1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AArch64TargetTransformInfo.h" 10 #include "AArch64ExpandImm.h" 11 #include "MCTargetDesc/AArch64AddressingModes.h" 12 #include "llvm/Analysis/IVDescriptors.h" 13 #include "llvm/Analysis/LoopInfo.h" 14 #include "llvm/Analysis/TargetTransformInfo.h" 15 #include "llvm/CodeGen/BasicTTIImpl.h" 16 #include "llvm/CodeGen/CostTable.h" 17 #include "llvm/CodeGen/TargetLowering.h" 18 #include "llvm/IR/Intrinsics.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/IntrinsicsAArch64.h" 21 #include "llvm/IR/PatternMatch.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Transforms/InstCombine/InstCombiner.h" 24 #include <algorithm> 25 using namespace llvm; 26 using namespace llvm::PatternMatch; 27 28 #define DEBUG_TYPE "aarch64tti" 29 30 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix", 31 cl::init(true), cl::Hidden); 32 33 static cl::opt<unsigned> SVEGatherOverhead("sve-gather-overhead", cl::init(10), 34 cl::Hidden); 35 36 static cl::opt<unsigned> SVEScatterOverhead("sve-scatter-overhead", 37 cl::init(10), cl::Hidden); 38 39 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller, 40 const Function *Callee) const { 41 const TargetMachine &TM = getTLI()->getTargetMachine(); 42 43 const FeatureBitset &CallerBits = 44 TM.getSubtargetImpl(*Caller)->getFeatureBits(); 45 const FeatureBitset &CalleeBits = 46 TM.getSubtargetImpl(*Callee)->getFeatureBits(); 47 48 // Inline a callee if its target-features are a subset of the callers 49 // target-features. 50 return (CallerBits & CalleeBits) == CalleeBits; 51 } 52 53 /// Calculate the cost of materializing a 64-bit value. This helper 54 /// method might only calculate a fraction of a larger immediate. Therefore it 55 /// is valid to return a cost of ZERO. 56 InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) { 57 // Check if the immediate can be encoded within an instruction. 58 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64)) 59 return 0; 60 61 if (Val < 0) 62 Val = ~Val; 63 64 // Calculate how many moves we will need to materialize this constant. 65 SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; 66 AArch64_IMM::expandMOVImm(Val, 64, Insn); 67 return Insn.size(); 68 } 69 70 /// Calculate the cost of materializing the given constant. 71 InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, 72 TTI::TargetCostKind CostKind) { 73 assert(Ty->isIntegerTy()); 74 75 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 76 if (BitSize == 0) 77 return ~0U; 78 79 // Sign-extend all constants to a multiple of 64-bit. 80 APInt ImmVal = Imm; 81 if (BitSize & 0x3f) 82 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU); 83 84 // Split the constant into 64-bit chunks and calculate the cost for each 85 // chunk. 86 InstructionCost Cost = 0; 87 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { 88 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); 89 int64_t Val = Tmp.getSExtValue(); 90 Cost += getIntImmCost(Val); 91 } 92 // We need at least one instruction to materialze the constant. 93 return std::max<InstructionCost>(1, Cost); 94 } 95 96 InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, 97 const APInt &Imm, Type *Ty, 98 TTI::TargetCostKind CostKind, 99 Instruction *Inst) { 100 assert(Ty->isIntegerTy()); 101 102 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 103 // There is no cost model for constants with a bit size of 0. Return TCC_Free 104 // here, so that constant hoisting will ignore this constant. 105 if (BitSize == 0) 106 return TTI::TCC_Free; 107 108 unsigned ImmIdx = ~0U; 109 switch (Opcode) { 110 default: 111 return TTI::TCC_Free; 112 case Instruction::GetElementPtr: 113 // Always hoist the base address of a GetElementPtr. 114 if (Idx == 0) 115 return 2 * TTI::TCC_Basic; 116 return TTI::TCC_Free; 117 case Instruction::Store: 118 ImmIdx = 0; 119 break; 120 case Instruction::Add: 121 case Instruction::Sub: 122 case Instruction::Mul: 123 case Instruction::UDiv: 124 case Instruction::SDiv: 125 case Instruction::URem: 126 case Instruction::SRem: 127 case Instruction::And: 128 case Instruction::Or: 129 case Instruction::Xor: 130 case Instruction::ICmp: 131 ImmIdx = 1; 132 break; 133 // Always return TCC_Free for the shift value of a shift instruction. 134 case Instruction::Shl: 135 case Instruction::LShr: 136 case Instruction::AShr: 137 if (Idx == 1) 138 return TTI::TCC_Free; 139 break; 140 case Instruction::Trunc: 141 case Instruction::ZExt: 142 case Instruction::SExt: 143 case Instruction::IntToPtr: 144 case Instruction::PtrToInt: 145 case Instruction::BitCast: 146 case Instruction::PHI: 147 case Instruction::Call: 148 case Instruction::Select: 149 case Instruction::Ret: 150 case Instruction::Load: 151 break; 152 } 153 154 if (Idx == ImmIdx) { 155 int NumConstants = (BitSize + 63) / 64; 156 InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 157 return (Cost <= NumConstants * TTI::TCC_Basic) 158 ? static_cast<int>(TTI::TCC_Free) 159 : Cost; 160 } 161 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 162 } 163 164 InstructionCost 165 AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 166 const APInt &Imm, Type *Ty, 167 TTI::TargetCostKind CostKind) { 168 assert(Ty->isIntegerTy()); 169 170 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 171 // There is no cost model for constants with a bit size of 0. Return TCC_Free 172 // here, so that constant hoisting will ignore this constant. 173 if (BitSize == 0) 174 return TTI::TCC_Free; 175 176 // Most (all?) AArch64 intrinsics do not support folding immediates into the 177 // selected instruction, so we compute the materialization cost for the 178 // immediate directly. 179 if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv) 180 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 181 182 switch (IID) { 183 default: 184 return TTI::TCC_Free; 185 case Intrinsic::sadd_with_overflow: 186 case Intrinsic::uadd_with_overflow: 187 case Intrinsic::ssub_with_overflow: 188 case Intrinsic::usub_with_overflow: 189 case Intrinsic::smul_with_overflow: 190 case Intrinsic::umul_with_overflow: 191 if (Idx == 1) { 192 int NumConstants = (BitSize + 63) / 64; 193 InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 194 return (Cost <= NumConstants * TTI::TCC_Basic) 195 ? static_cast<int>(TTI::TCC_Free) 196 : Cost; 197 } 198 break; 199 case Intrinsic::experimental_stackmap: 200 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 201 return TTI::TCC_Free; 202 break; 203 case Intrinsic::experimental_patchpoint_void: 204 case Intrinsic::experimental_patchpoint_i64: 205 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 206 return TTI::TCC_Free; 207 break; 208 case Intrinsic::experimental_gc_statepoint: 209 if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) 210 return TTI::TCC_Free; 211 break; 212 } 213 return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); 214 } 215 216 TargetTransformInfo::PopcntSupportKind 217 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) { 218 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); 219 if (TyWidth == 32 || TyWidth == 64) 220 return TTI::PSK_FastHardware; 221 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount. 222 return TTI::PSK_Software; 223 } 224 225 InstructionCost 226 AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 227 TTI::TargetCostKind CostKind) { 228 auto *RetTy = ICA.getReturnType(); 229 switch (ICA.getID()) { 230 case Intrinsic::umin: 231 case Intrinsic::umax: 232 case Intrinsic::smin: 233 case Intrinsic::smax: { 234 static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 235 MVT::v8i16, MVT::v2i32, MVT::v4i32}; 236 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 237 // v2i64 types get converted to cmp+bif hence the cost of 2 238 if (LT.second == MVT::v2i64) 239 return LT.first * 2; 240 if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; })) 241 return LT.first; 242 break; 243 } 244 case Intrinsic::sadd_sat: 245 case Intrinsic::ssub_sat: 246 case Intrinsic::uadd_sat: 247 case Intrinsic::usub_sat: { 248 static const auto ValidSatTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 249 MVT::v8i16, MVT::v2i32, MVT::v4i32, 250 MVT::v2i64}; 251 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 252 // This is a base cost of 1 for the vadd, plus 3 extract shifts if we 253 // need to extend the type, as it uses shr(qadd(shl, shl)). 254 unsigned Instrs = 255 LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4; 256 if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; })) 257 return LT.first * Instrs; 258 break; 259 } 260 case Intrinsic::abs: { 261 static const auto ValidAbsTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, 262 MVT::v8i16, MVT::v2i32, MVT::v4i32, 263 MVT::v2i64}; 264 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 265 if (any_of(ValidAbsTys, [<](MVT M) { return M == LT.second; })) 266 return LT.first; 267 break; 268 } 269 case Intrinsic::experimental_stepvector: { 270 InstructionCost Cost = 1; // Cost of the `index' instruction 271 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 272 // Legalisation of illegal vectors involves an `index' instruction plus 273 // (LT.first - 1) vector adds. 274 if (LT.first > 1) { 275 Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext()); 276 InstructionCost AddCost = 277 getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind); 278 Cost += AddCost * (LT.first - 1); 279 } 280 return Cost; 281 } 282 case Intrinsic::bitreverse: { 283 static const CostTblEntry BitreverseTbl[] = { 284 {Intrinsic::bitreverse, MVT::i32, 1}, 285 {Intrinsic::bitreverse, MVT::i64, 1}, 286 {Intrinsic::bitreverse, MVT::v8i8, 1}, 287 {Intrinsic::bitreverse, MVT::v16i8, 1}, 288 {Intrinsic::bitreverse, MVT::v4i16, 2}, 289 {Intrinsic::bitreverse, MVT::v8i16, 2}, 290 {Intrinsic::bitreverse, MVT::v2i32, 2}, 291 {Intrinsic::bitreverse, MVT::v4i32, 2}, 292 {Intrinsic::bitreverse, MVT::v1i64, 2}, 293 {Intrinsic::bitreverse, MVT::v2i64, 2}, 294 }; 295 const auto LegalisationCost = TLI->getTypeLegalizationCost(DL, RetTy); 296 const auto *Entry = 297 CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second); 298 if (Entry) { 299 // Cost Model is using the legal type(i32) that i8 and i16 will be 300 // converted to +1 so that we match the actual lowering cost 301 if (TLI->getValueType(DL, RetTy, true) == MVT::i8 || 302 TLI->getValueType(DL, RetTy, true) == MVT::i16) 303 return LegalisationCost.first * Entry->Cost + 1; 304 305 return LegalisationCost.first * Entry->Cost; 306 } 307 break; 308 } 309 case Intrinsic::ctpop: { 310 static const CostTblEntry CtpopCostTbl[] = { 311 {ISD::CTPOP, MVT::v2i64, 4}, 312 {ISD::CTPOP, MVT::v4i32, 3}, 313 {ISD::CTPOP, MVT::v8i16, 2}, 314 {ISD::CTPOP, MVT::v16i8, 1}, 315 {ISD::CTPOP, MVT::i64, 4}, 316 {ISD::CTPOP, MVT::v2i32, 3}, 317 {ISD::CTPOP, MVT::v4i16, 2}, 318 {ISD::CTPOP, MVT::v8i8, 1}, 319 {ISD::CTPOP, MVT::i32, 5}, 320 }; 321 auto LT = TLI->getTypeLegalizationCost(DL, RetTy); 322 MVT MTy = LT.second; 323 if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) { 324 // Extra cost of +1 when illegal vector types are legalized by promoting 325 // the integer type. 326 int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() != 327 RetTy->getScalarSizeInBits() 328 ? 