1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AArch64TargetTransformInfo.h"
10 #include "AArch64ExpandImm.h"
11 #include "MCTargetDesc/AArch64AddressingModes.h"
12 #include "llvm/Analysis/IVDescriptors.h"
13 #include "llvm/Analysis/LoopInfo.h"
14 #include "llvm/Analysis/TargetTransformInfo.h"
15 #include "llvm/CodeGen/BasicTTIImpl.h"
16 #include "llvm/CodeGen/CostTable.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/IntrinsicsAArch64.h"
21 #include "llvm/IR/PatternMatch.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Transforms/InstCombine/InstCombiner.h"
24 #include <algorithm>
25 using namespace llvm;
26 using namespace llvm::PatternMatch;
27 
28 #define DEBUG_TYPE "aarch64tti"
29 
30 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
31                                                cl::init(true), cl::Hidden);
32 
33 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
34                                          const Function *Callee) const {
35   const TargetMachine &TM = getTLI()->getTargetMachine();
36 
37   const FeatureBitset &CallerBits =
38       TM.getSubtargetImpl(*Caller)->getFeatureBits();
39   const FeatureBitset &CalleeBits =
40       TM.getSubtargetImpl(*Callee)->getFeatureBits();
41 
42   // Inline a callee if its target-features are a subset of the callers
43   // target-features.
44   return (CallerBits & CalleeBits) == CalleeBits;
45 }
46 
47 /// Calculate the cost of materializing a 64-bit value. This helper
48 /// method might only calculate a fraction of a larger immediate. Therefore it
49 /// is valid to return a cost of ZERO.
50 InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) {
51   // Check if the immediate can be encoded within an instruction.
52   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
53     return 0;
54 
55   if (Val < 0)
56     Val = ~Val;
57 
58   // Calculate how many moves we will need to materialize this constant.
59   SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
60   AArch64_IMM::expandMOVImm(Val, 64, Insn);
61   return Insn.size();
62 }
63 
64 /// Calculate the cost of materializing the given constant.
65 InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
66                                               TTI::TargetCostKind CostKind) {
67   assert(Ty->isIntegerTy());
68 
69   unsigned BitSize = Ty->getPrimitiveSizeInBits();
70   if (BitSize == 0)
71     return ~0U;
72 
73   // Sign-extend all constants to a multiple of 64-bit.
74   APInt ImmVal = Imm;
75   if (BitSize & 0x3f)
76     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
77 
78   // Split the constant into 64-bit chunks and calculate the cost for each
79   // chunk.
80   InstructionCost Cost = 0;
81   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
82     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
83     int64_t Val = Tmp.getSExtValue();
84     Cost += getIntImmCost(Val);
85   }
86   // We need at least one instruction to materialze the constant.
87   return std::max<InstructionCost>(1, Cost);
88 }
89 
90 InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
91                                                   const APInt &Imm, Type *Ty,
92                                                   TTI::TargetCostKind CostKind,
93                                                   Instruction *Inst) {
94   assert(Ty->isIntegerTy());
95 
96   unsigned BitSize = Ty->getPrimitiveSizeInBits();
97   // There is no cost model for constants with a bit size of 0. Return TCC_Free
98   // here, so that constant hoisting will ignore this constant.
99   if (BitSize == 0)
100     return TTI::TCC_Free;
101 
102   unsigned ImmIdx = ~0U;
103   switch (Opcode) {
104   default:
105     return TTI::TCC_Free;
106   case Instruction::GetElementPtr:
107     // Always hoist the base address of a GetElementPtr.
108     if (Idx == 0)
109       return 2 * TTI::TCC_Basic;
110     return TTI::TCC_Free;
111   case Instruction::Store:
112     ImmIdx = 0;
113     break;
114   case Instruction::Add:
115   case Instruction::Sub:
116   case Instruction::Mul:
117   case Instruction::UDiv:
118   case Instruction::SDiv:
119   case Instruction::URem:
120   case Instruction::SRem:
121   case Instruction::And:
122   case Instruction::Or:
123   case Instruction::Xor:
124   case Instruction::ICmp:
125     ImmIdx = 1;
126     break;
127   // Always return TCC_Free for the shift value of a shift instruction.
128   case Instruction::Shl:
129   case Instruction::LShr:
130   case Instruction::AShr:
131     if (Idx == 1)
132       return TTI::TCC_Free;
133     break;
134   case Instruction::Trunc:
135   case Instruction::ZExt:
136   case Instruction::SExt:
137   case Instruction::IntToPtr:
138   case Instruction::PtrToInt:
139   case Instruction::BitCast:
140   case Instruction::PHI:
141   case Instruction::Call:
142   case Instruction::Select:
143   case Instruction::Ret:
144   case Instruction::Load:
145     break;
146   }
147 
148   if (Idx == ImmIdx) {
149     int NumConstants = (BitSize + 63) / 64;
150     InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
151     return (Cost <= NumConstants * TTI::TCC_Basic)
152                ? static_cast<int>(TTI::TCC_Free)
153                : Cost;
154   }
155   return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
156 }
157 
158 InstructionCost
159 AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
160                                     const APInt &Imm, Type *Ty,
161                                     TTI::TargetCostKind CostKind) {
162   assert(Ty->isIntegerTy());
163 
164   unsigned BitSize = Ty->getPrimitiveSizeInBits();
165   // There is no cost model for constants with a bit size of 0. Return TCC_Free
166   // here, so that constant hoisting will ignore this constant.
167   if (BitSize == 0)
168     return TTI::TCC_Free;
169 
170   // Most (all?) AArch64 intrinsics do not support folding immediates into the
171   // selected instruction, so we compute the materialization cost for the
172   // immediate directly.
173   if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
174     return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
175 
176   switch (IID) {
177   default:
178     return TTI::TCC_Free;
179   case Intrinsic::sadd_with_overflow:
180   case Intrinsic::uadd_with_overflow:
181   case Intrinsic::ssub_with_overflow:
182   case Intrinsic::usub_with_overflow:
183   case Intrinsic::smul_with_overflow:
184   case Intrinsic::umul_with_overflow:
185     if (Idx == 1) {
186       int NumConstants = (BitSize + 63) / 64;
187       InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
188       return (Cost <= NumConstants * TTI::TCC_Basic)
189                  ? static_cast<int>(TTI::TCC_Free)
190                  : Cost;
191     }
192     break;
193   case Intrinsic::experimental_stackmap:
194     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
195       return TTI::TCC_Free;
196     break;
197   case Intrinsic::experimental_patchpoint_void:
198   case Intrinsic::experimental_patchpoint_i64:
199     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
200       return TTI::TCC_Free;
201     break;
202   case Intrinsic::experimental_gc_statepoint:
203     if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
204       return TTI::TCC_Free;
205     break;
206   }
207   return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
208 }
209 
210 TargetTransformInfo::PopcntSupportKind
211 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
212   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
213   if (TyWidth == 32 || TyWidth == 64)
214     return TTI::PSK_FastHardware;
215   // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
216   return TTI::PSK_Software;
217 }
218 
219 InstructionCost
220 AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
221                                       TTI::TargetCostKind CostKind) {
222   auto *RetTy = ICA.getReturnType();
223   switch (ICA.getID()) {
224   case Intrinsic::umin:
225   case Intrinsic::umax:
226   case Intrinsic::smin:
227   case Intrinsic::smax: {
228     static const auto ValidMinMaxTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
229                                         MVT::v8i16, MVT::v2i32, MVT::v4i32};
230     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
231     // v2i64 types get converted to cmp+bif hence the cost of 2
232     if (LT.second == MVT::v2i64)
233       return LT.first * 2;
234     if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }))
235       return LT.first;
236     break;
237   }
238   case Intrinsic::sadd_sat:
239   case Intrinsic::ssub_sat:
240   case Intrinsic::uadd_sat:
241   case Intrinsic::usub_sat: {
242     static const auto ValidSatTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
243                                      MVT::v8i16, MVT::v2i32, MVT::v4i32,
244                                      MVT::v2i64};
245     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
246     // This is a base cost of 1 for the vadd, plus 3 extract shifts if we
247     // need to extend the type, as it uses shr(qadd(shl, shl)).
248     unsigned Instrs =
249         LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4;
250     if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
251       return LT.first * Instrs;
252     break;
253   }
254   case Intrinsic::abs: {
255     static const auto ValidAbsTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
256                                      MVT::v8i16, MVT::v2i32, MVT::v4i32,
257                                      MVT::v2i64};
258     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
259     if (any_of(ValidAbsTys, [&LT](MVT M) { return M == LT.second; }))
260       return LT.first;
261     break;
262   }
263   case Intrinsic::experimental_stepvector: {
264     InstructionCost Cost = 1; // Cost of the `index' instruction
265     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
266     // Legalisation of illegal vectors involves an `index' instruction plus
267     // (LT.first - 1) vector adds.
268     if (LT.first > 1) {
269       Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext());
270       InstructionCost AddCost =
271           getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind);
272       Cost += AddCost * (LT.first - 1);
273     }
274     return Cost;
275   }
276   case Intrinsic::bitreverse: {
277     static const CostTblEntry BitreverseTbl[] = {
278         {Intrinsic::bitreverse, MVT::i32, 1},
279         {Intrinsic::bitreverse, MVT::i64, 1},
280         {Intrinsic::bitreverse, MVT::v8i8, 1},
281         {Intrinsic::bitreverse, MVT::v16i8, 1},
282         {Intrinsic::bitreverse, MVT::v4i16, 2},
283         {Intrinsic::bitreverse, MVT::v8i16, 2},
284         {Intrinsic::bitreverse, MVT::v2i32, 2},
285         {Intrinsic::bitreverse, MVT::v4i32, 2},
286         {Intrinsic::bitreverse, MVT::v1i64, 2},
287         {Intrinsic::bitreverse, MVT::v2i64, 2},
288     };
289     const auto LegalisationCost = TLI->getTypeLegalizationCost(DL, RetTy);
290     const auto *Entry =
291         CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second);
292     if (Entry) {
293       // Cost Model is using the legal type(i32) that i8 and i16 will be
294       // converted to +1 so that we match the actual lowering cost
295       if (TLI->getValueType(DL, RetTy, true) == MVT::i8 ||
296           TLI->getValueType(DL, RetTy, true) == MVT::i16)
297         return LegalisationCost.first * Entry->Cost + 1;
298 
299       return LegalisationCost.first * Entry->Cost;
300     }
301     break;
302   }
303   case Intrinsic::ctpop: {
304     static const CostTblEntry CtpopCostTbl[] = {
305         {ISD::CTPOP, MVT::v2i64, 4},
306         {ISD::CTPOP, MVT::v4i32, 3},
307         {ISD::CTPOP, MVT::v8i16, 2},
308         {ISD::CTPOP, MVT::v16i8, 1},
309         {ISD::CTPOP, MVT::i64,   4},
310         {ISD::CTPOP, MVT::v2i32, 3},
311         {ISD::CTPOP, MVT::v4i16, 2},
312         {ISD::CTPOP, MVT::v8i8,  1},
313         {ISD::CTPOP, MVT::i32,   5},
314     };
315     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
316     MVT MTy = LT.second;
317     if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) {
318       // Extra cost of +1 when illegal vector types are legalized by promoting
319       // the integer type.
