesn't create too 1743 // many strided loads. 1744 static void 1745 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1746 TargetTransformInfo::UnrollingPreferences &UP) { 1747 enum { MaxStridedLoads = 7 }; 1748 auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) { 1749 int StridedLoads = 0; 1750 // FIXME? We could make this more precise by looking at the CFG and 1751 // e.g. not counting loads in each side of an if-then-else diamond. 1752 for (const auto BB : L->blocks()) { 1753 for (auto &I : *BB) { 1754 LoadInst *LMemI = dyn_cast<LoadInst>(&I); 1755 if (!LMemI) 1756 continue; 1757 1758 Value *PtrValue = LMemI->getPointerOperand(); 1759 if (L->isLoopInvariant(PtrValue)) 1760 continue; 1761 1762 const SCEV *LSCEV = SE.getSCEV(PtrValue); 1763 const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV); 1764 if (!LSCEVAddRec || !LSCEVAddRec->isAffine()) 1765 continue; 1766 1767 // FIXME? We could take pairing of unrolled load copies into account 1768 // by looking at the AddRec, but we would probably have to limit this 1769 // to loops with no stores or other memory optimization barriers. 1770 ++StridedLoads; 1771 // We've seen enough strided loads that seeing more won't make a 1772 // difference. 1773 if (StridedLoads > MaxStridedLoads / 2) 1774 return StridedLoads; 1775 } 1776 } 1777 return StridedLoads; 1778 }; 1779 1780 int StridedLoads = countStridedLoads(L, SE); 1781 LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads 1782 << " strided loads\n"); 1783 // Pick the largest power of 2 unroll count that won't result in too many 1784 // strided loads. 1785 if (StridedLoads) { 1786 UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads); 1787 LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to " 1788 << UP.MaxCount << '\n'); 1789 } 1790 } 1791 1792 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1793 TTI::UnrollingPreferences &UP, 1794 OptimizationRemarkEmitter *ORE) { 1795 // Enable partial unrolling and runtime unrolling. 1796 BaseT::getUnrollingPreferences(L, SE, UP, ORE); 1797 1798 UP.UpperBound = true; 1799 1800 // For inner loop, it is more likely to be a hot one, and the runtime check 1801 // can be promoted out from LICM pass, so the overhead is less, let's try 1802 // a larger threshold to unroll more loops. 1803 if (L->getLoopDepth() > 1) 1804 UP.PartialThreshold *= 2; 1805 1806 // Disable partial & runtime unrolling on -Os. 1807 UP.PartialOptSizeThreshold = 0; 1808 1809 if (ST->getProcFamily() == AArch64Subtarget::Falkor && 1810 EnableFalkorHWPFUnrollFix) 1811 getFalkorUnrollingPreferences(L, SE, UP); 1812 1813 // Scan the loop: don't unroll loops with calls as this could prevent 1814 // inlining. Don't unroll vector loops either, as they don't benefit much from 1815 // unrolling. 1816 for (auto *BB : L->getBlocks()) { 1817 for (auto &I : *BB) { 1818 // Don't unroll vectorised loop. 1819 if (I.getType()->isVectorTy()) 1820 return; 1821 1822 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 1823 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 1824 if (!isLoweredToCall(F)) 1825 continue; 1826 } 1827 return; 1828 } 1829 } 1830 } 1831 1832 // Enable runtime unrolling for in-order models 1833 // If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by 1834 // checking for that case, we can ensure that the default behaviour is 1835 // unchanged 1836 if (ST->getProcFamily() != AArch64Subtarget::Others && 1837 !ST->getSchedModel().isOutOfOrder()) { 1838 UP.Runtime = true; 1839 UP.Partial = true; 1840 