1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AArch64TargetTransformInfo.h"
10 #include "AArch64ExpandImm.h"
11 #include "MCTargetDesc/AArch64AddressingModes.h"
12 #include "llvm/Analysis/IVDescriptors.h"
13 #include "llvm/Analysis/LoopInfo.h"
14 #include "llvm/Analysis/TargetTransformInfo.h"
15 #include "llvm/CodeGen/BasicTTIImpl.h"
16 #include "llvm/CodeGen/CostTable.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/IntrinsicsAArch64.h"
21 #include "llvm/IR/PatternMatch.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Transforms/InstCombine/InstCombiner.h"
24 #include <algorithm>
25 using namespace llvm;
26 using namespace llvm::PatternMatch;
27 
28 #define DEBUG_TYPE "aarch64tti"
29 
30 static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
31                                                cl::init(true), cl::Hidden);
32 
33 static cl::opt<unsigned> SVEGatherOverhead("sve-gather-overhead", cl::init(10),
34                                            cl::Hidden);
35 
36 static cl::opt<unsigned> SVEScatterOverhead("sve-scatter-overhead",
37                                             cl::init(10), cl::Hidden);
38 
39 bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
40                                          const Function *Callee) const {
41   const TargetMachine &TM = getTLI()->getTargetMachine();
42 
43   const FeatureBitset &CallerBits =
44       TM.getSubtargetImpl(*Caller)->getFeatureBits();
45   const FeatureBitset &CalleeBits =
46       TM.getSubtargetImpl(*Callee)->getFeatureBits();
47 
48   // Inline a callee if its target-features are a subset of the callers
49   // target-features.
50   return (CallerBits & CalleeBits) == CalleeBits;
51 }
52 
53 /// Calculate the cost of materializing a 64-bit value. This helper
54 /// method might only calculate a fraction of a larger immediate. Therefore it
55 /// is valid to return a cost of ZERO.
56 InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) {
57   // Check if the immediate can be encoded within an instruction.
58   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
59     return 0;
60 
61   if (Val < 0)
62     Val = ~Val;
63 
64   // Calculate how many moves we will need to materialize this constant.
65   SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
66   AArch64_IMM::expandMOVImm(Val, 64, Insn);
67   return Insn.size();
68 }
69 
70 /// Calculate the cost of materializing the given constant.
71 InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
72                                               TTI::TargetCostKind CostKind) {
73   assert(Ty->isIntegerTy());
74 
75   unsigned BitSize = Ty->getPrimitiveSizeInBits();
76   if (BitSize == 0)
77     return ~0U;
78 
79   // Sign-extend all constants to a multiple of 64-bit.
80   APInt ImmVal = Imm;
81   if (BitSize & 0x3f)
82     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
83 
84   // Split the constant into 64-bit chunks and calculate the cost for each
85   // chunk.
86   InstructionCost Cost = 0;
87   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
88     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
89     int64_t Val = Tmp.getSExtValue();
90     Cost += getIntImmCost(Val);
91   }
92   // We need at least one instruction to materialze the constant.
93   return std::max<InstructionCost>(1, Cost);
94 }
95 
96 InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
97                                                   const APInt &Imm, Type *Ty,
98                                                   TTI::TargetCostKind CostKind,
99                                                   Instruction *Inst) {
100   assert(Ty->isIntegerTy());
101 
102   unsigned BitSize = Ty->getPrimitiveSizeInBits();
103   // There is no cost model for constants with a bit size of 0. Return TCC_Free
104   // here, so that constant hoisting will ignore this constant.
105   if (BitSize == 0)
106     return TTI::TCC_Free;
107 
108   unsigned ImmIdx = ~0U;
109   switch (Opcode) {
110   default:
111     return TTI::TCC_Free;
112   case Instruction::GetElementPtr:
113     // Always hoist the base address of a GetElementPtr.
114     if (Idx == 0)
115       return 2 * TTI::TCC_Basic;
116     return TTI::TCC_Free;
117   case Instruction::Store:
118     ImmIdx = 0;
119     break;
120   case Instruction::Add:
121   case Instruction::Sub:
122   case Instruction::Mul:
123   case Instruction::UDiv:
124   case Instruction::SDiv:
125   case Instruction::URem:
126   case Instruction::SRem:
127   case Instruction::And:
128   case Instruction::Or:
129   case Instruction::Xor:
130   case Instruction::ICmp:
131     ImmIdx = 1;
132     break;
133   // Always return TCC_Free for the shift value of a shift instruction.
134   case Instruction::Shl:
135   case Instruction::LShr:
136   case Instruction::AShr:
137     if (Idx == 1)
138       return TTI::TCC_Free;
139     break;
140   case Instruction::Trunc:
141   case Instruction::ZExt:
142   case Instruction::SExt:
143   case Instruction::IntToPtr:
144   case Instruction::PtrToInt:
145   case Instruction::BitCast:
146   case Instruction::PHI:
147   case Instruction::Call:
148   case Instruction::Select:
149   case Instruction::Ret:
150   case Instruction::Load:
151     break;
152   }
153 
154   if (Idx == ImmIdx) {
155     int NumConstants = (BitSize + 63) / 64;
156     InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
157     return (Cost <= NumConstants * TTI::TCC_Basic)
158                ? static_cast<int>(TTI::TCC_Free)
159                : Cost;
160   }
161   return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
162 }
163 
164 InstructionCost
165 AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
166                                     const APInt &Imm, Type *Ty,
167                                     TTI::TargetCostKind CostKind) {
168   assert(Ty->isIntegerTy());
169 
170   unsigned BitSize = Ty->getPrimitiveSizeInBits();
171   // There is no cost model for constants with a bit size of 0. Return TCC_Free
172   // here, so that constant hoisting will ignore this constant.
173   if (BitSize == 0)
174     return TTI::TCC_Free;
175 
176   // Most (all?) AArch64 intrinsics do not support folding immediates into the
177   // selected instruction, so we compute the materialization cost for the
178   // immediate directly.
179   if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
180     return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
181 
182   switch (IID) {
183   default:
184     return TTI::TCC_Free;
185   case Intrinsic::sadd_with_overflow:
186   case Intrinsic::uadd_with_overflow:
187   case Intrinsic::ssub_with_overflow:
188   case Intrinsic::usub_with_overflow:
189   case Intrinsic::smul_with_overflow:
190   case Intrinsic::umul_with_overflow:
191     if (Idx == 1) {
192       int NumConstants = (BitSize + 63) / 64;
193       InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
194       return (Cost <= NumConstants * TTI::TCC_Basic)
195                  ? static_cast<int>(TTI::TCC_Free)
196                  : Cost;
197     }
198     break;
199   case Intrinsic::experimental_stackmap:
200     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
201       return TTI::TCC_Free;
202     break;
203   case Intrinsic::experimental_patchpoint_void:
204   case Intrinsic::experimental_patchpoint_i64:
205     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
206       return TTI::TCC_Free;
207     break;
208   case Intrinsic::experimental_gc_statepoint:
209     if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
210       return TTI::TCC_Free;
211     break;
212   }
213   return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
214 }
215 
216 TargetTransformInfo::PopcntSupportKind
217 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
218   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
219   if (TyWidth == 32 || TyWidth == 64)
220     return TTI::PSK_FastHardware;
221   // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
222   return TTI::PSK_Software;
223 }
224 
225 InstructionCost
226 AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
227                                       TTI::TargetCostKind CostKind) {
228   auto *RetTy = ICA.getReturnType();
229   switch (ICA.getID()) {
230   case Intrinsic::umin:
231   case Intrinsic::umax:
232   case Intrinsic::smin:
233   case Intrinsic::smax: {
234     static const auto ValidMinMaxTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
235                                         MVT::v8i16, MVT::v2i32, MVT::v4i32};
236     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
237     // v2i64 types get converted to cmp+bif hence the cost of 2
238     if (LT.second == MVT::v2i64)
239       return LT.first * 2;
240     if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }))
241       return LT.first;
242     break;
243   }
244   case Intrinsic::sadd_sat:
245   case Intrinsic::ssub_sat:
246   case Intrinsic::uadd_sat:
247   case Intrinsic::usub_sat: {
248     static const auto ValidSatTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
249                                      MVT::v8i16, MVT::v2i32, MVT::v4i32,
250                                      MVT::v2i64};
251     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
252     // This is a base cost of 1 for the vadd, plus 3 extract shifts if we
253     // need to extend the type, as it uses shr(qadd(shl, shl)).