320       int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() !=
321                                             RetTy->getScalarSizeInBits()
322                           ? 1
323                           : 0;
324       return LT.first * Entry->Cost + ExtraCost;
325     }
326     break;
327   }
328   default:
329     break;
330   }
331   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
332 }
333 
334 /// The function will remove redundant reinterprets casting in the presence
335 /// of the control flow
336 static Optional<Instruction *> processPhiNode(InstCombiner &IC,
337                                               IntrinsicInst &II) {
338   SmallVector<Instruction *, 32> Worklist;
339   auto RequiredType = II.getType();
340 
341   auto *PN = dyn_cast<PHINode>(II.getArgOperand(0));
342   assert(PN && "Expected Phi Node!");
343 
344   // Don't create a new Phi unless we can remove the old one.
345   if (!PN->hasOneUse())
346     return None;
347 
348   for (Value *IncValPhi : PN->incoming_values()) {
349     auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi);
350     if (!Reinterpret ||
351         Reinterpret->getIntrinsicID() !=
352             Intrinsic::aarch64_sve_convert_to_svbool ||
353         RequiredType != Reinterpret->getArgOperand(0)->getType())
354       return None;
355   }
356 
357   // Create the new Phi
358   LLVMContext &Ctx = PN->getContext();
359   IRBuilder<> Builder(Ctx);
360   Builder.SetInsertPoint(PN);
361   PHINode *NPN = Builder.CreatePHI(RequiredType, PN->getNumIncomingValues());
362   Worklist.push_back(PN);
363 
364   for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) {
365     auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I));
366     NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I));
367     Worklist.push_back(Reinterpret);
368   }
369 
370   // Cleanup Phi Node and reinterprets
371   return IC.replaceInstUsesWith(II, NPN);
372 }
373 
374 static Optional<Instruction *> instCombineConvertFromSVBool(InstCombiner &IC,
375                                                             IntrinsicInst &II) {
376   // If the reinterpret instruction operand is a PHI Node
377   if (isa<PHINode>(II.getArgOperand(0)))
378     return processPhiNode(IC, II);
379 
380   SmallVector<Instruction *, 32> CandidatesForRemoval;
381   Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr;
382 
383   const auto *IVTy = cast<VectorType>(II.getType());
384 
385   // Walk the chain of conversions.
386   while (Cursor) {
387     // If the type of the cursor has fewer lanes than the final result, zeroing
388     // must take place, which breaks the equivalence chain.
389     const auto *CursorVTy = cast<VectorType>(Cursor->getType());
390     if (CursorVTy->getElementCount().getKnownMinValue() <
391         IVTy->getElementCount().getKnownMinValue())
392       break;
393 
394     // If the cursor has the same type as I, it is a viable replacement.
395     if (Cursor->getType() == IVTy)
396       EarliestReplacement = Cursor;
397 
398     auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor);
399 
400     // If this is not an SVE conversion intrinsic, this is the end of the chain.
401     if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() ==
402                                   Intrinsic::aarch64_sve_convert_to_svbool ||
403                               IntrinsicCursor->getIntrinsicID() ==
404                                   Intrinsic::aarch64_sve_convert_from_svbool))
405       break;
406 
407     CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor);
408     Cursor = IntrinsicCursor->getOperand(0);
409   }
410 
411   // If no viable replacement in the conversion chain was found, there is
412   // nothing to do.
413   if (!EarliestReplacement)
414     return None;
415 
416   return IC.replaceInstUsesWith(II, EarliestReplacement);
417 }
418 
419 static Optional<Instruction *> instCombineSVEDup(InstCombiner &IC,
420                                                  IntrinsicInst &II) {
421   IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
422   if (!Pg)
423     return None;
424 
425   if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
426     return None;
427 
428   const auto PTruePattern =
429       cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
430   if (PTruePattern != AArch64SVEPredPattern::vl1)
431     return None;
432 
433   // The intrinsic is inserting into lane zero so use an insert instead.
434   auto *IdxTy = Type::getInt64Ty(II.getContext());
435   auto *Insert = InsertElementInst::Create(
436       II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0));
437   Insert->insertBefore(&II);
438   Insert->takeName(&II);
439 
440   return IC.replaceInstUsesWith(II, Insert);
441 }
442 
443 static Optional<Instruction *> instCombineSVEDupX(InstCombiner &IC,
444                                                   IntrinsicInst &II) {
445   // Replace DupX with a regular IR splat.
446   IRBuilder<> Builder(II.getContext());
447   Builder.SetInsertPoint(&II);
448   auto *RetTy = cast<ScalableVectorType>(II.getType());
449   Value *Splat =
450       Builder.CreateVectorSplat(RetTy->getElementCount(), II.getArgOperand(0));
451   Splat->takeName(&II);
452   return IC.replaceInstUsesWith(II, Splat);
453 }
454 
455 static Optional<Instruction *> instCombineSVECmpNE(InstCombiner &IC,
456                                                    IntrinsicInst &II) {
457   LLVMContext &Ctx = II.getContext();
458   IRBuilder<> Builder(Ctx);
459   Builder.SetInsertPoint(&II);
460 
461   // Check that the predicate is all active
462   auto *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(0));
463   if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
464     return None;
465 
466   const auto PTruePattern =
467       cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
468   if (PTruePattern != AArch64SVEPredPattern::all)
469     return None;
470 
471   // Check that we have a compare of zero..
472   auto *SplatValue =
473       dyn_cast_or_null<ConstantInt>(getSplatValue(II.getArgOperand(2)));
474   if (!SplatValue || !SplatValue->isZero())
475     return None;
476 
477   // ..against a dupq
478   auto *DupQLane = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
479   if (!DupQLane ||
480       DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane)
481     return None;
482 
483   // Where the dupq is a lane 0 replicate of a vector insert
484   if (!cast<ConstantInt>(DupQLane->getArgOperand(1))->isZero())
485     return None;
486 
487   auto *VecIns = dyn_cast<IntrinsicInst>(DupQLane->getArgOperand(0));
488   if (!VecIns ||
489       VecIns->getIntrinsicID() != Intrinsic::experimental_vector_insert)
490     return None;
491 
492   // Where the vector insert is a fixed constant vector insert into undef at
493   // index zero
494   if (!isa<UndefValue>(VecIns->getArgOperand(0)))
495     return None;
496 
497   if (!cast<ConstantInt>(VecIns->getArgOperand(2))->isZero())
498     return None;
499 
500   auto *ConstVec = dyn_cast<Constant>(VecIns->getArgOperand(1));
501   if (!ConstVec)
502     return None;
503 
504   auto *VecTy = dyn_cast<FixedVectorType>(ConstVec->getType());
505   auto *OutTy = dyn_cast<ScalableVectorType>(II.getType());
506   if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements())
507     return None;
508 
509   unsigned NumElts = VecTy->getNumElements();
510   unsigned PredicateBits = 0;
511 
512   // Expand intrinsic operands to a 16-bit byte level predicate
513   for (unsigned I = 0; I < NumElts; ++I) {
514     auto *Arg = dyn_cast<ConstantInt>(ConstVec->getAggregateElement(I));
515     if (!Arg)
516       return None;
517     if (!Arg->isZero())
518       PredicateBits |= 1 << (I * (16 / NumElts));
519   }
520 
521   // If all bits are zero bail early with an empty predicate
522   if (PredicateBits == 0) {
523     auto *PFalse = Constant::getNullValue(II.getType());
524     PFalse->takeName(&II);
525     return IC.replaceInstUsesWith(II, PFalse);
526   }
527 
528   // Calculate largest predicate type used (where byte predicate is largest)
529   unsigned Mask = 8;
530   for (unsigned I = 0; I < 16; ++I)
531     if ((PredicateBits & (1 << I)) != 0)
532       Mask |= (I % 8);
533 
534   unsigned PredSize = Mask & -Mask;
535   auto *PredType = ScalableVectorType::get(
536       Type::getInt1Ty(Ctx), AArch64::SVEBitsPerBlock / (PredSize * 8));
537 
538   // Ensure all relevant bits are set
539   for (unsigned I = 0; I < 16; I += PredSize)
540     if ((PredicateBits & (1 << I)) == 0)
541       return None;
542 
543   auto *PTruePat =
544       ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
545   auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
546                                         {PredType}, {PTruePat});
547   auto *ConvertToSVBool = Builder.CreateIntrinsic(
548       Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue});
549   auto *ConvertFromSVBool =
550       Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool,
551                               {II.getType()}, {ConvertToSVBool});
552 
553   ConvertFromSVBool->takeName(&II);
554   return IC.replaceInstUsesWith(II, ConvertFromSVBool);
555 }
556 
557 static Optional<Instruction *> instCombineSVELast(InstCombiner &IC,
558                                                   IntrinsicInst &II) {
559   IRBuilder<> Builder(II.getContext());
560   Builder.SetInsertPoint(&II);
561   Value *Pg = II.getArgOperand(0);
562   Value *Vec = II.getArgOperand(1);
563   auto IntrinsicID = II.getIntrinsicID();
564   bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta;
565 
566   // lastX(splat(X)) --> X
567   if (auto *SplatVal = getSplatValue(Vec))
568     return IC.replaceInstUsesWith(II, SplatVal);
569 
570   // If x and/or y is a splat value then:
571   // lastX (binop (x, y)) --> binop(lastX(x), lastX(y))
572   Value *LHS, *RHS;
573   if (match(Vec, m_OneUse(m_BinOp(m_Value(LHS), m_Value(RHS))))) {
574     if (isSplatValue(LHS) || isSplatValue(RHS)) {
575       auto *OldBinOp = cast<BinaryOperator>(Vec);
576       auto OpC = OldBinOp->getOpcode();
577       auto *NewLHS =
578           Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, LHS});
579       auto *NewRHS =
580           Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, RHS});
581       auto *NewBinOp = BinaryOperator::CreateWithCopiedFlags(
582           OpC, NewLHS, NewRHS, OldBinOp, OldBinOp->getName(), &II);
583       return IC.replaceInstUsesWith(II, NewBinOp);
584     }
585   }
586 
587   auto *C = dyn_cast<Constant>(Pg);
588   if (IsAfter && C && C->isNullValue()) {
589     // The intrinsic is extracting lane 0 so use an extract instead.
590     auto *IdxTy = Type::getInt64Ty(II.getContext());
591     auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0));
592     Extract->insertBefore(&II);
593     Extract->takeName(&II);
594     return IC.replaceInstUsesWith(II, Extract);
595   }
596 
597   auto *IntrPG = dyn_cast<IntrinsicInst>(Pg);
598   if (!IntrPG)
599     return None;
600 
601   if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
602     return None;
603 
604   const auto PTruePattern =
605       cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue();
606 
607   // Can the intrinsic's predicate be converted to a known constant index?
608   unsigned MinNumElts = getNumElementsFromSVEPredPattern(PTruePattern);
609   if (!MinNumElts)
610     return None;
611 
612   unsigned Idx = MinNumElts - 1;
613   // Increment the index if extracting the element after the last active
614   // predicate element.