1 329 : 0; 330 return LT.first * Entry->Cost + ExtraCost; 331 } 332 break; 333 } 334 case Intrinsic::sadd_with_overflow: 335 case Intrinsic::uadd_with_overflow: 336 case Intrinsic::ssub_with_overflow: 337 case Intrinsic::usub_with_overflow: 338 case Intrinsic::smul_with_overflow: 339 case Intrinsic::umul_with_overflow: { 340 static const CostTblEntry WithOverflowCostTbl[] = { 341 {Intrinsic::sadd_with_overflow, MVT::i8, 3}, 342 {Intrinsic::uadd_with_overflow, MVT::i8, 3}, 343 {Intrinsic::sadd_with_overflow, MVT::i16, 3}, 344 {Intrinsic::uadd_with_overflow, MVT::i16, 3}, 345 {Intrinsic::sadd_with_overflow, MVT::i32, 1}, 346 {Intrinsic::uadd_with_overflow, MVT::i32, 1}, 347 {Intrinsic::sadd_with_overflow, MVT::i64, 1}, 348 {Intrinsic::uadd_with_overflow, MVT::i64, 1}, 349 {Intrinsic::ssub_with_overflow, MVT::i8, 3}, 350 {Intrinsic::usub_with_overflow, MVT::i8, 3}, 351 {Intrinsic::ssub_with_overflow, MVT::i16, 3}, 352 {Intrinsic::usub_with_overflow, MVT::i16, 3}, 353 {Intrinsic::ssub_with_overflow, MVT::i32, 1}, 354 {Intrinsic::usub_with_overflow, MVT::i32, 1}, 355 {Intrinsic::ssub_with_overflow, MVT::i64, 1}, 356 {Intrinsic::usub_with_overflow, MVT::i64, 1}, 357 {Intrinsic::smul_with_overflow, MVT::i8, 5}, 358 {Intrinsic::umul_with_overflow, MVT::i8, 4}, 359 {Intrinsic::smul_with_overflow, MVT::i16, 5}, 360 {Intrinsic::umul_with_overflow, MVT::i16, 4}, 361 {Intrinsic::smul_with_overflow, MVT::i32, 2}, // eg umull;tst 362 {Intrinsic::umul_with_overflow, MVT::i32, 2}, // eg umull;cmp sxtw 363 {Intrinsic::smul_with_overflow, MVT::i64, 3}, // eg mul;smulh;cmp 364 {Intrinsic::umul_with_overflow, MVT::i64, 3}, // eg mul;umulh;cmp asr 365 }; 366 EVT MTy = TLI->getValueType(DL, RetTy->getContainedType(0), true); 367 if (MTy.isSimple()) 368 if (const auto *Entry = CostTableLookup(WithOverflowCostTbl, ICA.getID(), 369 MTy.getSimpleVT())) 370 return Entry->Cost; 371 break; 372 } 373 default: 374 break; 375 } 376 return BaseT::getIntrinsicInstrCost(ICA, CostKind); 377 } 378 379 /// The function will remove redundant reinterprets casting in the presence 380 /// of the control flow 381 static Optional<Instruction *> processPhiNode(InstCombiner &IC, 382 IntrinsicInst &II) { 383 SmallVector<Instruction *, 32> Worklist; 384 auto RequiredType = II.getType(); 385 386 auto *PN = dyn_cast<PHINode>(II.getArgOperand(0)); 387 assert(PN && "Expected Phi Node!"); 388 389 // Don't create a new Phi unless we can remove the old one. 390 if (!PN->hasOneUse()) 391 return None; 392 393 for (Value *IncValPhi : PN->incoming_values()) { 394 auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi); 395 if (!Reinterpret || 396 Reinterpret->getIntrinsicID() != 397 Intrinsic::aarch64_sve_convert_to_svbool || 398 RequiredType != Reinterpret->getArgOperand(0)->getType()) 399 return None; 400 } 401 402 // Create the new Phi 403 LLVMContext &Ctx = PN->getContext(); 404 IRBuilder<> Builder(Ctx); 405 Builder.SetInsertPoint(PN); 406 PHINode *NPN = Builder.CreatePHI(RequiredType, PN->getNumIncomingValues()); 407 Worklist.push_back(PN); 408 409 for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) { 410 auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I)); 411 NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I)); 412 Worklist.push_back(Reinterpret); 413 } 414 415 // Cleanup Phi Node and reinterprets 416 return IC.replaceInstUsesWith(II, NPN); 417 } 418 419 // (from_svbool (binop (to_svbool pred) (svbool_t _) (svbool_t _)))) 420 // => (binop (pred) (from_svbool _) (from_svbool _)) 421 // 422 // The above transformation eliminates a `to_svbool` in the predicate 423 // operand of bitwise operation `binop` by narrowing the vector width of 424 // the operation. For example, it would convert a `<vscale x 16 x i1> 425 // and` into a `<vscale x 4 x i1> and`. This is profitable because 426 // to_svbool must zero the new lanes during widening, whereas 427 // from_svbool is free. 428 static Optional<Instruction *> tryCombineFromSVBoolBinOp(InstCombiner &IC, 429 IntrinsicInst &II) { 430 auto BinOp = dyn_cast<IntrinsicInst>(II.getOperand(0)); 431 if (!BinOp) 432 return None; 433 434 auto IntrinsicID = BinOp->getIntrinsicID(); 435 switch (IntrinsicID) { 436 case Intrinsic::aarch64_sve_and_z: 437 case Intrinsic::aarch64_sve_bic_z: 438 case Intrinsic::aarch64_sve_eor_z: 439 case Intrinsic::aarch64_sve_nand_z: 440 case Intrinsic::aarch64_sve_nor_z: 441 case Intrinsic::aarch64_sve_orn_z: 442 case Intrinsic::aarch64_sve_orr_z: 443 break; 444 default: 445 return None; 446 } 447 448 auto BinOpPred = BinOp->getOperand(0); 449 auto BinOpOp1 = BinOp->getOperand(1); 450 auto BinOpOp2 = BinOp->getOperand(2); 451 452 auto PredIntr = dyn_cast<IntrinsicInst>(BinOpPred); 453 if (!PredIntr || 454 PredIntr->getIntrinsicID() != Intrinsic::aarch64_sve_convert_to_svbool) 455 return None; 456 457 auto PredOp = PredIntr->getOperand(0); 458 auto PredOpTy = cast<VectorType>(PredOp->getType()); 459 if (PredOpTy != II.getType()) 460 return None; 461 462 IRBuilder<> Builder(II.getContext()); 463 Builder.SetInsertPoint(&II); 464 465 SmallVector<Value *> NarrowedBinOpArgs = {PredOp}; 466 auto NarrowBinOpOp1 = Builder.CreateIntrinsic( 467 Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp1}); 468 NarrowedBinOpArgs.push_back(NarrowBinOpOp1); 469 if (BinOpOp1 == BinOpOp2) 470 NarrowedBinOpArgs.push_back(NarrowBinOpOp1); 471 else 472 NarrowedBinOpArgs.push_back(Builder.CreateIntrinsic( 473 Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp2})); 474 475 auto NarrowedBinOp = 476 Builder.CreateIntrinsic(IntrinsicID, {PredOpTy}, NarrowedBinOpArgs); 477 return IC.replaceInstUsesWith(II, NarrowedBinOp); 478 } 479 480 static Optional<Instruction *> instCombineConvertFromSVBool(InstCombiner &IC, 481 IntrinsicInst &II) { 482 // If the reinterpret instruction operand is a PHI Node 483 if (isa<PHINode>(II.getArgOperand(0))) 484 return processPhiNode(IC, II); 485 486 if (auto BinOpCombine = tryCombineFromSVBoolBinOp(IC, II)) 487 return BinOpCombine; 488 489 SmallVector<Instruction *, 32> CandidatesForRemoval; 490 Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr; 491 492 const auto *IVTy = cast<VectorType>(II.getType()); 493 494 // Walk the chain of conversions. 495 while (Cursor) { 496 // If the type of the cursor has fewer lanes than the final result, zeroing 497 // must take place, which breaks the equivalence chain. 498 const auto *CursorVTy = cast<VectorType>(Cursor->getType()); 499 if (CursorVTy->getElementCount().getKnownMinValue() < 500 IVTy->getElementCount().getKnownMinValue()) 501 break; 502 503 // If the cursor has the same type as I, it is a viable replacement. 504 if (Cursor->getType() == IVTy) 505 EarliestReplacement = Cursor; 506 507 auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor); 508 509 // If this is not an SVE conversion intrinsic, this is the end of the chain. 510 if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() == 511 Intrinsic::aarch64_sve_convert_to_svbool || 512 IntrinsicCursor->getIntrinsicID() == 513 Intrinsic::aarch64_sve_convert_from_svbool)) 514 break; 515 516 CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor); 517 Cursor = IntrinsicCursor->getOperand(0); 518 } 519 520 // If no viable replacement in the conversion chain was found, there is 521 // nothing to do. 522 if (!EarliestReplacement) 523 return None; 524 525 return IC.replaceInstUsesWith(II, EarliestReplacement); 526 } 527 528 static Optional<Instruction *> instCombineSVEDup(InstCombiner &IC, 529 IntrinsicInst &II) { 530 IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(1)); 531 if (!Pg) 532 return None; 533 534 if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) 535 return None; 536 537 const auto PTruePattern = 538 cast<ConstantInt>(Pg->getOperand(0))->getZExtValue(); 539 if (PTruePattern != AArch64SVEPredPattern::vl1) 540 return None; 541 542 // The intrinsic is inserting into lane zero so use an insert instead. 543 auto *IdxTy = Type::getInt64Ty(II.getContext()); 544 auto *Insert = InsertElementInst::Create( 545 II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0)); 546 Insert->insertBefore(&II); 547 Insert->takeName(&II); 548 549 return IC.replaceInstUsesWith(II, Insert); 550 } 551 552 static Optional<Instruction *> instCombineSVEDupX(InstCombiner &IC, 553 IntrinsicInst &II) { 554 // Replace DupX with a regular IR splat. 555 IRBuilder<> Builder(II.getContext()); 556 Builder.SetInsertPoint(&II); 557 auto *RetTy = cast<ScalableVectorType>(II.getType()); 558 Value *Splat = 559 Builder.CreateVectorSplat(RetTy->getElementCount(), II.getArgOperand(0)); 560 Splat->takeName(&II); 561 return IC.replaceInstUsesWith(II, Splat); 562 } 563 564 static Optional<Instruction *> instCombineSVECmpNE(InstCombiner &IC, 565 IntrinsicInst &II) { 566 LLVMContext &Ctx = II.getContext(); 567 IRBuilder<> Builder(Ctx); 568 Builder.SetInsertPoint(&II); 569 570 // Check that the predicate is all active 571 auto *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(0)); 572 if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) 573 return None; 574 575 const auto PTruePattern = 576 cast<ConstantInt>(Pg->getOperand(0))->getZExtValue(); 577 if (PTruePattern != AArch64SVEPredPattern::all) 578 return None; 579 580 // Check that we have a compare of zero.. 581 auto *SplatValue = 582 dyn_cast_or_null<ConstantInt>(getSplatValue(II.getArgOperand(2))); 583 if (!SplatValue || !SplatValue->isZero()) 584 return None; 585 586 // ..against a dupq 587 auto *DupQLane = dyn_cast<IntrinsicInst>(II.getArgOperand(1)); 588 if (!DupQLane || 589 DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane) 590 return None; 591 592 // Where the dupq is a lane 0 replicate of a vector insert 593 if (!cast<ConstantInt>(DupQLane->getArgOperand(1))->isZero()) 594 return None; 595 596 auto *VecIns = dyn_cast<IntrinsicInst>(DupQLane->getArgOperand(0)); 597 if (!VecIns || 598 VecIns->getIntrinsicID() != Intrinsic::experimental_vector_insert) 599 return None; 600 601 // Where the vector insert is a fixed constant vector insert into undef at 602 // index zero 603 if (!isa<UndefValue>(VecIns->getArgOperand(0))) 604 return None; 605 606 if (!cast<ConstantInt>(VecIns->getArgOperand(2))->isZero()) 607 return None; 608 609 auto *ConstVec = dyn_cast<Constant>(VecIns->getArgOperand(1)); 610 if (!ConstVec) 611 return None; 612 613 auto *VecTy = dyn_cast<FixedVectorType>(ConstVec->getType()); 614 auto *OutTy = dyn_cast<ScalableVectorType>(II.getType()); 615 if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements()) 616 return None; 617 618 unsigned NumElts = VecTy->getNumElements(); 619 unsigned PredicateBits = 0; 620 621 // Expand intrinsic operands to a 16-bit byte level predicate 622 for (unsigned I = 0; I < NumElts; ++I) { 623 auto *Arg = dyn_cast<ConstantInt>(ConstVec->getAggregateElement(I)); 624 if (!Arg) 625 return None; 626 if (!Arg->isZero()) 627 PredicateBits |= 1 << (I * (16 / NumElts)); 628 } 629 630 // If all bits are zero bail early with an empty predicate 631 if (PredicateBits == 0) { 632 auto *PFalse = Constant::getNullValue(II.getType()); 633 PFalse->takeName(&II); 634 return IC.replaceInstUsesWith(II, PFalse); 635 } 636 637 // Calculate largest predicate type used (where byte predicate is largest) 638 unsigned Mask = 8; 639 for (unsigned I = 0; I < 16; ++I) 640 if ((PredicateBits & (1 << I)) != 0) 641 Mask |= (I % 8); 642 643 unsigned PredSize = Mask & -Mask; 644 auto *PredType = ScalableVectorType::get( 645 Type::getInt1Ty(Ctx), AArch64::SVEBitsPerBlock / (PredSize * 8)); 646 647 // Ensure all relevant bits are set 648 for (unsigned I = 0; I < 16; I += PredSize) 649 if ((PredicateBits & (1 << I)) == 0) 650 return None; 651 652 auto *PTruePat = 653 ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all); 654 auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, 655 {PredType}, {PTruePat}); 656 auto *ConvertToSVBool = Builder.CreateIntrinsic( 657 Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue}); 658 auto *ConvertFromSVBool = 659 Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, 660 {II.getType()}, {ConvertToSVBool}); 661 662 ConvertFromSVBool->takeName(&II); 663 return IC.replaceInstUsesWith(II, ConvertFromSVBool); 664 } 665 666 static Optional<Instruction *> instCombineSVELast(InstCombiner &IC, 667 IntrinsicInst &II) { 668 IRBuilder<> Builder(II.getContext()); 669 Builder.SetInsertPoint(&II); 670 Value *Pg = II.getArgOperand(0); 671 Value *Vec = II.getArgOperand(1); 672 auto IntrinsicID = II.getIntrinsicID(); 673 bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta; 674 675 // lastX(splat(X)) --> X 676 if (auto *SplatVal = getSplatValue(Vec)) 677 return IC.replaceInstUsesWith(II, SplatVal); 678 679 // If x and/or y is a splat value then: 680 // lastX (binop (x, y)) --> binop(lastX(x), lastX(y)) 681 Value *LHS, *RHS; 682 if (match(Vec, m_OneUse(m_BinOp(m_Value(LHS), m_Value(RHS))))) { 683 if (isSplatValue(LHS) || isSplatValue(RHS)) { 684 auto *OldBinOp = cast<BinaryOperator>(Vec); 685 auto OpC = OldBinOp->getOpcode(); 686 auto *NewLHS = 687 Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, LHS}); 688 auto *NewRHS = 689 Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, RHS}); 690 auto *NewBinOp = BinaryOperator::CreateWithCopiedFlags( 691 OpC, NewLHS, NewRHS, OldBinOp, OldBinOp->getName(), &II); 692 return IC.replaceInstUsesWith(II, NewBinOp); 693 } 694 } 695 696 auto *C = dyn_cast<Constant>(Pg); 697 if (IsAfter && C && C->isNullValue()) { 698 // The intrinsic is extracting lane 0 so use an extract instead. 699 auto *IdxTy = Type::getInt64Ty(II.getContext()); 700 auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0)); 701 Extract->insertBefore(&II); 702 Extract->takeName(&II); 703 return IC.replaceInstUsesWith(II, Extract); 704 } 705 706 auto *IntrPG = dyn_cast<IntrinsicInst>(Pg); 707 if (!IntrPG) 708 return None; 709 710 if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) 711 return None; 712 713 const auto PTruePattern = 714 cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue(); 715 716 // Can the intrinsic's predicate be converted to a known constant index? 717 unsigned MinNumElts = getNumElementsFromSVEPredPattern(PTruePattern); 718 if (!MinNumElts) 719 return None; 720 721 unsigned Idx = MinNumElts - 1; 722 // Increment the index if extracting the element after the last active 723 // predicate element. 724 if (IsAfter) 725 ++Idx; 726 727 // Ignore extracts whose index is larger than the known minimum vector 728 // length. NOTE: This is an artificial constraint where we prefer to 729 // maintain what the user asked for until an alternative is proven faster. 730 auto *PgVTy = cast<ScalableVectorType>(Pg->getType()); 731 if (Idx >= PgVTy->getMinNumElements()) 732 return None; 733 734 // The intrinsic is extracting a fixed lane so use an extract instead. 