254     unsigned Instrs =
255         LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4;
256     if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
257       return LT.first * Instrs;
258     break;
259   }
260   case Intrinsic::abs: {
261     static const auto ValidAbsTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
262                                      MVT::v8i16, MVT::v2i32, MVT::v4i32,
263                                      MVT::v2i64};
264     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
265     if (any_of(ValidAbsTys, [&LT](MVT M) { return M == LT.second; }))
266       return LT.first;
267     break;
268   }
269   case Intrinsic::experimental_stepvector: {
270     InstructionCost Cost = 1; // Cost of the `index' instruction
271     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
272     // Legalisation of illegal vectors involves an `index' instruction plus
273     // (LT.first - 1) vector adds.
274     if (LT.first > 1) {
275       Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext());
276       InstructionCost AddCost =
277           getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind);
278       Cost += AddCost * (LT.first - 1);
279     }
280     return Cost;
281   }
282   case Intrinsic::bitreverse: {
283     static const CostTblEntry BitreverseTbl[] = {
284         {Intrinsic::bitreverse, MVT::i32, 1},
285         {Intrinsic::bitreverse, MVT::i64, 1},
286         {Intrinsic::bitreverse, MVT::v8i8, 1},
287         {Intrinsic::bitreverse, MVT::v16i8, 1},
288         {Intrinsic::bitreverse, MVT::v4i16, 2},
289         {Intrinsic::bitreverse, MVT::v8i16, 2},
290         {Intrinsic::bitreverse, MVT::v2i32, 2},
291         {Intrinsic::bitreverse, MVT::v4i32, 2},
292         {Intrinsic::bitreverse, MVT::v1i64, 2},
293         {Intrinsic::bitreverse, MVT::v2i64, 2},
294     };
295     const auto LegalisationCost = TLI->getTypeLegalizationCost(DL, RetTy);
296     const auto *Entry =
297         CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second);
298     if (Entry) {
299       // Cost Model is using the legal type(i32) that i8 and i16 will be
300       // converted to +1 so that we match the actual lowering cost
301       if (TLI->getValueType(DL, RetTy, true) == MVT::i8 ||
302           TLI->getValueType(DL, RetTy, true) == MVT::i16)
303         return LegalisationCost.first * Entry->Cost + 1;
304 
305       return LegalisationCost.first * Entry->Cost;
306     }
307     break;
308   }
309   case Intrinsic::ctpop: {
310     static const CostTblEntry CtpopCostTbl[] = {
311         {ISD::CTPOP, MVT::v2i64, 4},
312         {ISD::CTPOP, MVT::v4i32, 3},
313         {ISD::CTPOP, MVT::v8i16, 2},
314         {ISD::CTPOP, MVT::v16i8, 1},
315         {ISD::CTPOP, MVT::i64,   4},
316         {ISD::CTPOP, MVT::v2i32, 3},
317         {ISD::CTPOP, MVT::v4i16, 2},
318         {ISD::CTPOP, MVT::v8i8,  1},
319         {ISD::CTPOP, MVT::i32,   5},
320     };
321     auto LT = TLI->getTypeLegalizationCost(DL, RetTy);
322     MVT MTy = LT.second;
323     if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) {
324       // Extra cost of +1 when illegal vector types are legalized by promoting
325       // the integer type.
326       int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() !=
327                                             RetTy->getScalarSizeInBits()
328                           ? 1
329                           : 0;
330       return LT.first * Entry->Cost + ExtraCost;
331     }
332     break;
333   }
334   case Intrinsic::sadd_with_overflow:
335   case Intrinsic::uadd_with_overflow:
336   case Intrinsic::ssub_with_overflow:
337   case Intrinsic::usub_with_overflow:
338   case Intrinsic::smul_with_overflow:
339   case Intrinsic::umul_with_overflow: {
340     static const CostTblEntry WithOverflowCostTbl[] = {
341         {Intrinsic::sadd_with_overflow, MVT::i8, 3},
342         {Intrinsic::uadd_with_overflow, MVT::i8, 3},
343         {Intrinsic::sadd_with_overflow, MVT::i16, 3},
344         {Intrinsic::uadd_with_overflow, MVT::i16, 3},
345         {Intrinsic::sadd_with_overflow, MVT::i32, 1},
346         {Intrinsic::uadd_with_overflow, MVT::i32, 1},
347         {Intrinsic::sadd_with_overflow, MVT::i64, 1},
348         {Intrinsic::uadd_with_overflow, MVT::i64, 1},
349         {Intrinsic::ssub_with_overflow, MVT::i8, 3},
350         {Intrinsic::usub_with_overflow, MVT::i8, 3},
351         {Intrinsic::ssub_with_overflow, MVT::i16, 3},
352         {Intrinsic::usub_with_overflow, MVT::i16, 3},
353         {Intrinsic::ssub_with_overflow, MVT::i32, 1},
354         {Intrinsic::usub_with_overflow, MVT::i32, 1},
355         {Intrinsic::ssub_with_overflow, MVT::i64, 1},
356         {Intrinsic::usub_with_overflow, MVT::i64, 1},
357         {Intrinsic::smul_with_overflow, MVT::i8, 5},
358         {Intrinsic::umul_with_overflow, MVT::i8, 4},
359         {Intrinsic::smul_with_overflow, MVT::i16, 5},
360         {Intrinsic::umul_with_overflow, MVT::i16, 4},
361         {Intrinsic::smul_with_overflow, MVT::i32, 2}, // eg umull;tst
362         {Intrinsic::umul_with_overflow, MVT::i32, 2}, // eg umull;cmp sxtw
363         {Intrinsic::smul_with_overflow, MVT::i64, 3}, // eg mul;smulh;cmp
364         {Intrinsic::umul_with_overflow, MVT::i64, 3}, // eg mul;umulh;cmp asr
365     };
366     EVT MTy = TLI->getValueType(DL, RetTy->getContainedType(0), true);
367     if (MTy.isSimple())
368       if (const auto *Entry = CostTableLookup(WithOverflowCostTbl, ICA.getID(),
369                                               MTy.getSimpleVT()))
370         return Entry->Cost;
371     break;
372   }
373   default:
374     break;
375   }
376   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
377 }
378 
379 /// The function will remove redundant reinterprets casting in the presence
380 /// of the control flow
381 static Optional<Instruction *> processPhiNode(InstCombiner &IC,
382                                               IntrinsicInst &II) {
383   SmallVector<Instruction *, 32> Worklist;
384   auto RequiredType = II.getType();
385 
386   auto *PN = dyn_cast<PHINode>(II.getArgOperand(0));
387   assert(PN && "Expected Phi Node!");
388 
389   // Don't create a new Phi unless we can remove the old one.