615   if (IsAfter)
616     ++Idx;
617 
618   // Ignore extracts whose index is larger than the known minimum vector
619   // length. NOTE: This is an artificial constraint where we prefer to
620   // maintain what the user asked for until an alternative is proven faster.
621   auto *PgVTy = cast<ScalableVectorType>(Pg->getType());
622   if (Idx >= PgVTy->getMinNumElements())
623     return None;
624 
625   // The intrinsic is extracting a fixed lane so use an extract instead.
626   auto *IdxTy = Type::getInt64Ty(II.getContext());
627   auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx));
628   Extract->insertBefore(&II);
629   Extract->takeName(&II);
630   return IC.replaceInstUsesWith(II, Extract);
631 }
632 
633 static Optional<Instruction *> instCombineRDFFR(InstCombiner &IC,
634                                                 IntrinsicInst &II) {
635   LLVMContext &Ctx = II.getContext();
636   IRBuilder<> Builder(Ctx);
637   Builder.SetInsertPoint(&II);
638   // Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr
639   // can work with RDFFR_PP for ptest elimination.
640   auto *AllPat =
641       ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
642   auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
643                                         {II.getType()}, {AllPat});
644   auto *RDFFR =
645       Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue});
646   RDFFR->takeName(&II);
647   return IC.replaceInstUsesWith(II, RDFFR);
648 }
649 
650 static Optional<Instruction *>
651 instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) {
652   const auto Pattern = cast<ConstantInt>(II.getArgOperand(0))->getZExtValue();
653 
654   if (Pattern == AArch64SVEPredPattern::all) {
655     LLVMContext &Ctx = II.getContext();
656     IRBuilder<> Builder(Ctx);
657     Builder.SetInsertPoint(&II);
658 
659     Constant *StepVal = ConstantInt::get(II.getType(), NumElts);
660     auto *VScale = Builder.CreateVScale(StepVal);
661     VScale->takeName(&II);
662     return IC.replaceInstUsesWith(II, VScale);
663   }
664 
665   unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern);
666 
667   return MinNumElts && NumElts >= MinNumElts
668              ? Optional<Instruction *>(IC.replaceInstUsesWith(
669                    II, ConstantInt::get(II.getType(), MinNumElts)))
670              : None;
671 }
672 
673 static Optional<Instruction *> instCombineSVEPTest(InstCombiner &IC,
674                                                    IntrinsicInst &II) {
675   IntrinsicInst *Op1 = dyn_cast<IntrinsicInst>(II.getArgOperand(0));
676   IntrinsicInst *Op2 = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
677 
678   if (Op1 && Op2 &&
679       Op1->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
680       Op2->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
681       Op1->getArgOperand(0)->getType() == Op2->getArgOperand(0)->getType()) {
682 
683     IRBuilder<> Builder(II.getContext());
684     Builder.SetInsertPoint(&II);
685 
686     Value *Ops[] = {Op1->getArgOperand(0), Op2->getArgOperand(0)};
687     Type *Tys[] = {Op1->getArgOperand(0)->getType()};
688 
689     auto *PTest = Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops);
690 
691     PTest->takeName(&II);
692     return IC.replaceInstUsesWith(II, PTest);
693   }
694 
695   return None;
696 }
697 
698 static Optional<Instruction *> instCombineSVEVectorFMLA(InstCombiner &IC,
699                                                         IntrinsicInst &II) {
700   // fold (fadd p a (fmul p b c)) -> (fma p a b c)
701   Value *p, *FMul, *a, *b, *c;
702   auto m_SVEFAdd = [](auto p, auto w, auto x) {
703     return m_CombineOr(m_Intrinsic<Intrinsic::aarch64_sve_fadd>(p, w, x),
704                        m_Intrinsic<Intrinsic::aarch64_sve_fadd>(p, x, w));
705   };
706   auto m_SVEFMul = [](auto p, auto y, auto z) {
707     return m_Intrinsic<Intrinsic::aarch64_sve_fmul>(p, y, z);
708   };
709   if (!match(&II, m_SVEFAdd(m_Value(p), m_Value(a),
710                             m_CombineAnd(m_Value(FMul),
711                                          m_SVEFMul(m_Deferred(p), m_Value(b),
712                                                    m_Value(c))))))
713     return None;
714 
715   if (!FMul->hasOneUse())
716     return None;
717 
718   llvm::FastMathFlags FAddFlags = II.getFastMathFlags();
719   llvm::FastMathFlags FMulFlags = cast<CallInst>(FMul)->getFastMathFlags();
720   // Don't combine when FMul & Fadd flags differ to prevent the loss of any
721   // additional important flags
722   if (FAddFlags != FMulFlags)
723     return None;
724   bool AllowReassoc = FAddFlags.allowReassoc() && FMulFlags.allowReassoc();
725   bool AllowContract = FAddFlags.allowContract() && FMulFlags.allowContract();
726   if (!AllowReassoc || !AllowContract)
727     return None;
728 
729   IRBuilder<> Builder(II.getContext());
730   Builder.SetInsertPoint(&II);
731   auto FMLA = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_fmla,
732                                       {II.getType()}, {p, a, b, c}, &II);
733   FMLA->setFastMathFlags(FAddFlags);
734   return IC.replaceInstUsesWith(II, FMLA);
735 }
736 
737 static Instruction::BinaryOps intrinsicIDToBinOpCode(unsigned Intrinsic) {
738   switch (Intrinsic) {
739   case Intrinsic::aarch64_sve_fmul:
740     return Instruction::BinaryOps::FMul;
741   case Intrinsic::aarch64_sve_fadd:
742     return Instruction::BinaryOps::FAdd;
743   case Intrinsic::aarch64_sve_fsub:
744     return Instruction::BinaryOps::FSub;
745   default:
746     return Instruction::BinaryOpsEnd;
747   }
748 }
749 
750 static Optional<Instruction *> instCombineSVEVectorBinOp(InstCombiner &IC,
751                                                          IntrinsicInst &II) {
752   auto *OpPredicate = II.getOperand(0);
753   auto BinOpCode = intrinsicIDToBinOpCode(II.getIntrinsicID());
754   if (BinOpCode == Instruction::BinaryOpsEnd ||
755       !match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
756                               m_ConstantInt<AArch64SVEPredPattern::all>())))
757     return None;
758   IRBuilder<> Builder(II.getContext());
759   Builder.SetInsertPoint(&II);
760   Builder.setFastMathFlags(II.getFastMathFlags());
761   auto BinOp =
762       Builder.CreateBinOp(BinOpCode, II.getOperand(1), II.getOperand(2));
763   return IC.replaceInstUsesWith(II, BinOp);
764 }
765 
766 static Optional<Instruction *> instCombineSVEVectorFAdd(InstCombiner &IC,
767                                                         IntrinsicInst &II) {
768   auto FMLA = instCombineSVEVectorFMLA(IC, II);
769   if (FMLA)
770     return FMLA;
771   return instCombineSVEVectorBinOp(IC, II);
772 }
773 
774 static Optional<Instruction *> instCombineSVEVectorMul(InstCombiner &IC,
775                                                        IntrinsicInst &II) {
776   auto *OpPredicate = II.getOperand(0);
777   auto *OpMultiplicand = II.getOperand(1);
778   auto *OpMultiplier = II.getOperand(2);
779 
780   IRBuilder<> Builder(II.getContext());
781   Builder.SetInsertPoint(&II);
782 
783   // Return true if a given instruction is a unit splat value, false otherwise.
784   auto IsUnitSplat = [](auto *I) {
785     auto *SplatValue = getSplatValue(I);
786     if (!SplatValue)
787       return false;
788     return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
789   };
790 
791   // Return true if a given instruction is an aarch64_sve_dup intrinsic call
792   // with a unit splat value, false otherwise.
793   auto IsUnitDup = [](auto *I) {
794     auto *IntrI = dyn_cast<IntrinsicInst>(I);
795     if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup)
796       return false;
797 
798     auto *SplatValue = IntrI->getOperand(2);
799     return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
800   };
801 
802   // The OpMultiplier variable should always point to the dup (if any), so
803   // swap if necessary.
804   if (IsUnitDup(OpMultiplicand) || IsUnitSplat(OpMultiplicand))
805     std::swap(OpMultiplier, OpMultiplicand);
806 
807   if (IsUnitSplat(OpMultiplier)) {
808     // [f]mul pg (dupx 1) %n => %n
809     OpMultiplicand->takeName(&II);
810     return IC.replaceInstUsesWith(II, OpMultiplicand);
811   } else if (IsUnitDup(OpMultiplier)) {
812     // [f]mul pg (dup pg 1) %n => %n
813     auto *DupInst = cast<IntrinsicInst>(OpMultiplier);
814     auto *DupPg = DupInst->getOperand(1);
815     // TODO: this is naive. The optimization is still valid if DupPg
816     // 'encompasses' OpPredicate, not only if they're the same predicate.
817     if (OpPredicate == DupPg) {
818       OpMultiplicand->takeName(&II);
819       return IC.replaceInstUsesWith(II, OpMultiplicand);
820     }
821   }
822 
823   return instCombineSVEVectorBinOp(IC, II);
824 }
825 
826 static Optional<Instruction *> instCombineSVEUnpack(InstCombiner &IC,
827                                                     IntrinsicInst &II) {
828   IRBuilder<> Builder(II.getContext());
829   Builder.SetInsertPoint(&II);
830   Value *UnpackArg = II.getArgOperand(0);
831   auto *RetTy = cast<ScalableVectorType>(II.getType());
832   bool IsSigned = II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi ||
833                   II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo;
834 
835   // Hi = uunpkhi(splat(X)) --> Hi = splat(extend(X))
836   // Lo = uunpklo(splat(X)) --> Lo = splat(extend(X))
837   if (auto *ScalarArg = getSplatValue(UnpackArg)) {
838     ScalarArg =
839         Builder.CreateIntCast(ScalarArg, RetTy->getScalarType(), IsSigned);
840     Value *NewVal =
841         Builder.CreateVectorSplat(RetTy->getElementCount(), ScalarArg);
842     NewVal->takeName(&II);
843     return IC.replaceInstUsesWith(II, NewVal);
844   }
845 
846   return None;
847 }
848 static Optional<Instruction *> instCombineSVETBL(InstCombiner &IC,
849                                                  IntrinsicInst &II) {
850   auto *OpVal = II.getOperand(0);
851   auto *OpIndices = II.getOperand(1);
852   VectorType *VTy = cast<VectorType>(II.getType());
853 
854   // Check whether OpIndices is a constant splat value < minimal element count
855   // of result.
856   auto *SplatValue = dyn_cast_or_null<ConstantInt>(getSplatValue(OpIndices));
857   if (!SplatValue ||
858       SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue()))
859     return None;
860 
861   // Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to
862   // splat_vector(extractelement(OpVal, SplatValue)) for further optimization.
863   IRBuilder<> Builder(II.getContext());
864   Builder.SetInsertPoint(&II);
865   auto *Extract = Builder.CreateExtractElement(OpVal, SplatValue);
866   auto *VectorSplat =
867       Builder.CreateVectorSplat(VTy->getElementCount(), Extract);
868 
869   VectorSplat->takeName(&II);
870   return IC.replaceInstUsesWith(II, VectorSplat);
871 }
872 
873 static Optional<Instruction *> instCombineSVETupleGet(InstCombiner &IC,
874                                                       IntrinsicInst &II) {
875   // Try to remove sequences of tuple get/set.