735 auto *IdxTy = Type::getInt64Ty(II.getContext()); 736 auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx)); 737 Extract->insertBefore(&II); 738 Extract->takeName(&II); 739 return IC.replaceInstUsesWith(II, Extract); 740 } 741 742 static Optional<Instruction *> instCombineRDFFR(InstCombiner &IC, 743 IntrinsicInst &II) { 744 LLVMContext &Ctx = II.getContext(); 745 IRBuilder<> Builder(Ctx); 746 Builder.SetInsertPoint(&II); 747 // Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr 748 // can work with RDFFR_PP for ptest elimination. 749 auto *AllPat = 750 ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all); 751 auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, 752 {II.getType()}, {AllPat}); 753 auto *RDFFR = 754 Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue}); 755 RDFFR->takeName(&II); 756 return IC.replaceInstUsesWith(II, RDFFR); 757 } 758 759 static Optional<Instruction *> 760 instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) { 761 const auto Pattern = cast<ConstantInt>(II.getArgOperand(0))->getZExtValue(); 762 763 if (Pattern == AArch64SVEPredPattern::all) { 764 LLVMContext &Ctx = II.getContext(); 765 IRBuilder<> Builder(Ctx); 766 Builder.SetInsertPoint(&II); 767 768 Constant *StepVal = ConstantInt::get(II.getType(), NumElts); 769 auto *VScale = Builder.CreateVScale(StepVal); 770 VScale->takeName(&II); 771 return IC.replaceInstUsesWith(II, VScale); 772 } 773 774 unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern); 775 776 return MinNumElts && NumElts >= MinNumElts 777 ? Optional<Instruction *>(IC.replaceInstUsesWith( 778 II, ConstantInt::get(II.getType(), MinNumElts))) 779 : None; 780 } 781 782 static Optional<Instruction *> instCombineSVEPTest(InstCombiner &IC, 783 IntrinsicInst &II) { 784 IntrinsicInst *Op1 = dyn_cast<IntrinsicInst>(II.getArgOperand(0)); 785 IntrinsicInst *Op2 = dyn_cast<IntrinsicInst>(II.getArgOperand(1)); 786 787 if (Op1 && Op2 && 788 Op1->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool && 789 Op2->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool && 790 Op1->getArgOperand(0)->getType() == Op2->getArgOperand(0)->getType()) { 791 792 IRBuilder<> Builder(II.getContext()); 793 Builder.SetInsertPoint(&II); 794 795 Value *Ops[] = {Op1->getArgOperand(0), Op2->getArgOperand(0)}; 796 Type *Tys[] = {Op1->getArgOperand(0)->getType()}; 797 798 auto *PTest = Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops); 799 800 PTest->takeName(&II); 801 return IC.replaceInstUsesWith(II, PTest); 802 } 803 804 return None; 805 } 806 807 static Optional<Instruction *> instCombineSVEVectorFMLA(InstCombiner &IC, 808 IntrinsicInst &II) { 809 // fold (fadd p a (fmul p b c)) -> (fma p a b c) 810 Value *P = II.getOperand(0); 811 Value *A = II.getOperand(1); 812 auto FMul = II.getOperand(2); 813 Value *B, *C; 814 if (!match(FMul, m_Intrinsic<Intrinsic::aarch64_sve_fmul>( 815 m_Specific(P), m_Value(B), m_Value(C)))) 816 return None; 817 818 if (!FMul->hasOneUse()) 819 return None; 820 821 llvm::FastMathFlags FAddFlags = II.getFastMathFlags(); 822 // Stop the combine when the flags on the inputs differ in case dropping flags 823 // would lead to us missing out on more beneficial optimizations. 824 if (FAddFlags != cast<CallInst>(FMul)->getFastMathFlags()) 825 return None; 826 if (!FAddFlags.allowContract()) 827 return None; 828 829 IRBuilder<> Builder(II.getContext()); 830 Builder.SetInsertPoint(&II); 831 auto FMLA = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_fmla, 832 {II.getType()}, {P, A, B, C}, &II); 833 FMLA->setFastMathFlags(FAddFlags); 834 return IC.replaceInstUsesWith(II, FMLA); 835 } 836 837 static bool isAllActivePredicate(Value *Pred) { 838 // Look through convert.from.svbool(convert.to.svbool(...) chain. 839 Value *UncastedPred; 840 if (match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_convert_from_svbool>( 841 m_Intrinsic<Intrinsic::aarch64_sve_convert_to_svbool>( 842 m_Value(UncastedPred))))) 843 // If the predicate has the same or less lanes than the uncasted 844 // predicate then we know the casting has no effect. 845 if (cast<ScalableVectorType>(Pred->getType())->getMinNumElements() <= 846 cast<ScalableVectorType>(UncastedPred->getType())->getMinNumElements()) 847 Pred = UncastedPred; 848 849 return match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>( 850 m_ConstantInt<AArch64SVEPredPattern::all>())); 851 } 852 853 static Optional<Instruction *> 854 instCombineSVELD1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) { 855 IRBuilder<> Builder(II.getContext()); 856 Builder.SetInsertPoint(&II); 857 858 Value *Pred = II.getOperand(0); 859 Value *PtrOp = II.getOperand(1); 860 Type *VecTy = II.getType(); 861 Value *VecPtr = Builder.CreateBitCast(PtrOp, VecTy->getPointerTo()); 862 863 if (isAllActivePredicate(Pred)) { 864 LoadInst *Load = Builder.CreateLoad(VecTy, VecPtr); 865 return IC.replaceInstUsesWith(II, Load); 866 } 867 868 CallInst *MaskedLoad = 869 Builder.CreateMaskedLoad(VecTy, VecPtr, PtrOp->getPointerAlignment(DL), 870 Pred, ConstantAggregateZero::get(VecTy)); 871 return IC.replaceInstUsesWith(II, MaskedLoad); 872 } 873 874 static Optional<Instruction *> 875 instCombineSVEST1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) { 876 IRBuilder<> Builder(II.getContext()); 877 Builder.SetInsertPoint(&II); 878 879 Value *VecOp = II.getOperand(0); 880 Value *Pred = II.getOperand(1); 881 Value *PtrOp = II.getOperand(2); 882 Value *VecPtr = 883 Builder.CreateBitCast(PtrOp, VecOp->getType()->getPointerTo()); 884 885 if (isAllActivePredicate(Pred)) { 886 Builder.CreateStore(VecOp, VecPtr); 887 return IC.eraseInstFromFunction(II); 888 } 889 890 Builder.CreateMaskedStore(VecOp, VecPtr, PtrOp->getPointerAlignment(DL), 891 Pred); 892 return IC.eraseInstFromFunction(II); 893 } 894 895 static Instruction::BinaryOps intrinsicIDToBinOpCode(unsigned Intrinsic) { 896 switch (Intrinsic) { 897 case Intrinsic::aarch64_sve_fmul: 898 return Instruction::BinaryOps::FMul; 899 case Intrinsic::aarch64_sve_fadd: 900 return Instruction::BinaryOps::FAdd; 901 case Intrinsic::aarch64_sve_fsub: 902 return Instruction::BinaryOps::FSub; 903 default: 904 return Instruction::BinaryOpsEnd; 905 } 906 } 907 908 static Optional<Instruction *> instCombineSVEVectorBinOp(InstCombiner &IC, 909 IntrinsicInst &II) { 910 auto *OpPredicate = II.getOperand(0); 911 auto BinOpCode = intrinsicIDToBinOpCode(II.getIntrinsicID()); 912 if (BinOpCode == Instruction::BinaryOpsEnd || 913 !match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>( 914 m_ConstantInt<AArch64SVEPredPattern::all>()))) 915 return None; 916 IRBuilder<> Builder(II.getContext()); 917 Builder.SetInsertPoint(&II); 918 Builder.setFastMathFlags(II.getFastMathFlags()); 919 auto BinOp = 920 Builder.CreateBinOp(BinOpCode, II.getOperand(1), II.getOperand(2)); 921 return IC.replaceInstUsesWith(II, BinOp); 922 } 923 924 static Optional<Instruction *> instCombineSVEVectorFAdd(InstCombiner &IC, 925 IntrinsicInst &II) { 926 if (auto FMLA = instCombineSVEVectorFMLA(IC, II)) 927 return FMLA; 928 return instCombineSVEVectorBinOp(IC, II); 929 } 930 931 static Optional<Instruction *> instCombineSVEVectorMul(InstCombiner &IC, 932 IntrinsicInst &II) { 933 auto *OpPredicate = II.getOperand(0); 934 auto *OpMultiplicand = II.getOperand(1); 935 auto *OpMultiplier = II.getOperand(2); 936 937 IRBuilder<> Builder(II.getContext()); 938 Builder.SetInsertPoint(&II); 939 940 // Return true if a given instruction is a unit splat value, false otherwise. 941 auto IsUnitSplat = [](auto *I) { 942 auto *SplatValue = getSplatValue(I); 943 if (!SplatValue) 944 return false; 945 return match(SplatValue, m_FPOne()) || match(SplatValue, m_One()); 946 }; 947 948 // Return true if a given instruction is an aarch64_sve_dup intrinsic call 949 // with a unit splat value, false otherwise. 950 auto IsUnitDup = [](auto *I) { 951 auto *IntrI = dyn_cast<IntrinsicInst>(I); 952 if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup) 953 return false; 954 955 auto *SplatValue = IntrI->getOperand(2); 956 return match(SplatValue, m_FPOne()) || match(SplatValue, m_One()); 957 }; 958 959 if (IsUnitSplat(OpMultiplier)) { 960 // [f]mul pg %n, (dupx 1) => %n 961 OpMultiplicand->takeName(&II); 962 return IC.replaceInstUsesWith(II, OpMultiplicand); 963 } else if (IsUnitDup(OpMultiplier)) { 964 // [f]mul pg %n, (dup pg 1) => %n 965 auto *DupInst = cast<IntrinsicInst>(OpMultiplier); 966 auto *DupPg = DupInst->getOperand(1); 967 // TODO: this is naive. The optimization is still valid if DupPg 968 // 'encompasses' OpPredicate, not only if they're the same predicate. 969 if (OpPredicate == DupPg) { 970 OpMultiplicand->takeName(&II); 971 return IC.replaceInstUsesWith(II, OpMultiplicand); 972 } 973 } 974 975 return instCombineSVEVectorBinOp(IC, II); 976 } 977 978 static Optional<Instruction *> instCombineSVEUnpack(InstCombiner &IC, 979 IntrinsicInst &II) { 980 IRBuilder<> Builder(II.getContext()); 981 Builder.SetInsertPoint(&II); 982 Value *UnpackArg = II.getArgOperand(0); 983 auto *RetTy = cast<ScalableVectorType>(II.getType()); 984 bool IsSigned = II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi || 985 II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo; 986 987 // Hi = uunpkhi(splat(X)) --> Hi = splat(extend(X)) 988 // Lo = uunpklo(splat(X)) --> Lo = splat(extend(X)) 989 if (auto *ScalarArg = getSplatValue(UnpackArg)) { 990 ScalarArg = 991 Builder.CreateIntCast(ScalarArg, RetTy->getScalarType(), IsSigned); 992 Value *NewVal = 993 Builder.CreateVectorSplat(RetTy->getElementCount(), ScalarArg); 994 NewVal->takeName(&II); 995 return IC.replaceInstUsesWith(II, NewVal); 996 } 997 998 return None; 999 } 1000 static Optional<Instruction *> instCombineSVETBL(InstCombiner &IC, 1001 IntrinsicInst &II) { 1002 auto *OpVal = II.getOperand(0); 1003 auto *OpIndices = II.getOperand(1); 1004 VectorType *VTy = cast<VectorType>(II.getType()); 1005 1006 // Check whether OpIndices is a constant splat value < minimal element count 1007 // of result. 1008 auto *SplatValue = dyn_cast_or_null<ConstantInt>(getSplatValue(OpIndices)); 1009 if (!SplatValue || 1010 SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue())) 1011 return None; 1012 1013 // Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to 1014 // splat_vector(extractelement(OpVal, SplatValue)) for further optimization. 1015 IRBuilder<> Builder(II.getContext()); 1016 Builder.SetInsertPoint(&II); 1017 auto *Extract = Builder.CreateExtractElement(OpVal, SplatValue); 1018 auto *VectorSplat = 1019 Builder.CreateVectorSplat(VTy->getElementCount(), Extract); 1020 1021 VectorSplat->takeName(&II); 1022 return IC.replaceInstUsesWith(II, VectorSplat); 1023 } 1024 1025 static Optional<Instruction *> instCombineSVETupleGet(InstCombiner &IC, 1026 IntrinsicInst &II) { 1027 // Try to remove sequences of tuple get/set. 1028 Value *SetTuple, *SetIndex, *SetValue; 1029 auto *GetTuple = II.getArgOperand(0); 1030 auto *GetIndex = II.getArgOperand(1); 1031 // Check that we have tuple_get(GetTuple, GetIndex) where GetTuple is a 1032 // call to tuple_set i.e. tuple_set(SetTuple, SetIndex, SetValue). 1033 // Make sure that the types of the current intrinsic and SetValue match 1034 // in order to safely remove the sequence. 1035 if (!match(GetTuple, 1036 m_Intrinsic<Intrinsic::aarch64_sve_tuple_set>( 1037 m_Value(SetTuple), m_Value(SetIndex), m_Value(SetValue))) || 1038 SetValue->getType() != II.getType()) 1039 return None; 1040 // Case where we get the same index right after setting it. 1041 // tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex) --> SetValue 1042 if (GetIndex == SetIndex) 1043 return IC.replaceInstUsesWith(II, SetValue); 1044 // If we are getting a different index than what was set in the tuple_set 1045 // intrinsic. We can just set the input tuple to the one up in the chain. 