390   if (!PN->hasOneUse())
391     return None;
392 
393   for (Value *IncValPhi : PN->incoming_values()) {
394     auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi);
395     if (!Reinterpret ||
396         Reinterpret->getIntrinsicID() !=
397             Intrinsic::aarch64_sve_convert_to_svbool ||
398         RequiredType != Reinterpret->getArgOperand(0)->getType())
399       return None;
400   }
401 
402   // Create the new Phi
403   LLVMContext &Ctx = PN->getContext();
404   IRBuilder<> Builder(Ctx);
405   Builder.SetInsertPoint(PN);
406   PHINode *NPN = Builder.CreatePHI(RequiredType, PN->getNumIncomingValues());
407   Worklist.push_back(PN);
408 
409   for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) {
410     auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I));
411     NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I));
412     Worklist.push_back(Reinterpret);
413   }
414 
415   // Cleanup Phi Node and reinterprets
416   return IC.replaceInstUsesWith(II, NPN);
417 }
418 
419 // (from_svbool (binop (to_svbool pred) (svbool_t _) (svbool_t _))))
420 // => (binop (pred) (from_svbool _) (from_svbool _))
421 //
422 // The above transformation eliminates a `to_svbool` in the predicate
423 // operand of bitwise operation `binop` by narrowing the vector width of
424 // the operation. For example, it would convert a `<vscale x 16 x i1>
425 // and` into a `<vscale x 4 x i1> and`. This is profitable because
426 // to_svbool must zero the new lanes during widening, whereas
427 // from_svbool is free.
428 static Optional<Instruction *> tryCombineFromSVBoolBinOp(InstCombiner &IC,
429                                                          IntrinsicInst &II) {
430   auto BinOp = dyn_cast<IntrinsicInst>(II.getOperand(0));
431   if (!BinOp)
432     return None;
433 
434   auto IntrinsicID = BinOp->getIntrinsicID();
435   switch (IntrinsicID) {
436   case Intrinsic::aarch64_sve_and_z:
437   case Intrinsic::aarch64_sve_bic_z:
438   case Intrinsic::aarch64_sve_eor_z:
439   case Intrinsic::aarch64_sve_nand_z:
440   case Intrinsic::aarch64_sve_nor_z:
441   case Intrinsic::aarch64_sve_orn_z:
442   case Intrinsic::aarch64_sve_orr_z:
443     break;
444   default:
445     return None;
446   }
447 
448   auto BinOpPred = BinOp->getOperand(0);
449   auto BinOpOp1 = BinOp->getOperand(1);
450   auto BinOpOp2 = BinOp->getOperand(2);
451 
452   auto PredIntr = dyn_cast<IntrinsicInst>(BinOpPred);
453   if (!PredIntr ||
454       PredIntr->getIntrinsicID() != Intrinsic::aarch64_sve_convert_to_svbool)
455     return None;
456 
457   auto PredOp = PredIntr->getOperand(0);
458   auto PredOpTy = cast<VectorType>(PredOp->getType());
459   if (PredOpTy != II.getType())
460     return None;
461 
462   IRBuilder<> Builder(II.getContext());
463   Builder.SetInsertPoint(&II);
464 
465   SmallVector<Value *> NarrowedBinOpArgs = {PredOp};
466   auto NarrowBinOpOp1 = Builder.CreateIntrinsic(
467       Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp1});
468   NarrowedBinOpArgs.push_back(NarrowBinOpOp1);
469   if (BinOpOp1 == BinOpOp2)
470     NarrowedBinOpArgs.push_back(NarrowBinOpOp1);
471   else
472     NarrowedBinOpArgs.push_back(Builder.CreateIntrinsic(
473         Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp2}));
474 
475   auto NarrowedBinOp =
476       Builder.CreateIntrinsic(IntrinsicID, {PredOpTy}, NarrowedBinOpArgs);
477   return IC.replaceInstUsesWith(II, NarrowedBinOp);
478 }
479 
480 static Optional<Instruction *> instCombineConvertFromSVBool(InstCombiner &IC,
481                                                             IntrinsicInst &II) {
482   // If the reinterpret instruction operand is a PHI Node
483   if (isa<PHINode>(II.getArgOperand(0)))
484     return processPhiNode(IC, II);
485 
486   if (auto BinOpCombine = tryCombineFromSVBoolBinOp(IC, II))
487     return BinOpCombine;
488 
489   SmallVector<Instruction *, 32> CandidatesForRemoval;
490   Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr;
491 
492   const auto *IVTy = cast<VectorType>(II.getType());
493 
494   // Walk the chain of conversions.
495   while (Cursor) {
496     // If the type of the cursor has fewer lanes than the final result, zeroing
497     // must take place, which breaks the equivalence chain.
498     const auto *CursorVTy = cast<VectorType>(Cursor->getType());
499     if (CursorVTy->getElementCount().getKnownMinValue() <
500         IVTy->getElementCount().getKnownMinValue())
501       break;
502 
503     // If the cursor has the same type as I, it is a viable replacement.
504     if (Cursor->getType() == IVTy)
505       EarliestReplacement = Cursor;
506 
507     auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor);
508 
509     // If this is not an SVE conversion intrinsic, this is the end of the chain.
510     if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() ==
511                                   Intrinsic::aarch64_sve_convert_to_svbool ||
512                               IntrinsicCursor->getIntrinsicID() ==
513                                   Intrinsic::aarch64_sve_convert_from_svbool))
514       break;
515 
516     CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor);
517     Cursor = IntrinsicCursor->getOperand(0);
518   }
519 
520   // If no viable replacement in the conversion chain was found, there is
521   // nothing to do.
522   if (!EarliestReplacement)
523     return None;
524 
525   return IC.replaceInstUsesWith(II, EarliestReplacement);
526 }
527 
528 static Optional<Instruction *> instCombineSVEDup(InstCombiner &IC,
529                                                  IntrinsicInst &II) {
530   IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
531   if (!Pg)
532     return None;
533 
534   if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
535     return None;
536 
537   const auto PTruePattern =
538       cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
539   if (PTruePattern != AArch64SVEPredPattern::vl1)
540     return None;
541 
542   // The intrinsic is inserting into lane zero so use an insert instead.
543   auto *IdxTy = Type::getInt64Ty(II.getContext());
544   auto *Insert = InsertElementInst::Create(
545       II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0));
546   Insert->insertBefore(&II);
547   Insert->takeName(&II);
548 
549   return IC.replaceInstUsesWith(II, Insert);
550 }
551 
552 static Optional<Instruction *> instCombineSVEDupX(InstCombiner &IC,
553                                                   IntrinsicInst &II) {
554   // Replace DupX with a regular IR splat.
555   IRBuilder<> Builder(II.getContext());
556   Builder.SetInsertPoint(&II);
557   auto *RetTy = cast<ScalableVectorType>(II.getType());
558   Value *Splat =
559       Builder.CreateVectorSplat(RetTy->getElementCount(), II.getArgOperand(0));
560   Splat->takeName(&II);
561   return IC.replaceInstUsesWith(II, Splat);
562 }
563 
564 static Optional<Instruction *> instCombineSVECmpNE(InstCombiner &IC,
565                                                    IntrinsicInst &II) {
566   LLVMContext &Ctx = II.getContext();
567   IRBuilder<> Builder(Ctx);
568   Builder.SetInsertPoint(&II);
569 
570   // Check that the predicate is all active
571   auto *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(0));
572   if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
573     return None;
574 
575   const auto PTruePattern =
576       cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
577   if (PTruePattern != AArch64SVEPredPattern::all)
578     return None;
579 
580   // Check that we have a compare of zero..