876   Value *SetTuple, *SetIndex, *SetValue;
877   auto *GetTuple = II.getArgOperand(0);
878   auto *GetIndex = II.getArgOperand(1);
879   // Check that we have tuple_get(GetTuple, GetIndex) where GetTuple is a
880   // call to tuple_set i.e. tuple_set(SetTuple, SetIndex, SetValue).
881   // Make sure that the types of the current intrinsic and SetValue match
882   // in order to safely remove the sequence.
883   if (!match(GetTuple,
884              m_Intrinsic<Intrinsic::aarch64_sve_tuple_set>(
885                  m_Value(SetTuple), m_Value(SetIndex), m_Value(SetValue))) ||
886       SetValue->getType() != II.getType())
887     return None;
888   // Case where we get the same index right after setting it.
889   // tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex) --> SetValue
890   if (GetIndex == SetIndex)
891     return IC.replaceInstUsesWith(II, SetValue);
892   // If we are getting a different index than what was set in the tuple_set
893   // intrinsic. We can just set the input tuple to the one up in the chain.
894   // tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex)
895   // --> tuple_get(SetTuple, GetIndex)
896   return IC.replaceOperand(II, 0, SetTuple);
897 }
898 
899 static Optional<Instruction *> instCombineSVEZip(InstCombiner &IC,
900                                                  IntrinsicInst &II) {
901   // zip1(uzp1(A, B), uzp2(A, B)) --> A
902   // zip2(uzp1(A, B), uzp2(A, B)) --> B
903   Value *A, *B;
904   if (match(II.getArgOperand(0),
905             m_Intrinsic<Intrinsic::aarch64_sve_uzp1>(m_Value(A), m_Value(B))) &&
906       match(II.getArgOperand(1), m_Intrinsic<Intrinsic::aarch64_sve_uzp2>(
907                                      m_Specific(A), m_Specific(B))))
908     return IC.replaceInstUsesWith(
909         II, (II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ? A : B));
910 
911   return None;
912 }
913 
914 Optional<Instruction *>
915 AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC,
916                                      IntrinsicInst &II) const {
917   Intrinsic::ID IID = II.getIntrinsicID();
918   switch (IID) {
919   default:
920     break;
921   case Intrinsic::aarch64_sve_convert_from_svbool:
922     return instCombineConvertFromSVBool(IC, II);
923   case Intrinsic::aarch64_sve_dup:
924     return instCombineSVEDup(IC, II);
925   case Intrinsic::aarch64_sve_dup_x:
926     return instCombineSVEDupX(IC, II);
927   case Intrinsic::aarch64_sve_cmpne:
928   case Intrinsic::aarch64_sve_cmpne_wide:
929     return instCombineSVECmpNE(IC, II);
930   case Intrinsic::aarch64_sve_rdffr:
931     return instCombineRDFFR(IC, II);
932   case Intrinsic::aarch64_sve_lasta:
933   case Intrinsic::aarch64_sve_lastb:
934     return instCombineSVELast(IC, II);
935   case Intrinsic::aarch64_sve_cntd:
936     return instCombineSVECntElts(IC, II, 2);
937   case Intrinsic::aarch64_sve_cntw:
938     return instCombineSVECntElts(IC, II, 4);
939   case Intrinsic::aarch64_sve_cnth:
940     return instCombineSVECntElts(IC, II, 8);
941   case Intrinsic::aarch64_sve_cntb:
942     return instCombineSVECntElts(IC, II, 16);
943   case Intrinsic::aarch64_sve_ptest_any:
944   case Intrinsic::aarch64_sve_ptest_first:
945   case Intrinsic::aarch64_sve_ptest_last:
946     return instCombineSVEPTest(IC, II);
947   case Intrinsic::aarch64_sve_mul:
948   case Intrinsic::aarch64_sve_fmul:
949     return instCombineSVEVectorMul(IC, II);
950   case Intrinsic::aarch64_sve_fadd:
951     return instCombineSVEVectorFAdd(IC, II);
952   case Intrinsic::aarch64_sve_fsub:
953     return instCombineSVEVectorBinOp(IC, II);
954   case Intrinsic::aarch64_sve_tbl:
955     return instCombineSVETBL(IC, II);
956   case Intrinsic::aarch64_sve_uunpkhi:
957   case Intrinsic::aarch64_sve_uunpklo:
958   case Intrinsic::aarch64_sve_sunpkhi:
959   case Intrinsic::aarch64_sve_sunpklo:
960     return instCombineSVEUnpack(IC, II);
961   case Intrinsic::aarch64_sve_tuple_get:
962     return instCombineSVETupleGet(IC, II);
963   case Intrinsic::aarch64_sve_zip1:
964   case Intrinsic::aarch64_sve_zip2:
965     return instCombineSVEZip(IC, II);
966   }
967 
968   return None;
969 }
970 
971 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
972                                            ArrayRef<const Value *> Args) {
973 
974   // A helper that returns a vector type from the given type. The number of
975   // elements in type Ty determine the vector width.
976   auto toVectorTy = [&](Type *ArgTy) {
977     return VectorType::get(ArgTy->getScalarType(),
978                            cast<VectorType>(DstTy)->getElementCount());
979   };
980 
981   // Exit early if DstTy is not a vector type whose elements are at least
982   // 16-bits wide.
983   if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16)
984     return false;
985 
986   // Determine if the operation has a widening variant. We consider both the
987   // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
988   // instructions.
989   //
990   // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
991   //       verify that their extending operands are eliminated during code
992   //       generation.
993   switch (Opcode) {
994   case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
995   case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
996     break;
997   default:
998     return false;
999   }
1000 
1001   // To be a widening instruction (either the "wide" or "long" versions), the
1002   // second operand must be a sign- or zero extend having a single user. We
1003   // only consider extends having a single user because they may otherwise not
1004   // be eliminated.
1005   if (Args.size() != 2 ||
1006       (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) ||
1007       !Args[1]->hasOneUse())
1008     return false;
1009   auto *Extend = cast<CastInst>(Args[1]);
1010 
1011   // Legalize the destination type and ensure it can be used in a widening
1012   // operation.
1013   auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy);
1014   unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
1015   if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
1016     return false;
1017 
1018   // Legalize the source type and ensure it can be used in a widening
1019   // operation.
1020   auto *SrcTy = toVectorTy(Extend->getSrcTy());
1021   auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy);
1022   unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
1023   if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
1024     return false;
1025 
1026   // Get the total number of vector elements in the legalized types.
1027   InstructionCost NumDstEls =
1028       DstTyL.first * DstTyL.second.getVectorMinNumElements();
1029   InstructionCost NumSrcEls =
1030       SrcTyL.first * SrcTyL.second.getVectorMinNumElements();
1031 
1032   // Return true if the legalized types have the same number of vector elements
1033   // and the destination element type size is twice that of the source type.
1034   return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
1035 }
1036 
1037 InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
1038                                                  Type *Src,
1039                                                  TTI::CastContextHint CCH,
1040                                                  TTI::TargetCostKind CostKind,
1041                                                  const Instruction *I) {
1042   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1043   assert(ISD && "Invalid opcode");
1044 
1045   // If the cast is observable, and it is used by a widening instruction (e.g.,
1046   // uaddl, saddw, etc.), it may be free.
1047   if (I && I->hasOneUse()) {
1048     auto *SingleUser = cast<Instruction>(*I->user_begin());
1049     SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
1050     if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
1051       // If the cast is the second operand, it is free. We will generate either
1052       // a "wide" or "long" version of the widening instruction.
1053       if (I == SingleUser->getOperand(1))
1054         return 0;
1055       // If the cast is not the second operand, it will be free if it looks the
1056       // same as the second operand. In this case, we will generate a "long"
1057       // version of the widening instruction.
1058       if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
1059         if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
1060             cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
1061           return 0;
1062     }
1063   }
1064 
1065   // TODO: Allow non-throughput costs that aren't binary.
1066   auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
1067     if (CostKind != TTI::TCK_RecipThroughput)
1068       return Cost == 0 ? 0 : 1;
1069     return Cost;
1070   };
1071 
1072   EVT SrcTy = TLI->getValueType(DL, Src);
1073   EVT DstTy = TLI->getValueType(DL, Dst);
1074 
1075   if (!SrcTy.isSimple() || !DstTy.isSimple())
1076     return AdjustCost(
1077         BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
1078 
1079   static const TypeConversionCostTblEntry
1080   ConversionTbl[] = {
1081     { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32,  1 },
1082     { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64,  0 },
1083     { ISD::TRUNCATE, MVT::v8i8,  MVT::v8i32,  3 },
1084     { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
1085 
1086     // Truncations on nxvmiN
1087     { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 },
1088     { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 },
1089     { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 },
1090     { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 },
1091     { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 },
1092     { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 },
1093     { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 },
1094     { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 },
1095     { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 },
1096     { ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 1 },
1097     { ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 },
1098     { ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 },
1099     { ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 },
1100     { ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 },
1101     { ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 },
1102     { ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 },
1103 
1104     // The number of shll instructions for the extension.
1105     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1106     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1107     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
1108     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
1109     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
1110     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
1111     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
1112     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
1113     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
1114     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
1115     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
1116     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
1117     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1118     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1119     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
1120     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
1121 
1122     // LowerVectorINT_TO_FP:
1123     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
1124     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1125     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
1126     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
1127     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1128     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
1129 
1130     // Complex: to v2f32
1131     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
1132     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
1133     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
1134     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
1135     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
1136     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
1137 
1138     // Complex: to v4f32
1139     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
1140     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
1141     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
1142     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
1143 
1144     // Complex: to v8f32
1145     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
1146     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
1147     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
1148     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
1149 
1150     // Complex: to v16f32
1151     { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
1152     { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
1153 
1154     // Complex: to v2f64
1155     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
1156     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
1157     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
1158     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
1159     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
1160     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
1161 
1162 
1163     // LowerVectorFP_TO_INT
1164     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
1165     { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
1166     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
1167     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
1168     { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
1169     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
1170 
1171     // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
1172     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
1173     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
1174     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
1175     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
1176     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
1177     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },
1178 
1179     // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
1180     { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
1181     { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
1182     { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
1183     { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },
1184 
1185     // Complex, from nxv2f32.
1186     { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
1187     { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
1188     { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
1189     { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f32, 1 },
1190     { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
1191     { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
1192     { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
1193     { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f32, 1 },
1194 
1195     // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
1196     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
1197     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
1198     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
1199     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
1200     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
1201     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
1202 
1203     // Complex, from nxv2f64.
1204     { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
1205     { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
1206     { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
1207     { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f64, 1 },
1208     { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
1209     { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
1210     { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
1211     { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f64, 1 },
1212 
1213     // Complex, from nxv4f32.
1214     { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
1215     { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
1216     { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
1217     { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f32, 1 },
1218     { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
1219     { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
1220     { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
1221     { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f32, 1 },
1222 
1223     // Complex, from nxv8f64. Illegal -> illegal conversions not required.