1046 // tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex) 1047 // --> tuple_get(SetTuple, GetIndex) 1048 return IC.replaceOperand(II, 0, SetTuple); 1049 } 1050 1051 static Optional<Instruction *> instCombineSVEZip(InstCombiner &IC, 1052 IntrinsicInst &II) { 1053 // zip1(uzp1(A, B), uzp2(A, B)) --> A 1054 // zip2(uzp1(A, B), uzp2(A, B)) --> B 1055 Value *A, *B; 1056 if (match(II.getArgOperand(0), 1057 m_Intrinsic<Intrinsic::aarch64_sve_uzp1>(m_Value(A), m_Value(B))) && 1058 match(II.getArgOperand(1), m_Intrinsic<Intrinsic::aarch64_sve_uzp2>( 1059 m_Specific(A), m_Specific(B)))) 1060 return IC.replaceInstUsesWith( 1061 II, (II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ? A : B)); 1062 1063 return None; 1064 } 1065 1066 static Optional<Instruction *> instCombineLD1GatherIndex(InstCombiner &IC, 1067 IntrinsicInst &II) { 1068 Value *Mask = II.getOperand(0); 1069 Value *BasePtr = II.getOperand(1); 1070 Value *Index = II.getOperand(2); 1071 Type *Ty = II.getType(); 1072 Value *PassThru = ConstantAggregateZero::get(Ty); 1073 1074 // Contiguous gather => masked load. 1075 // (sve.ld1.gather.index Mask BasePtr (sve.index IndexBase 1)) 1076 // => (masked.load (gep BasePtr IndexBase) Align Mask zeroinitializer) 1077 Value *IndexBase; 1078 if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>( 1079 m_Value(IndexBase), m_SpecificInt(1)))) { 1080 IRBuilder<> Builder(II.getContext()); 1081 Builder.SetInsertPoint(&II); 1082 1083 Align Alignment = 1084 BasePtr->getPointerAlignment(II.getModule()->getDataLayout()); 1085 1086 Type *VecPtrTy = PointerType::getUnqual(Ty); 1087 Value *Ptr = Builder.CreateGEP( 1088 cast<VectorType>(Ty)->getElementType(), BasePtr, IndexBase); 1089 Ptr = Builder.CreateBitCast(Ptr, VecPtrTy); 1090 CallInst *MaskedLoad = 1091 Builder.CreateMaskedLoad(Ty, Ptr, Alignment, Mask, PassThru); 1092 MaskedLoad->takeName(&II); 1093 return IC.replaceInstUsesWith(II, MaskedLoad); 1094 } 1095 1096 return None; 1097 } 1098 1099 static Optional<Instruction *> instCombineST1ScatterIndex(InstCombiner &IC, 1100 IntrinsicInst &II) { 1101 Value *Val = II.getOperand(0); 1102 Value *Mask = II.getOperand(1); 1103 Value *BasePtr = II.getOperand(2); 1104 Value *Index = II.getOperand(3); 1105 Type *Ty = Val->getType(); 1106 1107 // Contiguous scatter => masked store. 1108 // (sve.st1.scatter.index Value Mask BasePtr (sve.index IndexBase 1)) 1109 // => (masked.store Value (gep BasePtr IndexBase) Align Mask) 1110 Value *IndexBase; 1111 if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>( 1112 m_Value(IndexBase), m_SpecificInt(1)))) { 1113 IRBuilder<> Builder(II.getContext()); 1114 Builder.SetInsertPoint(&II); 1115 1116 Align Alignment = 1117 BasePtr->getPointerAlignment(II.getModule()->getDataLayout()); 1118 1119 Value *Ptr = Builder.CreateGEP( 1120 cast<VectorType>(Ty)->getElementType(), BasePtr, IndexBase); 1121 Type *VecPtrTy = PointerType::getUnqual(Ty); 1122 Ptr = Builder.CreateBitCast(Ptr, VecPtrTy); 1123 1124 (void)Builder.CreateMaskedStore(Val, Ptr, Alignment, Mask); 1125 1126 return IC.eraseInstFromFunction(II); 1127 } 1128 1129 return None; 1130 } 1131 1132 static Optional<Instruction *> instCombineSVESDIV(InstCombiner &IC, 1133 IntrinsicInst &II) { 1134 IRBuilder<> Builder(II.getContext()); 1135 Builder.SetInsertPoint(&II); 1136 Type *Int32Ty = Builder.getInt32Ty(); 1137 Value *Pred = II.getOperand(0); 1138 Value *Vec = II.getOperand(1); 1139 Value *DivVec = II.getOperand(2); 1140 1141 Value *SplatValue = getSplatValue(DivVec); 1142 ConstantInt *SplatConstantInt = dyn_cast_or_null<ConstantInt>(SplatValue); 1143 if (!SplatConstantInt) 1144 return None; 1145 APInt Divisor = SplatConstantInt->getValue(); 1146 1147 if (Divisor.isPowerOf2()) { 1148 Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2()); 1149 auto ASRD = Builder.CreateIntrinsic( 1150 Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2}); 1151 return IC.replaceInstUsesWith(II, ASRD); 1152 } 1153 if (Divisor.isNegatedPowerOf2()) { 1154 Divisor.negate(); 1155 Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2()); 1156 auto ASRD = Builder.CreateIntrinsic( 1157 Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2}); 1158 auto NEG = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_neg, 1159 {ASRD->getType()}, {ASRD, Pred, ASRD}); 1160 return IC.replaceInstUsesWith(II, NEG); 1161 } 1162 1163 return None; 1164 } 1165 1166 Optional<Instruction *> 1167 AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC, 1168 IntrinsicInst &II) const { 1169 Intrinsic::ID IID = II.getIntrinsicID(); 1170 switch (IID) { 1171 default: 1172 break; 1173 case Intrinsic::aarch64_sve_convert_from_svbool: 1174 return instCombineConvertFromSVBool(IC, II); 1175 case Intrinsic::aarch64_sve_dup: 1176 return instCombineSVEDup(IC, II); 1177 case Intrinsic::aarch64_sve_dup_x: 1178 return instCombineSVEDupX(IC, II); 1179 case Intrinsic::aarch64_sve_cmpne: 1180 case Intrinsic::aarch64_sve_cmpne_wide: 1181 return instCombineSVECmpNE(IC, II); 1182 case Intrinsic::aarch64_sve_rdffr: 1183 return instCombineRDFFR(IC, II); 1184 case Intrinsic::aarch64_sve_lasta: 1185 case Intrinsic::aarch64_sve_lastb: 1186 return instCombineSVELast(IC, II); 1187 case Intrinsic::aarch64_sve_cntd: 1188 return instCombineSVECntElts(IC, II, 2); 1189 case Intrinsic::aarch64_sve_cntw: 1190 return instCombineSVECntElts(IC, II, 4); 1191 case Intrinsic::aarch64_sve_cnth: 1192 return instCombineSVECntElts(IC, II, 8); 1193 case Intrinsic::aarch64_sve_cntb: 1194 return instCombineSVECntElts(IC, II, 16); 1195 case Intrinsic::aarch64_sve_ptest_any: 1196 case Intrinsic::aarch64_sve_ptest_first: 1197 case Intrinsic::aarch64_sve_ptest_last: 1198 return instCombineSVEPTest(IC, II); 1199 case Intrinsic::aarch64_sve_mul: 1200 case Intrinsic::aarch64_sve_fmul: 1201 return instCombineSVEVectorMul(IC, II); 1202 case Intrinsic::aarch64_sve_fadd: 1203 return instCombineSVEVectorFAdd(IC, II); 1204 case Intrinsic::aarch64_sve_fsub: 1205 return instCombineSVEVectorBinOp(IC, II); 1206 case Intrinsic::aarch64_sve_tbl: 1207 return instCombineSVETBL(IC, II); 1208 case Intrinsic::aarch64_sve_uunpkhi: 1209 case Intrinsic::aarch64_sve_uunpklo: 1210 case Intrinsic::aarch64_sve_sunpkhi: 1211 case Intrinsic::aarch64_sve_sunpklo: 1212 return instCombineSVEUnpack(IC, II); 1213 case Intrinsic::aarch64_sve_tuple_get: 1214 return instCombineSVETupleGet(IC, II); 1215 case Intrinsic::aarch64_sve_zip1: 1216 case Intrinsic::aarch64_sve_zip2: 1217 return instCombineSVEZip(IC, II); 1218 case Intrinsic::aarch64_sve_ld1_gather_index: 1219 return instCombineLD1GatherIndex(IC, II); 1220 case Intrinsic::aarch64_sve_st1_scatter_index: 1221 return instCombineST1ScatterIndex(IC, II); 1222 case Intrinsic::aarch64_sve_ld1: 1223 return instCombineSVELD1(IC, II, DL); 1224 case Intrinsic::aarch64_sve_st1: 1225 return instCombineSVEST1(IC, II, DL); 1226 case Intrinsic::aarch64_sve_sdiv: 1227 return instCombineSVESDIV(IC, II); 1228 } 1229 1230 return None; 1231 } 1232 1233 Optional<Value *> AArch64TTIImpl::simplifyDemandedVectorEltsIntrinsic( 1234 InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts, 1235 APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, 1236 std::function<void(Instruction *, unsigned, APInt, APInt &)> 1237 SimplifyAndSetOp) const { 1238 switch (II.getIntrinsicID()) { 1239 default: 1240 break; 1241 case Intrinsic::aarch64_neon_fcvtxn: 1242 case Intrinsic::aarch64_neon_rshrn: 1243 case Intrinsic::aarch64_neon_sqrshrn: 1244 case Intrinsic::aarch64_neon_sqrshrun: 1245 case Intrinsic::aarch64_neon_sqshrn: 1246 case Intrinsic::aarch64_neon_sqshrun: 1247 case Intrinsic::aarch64_neon_sqxtn: 1248 case Intrinsic::aarch64_neon_sqxtun: 1249 case Intrinsic::aarch64_neon_uqrshrn: 1250 case Intrinsic::aarch64_neon_uqshrn: 1251 case Intrinsic::aarch64_neon_uqxtn: 1252 SimplifyAndSetOp(&II, 0, OrigDemandedElts, UndefElts); 1253 break; 1254 } 1255 1256 return None; 1257 } 1258 1259 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode, 1260 ArrayRef<const Value *> Args) { 1261 1262 // A helper that returns a vector type from the given type. The number of 1263 // elements in type Ty determine the vector width. 1264 auto toVectorTy = [&](Type *ArgTy) { 1265 return VectorType::get(ArgTy->getScalarType(), 1266 cast<VectorType>(DstTy)->getElementCount()); 1267 }; 1268 1269 // Exit early if DstTy is not a vector type whose elements are at least 1270 // 16-bits wide. 1271 if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16) 1272 return false; 1273 1274 // Determine if the operation has a widening variant. We consider both the 1275 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the 1276 // instructions. 1277 // 1278 // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we 1279 // verify that their extending operands are eliminated during code 1280 // generation. 1281 switch (Opcode) { 1282 case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2). 1283 case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2). 1284 break; 1285 default: 1286 return false; 1287 } 1288 1289 // To be a widening instruction (either the "wide" or "long" versions), the 1290 // second operand must be a sign- or zero extend having a single user. We 1291 // only consider extends having a single user because they may otherwise not 1292 // be eliminated. 1293 if (Args.size() != 2 || 1294 (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) || 1295 !Args[1]->hasOneUse()) 1296 return false; 1297 auto *Extend = cast<CastInst>(Args[1]); 1298 1299 // Legalize the destination type and ensure it can be used in a widening 1300 // operation. 1301 auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy); 1302 unsigned DstElTySize = DstTyL.second.getScalarSizeInBits(); 1303 if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits()) 1304 return false; 1305 1306 // Legalize the source type and ensure it can be used in a widening 1307 // operation. 1308 auto *SrcTy = toVectorTy(Extend->getSrcTy()); 1309 auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy); 1310 unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits(); 1311 if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits()) 1312 return false; 1313 1314 // Get the total number of vector elements in the legalized types. 1315 InstructionCost NumDstEls = 1316 DstTyL.first * DstTyL.second.getVectorMinNumElements(); 1317 InstructionCost NumSrcEls = 1318 SrcTyL.first * SrcTyL.second.getVectorMinNumElements(); 1319 1320 // Return true if the legalized types have the same number of vector elements 1321 // and the destination element type size is twice that of the source type. 1322 return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize; 1323 } 1324 1325 InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, 1326 Type *Src, 1327 TTI::CastContextHint CCH, 1328 TTI::TargetCostKind CostKind, 1329 const Instruction *I) { 1330 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1331 assert(ISD && "Invalid opcode"); 1332 1333 // If the cast is observable, and it is used by a widening instruction (e.g., 1334 // uaddl, saddw, etc.), it may be free. 1335 if (I && I->hasOneUse()) { 1336 auto *SingleUser = cast<Instruction>(*I->user_begin()); 1337 SmallVector<const Value *, 4> Operands(SingleUser->operand_values()); 1338 if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) { 1339 // If the cast is the second operand, it is free. We will generate either 1340 // a "wide" or "long" version of the widening instruction. 1341 if (I == SingleUser->getOperand(1)) 1342 return 0; 1343 // If the cast is not the second operand, it will be free if it looks the 1344 // same as the second operand. In this case, we will generate a "long" 1345 // version of the widening instruction. 1346 if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1))) 1347 if (I->getOpcode() == unsigned(Cast->getOpcode()) && 1348 cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy()) 1349 return 0; 1350 } 1351 } 1352 1353 // TODO: Allow non-throughput costs that aren't binary. 1354 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { 1355 if (CostKind != TTI::TCK_RecipThroughput) 1356 return Cost == 0 ? 0 : 1; 1357 return Cost; 1358 }; 1359 1360 EVT SrcTy = TLI->getValueType(DL, Src); 1361 EVT DstTy = TLI->getValueType(DL, Dst); 1362 1363 if (!SrcTy.isSimple() || !DstTy.isSimple()) 1364 return AdjustCost( 1365 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 1366 1367 static const TypeConversionCostTblEntry 1368 ConversionTbl[] = { 1369 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, 1370 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, 1371 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, 1372 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, 1373 1374 // Truncations on nxvmiN 1375 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 }, 1376 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 }, 1377 { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 }, 1378 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 }, 1379 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 }, 1380 { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 }, 1381 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 }, 1382 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 }, 1383 { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 }, 1384 { ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 1 }, 1385 { ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 }, 1386 { ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 }, 1387 { ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 }, 1388 { ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 }, 1389 { ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 }, 1390 { ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 }, 1391 1392 // The number of shll instructions for the extension. 