UP.UnrollRemainder = true; 1841 UP.DefaultUnrollRuntimeCount = 4; 1842 1843 UP.UnrollAndJam = true; 1844 UP.UnrollAndJamInnerLoopThreshold = 60; 1845 } 1846 } 1847 1848 void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 1849 TTI::PeelingPreferences &PP) { 1850 BaseT::getPeelingPreferences(L, SE, PP); 1851 } 1852 1853 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 1854 Type *ExpectedType) { 1855 switch (Inst->getIntrinsicID()) { 1856 default: 1857 return nullptr; 1858 case Intrinsic::aarch64_neon_st2: 1859 case Intrinsic::aarch64_neon_st3: 1860 case Intrinsic::aarch64_neon_st4: { 1861 // Create a struct type 1862 StructType *ST = dyn_cast<StructType>(ExpectedType); 1863 if (!ST) 1864 return nullptr; 1865 unsigned NumElts = Inst->arg_size() - 1; 1866 if (ST->getNumElements() != NumElts) 1867 return nullptr; 1868 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1869 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i)) 1870 return nullptr; 1871 } 1872 Value *Res = UndefValue::get(ExpectedType); 1873 IRBuilder<> Builder(Inst); 1874 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1875 Value *L = Inst->getArgOperand(i); 1876 Res = Builder.CreateInsertValue(Res, L, i); 1877 } 1878 return Res; 1879 } 1880 case Intrinsic::aarch64_neon_ld2: 1881 case Intrinsic::aarch64_neon_ld3: 1882 case Intrinsic::aarch64_neon_ld4: 1883 if (Inst->getType() == ExpectedType) 1884 return Inst; 1885 return nullptr; 1886 } 1887 } 1888 1889 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 1890 MemIntrinsicInfo &Info) { 1891 switch (Inst->getIntrinsicID()) { 1892 default: 1893 break; 1894 case Intrinsic::aarch64_neon_ld2: 1895 case Intrinsic::aarch64_neon_ld3: 1896 case Intrinsic::aarch64_neon_ld4: 1897 Info.ReadMem = true; 1898 Info.WriteMem = false; 1899 Info.PtrVal = Inst->getArgOperand(0); 1900 break; 1901 case Intrinsic::aarch64_neon_st2: 1902 case Intrinsic::aarch64_neon_st3: 1903 case Intrinsic::aarch64_neon_st4: 1904 Info.ReadMem = false; 1905 Info.WriteMem = true; 1906 Info.PtrVal = Inst->getArgOperand(Inst->arg_size() - 1); 1907 break; 1908 } 1909 1910 switch (Inst->getIntrinsicID()) { 1911 default: 1912 return false; 1913 case Intrinsic::aarch64_neon_ld2: 1914 case Intrinsic::aarch64_neon_st2: 1915 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS; 1916 break; 1917 case Intrinsic::aarch64_neon_ld3: 1918 case Intrinsic::aarch64_neon_st3: 1919 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS; 1920 break; 1921 case Intrinsic::aarch64_neon_ld4: 1922 case Intrinsic::aarch64_neon_st4: 1923 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS; 1924 break; 1925 } 1926 return true; 1927 } 1928 1929 /// See if \p I should be considered for address type promotion. We check if \p 1930 /// I is a sext with right type and used in memory accesses. If it used in a 1931 /// "complex" getelementptr, we allow it to be promoted without finding other 1932 /// sext instructions that sign extended the same initial value. A getelementptr 1933 /// is considered as "complex" if it has more than 2 operands. 1934 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion( 1935 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) { 1936 bool Considerable = false; 1937 AllowPromotionWithoutCommonHeader = false; 1938 if (!isa<SExtInst>(&I)) 1939 return false; 1940 Type *ConsideredSExtType = 1941 Type::getInt64Ty(I.getParent()->getParent()->getContext()); 1942 if (I.getType() != ConsideredSExtType) 1943 return false; 1944 // See if the sext is the one with the right type and used in at least one 1945 // GetElementPtrInst. 