581   auto *SplatValue =
582       dyn_cast_or_null<ConstantInt>(getSplatValue(II.getArgOperand(2)));
583   if (!SplatValue || !SplatValue->isZero())
584     return None;
585 
586   // ..against a dupq
587   auto *DupQLane = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
588   if (!DupQLane ||
589       DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane)
590     return None;
591 
592   // Where the dupq is a lane 0 replicate of a vector insert
593   if (!cast<ConstantInt>(DupQLane->getArgOperand(1))->isZero())
594     return None;
595 
596   auto *VecIns = dyn_cast<IntrinsicInst>(DupQLane->getArgOperand(0));
597   if (!VecIns ||
598       VecIns->getIntrinsicID() != Intrinsic::experimental_vector_insert)
599     return None;
600 
601   // Where the vector insert is a fixed constant vector insert into undef at
602   // index zero
603   if (!isa<UndefValue>(VecIns->getArgOperand(0)))
604     return None;
605 
606   if (!cast<ConstantInt>(VecIns->getArgOperand(2))->isZero())
607     return None;
608 
609   auto *ConstVec = dyn_cast<Constant>(VecIns->getArgOperand(1));
610   if (!ConstVec)
611     return None;
612 
613   auto *VecTy = dyn_cast<FixedVectorType>(ConstVec->getType());
614   auto *OutTy = dyn_cast<ScalableVectorType>(II.getType());
615   if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements())
616     return None;
617 
618   unsigned NumElts = VecTy->getNumElements();
619   unsigned PredicateBits = 0;
620 
621   // Expand intrinsic operands to a 16-bit byte level predicate
622   for (unsigned I = 0; I < NumElts; ++I) {
623     auto *Arg = dyn_cast<ConstantInt>(ConstVec->getAggregateElement(I));
624     if (!Arg)
625       return None;
626     if (!Arg->isZero())
627       PredicateBits |= 1 << (I * (16 / NumElts));
628   }
629 
630   // If all bits are zero bail early with an empty predicate
631   if (PredicateBits == 0) {
632     auto *PFalse = Constant::getNullValue(II.getType());
633     PFalse->takeName(&II);
634     return IC.replaceInstUsesWith(II, PFalse);
635   }
636 
637   // Calculate largest predicate type used (where byte predicate is largest)
638   unsigned Mask = 8;
639   for (unsigned I = 0; I < 16; ++I)
640     if ((PredicateBits & (1 << I)) != 0)
641       Mask |= (I % 8);
642 
643   unsigned PredSize = Mask & -Mask;
644   auto *PredType = ScalableVectorType::get(
645       Type::getInt1Ty(Ctx), AArch64::SVEBitsPerBlock / (PredSize * 8));
646 
647   // Ensure all relevant bits are set
648   for (unsigned I = 0; I < 16; I += PredSize)
649     if ((PredicateBits & (1 << I)) == 0)
650       return None;
651 
652   auto *PTruePat =
653       ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
654   auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
655                                         {PredType}, {PTruePat});
656   auto *ConvertToSVBool = Builder.CreateIntrinsic(
657       Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue});
658   auto *ConvertFromSVBool =
659       Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool,
660                               {II.getType()}, {ConvertToSVBool});
661 
662   ConvertFromSVBool->takeName(&II);
663   return IC.replaceInstUsesWith(II, ConvertFromSVBool);
664 }
665 
666 static Optional<Instruction *> instCombineSVELast(InstCombiner &IC,
667                                                   IntrinsicInst &II) {
668   IRBuilder<> Builder(II.getContext());
669   Builder.SetInsertPoint(&II);
670   Value *Pg = II.getArgOperand(0);
671   Value *Vec = II.getArgOperand(1);
672   auto IntrinsicID = II.getIntrinsicID();
673   bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta;
674 
675   // lastX(splat(X)) --> X
676   if (auto *SplatVal = getSplatValue(Vec))
677     return IC.replaceInstUsesWith(II, SplatVal);
678 
679   // If x and/or y is a splat value then:
680   // lastX (binop (x, y)) --> binop(lastX(x), lastX(y))
681   Value *LHS, *RHS;
682   if (match(Vec, m_OneUse(m_BinOp(m_Value(LHS), m_Value(RHS))))) {
683     if (isSplatValue(LHS) || isSplatValue(RHS)) {
684       auto *OldBinOp = cast<BinaryOperator>(Vec);
685       auto OpC = OldBinOp->getOpcode();
686       auto *NewLHS =
687           Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, LHS});
688       auto *NewRHS =
689           Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, RHS});
690       auto *NewBinOp = BinaryOperator::CreateWithCopiedFlags(
691           OpC, NewLHS, NewRHS, OldBinOp, OldBinOp->getName(), &II);
692       return IC.replaceInstUsesWith(II, NewBinOp);
693     }
694   }
695 
696   auto *C = dyn_cast<Constant>(Pg);
697   if (IsAfter && C && C->isNullValue()) {
698     // The intrinsic is extracting lane 0 so use an extract instead.
699     auto *IdxTy = Type::getInt64Ty(II.getContext());
700     auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0));
701     Extract->insertBefore(&II);
702     Extract->takeName(&II);
703     return IC.replaceInstUsesWith(II, Extract);
704   }
705 
706   auto *IntrPG = dyn_cast<IntrinsicInst>(Pg);
707   if (!IntrPG)
708     return None;
709 
710   if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
711     return None;
712 
713   const auto PTruePattern =
714       cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue();
715 
716   // Can the intrinsic's predicate be converted to a known constant index?
717   unsigned MinNumElts = getNumElementsFromSVEPredPattern(PTruePattern);
718   if (!MinNumElts)
719     return None;
720 
721   unsigned Idx = MinNumElts - 1;
722   // Increment the index if extracting the element after the last active
723   // predicate element.
724   if (IsAfter)
725     ++Idx;
726 
727   // Ignore extracts whose index is larger than the known minimum vector
728   // length. NOTE: This is an artificial constraint where we prefer to
729   // maintain what the user asked for until an alternative is proven faster.
730   auto *PgVTy = cast<ScalableVectorType>(Pg->getType());
731   if (Idx >= PgVTy->getMinNumElements())
732     return None;
733 
734   // The intrinsic is extracting a fixed lane so use an extract instead.
735   auto *IdxTy = Type::getInt64Ty(II.getContext());
736   auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx));
737   Extract->insertBefore(&II);
738   Extract->takeName(&II);
739   return IC.replaceInstUsesWith(II, Extract);
740 }
741 
742 static Optional<Instruction *> instCombineRDFFR(InstCombiner &IC,
743                                                 IntrinsicInst &II) {
744   LLVMContext &Ctx = II.getContext();
745   IRBuilder<> Builder(Ctx);
746   Builder.SetInsertPoint(&II);
747   // Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr
748   // can work with RDFFR_PP for ptest elimination.
749   auto *AllPat =
750       ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
751   auto *PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
752                                         {II.getType()}, {AllPat});
753   auto *RDFFR =
754       Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue});
755   RDFFR->takeName(&II);
756   return IC.replaceInstUsesWith(II, RDFFR);
757 }
758 
759 static Optional<Instruction *>
760 instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) {
761   const auto Pattern = cast<ConstantInt>(II.getArgOperand(0))->getZExtValue();
762 
763   if (Pattern == AArch64SVEPredPattern::all) {
764     LLVMContext &Ctx = II.getContext();
765     IRBuilder<> Builder(Ctx);
766     Builder.SetInsertPoint(&II);
767 
768     Constant *StepVal = ConstantInt::get(II.getType(), NumElts);
769     auto *VScale = Builder.CreateVScale(StepVal);
770     VScale->takeName(&II);
771     return IC.replaceInstUsesWith(II, VScale);
772   }
773 
774   unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern);
775 
776   return MinNumElts && NumElts >= MinNumElts
777              ? Optional<Instruction *>(IC.replaceInstUsesWith(
778                    II, ConstantInt::get(II.getType(), MinNumElts)))
779              : None;
780 }
781 
782 static Optional<Instruction *> instCombineSVEPTest(InstCombiner &IC,
783                                                    IntrinsicInst &II) {
784   IntrinsicInst *Op1 = dyn_cast<IntrinsicInst>(II.getArgOperand(0));
785   IntrinsicInst *Op2 = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
786 
787   if (Op1 && Op2 &&
788       Op1->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
789       Op2->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
790       Op1->getArgOperand(0)->getType() == Op2->getArgOperand(0)->getType()) {
791 
792     IRBuilder<> Builder(II.getContext());
793     Builder.SetInsertPoint(&II);
794 
795     Value *Ops[] = {Op1->getArgOperand(0), Op2->getArgOperand(0)};
796     Type *Tys[] = {Op1->getArgOperand(0)->getType()};
797 
798     auto *PTest = Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops);
799 
800     PTest->takeName(&II);
801     return IC.replaceInstUsesWith(II, PTest);
802   }
803 
804   return None;
805 }
806 
807 static Optional<Instruction *> instCombineSVEVectorFMLA(InstCombiner &IC,
808                                                         IntrinsicInst &II) {
809   // fold (fadd p a (fmul p b c)) -> (fma p a b c)
810   Value *P = II.getOperand(0);
811   Value *A = II.getOperand(1);
812   auto FMul = II.getOperand(2);
813   Value *B, *C;
814   if (!match(FMul, m_Intrinsic<Intrinsic::aarch64_sve_fmul>(
815                        m_Specific(P), m_Value(B), m_Value(C))))
816     return None;
817 
818   if (!FMul->hasOneUse())
819     return None;
820 
821   llvm::FastMathFlags FAddFlags = II.getFastMathFlags();
822   // Stop the combine when the flags on the inputs differ in case dropping flags
823   // would lead to us missing out on more beneficial optimizations.