1393 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 1394 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, 1395 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 1396 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 }, 1397 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 1398 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, 1399 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 1400 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, 1401 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 1402 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, 1403 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 1404 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, 1405 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 1406 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, 1407 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 1408 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, 1409 1410 // LowerVectorINT_TO_FP: 1411 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 1412 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 1413 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 1414 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, 1415 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, 1416 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, 1417 1418 // Complex: to v2f32 1419 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 1420 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 1421 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 1422 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, 1423 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 }, 1424 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 }, 1425 1426 // Complex: to v4f32 1427 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 }, 1428 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 1429 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, 1430 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, 1431 1432 // Complex: to v8f32 1433 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 1434 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 1435 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10 }, 1436 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, 1437 1438 // Complex: to v16f32 1439 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 1440 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 }, 1441 1442 // Complex: to v2f64 1443 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 1444 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 1445 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 1446 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, 1447 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 }, 1448 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, 1449 1450 1451 // LowerVectorFP_TO_INT 1452 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 }, 1453 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, 1454 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 }, 1455 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, 1456 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, 1457 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, 1458 1459 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext). 1460 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 }, 1461 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 }, 1462 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 }, 1463 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 }, 1464 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 }, 1465 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 }, 1466 1467 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2 1468 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, 1469 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 }, 1470 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, 1471 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 }, 1472 1473 // Complex, from nxv2f32. 1474 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 }, 1475 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 }, 1476 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 }, 1477 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f32, 1 }, 1478 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 }, 1479 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 }, 1480 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 }, 1481 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f32, 1 }, 1482 1483 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2. 1484 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, 1485 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 }, 1486 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 }, 1487 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, 1488 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 }, 1489 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 }, 1490 1491 // Complex, from nxv2f64. 1492 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 }, 1493 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 }, 1494 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 }, 1495 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f64, 1 }, 1496 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 }, 1497 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 }, 1498 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 }, 1499 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f64, 1 }, 1500 1501 // Complex, from nxv4f32. 1502 { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 }, 1503 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 }, 1504 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 }, 1505 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f32, 1 }, 1506 { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 }, 1507 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 }, 1508 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 }, 1509 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f32, 1 }, 1510 1511 // Complex, from nxv8f64. Illegal -> illegal conversions not required. 1512 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 }, 1513 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f64, 7 }, 1514 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 }, 1515 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f64, 7 }, 1516 1517 // Complex, from nxv4f64. Illegal -> illegal conversions not required. 1518 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 }, 1519 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 }, 1520 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f64, 3 }, 1521 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 }, 1522 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 }, 1523 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f64, 3 }, 1524 1525 // Complex, from nxv8f32. Illegal -> illegal conversions not required. 1526 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 }, 1527 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f32, 3 }, 1528 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 }, 1529 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f32, 3 }, 1530 1531 // Complex, from nxv8f16. 1532 { ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 }, 1533 { ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 }, 1534 { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 }, 1535 { ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f16, 1 }, 1536 { ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 }, 1537 { ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 }, 1538 { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 }, 1539 { ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f16, 1 }, 1540 1541 // Complex, from nxv4f16. 1542 { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 }, 1543 { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 }, 1544 { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 }, 1545 { ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f16, 1 }, 1546 { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 }, 1547 { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 }, 1548 { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 }, 1549 { ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f16, 1 }, 1550 1551 // Complex, from nxv2f16. 1552 { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 }, 1553 { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 }, 1554 { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 }, 1555 { ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f16, 1 }, 1556 { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 }, 1557 { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 }, 1558 { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 }, 1559 { ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f16, 1 }, 1560 1561 // Truncate from nxvmf32 to nxvmf16. 1562 { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 }, 1563 { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 }, 1564 { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 }, 1565 1566 // Truncate from nxvmf64 to nxvmf16. 1567 { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 }, 1568 { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 }, 1569 { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 }, 1570 1571 // Truncate from nxvmf64 to nxvmf32. 1572 { ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 }, 1573 { ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 }, 1574 { ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 }, 1575 1576 // Extend from nxvmf16 to nxvmf32. 1577 { ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1}, 1578 { ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1}, 1579 { ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2}, 1580 1581 // Extend from nxvmf16 to nxvmf64. 1582 { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1}, 1583 { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2}, 1584 { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4}, 1585 1586 // Extend from nxvmf32 to nxvmf64. 1587 { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1}, 1588 { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2}, 1589 { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6}, 1590 1591 // Bitcasts from float to integer 1592 { ISD::BITCAST, MVT::nxv2f16, MVT::nxv2i16, 0 }, 1593 { ISD::BITCAST, MVT::nxv4f16, MVT::nxv4i16, 0 }, 1594 { ISD::BITCAST, MVT::nxv2f32, MVT::nxv2i32, 0 }, 1595 1596 // Bitcasts from integer to float 1597 { ISD::BITCAST, MVT::nxv2i16, MVT::nxv2f16, 0 }, 1598 { ISD::BITCAST, MVT::nxv4i16, MVT::nxv4f16, 0 }, 1599 { ISD::BITCAST, MVT::nxv2i32, MVT::nxv2f32, 0 }, 1600 }; 1601 1602 if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD, 1603 DstTy.getSimpleVT(), 1604 SrcTy.getSimpleVT())) 1605 return AdjustCost(Entry->Cost); 1606 1607 return AdjustCost( 1608 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); 1609 } 1610 1611 InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, 1612 Type *Dst, 1613 VectorType *VecTy, 1614 unsigned Index) { 1615 1616 // Make sure we were given a valid extend opcode. 1617 assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) && 1618 "Invalid opcode"); 1619 1620 // We are extending an element we extract from a vector, so the source type 1621 // of the extend is the element type of the vector. 1622 auto *Src = VecTy->getElementType(); 1623 1624 // Sign- and zero-extends are for integer types only. 1625 assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type"); 1626 1627 // Get the cost for the extract. We compute the cost (if any) for the extend 1628 // below. 1629 InstructionCost Cost = 1630 getVectorInstrCost(Instruction::ExtractElement, VecTy, Index); 1631 1632 // Legalize the types. 1633 auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy); 1634 auto DstVT = TLI->getValueType(DL, Dst); 1635 auto SrcVT = TLI->getValueType(DL, Src); 1636 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 1637 1638 // If the resulting type is still a vector and the destination type is legal, 1639 // we may get the extension for free. If not, get the default cost for the 1640 // extend. 1641 if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT)) 1642 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 1643 CostKind); 1644 1645 // The destination type should be larger than the element type. If not, get 1646 // the default cost for the extend. 1647 if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits()) 1648 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 1649 CostKind); 1650 1651 switch (Opcode) { 1652 default: 1653 llvm_unreachable("Opcode should be either SExt or ZExt"); 1654 1655 // For sign-extends, we only need a smov, which performs the extension 1656 // automatically. 1657 case Instruction::SExt: 1658 return Cost; 1659 1660 // For zero-extends, the extend is performed automatically by a umov unless 1661 // the destination type is i64 and the element type is i8 or i16. 