1946 for (const User *U : I.users()) { 1947 if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) { 1948 Considerable = true; 1949 // A getelementptr is considered as "complex" if it has more than 2 1950 // operands. We will promote a SExt used in such complex GEP as we 1951 // expect some computation to be merged if they are done on 64 bits. 1952 if (GEPInst->getNumOperands() > 2) { 1953 AllowPromotionWithoutCommonHeader = true; 1954 break; 1955 } 1956 } 1957 } 1958 return Considerable; 1959 } 1960 1961 bool AArch64TTIImpl::isLegalToVectorizeReduction( 1962 const RecurrenceDescriptor &RdxDesc, ElementCount VF) const { 1963 if (!VF.isScalable()) 1964 return true; 1965 1966 Type *Ty = RdxDesc.getRecurrenceType(); 1967 if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty)) 1968 return false; 1969 1970 switch (RdxDesc.getRecurrenceKind()) { 1971 case RecurKind::Add: 1972 case RecurKind::FAdd: 1973 case RecurKind::And: 1974 case RecurKind::Or: 1975 case RecurKind::Xor: 1976 case RecurKind::SMin: 1977 case RecurKind::SMax: 1978 case RecurKind::UMin: 1979 case RecurKind::UMax: 1980 case RecurKind::FMin: 1981 case RecurKind::FMax: 1982 return true; 1983 default: 1984 return false; 1985 } 1986 } 1987 1988 InstructionCost 1989 AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 1990 bool IsUnsigned, 1991 TTI::TargetCostKind CostKind) { 1992 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 1993 1994 if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16()) 1995 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind); 1996 1997 assert((isa<ScalableVectorType>(Ty) == isa<ScalableVectorType>(CondTy)) && 1998 "Both vector needs to be equally scalable"); 1999 2000 InstructionCost LegalizationCost = 0; 2001 if (LT.first > 1) { 2002 Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext()); 2003 unsigned MinMaxOpcode = 2004 Ty->isFPOrFPVectorTy() 2005 ? Intrinsic::maxnum 2006 : (IsUnsigned ? Intrinsic::umin : Intrinsic::smin); 2007 IntrinsicCostAttributes Attrs(MinMaxOpcode, LegalVTy, {LegalVTy, LegalVTy}); 2008 LegalizationCost = getIntrinsicInstrCost(Attrs, CostKind) * (LT.first - 1); 2009 } 2010 2011 return LegalizationCost + /*Cost of horizontal reduction*/ 2; 2012 } 2013 2014 InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE( 2015 unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) { 2016 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 2017 InstructionCost LegalizationCost = 0; 2018 if (LT.first > 1) { 2019 Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext()); 2020 LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind); 2021 LegalizationCost *= LT.first - 1; 2022 } 2023 2024 int ISD = TLI->InstructionOpcodeToISD(Opcode); 2025 assert(ISD && "Invalid opcode"); 2026 // Add the final reduction cost for the legal horizontal reduction 2027 switch (ISD) { 2028 case ISD::ADD: 2029 case ISD::AND: 2030 case ISD::OR: 2031 case ISD::XOR: 2032 case ISD::FADD: 2033 return LegalizationCost + 2; 2034 default: 2035 return InstructionCost::getInvalid(); 2036 } 2037 } 2038 2039 InstructionCost 2040 AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, 2041 Optional<FastMathFlags> FMF, 2042 TTI::TargetCostKind CostKind) { 2043 if (TTI::requiresOrderedReduction(FMF)) { 2044 if (auto *FixedVTy = dyn_cast<FixedVectorType>(ValTy)) { 2045 InstructionCost BaseCost = 2046 BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 2047 // Add on extra cost to reflect the extra overhead on some CPUs. We still 2048 // end up vectorizing for more computationally intensive loops. 