1224     { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
1225     { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f64, 7 },
1226     { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
1227     { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f64, 7 },
1228 
1229     // Complex, from nxv4f64. Illegal -> illegal conversions not required.
1230     { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
1231     { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
1232     { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f64, 3 },
1233     { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
1234     { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
1235     { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f64, 3 },
1236 
1237     // Complex, from nxv8f32. Illegal -> illegal conversions not required.
1238     { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
1239     { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f32, 3 },
1240     { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
1241     { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f32, 3 },
1242 
1243     // Complex, from nxv8f16.
1244     { ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
1245     { ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
1246     { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
1247     { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f16, 1 },
1248     { ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
1249     { ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
1250     { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
1251     { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f16, 1 },
1252 
1253     // Complex, from nxv4f16.
1254     { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
1255     { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
1256     { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
1257     { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f16, 1 },
1258     { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
1259     { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
1260     { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
1261     { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f16, 1 },
1262 
1263     // Complex, from nxv2f16.
1264     { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
1265     { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
1266     { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
1267     { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f16, 1 },
1268     { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
1269     { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
1270     { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
1271     { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f16, 1 },
1272 
1273     // Truncate from nxvmf32 to nxvmf16.
1274     { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 },
1275     { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 },
1276     { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 },
1277 
1278     // Truncate from nxvmf64 to nxvmf16.
1279     { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 },
1280     { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 },
1281     { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 },
1282 
1283     // Truncate from nxvmf64 to nxvmf32.
1284     { ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 },
1285     { ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 },
1286     { ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 },
1287 
1288     // Extend from nxvmf16 to nxvmf32.
1289     { ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1},
1290     { ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1},
1291     { ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2},
1292 
1293     // Extend from nxvmf16 to nxvmf64.
1294     { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1},
1295     { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2},
1296     { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4},
1297 
1298     // Extend from nxvmf32 to nxvmf64.
1299     { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1},
1300     { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2},
1301     { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6},
1302 
1303   };
1304 
1305   if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
1306                                                  DstTy.getSimpleVT(),
1307                                                  SrcTy.getSimpleVT()))
1308     return AdjustCost(Entry->Cost);
1309 
1310   return AdjustCost(
1311       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
1312 }
1313 
1314 InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode,
1315                                                          Type *Dst,
1316                                                          VectorType *VecTy,
1317                                                          unsigned Index) {
1318 
1319   // Make sure we were given a valid extend opcode.
1320   assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
1321          "Invalid opcode");
1322 
1323   // We are extending an element we extract from a vector, so the source type
1324   // of the extend is the element type of the vector.
1325   auto *Src = VecTy->getElementType();
1326 
1327   // Sign- and zero-extends are for integer types only.
1328   assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
1329 
1330   // Get the cost for the extract. We compute the cost (if any) for the extend
1331   // below.
1332   InstructionCost Cost =
1333       getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);
1334 
1335   // Legalize the types.
1336   auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
1337   auto DstVT = TLI->getValueType(DL, Dst);
1338   auto SrcVT = TLI->getValueType(DL, Src);
1339   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1340 
1341   // If the resulting type is still a vector and the destination type is legal,
1342   // we may get the extension for free. If not, get the default cost for the
1343   // extend.
1344   if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
1345     return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
1346                                    CostKind);
1347 
1348   // The destination type should be larger than the element type. If not, get
1349   // the default cost for the extend.
1350   if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits())
1351     return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
1352                                    CostKind);
1353 
1354   switch (Opcode) {
1355   default:
1356     llvm_unreachable("Opcode should be either SExt or ZExt");
1357 
1358   // For sign-extends, we only need a smov, which performs the extension
1359   // automatically.
1360   case Instruction::SExt:
1361     return Cost;
1362 
1363   // For zero-extends, the extend is performed automatically by a umov unless
1364   // the destination type is i64 and the element type is i8 or i16.
1365   case Instruction::ZExt:
1366     if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
1367       return Cost;
1368   }
1369 
1370   // If we are unable to perform the extend for free, get the default cost.
1371   return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
1372                                  CostKind);
1373 }
1374 
1375 InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode,
1376                                                TTI::TargetCostKind CostKind,
1377                                                const Instruction *I) {
1378   if (CostKind != TTI::TCK_RecipThroughput)
1379     return Opcode == Instruction::PHI ? 0 : 1;
1380   assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind");
1381   // Branches are assumed to be predicted.
1382   return 0;
1383 }
1384 
1385 InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
1386                                                    unsigned Index) {
1387   assert(Val->isVectorTy() && "This must be a vector type");
1388 
1389   if (Index != -1U) {
1390     // Legalize the type.
1391     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
1392 
1393     // This type is legalized to a scalar type.
1394     if (!LT.second.isVector())
1395       return 0;
1396 
1397     // The type may be split. Normalize the index to the new type.
1398     unsigned Width = LT.second.getVectorNumElements();
1399     Index = Index % Width;
1400 
1401     // The element at index zero is already inside the vector.
1402     if (Index == 0)
1403       return 0;
1404   }
1405 
1406   // All other insert/extracts cost this much.
1407   return ST->getVectorInsertExtractBaseCost();
1408 }
1409 
1410 InstructionCost AArch64TTIImpl::getArithmeticInstrCost(
1411     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
1412     TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
1413     TTI::OperandValueProperties Opd1PropInfo,
1414     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
1415     const Instruction *CxtI) {
1416   // TODO: Handle more cost kinds.
1417   if (CostKind != TTI::TCK_RecipThroughput)
1418     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
1419                                          Opd2Info, Opd1PropInfo,
1420                                          Opd2PropInfo, Args, CxtI);
1421 
1422   // Legalize the type.
1423   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
1424 
1425   // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
1426   // add in the widening overhead specified by the sub-target. Since the
1427   // extends feeding widening instructions are performed automatically, they
1428   // aren't present in the generated code and have a zero cost. By adding a
1429   // widening overhead here, we attach the total cost of the combined operation
1430   // to the widening instruction.
1431   InstructionCost Cost = 0;
1432   if (isWideningInstruction(Ty, Opcode, Args))
1433     Cost += ST->getWideningBaseCost();
1434 
1435   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1436 
1437   switch (ISD) {
1438   default:
1439     return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
1440                                                 Opd2Info,
1441                                                 Opd1PropInfo, Opd2PropInfo);
1442   case ISD::SDIV:
1443     if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
1444         Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
1445       // On AArch64, scalar signed division by constants power-of-two are
1446       // normally expanded to the sequence ADD + CMP + SELECT + SRA.
1447       // The OperandValue properties many not be same as that of previous
1448       // operation; conservatively assume OP_None.
1449       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind,
1450                                      Opd1Info, Opd2Info,
1451                                      TargetTransformInfo::OP_None,
1452                                      TargetTransformInfo::OP_None);
1453       Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind,
1454                                      Opd1Info, Opd2Info,
1455                                      TargetTransformInfo::OP_None,
1456                                      TargetTransformInfo::OP_None);
1457       Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind,
1458                                      Opd1Info, Opd2Info,
1459                                      TargetTransformInfo::OP_None,
1460                                      TargetTransformInfo::OP_None);
1461       Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
1462                                      Opd1Info, Opd2Info,
1463                                      TargetTransformInfo::OP_None,
1464                                      TargetTransformInfo::OP_None);
1465       return Cost;
1466     }
1467     LLVM_FALLTHROUGH;
1468   case ISD::UDIV:
1469     if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) {
1470       auto VT = TLI->getValueType(DL, Ty);
1471       if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
1472         // Vector signed division by constant are expanded to the
1473         // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
1474         // to MULHS + SUB + SRL + ADD + SRL.
1475         InstructionCost MulCost = getArithmeticInstrCost(
1476             Instruction::Mul, Ty, CostKind, Opd1Info, Opd2Info,
1477             TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1478         InstructionCost AddCost = getArithmeticInstrCost(
1479             Instruction::Add, Ty, CostKind, Opd1Info, Opd2Info,
1480             TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1481         InstructionCost ShrCost = getArithmeticInstrCost(
1482             Instruction::AShr, Ty, CostKind, Opd1Info, Opd2Info,
1483             TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1484         return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
1485       }
1486     }
1487 
1488     Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
1489                                           Opd2Info,
1490                                           Opd1PropInfo, Opd2PropInfo);
1491     if (Ty->isVectorTy()) {
1492       // On AArch64, vector divisions are not supported natively and are
1493       // expanded into scalar divisions of each pair of elements.
1494       Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind,
1495                                      Opd1Info, Opd2Info, Opd1PropInfo,
1496                                      Opd2PropInfo);
1497       Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind,
1498                                      Opd1Info, Opd2Info, Opd1PropInfo,
1499                                      Opd2PropInfo);
1500       // TODO: if one of the arguments is scalar, then it's not necessary to
1501       // double the cost of handling the vector elements.
1502       Cost += Cost;
1503     }
1504     return Cost;
1505 
1506   case ISD::MUL:
1507     if (LT.second != MVT::v2i64)
1508       return (Cost + 1) * LT.first;
1509     // Since we do not have a MUL.2d instruction, a mul <2 x i64> is expensive
1510     // as elements are extracted from the vectors and the muls scalarized.
1511     // As getScalarizationOverhead is a bit too pessimistic, we estimate the
1512     // cost for a i64 vector directly here, which is:
1513     // - four i64 extracts,
1514     // - two i64 inserts, and
1515     // - two muls.
1516     // So, for a v2i64 with LT.First = 1 the cost is 8, and for a v4i64 with
1517     // LT.first = 2 the cost is 16.
1518     return LT.first * 8;
1519   case ISD::ADD:
1520   case ISD::XOR:
1521   case ISD::OR:
1522   case ISD::AND:
1523     // These nodes are marked as 'custom' for combining purposes only.
1524     // We know that they are legal. See LowerAdd in ISelLowering.
1525     return (Cost + 1) * LT.first;
1526 
1527   case ISD::FADD:
1528   case ISD::FSUB:
1529   case ISD::FMUL:
1530   case ISD::FDIV:
1531   case ISD::FNEG:
1532     // These nodes are marked as 'custom' just to lower them to SVE.
1533     // We know said lowering will incur no additional cost.
1534     if (!Ty->getScalarType()->isFP128Ty())
1535       return (Cost + 2) * LT.first;
1536 
1537     return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
1538                                                 Opd2Info,
1539                                                 Opd1PropInfo, Opd2PropInfo);
1540   }
1541 }
1542 
1543 InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty,
1544                                                           ScalarEvolution *SE,
1545                                                           const SCEV *Ptr) {
1546   // Address computations in vectorized code with non-consecutive addresses will
1547   // likely result in more instructions compared to scalar code where the
1548   // computation can more often be merged into the index mode. The resulting
1549   // extra micro-ops can significantly decrease throughput.
1550   unsigned NumVectorInstToHideOverhead = 10;
1551   int MaxMergeDistance = 64;
1552 
1553   if (Ty->isVectorTy() && SE &&
1554       !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
1555     return NumVectorInstToHideOverhead;
1556 
1557   // In many cases the address computation is not merged into the instruction
1558   // addressing mode.