824   if (FAddFlags != cast<CallInst>(FMul)->getFastMathFlags())
825     return None;
826   if (!FAddFlags.allowContract())
827     return None;
828 
829   IRBuilder<> Builder(II.getContext());
830   Builder.SetInsertPoint(&II);
831   auto FMLA = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_fmla,
832                                       {II.getType()}, {P, A, B, C}, &II);
833   FMLA->setFastMathFlags(FAddFlags);
834   return IC.replaceInstUsesWith(II, FMLA);
835 }
836 
837 static bool isAllActivePredicate(Value *Pred) {
838   // Look through convert.from.svbool(convert.to.svbool(...) chain.
839   Value *UncastedPred;
840   if (match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_convert_from_svbool>(
841                       m_Intrinsic<Intrinsic::aarch64_sve_convert_to_svbool>(
842                           m_Value(UncastedPred)))))
843     // If the predicate has the same or less lanes than the uncasted
844     // predicate then we know the casting has no effect.
845     if (cast<ScalableVectorType>(Pred->getType())->getMinNumElements() <=
846         cast<ScalableVectorType>(UncastedPred->getType())->getMinNumElements())
847       Pred = UncastedPred;
848 
849   return match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
850                          m_ConstantInt<AArch64SVEPredPattern::all>()));
851 }
852 
853 static Optional<Instruction *>
854 instCombineSVELD1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
855   IRBuilder<> Builder(II.getContext());
856   Builder.SetInsertPoint(&II);
857 
858   Value *Pred = II.getOperand(0);
859   Value *PtrOp = II.getOperand(1);
860   Type *VecTy = II.getType();
861   Value *VecPtr = Builder.CreateBitCast(PtrOp, VecTy->getPointerTo());
862 
863   if (isAllActivePredicate(Pred)) {
864     LoadInst *Load = Builder.CreateLoad(VecTy, VecPtr);
865     return IC.replaceInstUsesWith(II, Load);
866   }
867 
868   CallInst *MaskedLoad =
869       Builder.CreateMaskedLoad(VecTy, VecPtr, PtrOp->getPointerAlignment(DL),
870                                Pred, ConstantAggregateZero::get(VecTy));
871   return IC.replaceInstUsesWith(II, MaskedLoad);
872 }
873 
874 static Optional<Instruction *>
875 instCombineSVEST1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
876   IRBuilder<> Builder(II.getContext());
877   Builder.SetInsertPoint(&II);
878 
879   Value *VecOp = II.getOperand(0);
880   Value *Pred = II.getOperand(1);
881   Value *PtrOp = II.getOperand(2);
882   Value *VecPtr =
883       Builder.CreateBitCast(PtrOp, VecOp->getType()->getPointerTo());
884 
885   if (isAllActivePredicate(Pred)) {
886     Builder.CreateStore(VecOp, VecPtr);
887     return IC.eraseInstFromFunction(II);
888   }
889 
890   Builder.CreateMaskedStore(VecOp, VecPtr, PtrOp->getPointerAlignment(DL),
891                             Pred);
892   return IC.eraseInstFromFunction(II);
893 }
894 
895 static Instruction::BinaryOps intrinsicIDToBinOpCode(unsigned Intrinsic) {
896   switch (Intrinsic) {
897   case Intrinsic::aarch64_sve_fmul:
898     return Instruction::BinaryOps::FMul;
899   case Intrinsic::aarch64_sve_fadd:
900     return Instruction::BinaryOps::FAdd;
901   case Intrinsic::aarch64_sve_fsub:
902     return Instruction::BinaryOps::FSub;
903   default:
904     return Instruction::BinaryOpsEnd;
905   }
906 }
907 
908 static Optional<Instruction *> instCombineSVEVectorBinOp(InstCombiner &IC,
909                                                          IntrinsicInst &II) {
910   auto *OpPredicate = II.getOperand(0);
911   auto BinOpCode = intrinsicIDToBinOpCode(II.getIntrinsicID());
912   if (BinOpCode == Instruction::BinaryOpsEnd ||
913       !match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
914                               m_ConstantInt<AArch64SVEPredPattern::all>())))
915     return None;
916   IRBuilder<> Builder(II.getContext());
917   Builder.SetInsertPoint(&II);
918   Builder.setFastMathFlags(II.getFastMathFlags());
919   auto BinOp =
920       Builder.CreateBinOp(BinOpCode, II.getOperand(1), II.getOperand(2));
921   return IC.replaceInstUsesWith(II, BinOp);
922 }
923 
924 static Optional<Instruction *> instCombineSVEVectorFAdd(InstCombiner &IC,
925                                                         IntrinsicInst &II) {
926   if (auto FMLA = instCombineSVEVectorFMLA(IC, II))
927     return FMLA;
928   return instCombineSVEVectorBinOp(IC, II);
929 }
930 
931 static Optional<Instruction *> instCombineSVEVectorMul(InstCombiner &IC,
932                                                        IntrinsicInst &II) {
933   auto *OpPredicate = II.getOperand(0);
934   auto *OpMultiplicand = II.getOperand(1);
935   auto *OpMultiplier = II.getOperand(2);
936 
937   IRBuilder<> Builder(II.getContext());
938   Builder.SetInsertPoint(&II);
939 
940   // Return true if a given instruction is a unit splat value, false otherwise.
941   auto IsUnitSplat = [](auto *I) {
942     auto *SplatValue = getSplatValue(I);
943     if (!SplatValue)
944       return false;
945     return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
946   };
947 
948   // Return true if a given instruction is an aarch64_sve_dup intrinsic call
949   // with a unit splat value, false otherwise.
950   auto IsUnitDup = [](auto *I) {
951     auto *IntrI = dyn_cast<IntrinsicInst>(I);
952     if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup)
953       return false;
954 
955     auto *SplatValue = IntrI->getOperand(2);
956     return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
957   };
958 
959   if (IsUnitSplat(OpMultiplier)) {
960     // [f]mul pg %n, (dupx 1) => %n
961     OpMultiplicand->takeName(&II);
962     return IC.replaceInstUsesWith(II, OpMultiplicand);
963   } else if (IsUnitDup(OpMultiplier)) {
964     // [f]mul pg %n, (dup pg 1) => %n
965     auto *DupInst = cast<IntrinsicInst>(OpMultiplier);
966     auto *DupPg = DupInst->getOperand(1);
967     // TODO: this is naive. The optimization is still valid if DupPg
968     // 'encompasses' OpPredicate, not only if they're the same predicate.