2049 return BaseCost + FixedVTy->getNumElements(); 2050 } 2051 2052 if (Opcode != Instruction::FAdd) 2053 return InstructionCost::getInvalid(); 2054 2055 auto *VTy = cast<ScalableVectorType>(ValTy); 2056 InstructionCost Cost = 2057 getArithmeticInstrCost(Opcode, VTy->getScalarType(), CostKind); 2058 Cost *= getMaxNumElements(VTy->getElementCount()); 2059 return Cost; 2060 } 2061 2062 if (isa<ScalableVectorType>(ValTy)) 2063 return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind); 2064 2065 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 2066 MVT MTy = LT.second; 2067 int ISD = TLI->InstructionOpcodeToISD(Opcode); 2068 assert(ISD && "Invalid opcode"); 2069 2070 // Horizontal adds can use the 'addv' instruction. We model the cost of these 2071 // instructions as twice a normal vector add, plus 1 for each legalization 2072 // step (LT.first). This is the only arithmetic vector reduction operation for 2073 // which we have an instruction. 2074 // OR, XOR and AND costs should match the codegen from: 2075 // OR: llvm/test/CodeGen/AArch64/reduce-or.ll 2076 // XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll 2077 // AND: llvm/test/CodeGen/AArch64/reduce-and.ll 2078 static const CostTblEntry CostTblNoPairwise[]{ 2079 {ISD::ADD, MVT::v8i8, 2}, 2080 {ISD::ADD, MVT::v16i8, 2}, 2081 {ISD::ADD, MVT::v4i16, 2}, 2082 {ISD::ADD, MVT::v8i16, 2}, 2083 {ISD::ADD, MVT::v4i32, 2}, 2084 {ISD::OR, MVT::v8i8, 15}, 2085 {ISD::OR, MVT::v16i8, 17}, 2086 {ISD::OR, MVT::v4i16, 7}, 2087 {ISD::OR, MVT::v8i16, 9}, 2088 {ISD::OR, MVT::v2i32, 3}, 2089 {ISD::OR, MVT::v4i32, 5}, 2090 {ISD::OR, MVT::v2i64, 3}, 2091 {ISD::XOR, MVT::v8i8, 15}, 2092 {ISD::XOR, MVT::v16i8, 17}, 2093 {ISD::XOR, MVT::v4i16, 7}, 2094 {ISD::XOR, MVT::v8i16, 9}, 2095 {ISD::XOR, MVT::v2i32, 3}, 2096 {ISD::XOR, MVT::v4i32, 5}, 2097 {ISD::XOR, MVT::v2i64, 3}, 2098 {ISD::AND, MVT::v8i8, 15}, 2099 {ISD::AND, MVT::v16i8, 17}, 2100 {ISD::AND, MVT::v4i16, 7}, 2101 {ISD::AND, MVT::v8i16, 9}, 2102 {ISD::AND, MVT::v2i32, 3}, 2103 {ISD::AND, MVT::v4i32, 5}, 2104 {ISD::AND, MVT::v2i64, 3}, 2105 }; 2106 switch (ISD) { 2107 default: 2108 break; 2109 case ISD::ADD: 2110 if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy)) 2111 return (LT.first - 1) + Entry->Cost; 2112 break; 2113 case ISD::XOR: 2114 case ISD::AND: 2115 case ISD::OR: 2116 const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy); 2117 if (!Entry) 2118 break; 2119 auto *ValVTy = cast<FixedVectorType>(ValTy); 2120 if (!ValVTy->getElementType()->isIntegerTy(1) && 2121 MTy.getVectorNumElements() <= ValVTy->getNumElements() && 2122 isPowerOf2_32(ValVTy->getNumElements())) { 2123 InstructionCost ExtraCost = 0; 2124 if (LT.first != 1) { 2125 // Type needs to be split, so there is an extra cost of LT.first - 1 2126 // arithmetic ops. 2127 auto *Ty = FixedVectorType::get(ValTy->getElementType(), 2128 MTy.getVectorNumElements()); 2129 ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind); 2130 ExtraCost *= LT.first - 1; 2131 } 2132 return Entry->Cost + ExtraCost; 2133 } 2134 break; 2135 } 2136 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 2137 } 2138 2139 InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) { 2140 static const CostTblEntry ShuffleTbl[] = { 2141 { TTI::SK_Splice, MVT::nxv16i8, 1 }, 2142 { TTI::SK_Splice, MVT::nxv8i16, 1 }, 2143 { TTI::SK_Splice, MVT::nxv4i32, 1 }, 2144 { TTI::SK_Splice, MVT::nxv2i64, 