1559   return 1;
1560 }
1561 
1562 InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
1563                                                    Type *CondTy,
1564                                                    CmpInst::Predicate VecPred,
1565                                                    TTI::TargetCostKind CostKind,
1566                                                    const Instruction *I) {
1567   // TODO: Handle other cost kinds.
1568   if (CostKind != TTI::TCK_RecipThroughput)
1569     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
1570                                      I);
1571 
1572   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1573   // We don't lower some vector selects well that are wider than the register
1574   // width.
1575   if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) {
1576     // We would need this many instructions to hide the scalarization happening.
1577     const int AmortizationCost = 20;
1578 
1579     // If VecPred is not set, check if we can get a predicate from the context
1580     // instruction, if its type matches the requested ValTy.
1581     if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) {
1582       CmpInst::Predicate CurrentPred;
1583       if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(),
1584                             m_Value())))
1585         VecPred = CurrentPred;
1586     }
1587     // Check if we have a compare/select chain that can be lowered using CMxx &
1588     // BFI pair.
1589     if (CmpInst::isIntPredicate(VecPred)) {
1590       static const auto ValidMinMaxTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
1591                                           MVT::v8i16, MVT::v2i32, MVT::v4i32,
1592                                           MVT::v2i64};
1593       auto LT = TLI->getTypeLegalizationCost(DL, ValTy);
1594       if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }))
1595         return LT.first;
1596     }
1597 
1598     static const TypeConversionCostTblEntry
1599     VectorSelectTbl[] = {
1600       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
1601       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
1602       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
1603       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
1604       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
1605       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
1606     };
1607 
1608     EVT SelCondTy = TLI->getValueType(DL, CondTy);
1609     EVT SelValTy = TLI->getValueType(DL, ValTy);
1610     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
1611       if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
1612                                                      SelCondTy.getSimpleVT(),
1613                                                      SelValTy.getSimpleVT()))
1614         return Entry->Cost;
1615     }
1616   }
1617   // The base case handles scalable vectors fine for now, since it treats the
1618   // cost as 1 * legalization cost.
1619   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
1620 }
1621 
1622 AArch64TTIImpl::TTI::MemCmpExpansionOptions
1623 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
1624   TTI::MemCmpExpansionOptions Options;
1625   if (ST->requiresStrictAlign()) {
1626     // TODO: Add cost modeling for strict align. Misaligned loads expand to
1627     // a bunch of instructions when strict align is enabled.
1628     return Options;
1629   }
1630   Options.AllowOverlappingLoads = true;
1631   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
1632   Options.NumLoadsPerBlock = Options.MaxNumLoads;
1633   // TODO: Though vector loads usually perform well on AArch64, in some targets
1634   // they may wake up the FP unit, which raises the power consumption.  Perhaps
1635   // they could be used with no holds barred (-O3).
1636   Options.LoadSizes = {8, 4, 2, 1};
1637   return Options;
1638 }
1639 
1640 InstructionCost
1641 AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
1642                                       Align Alignment, unsigned AddressSpace,
1643                                       TTI::TargetCostKind CostKind) {
1644   if (!isa<ScalableVectorType>(Src))
1645     return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1646                                         CostKind);
1647   auto LT = TLI->getTypeLegalizationCost(DL, Src);
1648   if (!LT.first.isValid())
1649     return InstructionCost::getInvalid();
1650 
1651   // The code-generator is currently not able to handle scalable vectors
1652   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
1653   // it. This change will be removed when code-generation for these types is
1654   // sufficiently reliable.
1655   if (cast<VectorType>(Src)->getElementCount() == ElementCount::getScalable(1))
1656     return InstructionCost::getInvalid();
1657 
1658   return LT.first * 2;
1659 }
1660 
1661 InstructionCost AArch64TTIImpl::getGatherScatterOpCost(
1662     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1663     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
1664   if (useNeonVector(DataTy))
1665     return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
1666                                          Alignment, CostKind, I);
1667   auto *VT = cast<VectorType>(DataTy);
1668   auto LT = TLI->getTypeLegalizationCost(DL, DataTy);
1669   if (!LT.first.isValid())
1670     return InstructionCost::getInvalid();
1671 
1672   // The code-generator is currently not able to handle scalable vectors
1673   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
1674   // it. This change will be removed when code-generation for these types is
1675   // sufficiently reliable.
1676   if (cast<VectorType>(DataTy)->getElementCount() ==
1677       ElementCount::getScalable(1))
1678     return InstructionCost::getInvalid();
1679 
1680   ElementCount LegalVF = LT.second.getVectorElementCount();
1681   InstructionCost MemOpCost =
1682       getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind, I);
1683   return LT.first * MemOpCost * getMaxNumElements(LegalVF);
1684 }
1685 
1686 bool AArch64TTIImpl::useNeonVector(const Type *Ty) const {
1687   return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors();
1688 }
1689 
1690 InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
1691                                                 MaybeAlign Alignment,
1692                                                 unsigned AddressSpace,
1693                                                 TTI::TargetCostKind CostKind,
1694                                                 const Instruction *I) {
1695   EVT VT = TLI->getValueType(DL, Ty, true);
1696   // Type legalization can't handle structs
1697   if (VT == MVT::Other)
1698     return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
1699                                   CostKind);
1700 
1701   auto LT = TLI->getTypeLegalizationCost(DL, Ty);
1702   if (!LT.first.isValid())
1703     return InstructionCost::getInvalid();
1704 
1705   // The code-generator is currently not able to handle scalable vectors
1706   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
1707   // it. This change will be removed when code-generation for these types is
1708   // sufficiently reliable.
1709   if (auto *VTy = dyn_cast<ScalableVectorType>(Ty))
1710     if (VTy->getElementCount() == ElementCount::getScalable(1))
1711       return InstructionCost::getInvalid();
1712 
1713   // TODO: consider latency as well for TCK_SizeAndLatency.
1714   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
1715     return LT.first;
1716 
1717   if (CostKind != TTI::TCK_RecipThroughput)
1718     return 1;
1719 
1720   if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
1721       LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
1722     // Unaligned stores are extremely inefficient. We don't split all
1723     // unaligned 128-bit stores because the negative impact that has shown in
1724     // practice on inlined block copy code.
1725     // We make such stores expensive so that we will only vectorize if there
1726     // are 6 other instructions getting vectorized.
1727     const int AmortizationCost = 6;
1728 
1729     return LT.first * 2 * AmortizationCost;
1730   }
1731 
1732   // Check truncating stores and extending loads.
1733   if (useNeonVector(Ty) &&
1734       Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) {
1735     // v4i8 types are lowered to scalar a load/store and sshll/xtn.
1736     if (VT == MVT::v4i8)
1737       return 2;
1738     // Otherwise we need to scalarize.
1739     return cast<FixedVectorType>(Ty)->getNumElements() * 2;
1740   }
1741 
1742   return LT.first;
1743 }
1744 
1745 InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost(
1746     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1747     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1748     bool UseMaskForCond, bool UseMaskForGaps) {
1749   assert(Factor >= 2 && "Invalid interleave factor");
1750   auto *VecVTy = cast<FixedVectorType>(VecTy);
1751 
1752   if (!UseMaskForCond && !UseMaskForGaps &&
1753       Factor <= TLI->getMaxSupportedInterleaveFactor()) {
1754     unsigned NumElts = VecVTy->getNumElements();
1755     auto *SubVecTy =
1756         FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
1757 
1758     // ldN/stN only support legal vector types of size 64 or 128 in bits.
1759     // Accesses having vector types that are a multiple of 128 bits can be
1760     // matched to more than one ldN/stN instruction.
1761     if (NumElts % Factor == 0 &&
1762         TLI->isLegalInterleavedAccessType(SubVecTy, DL))
1763       return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
1764   }
1765 
1766   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1767                                            Alignment, AddressSpace, CostKind,
1768                                            UseMaskForCond, UseMaskForGaps);
1769 }
1770 
1771 InstructionCost
1772 AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
1773   InstructionCost Cost = 0;
1774   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1775   for (auto *I : Tys) {
1776     if (!I->isVectorTy())
1777       continue;
1778     if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() ==
1779         128)
1780       Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) +
1781               getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind);
1782   }
1783   return Cost;
1784 }
1785 
1786 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
1787   return ST->getMaxInterleaveFactor();
1788 }
1789 
1790 // For Falkor, we want to avoid having too many strided loads in a loop since
1791 // that can exhaust the HW prefetcher resources.  We adjust the unroller
1792 // MaxCount preference below to attempt to ensure unrolling doesn't create too
1793 // many strided loads.
1794 static void
1795 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1796                               TargetTransformInfo::UnrollingPreferences &UP) {
1797   enum { MaxStridedLoads = 7 };
1798   auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
1799     int StridedLoads = 0;
1800     // FIXME? We could make this more precise by looking at the CFG and
1801     // e.g. not counting loads in each side of an if-then-else diamond.
1802     for (const auto BB : L->blocks()) {
1803       for (auto &I : *BB) {
1804         LoadInst *LMemI = dyn_cast<LoadInst>(&I);
1805         if (!LMemI)
1806           continue;
1807 
1808         Value *PtrValue = LMemI->getPointerOperand();
1809         if (L->isLoopInvariant(PtrValue))
1810           continue;
1811 
1812         const SCEV *LSCEV = SE.getSCEV(PtrValue);
1813         const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
1814         if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
1815           continue;
1816 
1817         // FIXME? We could take pairing of unrolled load copies into account
1818         // by looking at the AddRec, but we would probably have to limit this
1819         // to loops with no stores or other memory optimization barriers.
1820         ++StridedLoads;
1821         // We've seen enough strided loads that seeing more won't make a
1822         // difference.
1823         if (StridedLoads > MaxStridedLoads / 2)
1824           return StridedLoads;
1825       }
1826     }
1827     return StridedLoads;
1828   };
1829 
1830   int StridedLoads = countStridedLoads(L, SE);
1831   LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
1832                     << " strided loads\n");
1833   // Pick the largest power of 2 unroll count that won't result in too many
1834   // strided loads.
1835   if (StridedLoads) {
1836     UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
1837     LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
1838                       << UP.MaxCount << '\n');
1839   }
1840 }
1841 
1842 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1843                                              TTI::UnrollingPreferences &UP,
1844                                              OptimizationRemarkEmitter *ORE) {
1845   // Enable partial unrolling and runtime unrolling.
1846   BaseT::getUnrollingPreferences(L, SE, UP, ORE);
1847 
1848   UP.UpperBound = true;
1849 
1850   // For inner loop, it is more likely to be a hot one, and the runtime check
1851   // can be promoted out from LICM pass, so the overhead is less, let's try
1852   // a larger threshold to unroll more loops.
1853   if (L->getLoopDepth() > 1)
1854     UP.PartialThreshold *= 2;
1855 
1856   // Disable partial & runtime unrolling on -Os.
1857   UP.PartialOptSizeThreshold = 0;
1858 
1859   if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
1860       EnableFalkorHWPFUnrollFix)
1861     getFalkorUnrollingPreferences(L, SE, UP);
1862 
1863   // Scan the loop: don't unroll loops with calls as this could prevent
1864   // inlining. Don't unroll vector loops either, as they don't benefit much from
1865   // unrolling.