1662 case Instruction::ZExt: 1663 if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u) 1664 return Cost; 1665 } 1666 1667 // If we are unable to perform the extend for free, get the default cost. 1668 return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, 1669 CostKind); 1670 } 1671 1672 InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode, 1673 TTI::TargetCostKind CostKind, 1674 const Instruction *I) { 1675 if (CostKind != TTI::TCK_RecipThroughput) 1676 return Opcode == Instruction::PHI ? 0 : 1; 1677 assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind"); 1678 // Branches are assumed to be predicted. 1679 return 0; 1680 } 1681 1682 InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, 1683 unsigned Index) { 1684 assert(Val->isVectorTy() && "This must be a vector type"); 1685 1686 if (Index != -1U) { 1687 // Legalize the type. 1688 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); 1689 1690 // This type is legalized to a scalar type. 1691 if (!LT.second.isVector()) 1692 return 0; 1693 1694 // The type may be split. For fixed-width vectors we can normalize the 1695 // index to the new type. 1696 if (LT.second.isFixedLengthVector()) { 1697 unsigned Width = LT.second.getVectorNumElements(); 1698 Index = Index % Width; 1699 } 1700 1701 // The element at index zero is already inside the vector. 1702 if (Index == 0) 1703 return 0; 1704 } 1705 1706 // All other insert/extracts cost this much. 1707 return ST->getVectorInsertExtractBaseCost(); 1708 } 1709 1710 InstructionCost AArch64TTIImpl::getArithmeticInstrCost( 1711 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 1712 TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, 1713 TTI::OperandValueProperties Opd1PropInfo, 1714 TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, 1715 const Instruction *CxtI) { 1716 // TODO: Handle more cost kinds. 1717 if (CostKind != TTI::TCK_RecipThroughput) 1718 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1719 Opd2Info, Opd1PropInfo, 1720 Opd2PropInfo, Args, CxtI); 1721 1722 // Legalize the type. 1723 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 1724 1725 // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.), 1726 // add in the widening overhead specified by the sub-target. Since the 1727 // extends feeding widening instructions are performed automatically, they 1728 // aren't present in the generated code and have a zero cost. By adding a 1729 // widening overhead here, we attach the total cost of the combined operation 1730 // to the widening instruction. 1731 InstructionCost Cost = 0; 1732 if (isWideningInstruction(Ty, Opcode, Args)) 1733 Cost += ST->getWideningBaseCost(); 1734 1735 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1736 1737 switch (ISD) { 1738 default: 1739 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1740 Opd2Info, 1741 Opd1PropInfo, Opd2PropInfo); 1742 case ISD::SDIV: 1743 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue && 1744 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) { 1745 // On AArch64, scalar signed division by constants power-of-two are 1746 // normally expanded to the sequence ADD + CMP + SELECT + SRA. 1747 // The OperandValue properties many not be same as that of previous 1748 // operation; conservatively assume OP_None. 1749 Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, 1750 Opd1Info, Opd2Info, 1751 TargetTransformInfo::OP_None, 1752 TargetTransformInfo::OP_None); 1753 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, 1754 Opd1Info, Opd2Info, 1755 TargetTransformInfo::OP_None, 1756 TargetTransformInfo::OP_None); 1757 Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind, 1758 Opd1Info, Opd2Info, 1759 TargetTransformInfo::OP_None, 1760 TargetTransformInfo::OP_None); 1761 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, 1762 Opd1Info, Opd2Info, 1763 TargetTransformInfo::OP_None, 1764 TargetTransformInfo::OP_None); 1765 return Cost; 1766 } 1767 LLVM_FALLTHROUGH; 1768 case ISD::UDIV: 1769 if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) { 1770 auto VT = TLI->getValueType(DL, Ty); 1771 if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) { 1772 // Vector signed division by constant are expanded to the 1773 // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division 1774 // to MULHS + SUB + SRL + ADD + SRL. 1775 InstructionCost MulCost = getArithmeticInstrCost( 1776 Instruction::Mul, Ty, CostKind, Opd1Info, Opd2Info, 1777 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1778 InstructionCost AddCost = getArithmeticInstrCost( 1779 Instruction::Add, Ty, CostKind, Opd1Info, Opd2Info, 1780 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1781 InstructionCost ShrCost = getArithmeticInstrCost( 1782 Instruction::AShr, Ty, CostKind, Opd1Info, Opd2Info, 1783 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); 1784 return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1; 1785 } 1786 } 1787 1788 Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1789 Opd2Info, 1790 Opd1PropInfo, Opd2PropInfo); 1791 if (Ty->isVectorTy()) { 1792 // On AArch64, vector divisions are not supported natively and are 1793 // expanded into scalar divisions of each pair of elements. 1794 Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind, 1795 Opd1Info, Opd2Info, Opd1PropInfo, 1796 Opd2PropInfo); 1797 Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind, 1798 Opd1Info, Opd2Info, Opd1PropInfo, 1799 Opd2PropInfo); 1800 // TODO: if one of the arguments is scalar, then it's not necessary to 1801 // double the cost of handling the vector elements. 1802 Cost += Cost; 1803 } 1804 return Cost; 1805 1806 case ISD::MUL: 1807 if (LT.second != MVT::v2i64) 1808 return (Cost + 1) * LT.first; 1809 // Since we do not have a MUL.2d instruction, a mul <2 x i64> is expensive 1810 // as elements are extracted from the vectors and the muls scalarized. 1811 // As getScalarizationOverhead is a bit too pessimistic, we estimate the 1812 // cost for a i64 vector directly here, which is: 1813 // - four i64 extracts, 1814 // - two i64 inserts, and 1815 // - two muls. 1816 // So, for a v2i64 with LT.First = 1 the cost is 8, and for a v4i64 with 1817 // LT.first = 2 the cost is 16. 1818 return LT.first * 8; 1819 case ISD::ADD: 1820 case ISD::XOR: 1821 case ISD::OR: 1822 case ISD::AND: 1823 // These nodes are marked as 'custom' for combining purposes only. 1824 // We know that they are legal. See LowerAdd in ISelLowering. 1825 return (Cost + 1) * LT.first; 1826 1827 case ISD::FADD: 1828 case ISD::FSUB: 1829 case ISD::FMUL: 1830 case ISD::FDIV: 1831 case ISD::FNEG: 1832 // These nodes are marked as 'custom' just to lower them to SVE. 1833 // We know said lowering will incur no additional cost. 1834 if (!Ty->getScalarType()->isFP128Ty()) 1835 return (Cost + 2) * LT.first; 1836 1837 return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, 1838 Opd2Info, 1839 Opd1PropInfo, Opd2PropInfo); 1840 } 1841 } 1842 1843 InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty, 1844 ScalarEvolution *SE, 1845 const SCEV *Ptr) { 1846 // Address computations in vectorized code with non-consecutive addresses will 1847 // likely result in more instructions compared to scalar code where the 1848 // computation can more often be merged into the index mode. The resulting 1849 // extra micro-ops can significantly decrease throughput. 1850 unsigned NumVectorInstToHideOverhead = 10; 1851 int MaxMergeDistance = 64; 1852 1853 if (Ty->isVectorTy() && SE && 1854 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) 1855 return NumVectorInstToHideOverhead; 1856 1857 // In many cases the address computation is not merged into the instruction 1858 // addressing mode. 1859 return 1; 1860 } 1861 1862 InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 1863 Type *CondTy, 1864 CmpInst::Predicate VecPred, 1865 TTI::TargetCostKind CostKind, 1866 const Instruction *I) { 1867 // TODO: Handle other cost kinds. 1868 if (CostKind != TTI::TCK_RecipThroughput) 1869 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, 1870 I); 1871 1872 int ISD = TLI->InstructionOpcodeToISD(Opcode); 1873 // We don't lower some vector selects well that are wider than the register 1874 // width. 1875 if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) { 1876 // We would need this many instructions to hide the scalarization happening. 1877 const int AmortizationCost = 20; 1878 1879 // If VecPred is not set, check if we can get a predicate from the context 1880 // instruction, if its type matches the requested ValTy. 1881 if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) { 1882 CmpInst::Predicate CurrentPred; 1883 if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(), 1884 m_Value()))) 1885 VecPred = CurrentPred; 1886 } 1887 // Check if we have a compare/select chain that can be lowered using 1888 // a (F)CMxx & BFI pair. 1889 if (CmpInst::isIntPredicate(VecPred) || VecPred == CmpInst::FCMP_OLE || 1890 VecPred == CmpInst::FCMP_OLT || VecPred == CmpInst::FCMP_OGT || 1891 VecPred == CmpInst::FCMP_OGE || VecPred == CmpInst::FCMP_OEQ || 1892 VecPred == CmpInst::FCMP_UNE) { 1893 static const auto ValidMinMaxTys = { 1894 MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32, 1895 MVT::v4i32, MVT::v2i64, MVT::v2f32, MVT::v4f32, MVT::v2f64}; 1896 static const auto ValidFP16MinMaxTys = {MVT::v4f16, MVT::v8f16}; 1897 1898 auto LT = TLI->getTypeLegalizationCost(DL, ValTy); 1899 if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; }) || 1900 (ST->hasFullFP16() && 1901 any_of(ValidFP16MinMaxTys, [<](MVT M) { return M == LT.second; }))) 1902 return LT.first; 1903 } 1904 1905 static const TypeConversionCostTblEntry 1906 VectorSelectTbl[] = { 1907 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 }, 1908 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 }, 1909 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 }, 1910 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost }, 1911 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost }, 1912 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost } 1913 }; 1914 1915 EVT SelCondTy = TLI->getValueType(DL, CondTy); 1916 EVT SelValTy = TLI->getValueType(DL, ValTy); 1917 if (SelCondTy.isSimple() && SelValTy.isSimple()) { 1918 if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD, 1919 SelCondTy.getSimpleVT(), 1920 SelValTy.getSimpleVT())) 1921 return Entry->Cost; 1922 } 1923 } 1924 // The base case handles scalable vectors fine for now, since it treats the 1925 // cost as 1 * legalization cost. 1926 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 1927 } 1928 1929 AArch64TTIImpl::TTI::MemCmpExpansionOptions 1930 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { 1931 TTI::MemCmpExpansionOptions Options; 1932 if (ST->requiresStrictAlign()) { 1933 // TODO: Add cost modeling for strict align. Misaligned loads expand to 1934 // a bunch of instructions when strict align is enabled. 1935 return Options; 1936 } 1937 Options.AllowOverlappingLoads = true; 1938 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); 1939 Options.NumLoadsPerBlock = Options.MaxNumLoads; 1940 // TODO: Though vector loads usually perform well on AArch64, in some targets 1941 // they may wake up the FP unit, which raises the power consumption. Perhaps 1942 // they could be used with no holds barred (-O3). 1943 Options.LoadSizes = {8, 4, 2, 1}; 1944 return Options; 1945 } 1946 1947 InstructionCost 1948 AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 1949 Align Alignment, unsigned AddressSpace, 1950 TTI::TargetCostKind CostKind) { 1951 if (useNeonVector(Src)) 1952 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 1953 CostKind); 1954 auto LT = TLI->getTypeLegalizationCost(DL, Src); 1955 if (!LT.first.isValid()) 1956 return InstructionCost::getInvalid(); 1957 1958 // The code-generator is currently not able to handle scalable vectors 1959 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting 1960 // it. This change will be removed when code-generation for these types is 1961 // sufficiently reliable. 1962 if (cast<VectorType>(Src)->getElementCount() == ElementCount::getScalable(1)) 1963 return InstructionCost::getInvalid(); 1964 1965 return LT.first * 2; 1966 } 1967 1968 static unsigned getSVEGatherScatterOverhead(unsigned Opcode) { 1969 return Opcode == Instruction::Load ? SVEGatherOverhead : SVEScatterOverhead; 1970 } 1971 1972 InstructionCost AArch64TTIImpl::getGatherScatterOpCost( 1973 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 1974 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) { 1975 if (useNeonVector(DataTy)) 1976 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 1977 Alignment, CostKind, I); 1978 auto *VT = cast<VectorType>(DataTy); 1979 auto LT = TLI->getTypeLegalizationCost(DL, DataTy); 1980 if (!LT.first.isValid()) 1981 return InstructionCost::getInvalid(); 1982 1983 // The code-generator is currently not able to handle scalable vectors 1984 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting 1985 // it. This change will be removed when code-generation for these types is 1986 // sufficiently reliable. 