1 }, 2145 { TTI::SK_Splice, MVT::nxv2f16, 1 }, 2146 { TTI::SK_Splice, MVT::nxv4f16, 1 }, 2147 { TTI::SK_Splice, MVT::nxv8f16, 1 }, 2148 { TTI::SK_Splice, MVT::nxv2bf16, 1 }, 2149 { TTI::SK_Splice, MVT::nxv4bf16, 1 }, 2150 { TTI::SK_Splice, MVT::nxv8bf16, 1 }, 2151 { TTI::SK_Splice, MVT::nxv2f32, 1 }, 2152 { TTI::SK_Splice, MVT::nxv4f32, 1 }, 2153 { TTI::SK_Splice, MVT::nxv2f64, 1 }, 2154 }; 2155 2156 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 2157 Type *LegalVTy = EVT(LT.second).getTypeForEVT(Tp->getContext()); 2158 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 2159 EVT PromotedVT = LT.second.getScalarType() == MVT::i1 2160 ? TLI->getPromotedVTForPredicate(EVT(LT.second)) 2161 : LT.second; 2162 Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Tp->getContext()); 2163 InstructionCost LegalizationCost = 0; 2164 if (Index < 0) { 2165 LegalizationCost = 2166 getCmpSelInstrCost(Instruction::ICmp, PromotedVTy, PromotedVTy, 2167 CmpInst::BAD_ICMP_PREDICATE, CostKind) + 2168 getCmpSelInstrCost(Instruction::Select, PromotedVTy, LegalVTy, 2169 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2170 } 2171 2172 // Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp 2173 // Cost performed on a promoted type. 2174 if (LT.second.getScalarType() == MVT::i1) { 2175 LegalizationCost += 2176 getCastInstrCost(Instruction::ZExt, PromotedVTy, LegalVTy, 2177 TTI::CastContextHint::None, CostKind) + 2178 getCastInstrCost(Instruction::Trunc, LegalVTy, PromotedVTy, 2179 TTI::CastContextHint::None, CostKind); 2180 } 2181 const auto *Entry = 2182 CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT()); 2183 assert(Entry && "Illegal Type for Splice"); 2184 LegalizationCost += Entry->Cost; 2185 return LegalizationCost * LT.first; 2186 } 2187 2188 InstructionCost AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 2189 VectorType *Tp, 2190 ArrayRef<int> Mask, int Index, 2191 VectorType *SubTp) { 2192 Kind = improveShuffleKindFromMask(Kind, Mask); 2193 if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose || 2194 Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc || 2195 Kind == TTI::SK_Reverse) { 2196 static const CostTblEntry ShuffleTbl[] = { 2197 // Broadcast shuffle kinds can be performed with 'dup'. 2198 { TTI::SK_Broadcast, MVT::v8i8, 1 }, 2199 { TTI::SK_Broadcast, MVT::v16i8, 1 }, 2200 { TTI::SK_Broadcast, MVT::v4i16, 1 }, 2201 { TTI::SK_Broadcast, MVT::v8i16, 1 }, 2202 { TTI::SK_Broadcast, MVT::v2i32, 1 }, 2203 { TTI::SK_Broadcast, MVT::v4i32, 1 }, 2204 { TTI::SK_Broadcast, MVT::v2i64, 1 }, 2205 { TTI::SK_Broadcast, MVT::v2f32, 1 }, 2206 { TTI::SK_Broadcast, MVT::v4f32, 1 }, 2207 { TTI::SK_Broadcast, MVT::v2f64, 1 }, 2208 // Transpose shuffle kinds can be performed with 'trn1/trn2' and 2209 // 'zip1/zip2' instructions. 2210 { TTI::SK_Transpose, MVT::v8i8, 1 }, 2211 { TTI::SK_Transpose, MVT::v16i8, 1 }, 2212 { TTI::SK_Transpose, MVT::v4i16, 1 }, 2213 { TTI::SK_Transpose, MVT::v8i16, 1 }, 2214 { TTI::SK_Transpose, MVT::v2i32, 1 }, 2215 { TTI::SK_Transpose, MVT::v4i32, 1 }, 2216 { TTI::SK_Transpose, MVT::v2i64, 1 }, 2217 { TTI::SK_Transpose, MVT::v2f32, 1 }, 2218 { TTI::SK_Transpose, MVT::v4f32, 1 }, 2219 { TTI::SK_Transpose, MVT::v2f64, 1 }, 2220 // Select shuffle kinds. 2221 // TODO: handle vXi8/vXi16. 2222 { TTI::SK_Select, MVT::v2i32, 1 }, // mov. 2223 { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar). 2224 { TTI::SK_Select, MVT::v2i64, 1 }, // mov. 2225 { TTI::SK_Select, MVT::v2f32, 1 }, // mov. 2226 { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar). 