1866   for (auto *BB : L->getBlocks()) {
1867     for (auto &I : *BB) {
1868       // Don't unroll vectorised loop.
1869       if (I.getType()->isVectorTy())
1870         return;
1871 
1872       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
1873         if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
1874           if (!isLoweredToCall(F))
1875             continue;
1876         }
1877         return;
1878       }
1879     }
1880   }
1881 
1882   // Enable runtime unrolling for in-order models
1883   // If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by
1884   // checking for that case, we can ensure that the default behaviour is
1885   // unchanged
1886   if (ST->getProcFamily() != AArch64Subtarget::Others &&
1887       !ST->getSchedModel().isOutOfOrder()) {
1888     UP.Runtime = true;
1889     UP.Partial = true;
1890     UP.UnrollRemainder = true;
1891     UP.DefaultUnrollRuntimeCount = 4;
1892 
1893     UP.UnrollAndJam = true;
1894     UP.UnrollAndJamInnerLoopThreshold = 60;
1895   }
1896 }
1897 
1898 void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1899                                            TTI::PeelingPreferences &PP) {
1900   BaseT::getPeelingPreferences(L, SE, PP);
1901 }
1902 
1903 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1904                                                          Type *ExpectedType) {
1905   switch (Inst->getIntrinsicID()) {
1906   default:
1907     return nullptr;
1908   case Intrinsic::aarch64_neon_st2:
1909   case Intrinsic::aarch64_neon_st3:
1910   case Intrinsic::aarch64_neon_st4: {
1911     // Create a struct type
1912     StructType *ST = dyn_cast<StructType>(ExpectedType);
1913     if (!ST)
1914       return nullptr;
1915     unsigned NumElts = Inst->arg_size() - 1;
1916     if (ST->getNumElements() != NumElts)
1917       return nullptr;
1918     for (unsigned i = 0, e = NumElts; i != e; ++i) {
1919       if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
1920         return nullptr;
1921     }
1922     Value *Res = UndefValue::get(ExpectedType);
1923     IRBuilder<> Builder(Inst);
1924     for (unsigned i = 0, e = NumElts; i != e; ++i) {
1925       Value *L = Inst->getArgOperand(i);
1926       Res = Builder.CreateInsertValue(Res, L, i);
1927     }
1928     return Res;
1929   }
1930   case Intrinsic::aarch64_neon_ld2:
1931   case Intrinsic::aarch64_neon_ld3:
1932   case Intrinsic::aarch64_neon_ld4:
1933     if (Inst->getType() == ExpectedType)
1934       return Inst;
1935     return nullptr;
1936   }
1937 }
1938 
1939 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
1940                                         MemIntrinsicInfo &Info) {
1941   switch (Inst->getIntrinsicID()) {
1942   default:
1943     break;
1944   case Intrinsic::aarch64_neon_ld2:
1945   case Intrinsic::aarch64_neon_ld3:
1946   case Intrinsic::aarch64_neon_ld4:
1947     Info.ReadMem = true;
1948     Info.WriteMem = false;
1949     Info.PtrVal = Inst->getArgOperand(0);
1950     break;
1951   case Intrinsic::aarch64_neon_st2:
1952   case Intrinsic::aarch64_neon_st3:
1953   case Intrinsic::aarch64_neon_st4:
1954     Info.ReadMem = false;
1955     Info.WriteMem = true;
1956     Info.PtrVal = Inst->getArgOperand(Inst->arg_size() - 1);
1957     break;
1958   }
1959 
1960   switch (Inst->getIntrinsicID()) {
1961   default:
1962     return false;
1963   case Intrinsic::aarch64_neon_ld2:
1964   case Intrinsic::aarch64_neon_st2:
1965     Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
1966     break;
1967   case Intrinsic::aarch64_neon_ld3:
1968   case Intrinsic::aarch64_neon_st3:
1969     Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
1970     break;
1971   case Intrinsic::aarch64_neon_ld4:
1972   case Intrinsic::aarch64_neon_st4:
1973     Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
1974     break;
1975   }
1976   return true;
1977 }
1978 
1979 /// See if \p I should be considered for address type promotion. We check if \p
1980 /// I is a sext with right type and used in memory accesses. If it used in a
1981 /// "complex" getelementptr, we allow it to be promoted without finding other
1982 /// sext instructions that sign extended the same initial value. A getelementptr
1983 /// is considered as "complex" if it has more than 2 operands.
1984 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
1985     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
1986   bool Considerable = false;
1987   AllowPromotionWithoutCommonHeader = false;
1988   if (!isa<SExtInst>(&I))
1989     return false;
1990   Type *ConsideredSExtType =
1991       Type::getInt64Ty(I.getParent()->getParent()->getContext());
1992   if (I.getType() != ConsideredSExtType)
1993     return false;
1994   // See if the sext is the one with the right type and used in at least one
1995   // GetElementPtrInst.
1996   for (const User *U : I.users()) {
1997     if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
1998       Considerable = true;
1999       // A getelementptr is considered as "complex" if it has more than 2
2000       // operands. We will promote a SExt used in such complex GEP as we
2001       // expect some computation to be merged if they are done on 64 bits.
2002       if (GEPInst->getNumOperands() > 2) {
2003         AllowPromotionWithoutCommonHeader = true;
2004         break;
2005       }
2006     }
2007   }
2008   return Considerable;
2009 }
2010 
2011 bool AArch64TTIImpl::isLegalToVectorizeReduction(
2012     const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
2013   if (!VF.isScalable())
2014     return true;
2015 
2016   Type *Ty = RdxDesc.getRecurrenceType();
2017   if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty))
2018     return false;
2019 
2020   switch (RdxDesc.getRecurrenceKind()) {
2021   case RecurKind::Add:
2022   case RecurKind::FAdd:
2023   case RecurKind::And:
2024   case RecurKind::Or:
2025   case RecurKind::Xor:
2026   case RecurKind::SMin:
2027   case RecurKind::SMax:
2028   case RecurKind::UMin:
2029   case RecurKind::UMax:
2030   case RecurKind::FMin:
2031   case RecurKind::FMax:
2032   case RecurKind::SelectICmp:
2033   case RecurKind::SelectFCmp:
2034     return true;
2035   default:
2036     return false;
2037   }
2038 }
2039 
2040 InstructionCost
2041 AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
2042                                        bool IsUnsigned,
2043                                        TTI::TargetCostKind CostKind) {
2044   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
2045 
2046   if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16())
2047     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
2048 
2049   assert((isa<ScalableVectorType>(Ty) == isa<ScalableVectorType>(CondTy)) &&
2050          "Both vector needs to be equally scalable");
2051 
2052   InstructionCost LegalizationCost = 0;
2053   if (LT.first > 1) {
2054     Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext());
2055     unsigned MinMaxOpcode =
2056         Ty->isFPOrFPVectorTy()
2057             ? Intrinsic::maxnum
2058             : (IsUnsigned ? Intrinsic::umin : Intrinsic::smin);
2059     IntrinsicCostAttributes Attrs(MinMaxOpcode, LegalVTy, {LegalVTy, LegalVTy});
2060     LegalizationCost = getIntrinsicInstrCost(Attrs, CostKind) * (LT.first - 1);
2061   }
2062 
2063   return LegalizationCost + /*Cost of horizontal reduction*/ 2;
2064 }
2065 
2066 InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE(
2067     unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) {
2068   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2069   InstructionCost LegalizationCost = 0;
2070   if (LT.first > 1) {
2071     Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext());
2072     LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind);
2073     LegalizationCost *= LT.first - 1;
2074   }
2075 
2076   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2077   assert(ISD && "Invalid opcode");
2078   // Add the final reduction cost for the legal horizontal reduction
2079   switch (ISD) {
2080   case ISD::ADD:
2081   case ISD::AND:
2082   case ISD::OR:
2083   case ISD::XOR:
2084   case ISD::FADD:
2085     return LegalizationCost + 2;
2086   default:
2087     return InstructionCost::getInvalid();
2088   }
2089 }
2090 
2091 InstructionCost
2092 AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
2093                                            Optional<FastMathFlags> FMF,
2094                                            TTI::TargetCostKind CostKind) {
2095   if (TTI::requiresOrderedReduction(FMF)) {
2096     if (auto *FixedVTy = dyn_cast<FixedVectorType>(ValTy)) {
2097       InstructionCost BaseCost =
2098           BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
2099       // Add on extra cost to reflect the extra overhead on some CPUs. We still
2100       // end up vectorizing for more computationally intensive loops.
2101       return BaseCost + FixedVTy->getNumElements();
2102     }
2103 
2104     if (Opcode != Instruction::FAdd)
2105       return InstructionCost::getInvalid();
2106 
2107     auto *VTy = cast<ScalableVectorType>(ValTy);
2108     InstructionCost Cost =
2109         getArithmeticInstrCost(Opcode, VTy->getScalarType(), CostKind);
2110     Cost *= getMaxNumElements(VTy->getElementCount());
2111     return Cost;
2112   }
2113 
2114   if (isa<ScalableVectorType>(ValTy))
2115     return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind);
2116 
2117   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2118   MVT MTy = LT.second;
2119   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2120   assert(ISD && "Invalid opcode");
2121 
2122   // Horizontal adds can use the 'addv' instruction. We model the cost of these
2123   // instructions as twice a normal vector add, plus 1 for each legalization
2124   // step (LT.first). This is the only arithmetic vector reduction operation for
2125   // which we have an instruction.
2126   // OR, XOR and AND costs should match the codegen from:
2127   // OR: llvm/test/CodeGen/AArch64/reduce-or.ll
2128   // XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll
2129   // AND: llvm/test/CodeGen/AArch64/reduce-and.ll
2130   static const CostTblEntry CostTblNoPairwise[]{
2131       {ISD::ADD, MVT::v8i8,   2},
2132       {ISD::ADD, MVT::v16i8,  2},
2133       {ISD::ADD, MVT::v4i16,  2},
2134       {ISD::ADD, MVT::v8i16,  2},
2135       {ISD::ADD, MVT::v4i32,  2},
2136       {ISD::OR,  MVT::v8i8,  15},
2137       {ISD::OR,  MVT::v16i8, 17},
2138       {ISD::OR,  MVT::v4i16,  7},
2139       {ISD::OR,  MVT::v8i16,  9},
2140       {ISD::OR,  MVT::v2i32,  3},
2141       {ISD::OR,  MVT::v4i32,  5},
2142       {ISD::OR,  MVT::v2i64,  3},
2143       {ISD::XOR, MVT::v8i8,  15},
2144       {ISD::XOR, MVT::v16i8, 17},
2145       {ISD::XOR, MVT::v4i16,  7},
2146       {ISD::XOR, MVT::v8i16,  9},
2147       {ISD::XOR, MVT::v2i32,  3},
2148       {ISD::XOR, MVT::v4i32,  5},
2149       {ISD::XOR, MVT::v2i64,  3},
2150       {ISD::AND, MVT::v8i8,  15},
2151       {ISD::AND, MVT::v16i8, 17},
2152       {ISD::AND, MVT::v4i16,  7},
2153       {ISD::AND, MVT::v8i16,  9},
2154       {ISD::AND, MVT::v2i32,  3},
2155       {ISD::AND, MVT::v4i32,  5},
2156       {ISD::AND, MVT::v2i64,  3},
2157   };
2158   switch (ISD) {
2159   default:
2160     break;
2161   case ISD::ADD:
2162     if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
2163       return (LT.first - 1) + Entry->Cost;
2164     break;
2165   case ISD::XOR:
2166   case ISD::AND:
2167   case ISD::OR:
2168     const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy);
2169     if (!Entry)
2170       break;
2171     auto *ValVTy = cast<FixedVectorType>(ValTy);
2172     if (!ValVTy->getElementType()->isIntegerTy(1) &&
2173         MTy.getVectorNumElements() <= ValVTy->getNumElements() &&
2174         isPowerOf2_32(ValVTy->getNumElements())) {
2175       InstructionCost ExtraCost = 0;
2176       if (LT.first != 1) {
2177         // Type needs to be split, so there is an extra cost of LT.first - 1
2178         // arithmetic ops.