1987 if (cast<VectorType>(DataTy)->getElementCount() == 1988 ElementCount::getScalable(1)) 1989 return InstructionCost::getInvalid(); 1990 1991 ElementCount LegalVF = LT.second.getVectorElementCount(); 1992 InstructionCost MemOpCost = 1993 getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind, I); 1994 // Add on an overhead cost for using gathers/scatters. 1995 // TODO: At the moment this is applied unilaterally for all CPUs, but at some 1996 // point we may want a per-CPU overhead. 1997 MemOpCost *= getSVEGatherScatterOverhead(Opcode); 1998 return LT.first * MemOpCost * getMaxNumElements(LegalVF); 1999 } 2000 2001 bool AArch64TTIImpl::useNeonVector(const Type *Ty) const { 2002 return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors(); 2003 } 2004 2005 InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty, 2006 MaybeAlign Alignment, 2007 unsigned AddressSpace, 2008 TTI::TargetCostKind CostKind, 2009 const Instruction *I) { 2010 EVT VT = TLI->getValueType(DL, Ty, true); 2011 // Type legalization can't handle structs 2012 if (VT == MVT::Other) 2013 return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace, 2014 CostKind); 2015 2016 auto LT = TLI->getTypeLegalizationCost(DL, Ty); 2017 if (!LT.first.isValid()) 2018 return InstructionCost::getInvalid(); 2019 2020 // The code-generator is currently not able to handle scalable vectors 2021 // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting 2022 // it. This change will be removed when code-generation for these types is 2023 // sufficiently reliable. 2024 if (auto *VTy = dyn_cast<ScalableVectorType>(Ty)) 2025 if (VTy->getElementCount() == ElementCount::getScalable(1)) 2026 return InstructionCost::getInvalid(); 2027 2028 // TODO: consider latency as well for TCK_SizeAndLatency. 2029 if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) 2030 return LT.first; 2031 2032 if (CostKind != TTI::TCK_RecipThroughput) 2033 return 1; 2034 2035 if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store && 2036 LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) { 2037 // Unaligned stores are extremely inefficient. We don't split all 2038 // unaligned 128-bit stores because the negative impact that has shown in 2039 // practice on inlined block copy code. 2040 // We make such stores expensive so that we will only vectorize if there 2041 // are 6 other instructions getting vectorized. 2042 const int AmortizationCost = 6; 2043 2044 return LT.first * 2 * AmortizationCost; 2045 } 2046 2047 // Check truncating stores and extending loads. 2048 if (useNeonVector(Ty) && 2049 Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) { 2050 // v4i8 types are lowered to scalar a load/store and sshll/xtn. 2051 if (VT == MVT::v4i8) 2052 return 2; 2053 // Otherwise we need to scalarize. 2054 return cast<FixedVectorType>(Ty)->getNumElements() * 2; 2055 } 2056 2057 return LT.first; 2058 } 2059 2060 InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost( 2061 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 2062 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 2063 bool UseMaskForCond, bool UseMaskForGaps) { 2064 assert(Factor >= 2 && "Invalid interleave factor"); 2065 auto *VecVTy = cast<FixedVectorType>(VecTy); 2066 2067 if (!UseMaskForCond && !UseMaskForGaps && 2068 Factor <= TLI->getMaxSupportedInterleaveFactor()) { 2069 unsigned NumElts = VecVTy->getNumElements(); 2070 auto *SubVecTy = 2071 FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor); 2072 2073 // ldN/stN only support legal vector types of size 64 or 128 in bits. 2074 // Accesses having vector types that are a multiple of 128 bits can be 2075 // matched to more than one ldN/stN instruction. 2076 bool UseScalable; 2077 if (NumElts % Factor == 0 && 2078 TLI->isLegalInterleavedAccessType(SubVecTy, DL, UseScalable)) 2079 return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL, UseScalable); 2080 } 2081 2082 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 2083 Alignment, AddressSpace, CostKind, 2084 UseMaskForCond, UseMaskForGaps); 2085 } 2086 2087 InstructionCost 2088 AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) { 2089 InstructionCost Cost = 0; 2090 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 2091 for (auto *I : Tys) { 2092 if (!I->isVectorTy()) 2093 continue; 2094 if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() == 2095 128) 2096 Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) + 2097 getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind); 2098 } 2099 return Cost; 2100 } 2101 2102 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) { 2103 return ST->getMaxInterleaveFactor(); 2104 } 2105 2106 // For Falkor, we want to avoid having too many strided loads in a loop since 2107 // that can exhaust the HW prefetcher resources. We adjust the unroller 2108 // MaxCount preference below to attempt to ensure unrolling doesn't create too 2109 // many strided loads. 2110 static void 2111 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE, 2112 TargetTransformInfo::UnrollingPreferences &UP) { 2113 enum { MaxStridedLoads = 7 }; 2114 auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) { 2115 int StridedLoads = 0; 2116 // FIXME? We could make this more precise by looking at the CFG and 2117 // e.g. not counting loads in each side of an if-then-else diamond. 2118 for (const auto BB : L->blocks()) { 2119 for (auto &I : *BB) { 2120 LoadInst *LMemI = dyn_cast<LoadInst>(&I); 2121 if (!LMemI) 2122 continue; 2123 2124 Value *PtrValue = LMemI->getPointerOperand(); 2125 if (L->isLoopInvariant(PtrValue)) 2126 continue; 2127 2128 const SCEV *LSCEV = SE.getSCEV(PtrValue); 2129 const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV); 2130 if (!LSCEVAddRec || !LSCEVAddRec->isAffine()) 2131 continue; 2132 2133 // FIXME? We could take pairing of unrolled load copies into account 2134 // by looking at the AddRec, but we would probably have to limit this 2135 // to loops with no stores or other memory optimization barriers. 2136 ++StridedLoads; 2137 // We've seen enough strided loads that seeing more won't make a 2138 // difference. 2139 if (StridedLoads > MaxStridedLoads / 2) 2140 return StridedLoads; 2141 } 2142 } 2143 return StridedLoads; 2144 }; 2145 2146 int StridedLoads = countStridedLoads(L, SE); 2147 LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads 2148 << " strided loads\n"); 2149 // Pick the largest power of 2 unroll count that won't result in too many 2150 // strided loads. 2151 if (StridedLoads) { 2152 UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads); 2153 LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to " 2154 << UP.MaxCount << '\n'); 2155 } 2156 } 2157 2158 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 2159 TTI::UnrollingPreferences &UP, 2160 OptimizationRemarkEmitter *ORE) { 2161 // Enable partial unrolling and runtime unrolling. 2162 BaseT::getUnrollingPreferences(L, SE, UP, ORE); 2163 2164 UP.UpperBound = true; 2165 2166 // For inner loop, it is more likely to be a hot one, and the runtime check 2167 // can be promoted out from LICM pass, so the overhead is less, let's try 2168 // a larger threshold to unroll more loops. 2169 if (L->getLoopDepth() > 1) 2170 UP.PartialThreshold *= 2; 2171 2172 // Disable partial & runtime unrolling on -Os. 2173 UP.PartialOptSizeThreshold = 0; 2174 2175 if (ST->getProcFamily() == AArch64Subtarget::Falkor && 2176 EnableFalkorHWPFUnrollFix) 2177 getFalkorUnrollingPreferences(L, SE, UP); 2178 2179 // Scan the loop: don't unroll loops with calls as this could prevent 2180 // inlining. Don't unroll vector loops either, as they don't benefit much from 2181 // unrolling. 2182 for (auto *BB : L->getBlocks()) { 2183 for (auto &I : *BB) { 2184 // Don't unroll vectorised loop. 2185 if (I.getType()->isVectorTy()) 2186 return; 2187 2188 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 2189 if (const Function *F = cast<CallBase>(I).getCalledFunction()) { 2190 if (!isLoweredToCall(F)) 2191 continue; 2192 } 2193 return; 2194 } 2195 } 2196 } 2197 2198 // Enable runtime unrolling for in-order models 2199 // If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by 2200 // checking for that case, we can ensure that the default behaviour is 2201 // unchanged 2202 if (ST->getProcFamily() != AArch64Subtarget::Others && 2203 !ST->getSchedModel().isOutOfOrder()) { 2204 UP.Runtime = true; 2205 UP.Partial = true; 2206 UP.UnrollRemainder = true; 2207 UP.DefaultUnrollRuntimeCount = 4; 2208 2209 UP.UnrollAndJam = true; 2210 UP.UnrollAndJamInnerLoopThreshold = 60; 2211 } 2212 } 2213 2214 void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 2215 TTI::PeelingPreferences &PP) { 2216 BaseT::getPeelingPreferences(L, SE, PP); 2217 } 2218 2219 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 2220 Type *ExpectedType) { 2221 switch (Inst->getIntrinsicID()) { 2222 default: 2223 return nullptr; 2224 case Intrinsic::aarch64_neon_st2: 2225 case Intrinsic::aarch64_neon_st3: 2226 case Intrinsic::aarch64_neon_st4: { 2227 // Create a struct type 2228 StructType *ST = dyn_cast<StructType>(ExpectedType); 2229 if (!ST) 2230 return nullptr; 2231 unsigned NumElts = Inst->arg_size() - 1; 2232 if (ST->getNumElements() != NumElts) 2233 return nullptr; 2234 for (unsigned i = 0, e = NumElts; i != e; ++i) { 2235 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i)) 2236 return nullptr; 2237 } 2238 Value *Res = UndefValue::get(ExpectedType); 2239 IRBuilder<> Builder(Inst); 2240 for (unsigned i = 0, e = NumElts; i != e; ++i) { 2241 Value *L = Inst->getArgOperand(i); 2242 Res = Builder.CreateInsertValue(Res, L, i); 2243 } 2244 return Res; 2245 } 2246 case Intrinsic::aarch64_neon_ld2: 2247 case Intrinsic::aarch64_neon_ld3: 2248 case Intrinsic::aarch64_neon_ld4: 2249 if (Inst->getType() == ExpectedType) 2250 return Inst; 2251 return nullptr; 2252 } 2253 } 2254 2255 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 2256 MemIntrinsicInfo &Info) { 2257 switch (Inst->getIntrinsicID()) { 2258 default: 2259 break; 2260 case Intrinsic::aarch64_neon_ld2: 2261 case Intrinsic::aarch64_neon_ld3: 2262 case Intrinsic::aarch64_neon_ld4: 2263 Info.ReadMem = true; 2264 Info.WriteMem = false; 2265 Info.PtrVal = Inst->getArgOperand(0); 2266 break; 2267 case Intrinsic::aarch64_neon_st2: 2268 case Intrinsic::aarch64_neon_st3: 2269 case Intrinsic::aarch64_neon_st4: 2270 Info.ReadMem = false; 2271 Info.WriteMem = true; 2272 Info.PtrVal = Inst->getArgOperand(Inst->arg_size() - 1); 2273 break; 2274 } 2275 2276 switch (Inst->getIntrinsicID()) { 2277 default: 2278 return false; 2279 case Intrinsic::aarch64_neon_ld2: 2280 case Intrinsic::aarch64_neon_st2: 2281 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS; 2282 break; 2283 case Intrinsic::aarch64_neon_ld3: 2284 case Intrinsic::aarch64_neon_st3: 2285 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS; 2286 break; 2287 case Intrinsic::aarch64_neon_ld4: 2288 case Intrinsic::aarch64_neon_st4: 2289 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS; 2290 break; 2291 } 2292 return true; 2293 } 2294 2295 /// See if \p I should be considered for address type promotion. We check if \p 2296 /// I is a sext with right type and used in memory accesses. If it used in a 2297 /// "complex" getelementptr, we allow it to be promoted without finding other 2298 /// sext instructions that sign extended the same initial value. A getelementptr 2299 /// is considered as "complex" if it has more than 2 operands. 2300 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion( 2301 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) { 2302 bool Considerable = false; 2303 AllowPromotionWithoutCommonHeader = false; 2304 if (!isa<SExtInst>(&I)) 2305 return false; 2306 Type *ConsideredSExtType = 2307 Type::getInt64Ty(I.getParent()->getParent()->getContext()); 2308 if (I.getType() != ConsideredSExtType) 2309 return false; 2310 // See if the sext is the one with the right type and used in at least one 2311 // GetElementPtrInst. 