969     if (OpPredicate == DupPg) {
970       OpMultiplicand->takeName(&II);
971       return IC.replaceInstUsesWith(II, OpMultiplicand);
972     }
973   }
974 
975   return instCombineSVEVectorBinOp(IC, II);
976 }
977 
978 static Optional<Instruction *> instCombineSVEUnpack(InstCombiner &IC,
979                                                     IntrinsicInst &II) {
980   IRBuilder<> Builder(II.getContext());
981   Builder.SetInsertPoint(&II);
982   Value *UnpackArg = II.getArgOperand(0);
983   auto *RetTy = cast<ScalableVectorType>(II.getType());
984   bool IsSigned = II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi ||
985                   II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo;
986 
987   // Hi = uunpkhi(splat(X)) --> Hi = splat(extend(X))
988   // Lo = uunpklo(splat(X)) --> Lo = splat(extend(X))
989   if (auto *ScalarArg = getSplatValue(UnpackArg)) {
990     ScalarArg =
991         Builder.CreateIntCast(ScalarArg, RetTy->getScalarType(), IsSigned);
992     Value *NewVal =
993         Builder.CreateVectorSplat(RetTy->getElementCount(), ScalarArg);
994     NewVal->takeName(&II);
995     return IC.replaceInstUsesWith(II, NewVal);
996   }
997 
998   return None;
999 }
1000 static Optional<Instruction *> instCombineSVETBL(InstCombiner &IC,
1001                                                  IntrinsicInst &II) {
1002   auto *OpVal = II.getOperand(0);
1003   auto *OpIndices = II.getOperand(1);
1004   VectorType *VTy = cast<VectorType>(II.getType());
1005 
1006   // Check whether OpIndices is a constant splat value < minimal element count
1007   // of result.
1008   auto *SplatValue = dyn_cast_or_null<ConstantInt>(getSplatValue(OpIndices));
1009   if (!SplatValue ||
1010       SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue()))
1011     return None;
1012 
1013   // Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to
1014   // splat_vector(extractelement(OpVal, SplatValue)) for further optimization.
1015   IRBuilder<> Builder(II.getContext());
1016   Builder.SetInsertPoint(&II);
1017   auto *Extract = Builder.CreateExtractElement(OpVal, SplatValue);
1018   auto *VectorSplat =
1019       Builder.CreateVectorSplat(VTy->getElementCount(), Extract);
1020 
1021   VectorSplat->takeName(&II);
1022   return IC.replaceInstUsesWith(II, VectorSplat);
1023 }
1024 
1025 static Optional<Instruction *> instCombineSVETupleGet(InstCombiner &IC,
1026                                                       IntrinsicInst &II) {
1027   // Try to remove sequences of tuple get/set.
1028   Value *SetTuple, *SetIndex, *SetValue;
1029   auto *GetTuple = II.getArgOperand(0);
1030   auto *GetIndex = II.getArgOperand(1);
1031   // Check that we have tuple_get(GetTuple, GetIndex) where GetTuple is a
1032   // call to tuple_set i.e. tuple_set(SetTuple, SetIndex, SetValue).
1033   // Make sure that the types of the current intrinsic and SetValue match
1034   // in order to safely remove the sequence.
1035   if (!match(GetTuple,
1036              m_Intrinsic<Intrinsic::aarch64_sve_tuple_set>(
1037                  m_Value(SetTuple), m_Value(SetIndex), m_Value(SetValue))) ||
1038       SetValue->getType() != II.getType())
1039     return None;
1040   // Case where we get the same index right after setting it.
1041   // tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex) --> SetValue
1042   if (GetIndex == SetIndex)
1043     return IC.replaceInstUsesWith(II, SetValue);
1044   // If we are getting a different index than what was set in the tuple_set
1045   // intrinsic. We can just set the input tuple to the one up in the chain.
1046   // tuple_get(tuple_set(SetTuple, SetIndex, SetValue), GetIndex)
1047   // --> tuple_get(SetTuple, GetIndex)
1048   return IC.replaceOperand(II, 0, SetTuple);
1049 }
1050 
1051 static Optional<Instruction *> instCombineSVEZip(InstCombiner &IC,
1052                                                  IntrinsicInst &II) {
1053   // zip1(uzp1(A, B), uzp2(A, B)) --> A
1054   // zip2(uzp1(A, B), uzp2(A, B)) --> B
1055   Value *A, *B;
1056   if (match(II.getArgOperand(0),
1057             m_Intrinsic<Intrinsic::aarch64_sve_uzp1>(m_Value(A), m_Value(B))) &&
1058       match(II.getArgOperand(1), m_Intrinsic<Intrinsic::aarch64_sve_uzp2>(
1059                                      m_Specific(A), m_Specific(B))))
1060     return IC.replaceInstUsesWith(
1061         II, (II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ? A : B));
1062 
1063   return None;
1064 }
1065 
1066 static Optional<Instruction *> instCombineLD1GatherIndex(InstCombiner &IC,
1067                                                          IntrinsicInst &II) {
1068   Value *Mask = II.getOperand(0);
1069   Value *BasePtr = II.getOperand(1);
1070   Value *Index = II.getOperand(2);
1071   Type *Ty = II.getType();
1072   Value *PassThru = ConstantAggregateZero::get(Ty);
1073 
1074   // Contiguous gather => masked load.
1075   // (sve.ld1.gather.index Mask BasePtr (sve.index IndexBase 1))
1076   // => (masked.load (gep BasePtr IndexBase) Align Mask zeroinitializer)
1077   Value *IndexBase;
1078   if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
1079                        m_Value(IndexBase), m_SpecificInt(1)))) {
1080     IRBuilder<> Builder(II.getContext());
1081     Builder.SetInsertPoint(&II);
1082 
1083     Align Alignment =
1084         BasePtr->getPointerAlignment(II.getModule()->getDataLayout());
1085 
1086     Type *VecPtrTy = PointerType::getUnqual(Ty);
1087     Value *Ptr = Builder.CreateGEP(
1088         cast<VectorType>(Ty)->getElementType(), BasePtr, IndexBase);
1089     Ptr = Builder.CreateBitCast(Ptr, VecPtrTy);
1090     CallInst *MaskedLoad =
1091         Builder.CreateMaskedLoad(Ty, Ptr, Alignment, Mask, PassThru);
1092     MaskedLoad->takeName(&II);
1093     return IC.replaceInstUsesWith(II, MaskedLoad);
1094   }
1095 
1096   return None;
1097 }
1098 
1099 static Optional<Instruction *> instCombineST1ScatterIndex(InstCombiner &IC,
1100                                                           IntrinsicInst &II) {
1101   Value *Val = II.getOperand(0);
1102   Value *Mask = II.getOperand(1);
1103   Value *BasePtr = II.getOperand(2);
1104   Value *Index = II.getOperand(3);
1105   Type *Ty = Val->getType();
1106 
1107   // Contiguous scatter => masked store.