2227 { TTI::SK_Select, MVT::v2f64, 1 }, // mov. 2228 // PermuteSingleSrc shuffle kinds. 2229 { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov. 2230 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case. 2231 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov. 2232 { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov. 2233 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case. 2234 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov. 2235 { TTI::SK_PermuteSingleSrc, MVT::v4i16, 3 }, // perfectshuffle worst case. 2236 { TTI::SK_PermuteSingleSrc, MVT::v4f16, 3 }, // perfectshuffle worst case. 2237 { TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3 }, // perfectshuffle worst case. 2238 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 8 }, // constpool + load + tbl 2239 { TTI::SK_PermuteSingleSrc, MVT::v8f16, 8 }, // constpool + load + tbl 2240 { TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8 }, // constpool + load + tbl 2241 { TTI::SK_PermuteSingleSrc, MVT::v8i8, 8 }, // constpool + load + tbl 2242 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 8 }, // constpool + load + tbl 2243 // Reverse can be lowered with `rev`. 2244 { TTI::SK_Reverse, MVT::v2i32, 1 }, // mov. 2245 { TTI::SK_Reverse, MVT::v4i32, 2 }, // REV64; EXT 2246 { TTI::SK_Reverse, MVT::v2i64, 1 }, // mov. 2247 { TTI::SK_Reverse, MVT::v2f32, 1 }, // mov. 2248 { TTI::SK_Reverse, MVT::v4f32, 2 }, // REV64; EXT 2249 { TTI::SK_Reverse, MVT::v2f64, 1 }, // mov. 2250 // Broadcast shuffle kinds for scalable vectors 2251 { TTI::SK_Broadcast, MVT::nxv16i8, 1 }, 2252 { TTI::SK_Broadcast, MVT::nxv8i16, 1 }, 2253 { TTI::SK_Broadcast, MVT::nxv4i32, 1 }, 2254 { TTI::SK_Broadcast, MVT::nxv2i64, 1 }, 2255 { TTI::SK_Broadcast, MVT::nxv2f16, 1 }, 2256 { TTI::SK_Broadcast, MVT::nxv4f16, 1 }, 2257 { TTI::SK_Broadcast, MVT::nxv8f16, 1 }, 2258 { TTI::SK_Broadcast, MVT::nxv2bf16, 1 }, 2259 { TTI::SK_Broadcast, MVT::nxv4bf16, 1 }, 2260 { TTI::SK_Broadcast, MVT::nxv8bf16, 1 }, 2261 { TTI::SK_Broadcast, MVT::nxv2f32, 1 }, 2262 { TTI::SK_Broadcast, MVT::nxv4f32, 1 }, 2263 { TTI::SK_Broadcast, MVT::nxv2f64, 1 }, 2264 { TTI::SK_Broadcast, MVT::nxv16i1, 1 }, 2265 { TTI::SK_Broadcast, MVT::nxv8i1, 1 }, 2266 { TTI::SK_Broadcast, MVT::nxv4i1, 1 }, 2267 { TTI::SK_Broadcast, MVT::nxv2i1, 1 }, 2268 // Handle the cases for vector.reverse with scalable vectors 2269 { TTI::SK_Reverse, MVT::nxv16i8, 1 }, 2270 { TTI::SK_Reverse, MVT::nxv8i16, 1 }, 2271 { TTI::SK_Reverse, MVT::nxv4i32, 1 }, 2272 { TTI::SK_Reverse, MVT::nxv2i64, 1 }, 2273 { TTI::SK_Reverse, MVT::nxv2f16, 1 }, 2274 { TTI::SK_Reverse, MVT::nxv4f16, 1 }, 2275 { TTI::SK_Reverse, MVT::nxv8f16, 1 }, 2276 { TTI::SK_Reverse, MVT::nxv2bf16, 1 }, 2277 { TTI::SK_Reverse, MVT::nxv4bf16, 1 }, 2278 { TTI::SK_Reverse, MVT::nxv8bf16, 1 }, 2279 { TTI::SK_Reverse, MVT::nxv2f32, 1 }, 2280 { TTI::SK_Reverse, MVT::nxv4f32, 1 }, 2281 { TTI::SK_Reverse, MVT::nxv2f64, 1 }, 2282 { TTI::SK_Reverse, MVT::nxv16i1, 1 }, 2283 { TTI::SK_Reverse, MVT::nxv8i1, 1 }, 2284 { TTI::SK_Reverse, MVT::nxv4i1, 1 }, 2285 { TTI::SK_Reverse, MVT::nxv2i1, 1 }, 2286 }; 2287 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 2288 if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second)) 2289 return LT.first * Entry->Cost; 2290 } 2291 if (Kind == TTI::SK_Splice && isa<ScalableVectorType>(Tp)) 2292 return getSpliceCost(Tp, Index); 2293 return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp); 2294 } 2295