2312 for (const User *U : I.users()) { 2313 if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) { 2314 Considerable = true; 2315 // A getelementptr is considered as "complex" if it has more than 2 2316 // operands. We will promote a SExt used in such complex GEP as we 2317 // expect some computation to be merged if they are done on 64 bits. 2318 if (GEPInst->getNumOperands() > 2) { 2319 AllowPromotionWithoutCommonHeader = true; 2320 break; 2321 } 2322 } 2323 } 2324 return Considerable; 2325 } 2326 2327 bool AArch64TTIImpl::isLegalToVectorizeReduction( 2328 const RecurrenceDescriptor &RdxDesc, ElementCount VF) const { 2329 if (!VF.isScalable()) 2330 return true; 2331 2332 Type *Ty = RdxDesc.getRecurrenceType(); 2333 if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty)) 2334 return false; 2335 2336 switch (RdxDesc.getRecurrenceKind()) { 2337 case RecurKind::Add: 2338 case RecurKind::FAdd: 2339 case RecurKind::And: 2340 case RecurKind::Or: 2341 case RecurKind::Xor: 2342 case RecurKind::SMin: 2343 case RecurKind::SMax: 2344 case RecurKind::UMin: 2345 case RecurKind::UMax: 2346 case RecurKind::FMin: 2347 case RecurKind::FMax: 2348 case RecurKind::SelectICmp: 2349 case RecurKind::SelectFCmp: 2350 case RecurKind::FMulAdd: 2351 return true; 2352 default: 2353 return false; 2354 } 2355 } 2356 2357 InstructionCost 2358 AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy, 2359 bool IsUnsigned, 2360 TTI::TargetCostKind CostKind) { 2361 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); 2362 2363 if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16()) 2364 return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind); 2365 2366 assert((isa<ScalableVectorType>(Ty) == isa<ScalableVectorType>(CondTy)) && 2367 "Both vector needs to be equally scalable"); 2368 2369 InstructionCost LegalizationCost = 0; 2370 if (LT.first > 1) { 2371 Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext()); 2372 unsigned MinMaxOpcode = 2373 Ty->isFPOrFPVectorTy() 2374 ? Intrinsic::maxnum 2375 : (IsUnsigned ? Intrinsic::umin : Intrinsic::smin); 2376 IntrinsicCostAttributes Attrs(MinMaxOpcode, LegalVTy, {LegalVTy, LegalVTy}); 2377 LegalizationCost = getIntrinsicInstrCost(Attrs, CostKind) * (LT.first - 1); 2378 } 2379 2380 return LegalizationCost + /*Cost of horizontal reduction*/ 2; 2381 } 2382 2383 InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE( 2384 unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) { 2385 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 2386 InstructionCost LegalizationCost = 0; 2387 if (LT.first > 1) { 2388 Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext()); 2389 LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind); 2390 LegalizationCost *= LT.first - 1; 2391 } 2392 2393 int ISD = TLI->InstructionOpcodeToISD(Opcode); 2394 assert(ISD && "Invalid opcode"); 2395 // Add the final reduction cost for the legal horizontal reduction 2396 switch (ISD) { 2397 case ISD::ADD: 2398 case ISD::AND: 2399 case ISD::OR: 2400 case ISD::XOR: 2401 case ISD::FADD: 2402 return LegalizationCost + 2; 2403 default: 2404 return InstructionCost::getInvalid(); 2405 } 2406 } 2407 2408 InstructionCost 2409 AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, 2410 Optional<FastMathFlags> FMF, 2411 TTI::TargetCostKind CostKind) { 2412 if (TTI::requiresOrderedReduction(FMF)) { 2413 if (auto *FixedVTy = dyn_cast<FixedVectorType>(ValTy)) { 2414 InstructionCost BaseCost = 2415 BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 2416 // Add on extra cost to reflect the extra overhead on some CPUs. We still 2417 // end up vectorizing for more computationally intensive loops. 2418 return BaseCost + FixedVTy->getNumElements(); 2419 } 2420 2421 if (Opcode != Instruction::FAdd) 2422 return InstructionCost::getInvalid(); 2423 2424 auto *VTy = cast<ScalableVectorType>(ValTy); 2425 InstructionCost Cost = 2426 getArithmeticInstrCost(Opcode, VTy->getScalarType(), CostKind); 2427 Cost *= getMaxNumElements(VTy->getElementCount()); 2428 return Cost; 2429 } 2430 2431 if (isa<ScalableVectorType>(ValTy)) 2432 return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind); 2433 2434 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); 2435 MVT MTy = LT.second; 2436 int ISD = TLI->InstructionOpcodeToISD(Opcode); 2437 assert(ISD && "Invalid opcode"); 2438 2439 // Horizontal adds can use the 'addv' instruction. We model the cost of these 2440 // instructions as twice a normal vector add, plus 1 for each legalization 2441 // step (LT.first). This is the only arithmetic vector reduction operation for 2442 // which we have an instruction. 2443 // OR, XOR and AND costs should match the codegen from: 2444 // OR: llvm/test/CodeGen/AArch64/reduce-or.ll 2445 // XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll 2446 // AND: llvm/test/CodeGen/AArch64/reduce-and.ll 2447 static const CostTblEntry CostTblNoPairwise[]{ 2448 {ISD::ADD, MVT::v8i8, 2}, 2449 {ISD::ADD, MVT::v16i8, 2}, 2450 {ISD::ADD, MVT::v4i16, 2}, 2451 {ISD::ADD, MVT::v8i16, 2}, 2452 {ISD::ADD, MVT::v4i32, 2}, 2453 {ISD::OR, MVT::v8i8, 15}, 2454 {ISD::OR, MVT::v16i8, 17}, 2455 {ISD::OR, MVT::v4i16, 7}, 2456 {ISD::OR, MVT::v8i16, 9}, 2457 {ISD::OR, MVT::v2i32, 3}, 2458 {ISD::OR, MVT::v4i32, 5}, 2459 {ISD::OR, MVT::v2i64, 3}, 2460 {ISD::XOR, MVT::v8i8, 15}, 2461 {ISD::XOR, MVT::v16i8, 17}, 2462 {ISD::XOR, MVT::v4i16, 7}, 2463 {ISD::XOR, MVT::v8i16, 9}, 2464 {ISD::XOR, MVT::v2i32, 3}, 2465 {ISD::XOR, MVT::v4i32, 5}, 2466 {ISD::XOR, MVT::v2i64, 3}, 2467 {ISD::AND, MVT::v8i8, 15}, 2468 {ISD::AND, MVT::v16i8, 17}, 2469 {ISD::AND, MVT::v4i16, 7}, 2470 {ISD::AND, MVT::v8i16, 9}, 2471 {ISD::AND, MVT::v2i32, 3}, 2472 {ISD::AND, MVT::v4i32, 5}, 2473 {ISD::AND, MVT::v2i64, 3}, 2474 }; 2475 switch (ISD) { 2476 default: 2477 break; 2478 case ISD::ADD: 2479 if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy)) 2480 return (LT.first - 1) + Entry->Cost; 2481 break; 2482 case ISD::XOR: 2483 case ISD::AND: 2484 case ISD::OR: 2485 const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy); 2486 if (!Entry) 2487 break; 2488 auto *ValVTy = cast<FixedVectorType>(ValTy); 2489 if (!ValVTy->getElementType()->isIntegerTy(1) && 2490 MTy.getVectorNumElements() <= ValVTy->getNumElements() && 2491 isPowerOf2_32(ValVTy->getNumElements())) { 2492 InstructionCost ExtraCost = 0; 2493 if (LT.first != 1) { 2494 // Type needs to be split, so there is an extra cost of LT.first - 1 2495 // arithmetic ops. 2496 auto *Ty = FixedVectorType::get(ValTy->getElementType(), 2497 MTy.getVectorNumElements()); 2498 ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind); 2499 ExtraCost *= LT.first - 1; 2500 } 2501 return Entry->Cost + ExtraCost; 2502 } 2503 break; 2504 } 2505 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); 2506 } 2507 2508 InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) { 2509 static const CostTblEntry ShuffleTbl[] = { 2510 { TTI::SK_Splice, MVT::nxv16i8, 1 }, 2511 { TTI::SK_Splice, MVT::nxv8i16, 1 }, 2512 { TTI::SK_Splice, MVT::nxv4i32, 1 }, 2513 { TTI::SK_Splice, MVT::nxv2i64, 1 }, 2514 { TTI::SK_Splice, MVT::nxv2f16, 1 }, 2515 { TTI::SK_Splice, MVT::nxv4f16, 1 }, 2516 { TTI::SK_Splice, MVT::nxv8f16, 1 }, 2517 { TTI::SK_Splice, MVT::nxv2bf16, 1 }, 2518 { TTI::SK_Splice, MVT::nxv4bf16, 1 }, 2519 { TTI::SK_Splice, MVT::nxv8bf16, 1 }, 2520 { TTI::SK_Splice, MVT::nxv2f32, 1 }, 2521 { TTI::SK_Splice, MVT::nxv4f32, 1 }, 2522 { TTI::SK_Splice, MVT::nxv2f64, 1 }, 2523 }; 2524 2525 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 2526 Type *LegalVTy = EVT(LT.second).getTypeForEVT(Tp->getContext()); 2527 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 2528 EVT PromotedVT = LT.second.getScalarType() == MVT::i1 2529 ? TLI->getPromotedVTForPredicate(EVT(LT.second)) 2530 : LT.second; 2531 Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Tp->getContext()); 2532 InstructionCost LegalizationCost = 0; 2533 if (Index < 0) { 2534 LegalizationCost = 2535 getCmpSelInstrCost(Instruction::ICmp, PromotedVTy, PromotedVTy, 2536 CmpInst::BAD_ICMP_PREDICATE, CostKind) + 2537 getCmpSelInstrCost(Instruction::Select, PromotedVTy, LegalVTy, 2538 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2539 } 2540 2541 // Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp 2542 // Cost performed on a promoted type. 2543 if (LT.second.getScalarType() == MVT::i1) { 2544 LegalizationCost += 2545 getCastInstrCost(Instruction::ZExt, PromotedVTy, LegalVTy, 2546 TTI::CastContextHint::None, CostKind) + 2547 getCastInstrCost(Instruction::Trunc, LegalVTy, PromotedVTy, 2548 TTI::CastContextHint::None, CostKind); 2549 } 2550 const auto *Entry = 2551 CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT()); 2552 assert(Entry && "Illegal Type for Splice"); 2553 LegalizationCost += Entry->Cost; 2554 return LegalizationCost * LT.first; 2555 } 2556 2557 InstructionCost AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 2558 VectorType *Tp, 2559 ArrayRef<int> Mask, int Index, 2560 VectorType *SubTp) { 2561 Kind = improveShuffleKindFromMask(Kind, Mask); 2562 if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose || 2563 Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc || 2564 Kind == TTI::SK_Reverse) { 2565 static const CostTblEntry ShuffleTbl[] = { 2566 // Broadcast shuffle kinds can be performed with 'dup'. 2567 { TTI::SK_Broadcast, MVT::v8i8, 1 }, 2568 { TTI::SK_Broadcast, MVT::v16i8, 1 }, 2569 { TTI::SK_Broadcast, MVT::v4i16, 1 }, 2570 { TTI::SK_Broadcast, MVT::v8i16, 1 }, 2571 { TTI::SK_Broadcast, MVT::v2i32, 1 }, 2572 { TTI::SK_Broadcast, MVT::v4i32, 1 }, 2573 { TTI::SK_Broadcast, MVT::v2i64, 1 }, 2574 { TTI::SK_Broadcast, MVT::v2f32, 1 }, 2575 { TTI::SK_Broadcast, MVT::v4f32, 1 }, 2576 { TTI::SK_Broadcast, MVT::v2f64, 1 }, 2577 // Transpose shuffle kinds can be performed with 'trn1/trn2' and 2578 // 'zip1/zip2' instructions. 2579 { TTI::SK_Transpose, MVT::v8i8, 1 }, 2580 { TTI::SK_Transpose, MVT::v16i8, 1 }, 2581 { TTI::SK_Transpose, MVT::v4i16, 1 }, 2582 { TTI::SK_Transpose, MVT::v8i16, 1 }, 2583 { TTI::SK_Transpose, MVT::v2i32, 1 }, 2584 { TTI::SK_Transpose, MVT::v4i32, 1 }, 2585 { TTI::SK_Transpose, MVT::v2i64, 1 }, 2586 { TTI::SK_Transpose, MVT::v2f32, 1 }, 2587 { TTI::SK_Transpose, MVT::v4f32, 1 }, 2588 { TTI::SK_Transpose, MVT::v2f64, 1 }, 2589 // Select shuffle kinds. 2590 // TODO: handle vXi8/vXi16. 2591 { TTI::SK_Select, MVT::v2i32, 1 }, // mov. 2592 { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar). 2593 { TTI::SK_Select, MVT::v2i64, 1 }, // mov. 2594 { TTI::SK_Select, MVT::v2f32, 1 }, // mov. 2595 { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar). 2596 { TTI::SK_Select, MVT::v2f64, 1 }, // mov. 2597 // PermuteSingleSrc shuffle kinds. 2598 { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov. 2599 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case. 2600 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov. 2601 { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov. 2602 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case. 2603 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov. 2604 { TTI::SK_PermuteSingleSrc, MVT::v4i16, 3 }, // perfectshuffle worst case. 2605 { TTI::SK_PermuteSingleSrc, MVT::v4f16, 3 }, // perfectshuffle worst case. 2606 { TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3 }, // perfectshuffle worst case. 2607 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 8 }, // constpool + load + tbl 2608 { TTI::SK_PermuteSingleSrc, MVT::v8f16, 8 }, // constpool + load + tbl 2609 { TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8 }, // constpool + load + tbl 2610 { TTI::SK_PermuteSingleSrc, MVT::v8i8, 8 }, // constpool + load + tbl 2611 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 8 }, // constpool + load + tbl 2612 // Reverse can be lowered with `rev`. 2613 { TTI::SK_Reverse, MVT::v2i32, 1 }, // mov. 2614 { TTI::SK_Reverse, MVT::v4i32, 2 }, // REV64; EXT 2615 { TTI::SK_Reverse, MVT::v2i64, 1 }, // mov. 2616 { TTI::SK_Reverse, MVT::v2f32, 1 }, // mov. 2617 { TTI::SK_Reverse, MVT::v4f32, 2 }, // REV64; EXT 2618 { TTI::SK_Reverse, MVT::v2f64, 1 }, // mov. 2619 // Broadcast shuffle kinds for scalable vectors 2620 { TTI::SK_Broadcast, MVT::nxv16i8, 1 }, 2621 { TTI::SK_Broadcast, MVT::nxv8i16, 1 }, 2622 { TTI::SK_Broadcast, MVT::nxv4i32, 1 }, 2623 { TTI::SK_Broadcast, MVT::nxv2i64, 1 }, 2624 { TTI::SK_Broadcast, MVT::nxv2f16, 1 }, 2625 { TTI::SK_Broadcast, MVT::nxv4f16, 1 }, 2626 { TTI::SK_Broadcast, MVT::nxv8f16, 1 }, 2627 { TTI::SK_Broadcast, MVT::nxv2bf16, 1 }, 2628 { TTI::SK_Broadcast, MVT::nxv4bf16, 1 }, 2629 { TTI::SK_Broadcast, MVT::nxv8bf16, 1 }, 2630 { TTI::SK_Broadcast, MVT::nxv2f32, 1 }, 2631 { TTI::SK_Broadcast, MVT::nxv4f32, 1 }, 2632 { TTI::SK_Broadcast, MVT::nxv2f64, 1 }, 2633 { TTI::SK_Broadcast, MVT::nxv16i1, 1 }, 2634 { TTI::SK_Broadcast, MVT::nxv8i1, 1 }, 2635 { TTI::SK_Broadcast, MVT::nxv4i1, 1 }, 2636 { TTI::SK_Broadcast, MVT::nxv2i1, 1 }, 2637 // Handle the cases for vector.reverse with scalable vectors 2638 { TTI::SK_Reverse, MVT::nxv16i8, 1 }, 2639 { TTI::SK_Reverse, MVT::nxv8i16, 1 }, 2640 { TTI::SK_Reverse, MVT::nxv4i32, 1 }, 2641 { TTI::SK_Reverse, MVT::nxv2i64, 1 }, 2642 { TTI::SK_Reverse, MVT::nxv2f16, 1 }, 2643 { TTI::SK_Reverse, MVT::nxv4f16, 1 }, 2644 { TTI::SK_Reverse, MVT::nxv8f16, 1 }, 2645 { TTI::SK_Reverse, MVT::nxv2bf16, 1 }, 2646 { TTI::SK_Reverse, MVT::nxv4bf16, 1 }, 2647 { TTI::SK_Reverse, MVT::nxv8bf16, 1 }, 2648 { TTI::SK_Reverse, MVT::nxv2f32, 1 }, 2649 { TTI::SK_Reverse, MVT::nxv4f32, 1 }, 2650 { TTI::SK_Reverse, MVT::nxv2f64, 1 }, 2651 { TTI::SK_Reverse, MVT::nxv16i1, 1 }, 2652 { TTI::SK_Reverse, MVT::nxv8i1, 1 }, 2653 { TTI::SK_Reverse, MVT::nxv4i1, 1 }, 2654 { TTI::SK_Reverse, MVT::nxv2i1, 1 }, 2655 }; 2656 std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); 2657 if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second)) 2658 return LT.first * Entry->Cost; 2659 } 2660 if (Kind == TTI::SK_Splice && isa<ScalableVectorType>(Tp)) 2661 return getSpliceCost(Tp, Index); 2662 return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp); 2663 } 2664