1108   // (sve.st1.scatter.index Value Mask BasePtr (sve.index IndexBase 1))
1109   // => (masked.store Value (gep BasePtr IndexBase) Align Mask)
1110   Value *IndexBase;
1111   if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
1112                        m_Value(IndexBase), m_SpecificInt(1)))) {
1113     IRBuilder<> Builder(II.getContext());
1114     Builder.SetInsertPoint(&II);
1115 
1116     Align Alignment =
1117         BasePtr->getPointerAlignment(II.getModule()->getDataLayout());
1118 
1119     Value *Ptr = Builder.CreateGEP(
1120         cast<VectorType>(Ty)->getElementType(), BasePtr, IndexBase);
1121     Type *VecPtrTy = PointerType::getUnqual(Ty);
1122     Ptr = Builder.CreateBitCast(Ptr, VecPtrTy);
1123 
1124     (void)Builder.CreateMaskedStore(Val, Ptr, Alignment, Mask);
1125 
1126     return IC.eraseInstFromFunction(II);
1127   }
1128 
1129   return None;
1130 }
1131 
1132 static Optional<Instruction *> instCombineSVESDIV(InstCombiner &IC,
1133                                                   IntrinsicInst &II) {
1134   IRBuilder<> Builder(II.getContext());
1135   Builder.SetInsertPoint(&II);
1136   Type *Int32Ty = Builder.getInt32Ty();
1137   Value *Pred = II.getOperand(0);
1138   Value *Vec = II.getOperand(1);
1139   Value *DivVec = II.getOperand(2);
1140 
1141   Value *SplatValue = getSplatValue(DivVec);
1142   ConstantInt *SplatConstantInt = dyn_cast_or_null<ConstantInt>(SplatValue);
1143   if (!SplatConstantInt)
1144     return None;
1145   APInt Divisor = SplatConstantInt->getValue();
1146 
1147   if (Divisor.isPowerOf2()) {
1148     Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2());
1149     auto ASRD = Builder.CreateIntrinsic(
1150         Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
1151     return IC.replaceInstUsesWith(II, ASRD);
1152   }
1153   if (Divisor.isNegatedPowerOf2()) {
1154     Divisor.negate();
1155     Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2());
1156     auto ASRD = Builder.CreateIntrinsic(
1157         Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
1158     auto NEG = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_neg,
1159                                        {ASRD->getType()}, {ASRD, Pred, ASRD});
1160     return IC.replaceInstUsesWith(II, NEG);
1161   }
1162 
1163   return None;
1164 }
1165 
1166 Optional<Instruction *>
1167 AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC,
1168                                      IntrinsicInst &II) const {
1169   Intrinsic::ID IID = II.getIntrinsicID();
1170   switch (IID) {
1171   default:
1172     break;
1173   case Intrinsic::aarch64_sve_convert_from_svbool:
1174     return instCombineConvertFromSVBool(IC, II);
1175   case Intrinsic::aarch64_sve_dup:
1176     return instCombineSVEDup(IC, II);
1177   case Intrinsic::aarch64_sve_dup_x:
1178     return instCombineSVEDupX(IC, II);
1179   case Intrinsic::aarch64_sve_cmpne:
1180   case Intrinsic::aarch64_sve_cmpne_wide:
1181     return instCombineSVECmpNE(IC, II);
1182   case Intrinsic::aarch64_sve_rdffr:
1183     return instCombineRDFFR(IC, II);
1184   case Intrinsic::aarch64_sve_lasta:
1185   case Intrinsic::aarch64_sve_lastb:
1186     return instCombineSVELast(IC, II);
1187   case Intrinsic::aarch64_sve_cntd:
1188     return instCombineSVECntElts(IC, II, 2);
1189   case Intrinsic::aarch64_sve_cntw:
1190     return instCombineSVECntElts(IC, II, 4);
1191   case Intrinsic::aarch64_sve_cnth:
1192     return instCombineSVECntElts(IC, II, 8);
1193   case Intrinsic::aarch64_sve_cntb:
1194     return instCombineSVECntElts(IC, II, 16);
1195   case Intrinsic::aarch64_sve_ptest_any:
1196   case Intrinsic::aarch64_sve_ptest_first:
1197   case Intrinsic::aarch64_sve_ptest_last:
1198     return instCombineSVEPTest(IC, II);
1199   case Intrinsic::aarch64_sve_mul:
1200   case Intrinsic::aarch64_sve_fmul:
1201     return instCombineSVEVectorMul(IC, II);
1202   case Intrinsic::aarch64_sve_fadd:
1203     return instCombineSVEVectorFAdd(IC, II);
1204   case Intrinsic::aarch64_sve_fsub:
1205     return instCombineSVEVectorBinOp(IC, II);
1206   case Intrinsic::aarch64_sve_tbl:
1207     return instCombineSVETBL(IC, II);
1208   case Intrinsic::aarch64_sve_uunpkhi:
1209   case Intrinsic::aarch64_sve_uunpklo:
1210   case Intrinsic::aarch64_sve_sunpkhi:
1211   case Intrinsic::aarch64_sve_sunpklo:
1212     return instCombineSVEUnpack(IC, II);
1213   case Intrinsic::aarch64_sve_tuple_get:
1214     return instCombineSVETupleGet(IC, II);
1215   case Intrinsic::aarch64_sve_zip1:
1216   case Intrinsic::aarch64_sve_zip2:
1217     return instCombineSVEZip(IC, II);
1218   case Intrinsic::aarch64_sve_ld1_gather_index:
1219     return instCombineLD1GatherIndex(IC, II);
1220   case Intrinsic::aarch64_sve_st1_scatter_index:
1221     return instCombineST1ScatterIndex(IC, II);
1222   case Intrinsic::aarch64_sve_ld1:
1223     return instCombineSVELD1(IC, II, DL);
1224   case Intrinsic::aarch64_sve_st1:
1225     return instCombineSVEST1(IC, II, DL);
1226   case Intrinsic::aarch64_sve_sdiv:
1227     return instCombineSVESDIV(IC, II);
1228   }
1229 
1230   return None;
1231 }
1232 
1233 Optional<Value *> AArch64TTIImpl::simplifyDemandedVectorEltsIntrinsic(
1234     InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts,
1235     APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
1236     std::function<void(Instruction *, unsigned, APInt, APInt &)>
1237         SimplifyAndSetOp) const {
1238   switch (II.getIntrinsicID()) {
1239   default:
1240     break;
1241   case Intrinsic::aarch64_neon_fcvtxn:
1242   case Intrinsic::aarch64_neon_rshrn:
1243   case Intrinsic::aarch64_neon_sqrshrn:
1244   case Intrinsic::aarch64_neon_sqrshrun:
1245   case Intrinsic::aarch64_neon_sqshrn:
1246   case Intrinsic::aarch64_neon_sqshrun:
1247   case Intrinsic::aarch64_neon_sqxtn:
1248   case Intrinsic::aarch64_neon_sqxtun:
1249   case Intrinsic::aarch64_neon_uqrshrn:
1250   case Intrinsic::aarch64_neon_uqshrn:
1251   case Intrinsic::aarch64_neon_uqxtn:
1252     SimplifyAndSetOp(&II, 0, OrigDemandedElts, UndefElts);
1253     break;
1254   }
1255 
1256   return None;
1257 }
1258 
1259 bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
1260                                            ArrayRef<const Value *> Args) {
1261 
1262   // A helper that returns a vector type from the given type. The number of
1263   // elements in type Ty determine the vector width.
1264   auto toVectorTy = [&](Type *ArgTy) {
1265     return VectorType::get(ArgTy->getScalarType(),
1266                            cast<VectorType>(DstTy)->getElementCount());
1267   };
1268 
1269   // Exit early if DstTy is not a vector type whose elements are at least
1270   // 16-bits wide.
1271   if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16)
1272     return false;
1273 
1274   // Determine if the operation has a widening variant. We consider both the
1275   // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
1276   // instructions.
1277   //
1278   // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
1279   //       verify that their extending operands are eliminated during code
1280   //       generation.
1281   switch (Opcode) {
1282   case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
1283   case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
1284     break;
1285   default:
1286     return false;
1287   }
1288 
1289   // To be a widening instruction (either the "wide" or "long" versions), the
1290   // second operand must be a sign- or zero extend having a single user. We
1291   // only consider extends having a single user because they may otherwise not
1292   // be eliminated.
1293   if (Args.size() != 2 ||
1294       (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) ||
1295       !Args[1]->hasOneUse())
1296     return false;
1297   auto *Extend = cast<CastInst>(Args[1]);
1298 
1299   // Legalize the destination type and ensure it can be used in a widening
1300   // operation.
1301   auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy);
1302   unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
1303   if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
1304     return false;
1305 
1306   // Legalize the source type and ensure it can be used in a widening
1307   // operation.