2179         auto *Ty = FixedVectorType::get(ValTy->getElementType(),
2180                                         MTy.getVectorNumElements());
2181         ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
2182         ExtraCost *= LT.first - 1;
2183       }
2184       return Entry->Cost + ExtraCost;
2185     }
2186     break;
2187   }
2188   return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
2189 }
2190 
2191 InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) {
2192   static const CostTblEntry ShuffleTbl[] = {
2193       { TTI::SK_Splice, MVT::nxv16i8,  1 },
2194       { TTI::SK_Splice, MVT::nxv8i16,  1 },
2195       { TTI::SK_Splice, MVT::nxv4i32,  1 },
2196       { TTI::SK_Splice, MVT::nxv2i64,  1 },
2197       { TTI::SK_Splice, MVT::nxv2f16,  1 },
2198       { TTI::SK_Splice, MVT::nxv4f16,  1 },
2199       { TTI::SK_Splice, MVT::nxv8f16,  1 },
2200       { TTI::SK_Splice, MVT::nxv2bf16, 1 },
2201       { TTI::SK_Splice, MVT::nxv4bf16, 1 },
2202       { TTI::SK_Splice, MVT::nxv8bf16, 1 },
2203       { TTI::SK_Splice, MVT::nxv2f32,  1 },
2204       { TTI::SK_Splice, MVT::nxv4f32,  1 },
2205       { TTI::SK_Splice, MVT::nxv2f64,  1 },
2206   };
2207 
2208   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
2209   Type *LegalVTy = EVT(LT.second).getTypeForEVT(Tp->getContext());
2210   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
2211   EVT PromotedVT = LT.second.getScalarType() == MVT::i1
2212                        ? TLI->getPromotedVTForPredicate(EVT(LT.second))
2213                        : LT.second;
2214   Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Tp->getContext());
2215   InstructionCost LegalizationCost = 0;
2216   if (Index < 0) {
2217     LegalizationCost =
2218         getCmpSelInstrCost(Instruction::ICmp, PromotedVTy, PromotedVTy,
2219                            CmpInst::BAD_ICMP_PREDICATE, CostKind) +
2220         getCmpSelInstrCost(Instruction::Select, PromotedVTy, LegalVTy,
2221                            CmpInst::BAD_ICMP_PREDICATE, CostKind);
2222   }
2223 
2224   // Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp
2225   // Cost performed on a promoted type.
2226   if (LT.second.getScalarType() == MVT::i1) {
2227     LegalizationCost +=
2228         getCastInstrCost(Instruction::ZExt, PromotedVTy, LegalVTy,
2229                          TTI::CastContextHint::None, CostKind) +
2230         getCastInstrCost(Instruction::Trunc, LegalVTy, PromotedVTy,
2231                          TTI::CastContextHint::None, CostKind);
2232   }
2233   const auto *Entry =
2234       CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT());
2235   assert(Entry && "Illegal Type for Splice");
2236   LegalizationCost += Entry->Cost;
2237   return LegalizationCost * LT.first;
2238 }
2239 
2240 InstructionCost AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
2241                                                VectorType *Tp,
2242                                                ArrayRef<int> Mask, int Index,
2243                                                VectorType *SubTp) {
2244   Kind = improveShuffleKindFromMask(Kind, Mask);
2245   if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
2246       Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc ||
2247       Kind == TTI::SK_Reverse) {
2248     static const CostTblEntry ShuffleTbl[] = {
2249       // Broadcast shuffle kinds can be performed with 'dup'.
2250       { TTI::SK_Broadcast, MVT::v8i8,  1 },
2251       { TTI::SK_Broadcast, MVT::v16i8, 1 },
2252       { TTI::SK_Broadcast, MVT::v4i16, 1 },
2253       { TTI::SK_Broadcast, MVT::v8i16, 1 },
2254       { TTI::SK_Broadcast, MVT::v2i32, 1 },
2255       { TTI::SK_Broadcast, MVT::v4i32, 1 },
2256       { TTI::SK_Broadcast, MVT::v2i64, 1 },
2257       { TTI::SK_Broadcast, MVT::v2f32, 1 },
2258       { TTI::SK_Broadcast, MVT::v4f32, 1 },
2259       { TTI::SK_Broadcast, MVT::v2f64, 1 },
2260       // Transpose shuffle kinds can be performed with 'trn1/trn2' and
2261       // 'zip1/zip2' instructions.
2262       { TTI::SK_Transpose, MVT::v8i8,  1 },
2263       { TTI::SK_Transpose, MVT::v16i8, 1 },
2264       { TTI::SK_Transpose, MVT::v4i16, 1 },
2265       { TTI::SK_Transpose, MVT::v8i16, 1 },
2266       { TTI::SK_Transpose, MVT::v2i32, 1 },
2267       { TTI::SK_Transpose, MVT::v4i32, 1 },
2268       { TTI::SK_Transpose, MVT::v2i64, 1 },
2269       { TTI::SK_Transpose, MVT::v2f32, 1 },
2270       { TTI::SK_Transpose, MVT::v4f32, 1 },
2271       { TTI::SK_Transpose, MVT::v2f64, 1 },
2272       // Select shuffle kinds.
2273       // TODO: handle vXi8/vXi16.
2274       { TTI::SK_Select, MVT::v2i32, 1 }, // mov.
2275       { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar).
2276       { TTI::SK_Select, MVT::v2i64, 1 }, // mov.
2277       { TTI::SK_Select, MVT::v2f32, 1 }, // mov.
2278       { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar).
2279       { TTI::SK_Select, MVT::v2f64, 1 }, // mov.
2280       // PermuteSingleSrc shuffle kinds.
2281       { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov.
2282       { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case.
2283       { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov.
2284       { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov.
2285       { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case.
2286       { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov.
2287       { TTI::SK_PermuteSingleSrc, MVT::v4i16, 3 }, // perfectshuffle worst case.
2288       { TTI::SK_PermuteSingleSrc, MVT::v4f16, 3 }, // perfectshuffle worst case.
2289       { TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3 }, // perfectshuffle worst case.
2290       { TTI::SK_PermuteSingleSrc, MVT::v8i16, 8 }, // constpool + load + tbl
2291       { TTI::SK_PermuteSingleSrc, MVT::v8f16, 8 }, // constpool + load + tbl
2292       { TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8 }, // constpool + load + tbl
2293       { TTI::SK_PermuteSingleSrc, MVT::v8i8, 8 }, // constpool + load + tbl
2294       { TTI::SK_PermuteSingleSrc, MVT::v16i8, 8 }, // constpool + load + tbl
2295       // Reverse can be lowered with `rev`.
2296       { TTI::SK_Reverse, MVT::v2i32, 1 }, // mov.
2297       { TTI::SK_Reverse, MVT::v4i32, 2 }, // REV64; EXT
2298       { TTI::SK_Reverse, MVT::v2i64, 1 }, // mov.
2299       { TTI::SK_Reverse, MVT::v2f32, 1 }, // mov.
2300       { TTI::SK_Reverse, MVT::v4f32, 2 }, // REV64; EXT
2301       { TTI::SK_Reverse, MVT::v2f64, 1 }, // mov.
2302       // Broadcast shuffle kinds for scalable vectors
2303       { TTI::SK_Broadcast, MVT::nxv16i8,  1 },
2304       { TTI::SK_Broadcast, MVT::nxv8i16,  1 },
2305       { TTI::SK_Broadcast, MVT::nxv4i32,  1 },
2306       { TTI::SK_Broadcast, MVT::nxv2i64,  1 },
2307       { TTI::SK_Broadcast, MVT::nxv2f16,  1 },
2308       { TTI::SK_Broadcast, MVT::nxv4f16,  1 },
2309       { TTI::SK_Broadcast, MVT::nxv8f16,  1 },
2310       { TTI::SK_Broadcast, MVT::nxv2bf16, 1 },
2311       { TTI::SK_Broadcast, MVT::nxv4bf16, 1 },
2312       { TTI::SK_Broadcast, MVT::nxv8bf16, 1 },
2313       { TTI::SK_Broadcast, MVT::nxv2f32,  1 },
2314       { TTI::SK_Broadcast, MVT::nxv4f32,  1 },
2315       { TTI::SK_Broadcast, MVT::nxv2f64,  1 },
2316       { TTI::SK_Broadcast, MVT::nxv16i1,  1 },
2317       { TTI::SK_Broadcast, MVT::nxv8i1,   1 },
2318       { TTI::SK_Broadcast, MVT::nxv4i1,   1 },
2319       { TTI::SK_Broadcast, MVT::nxv2i1,   1 },
2320       // Handle the cases for vector.reverse with scalable vectors
2321       { TTI::SK_Reverse, MVT::nxv16i8,  1 },
2322       { TTI::SK_Reverse, MVT::nxv8i16,  1 },
2323       { TTI::SK_Reverse, MVT::nxv4i32,  1 },
2324       { TTI::SK_Reverse, MVT::nxv2i64,  1 },
2325       { TTI::SK_Reverse, MVT::nxv2f16,  1 },
2326       { TTI::SK_Reverse, MVT::nxv4f16,  1 },
2327       { TTI::SK_Reverse, MVT::nxv8f16,  1 },
2328       { TTI::SK_Reverse, MVT::nxv2bf16, 1 },
2329       { TTI::SK_Reverse, MVT::nxv4bf16, 1 },
2330       { TTI::SK_Reverse, MVT::nxv8bf16, 1 },
2331       { TTI::SK_Reverse, MVT::nxv2f32,  1 },
2332       { TTI::SK_Reverse, MVT::nxv4f32,  1 },
2333       { TTI::SK_Reverse, MVT::nxv2f64,  1 },
2334       { TTI::SK_Reverse, MVT::nxv16i1,  1 },
2335       { TTI::SK_Reverse, MVT::nxv8i1,   1 },
2336       { TTI::SK_Reverse, MVT::nxv4i1,   1 },
2337       { TTI::SK_Reverse, MVT::nxv2i1,   1 },
2338     };
2339     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
2340     if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
2341       return LT.first * Entry->Cost;
2342   }
2343   if (Kind == TTI::SK_Splice && isa<ScalableVectorType>(Tp))
2344     return getSpliceCost(Tp, Index);
2345   return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp);
2346 }
2347