1308   auto *SrcTy = toVectorTy(Extend->getSrcTy());
1309   auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy);
1310   unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
1311   if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
1312     return false;
1313 
1314   // Get the total number of vector elements in the legalized types.
1315   InstructionCost NumDstEls =
1316       DstTyL.first * DstTyL.second.getVectorMinNumElements();
1317   InstructionCost NumSrcEls =
1318       SrcTyL.first * SrcTyL.second.getVectorMinNumElements();
1319 
1320   // Return true if the legalized types have the same number of vector elements
1321   // and the destination element type size is twice that of the source type.
1322   return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
1323 }
1324 
1325 InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
1326                                                  Type *Src,
1327                                                  TTI::CastContextHint CCH,
1328                                                  TTI::TargetCostKind CostKind,
1329                                                  const Instruction *I) {
1330   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1331   assert(ISD && "Invalid opcode");
1332 
1333   // If the cast is observable, and it is used by a widening instruction (e.g.,
1334   // uaddl, saddw, etc.), it may be free.
1335   if (I && I->hasOneUse()) {
1336     auto *SingleUser = cast<Instruction>(*I->user_begin());
1337     SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
1338     if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
1339       // If the cast is the second operand, it is free. We will generate either
1340       // a "wide" or "long" version of the widening instruction.
1341       if (I == SingleUser->getOperand(1))
1342         return 0;
1343       // If the cast is not the second operand, it will be free if it looks the
1344       // same as the second operand. In this case, we will generate a "long"
1345       // version of the widening instruction.
1346       if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
1347         if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
1348             cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
1349           return 0;
1350     }
1351   }
1352 
1353   // TODO: Allow non-throughput costs that aren't binary.
1354   auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
1355     if (CostKind != TTI::TCK_RecipThroughput)
1356       return Cost == 0 ? 0 : 1;
1357     return Cost;
1358   };
1359 
1360   EVT SrcTy = TLI->getValueType(DL, Src);
1361   EVT DstTy = TLI->getValueType(DL, Dst);
1362 
1363   if (!SrcTy.isSimple() || !DstTy.isSimple())
1364     return AdjustCost(
1365         BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
1366 
1367   static const TypeConversionCostTblEntry
1368   ConversionTbl[] = {
1369     { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32,  1 },
1370     { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64,  0 },
1371     { ISD::TRUNCATE, MVT::v8i8,  MVT::v8i32,  3 },
1372     { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
1373 
1374     // Truncations on nxvmiN
1375     { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 },
1376     { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 },
1377     { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 },
1378     { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 },
1379     { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 },
1380     { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 },
1381     { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 },
1382     { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 },
1383     { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 },
1384     { ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 1 },
1385     { ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 },
1386     { ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 },
1387     { ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 },
1388     { ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 },
1389     { ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 },
1390     { ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 },
1391 
1392     // The number of shll instructions for the extension.
1393     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1394     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
1395     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
1396     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
1397     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
1398     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
1399     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
1400     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
1401     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
1402     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
1403     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
1404     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
1405     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1406     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1407     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
1408     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
1409 
1410     // LowerVectorINT_TO_FP:
1411     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
1412     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1413     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
1414     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
1415     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1416     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
1417 
1418     // Complex: to v2f32
1419     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
1420     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
1421     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
1422     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
1423     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
1424     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
1425 
1426     // Complex: to v4f32
1427     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
1428     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
1429     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
1430     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
1431 
1432     // Complex: to v8f32
1433     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
1434     { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
1435     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
1436     { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
1437 
1438     // Complex: to v16f32
1439     { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
1440     { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
1441 
1442     // Complex: to v2f64
1443     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
1444     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
1445     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
1446     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
1447     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
1448     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
1449 
1450 
1451     // LowerVectorFP_TO_INT
1452     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
1453     { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
1454     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
1455     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
1456     { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
1457     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
1458 
1459     // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
1460     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
1461     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
1462     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
1463     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
1464     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
1465     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },
1466 
1467     // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
1468     { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
1469     { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
1470     { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
1471     { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },
1472 
1473     // Complex, from nxv2f32.
1474     { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
1475     { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
1476     { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
1477     { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f32, 1 },
1478     { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
1479     { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
1480     { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
1481     { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f32, 1 },
1482 
1483     // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
1484     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
1485     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
1486     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
1487     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
1488     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
1489     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
1490 
1491     // Complex, from nxv2f64.
1492     { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
1493     { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
1494     { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
1495     { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f64, 1 },
1496     { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
1497     { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
1498     { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
1499     { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f64, 1 },
1500 
1501     // Complex, from nxv4f32.
1502     { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
1503     { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
1504     { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
1505     { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f32, 1 },
1506     { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
1507     { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
1508     { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
1509     { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f32, 1 },
1510 
1511     // Complex, from nxv8f64. Illegal -> illegal conversions not required.
1512     { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
1513     { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f64, 7 },
1514     { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
1515     { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f64, 7 },
1516 
1517     // Complex, from nxv4f64. Illegal -> illegal conversions not required.
1518     { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
1519     { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
1520     { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f64, 3 },
1521     { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
1522     { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
1523     { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f64, 3 },
1524 
1525     // Complex, from nxv8f32. Illegal -> illegal conversions not required.
1526     { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
1527     { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f32, 3 },
1528     { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
1529     { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f32, 3 },
1530 
1531     // Complex, from nxv8f16.
1532     { ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
1533     { ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
1534     { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
1535     { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f16, 1 },
1536     { ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
1537     { ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
1538     { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
1539     { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f16, 1 },
1540 
1541     // Complex, from nxv4f16.
1542     { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
1543     { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
1544     { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
1545     { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f16, 1 },
1546     { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
1547     { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
1548     { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
1549     { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f16, 1 },
1550 
1551     // Complex, from nxv2f16.
1552     { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
1553     { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
1554     { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
1555     { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f16, 1 },
1556     { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
1557     { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
1558     { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
1559     { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f16, 1 },
1560 
1561     // Truncate from nxvmf32 to nxvmf16.
1562     { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 },
1563     { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 },
1564     { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 },
1565 
1566     // Truncate from nxvmf64 to nxvmf16.
1567     { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 },
1568     { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 },
1569     { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 },
1570 
1571     // Truncate from nxvmf64 to nxvmf32.
1572     { ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 },
1573     { ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 },
1574     { ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 },
1575 
1576     // Extend from nxvmf16 to nxvmf32.
1577     { ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1},
1578     { ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1},
1579     { ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2},
1580 
1581     // Extend from nxvmf16 to nxvmf64.
1582     { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1},
1583     { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2},
1584     { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4},
1585 
1586     // Extend from nxvmf32 to nxvmf64.
1587     { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1},
1588     { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2},
1589     { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6},
1590 
1591     // Bitcasts from float to integer
1592     { ISD::BITCAST, MVT::nxv2f16, MVT::nxv2i16, 0 },
1593     { ISD::BITCAST, MVT::nxv4f16, MVT::nxv4i16, 0 },
1594     { ISD::BITCAST, MVT::nxv2f32, MVT::nxv2i32, 0 },
1595 
1596     // Bitcasts from integer to float
1597     { ISD::BITCAST, MVT::nxv2i16, MVT::nxv2f16, 0 },
1598     { ISD::BITCAST, MVT::nxv4i16, MVT::nxv4f16, 0 },
1599     { ISD::BITCAST, MVT::nxv2i32, MVT::nxv2f32, 0 },
1600   };
1601 
1602   if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
1603                                                  DstTy.getSimpleVT(),
1604                                                  SrcTy.getSimpleVT()))
1605     return AdjustCost(Entry->Cost);
1606 
1607   return AdjustCost(
1608       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
1609 }
1610 
1611 InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode,
1612                                                          Type *Dst,
1613                                                          VectorType *VecTy,
1614                                                          unsigned Index) {
1615 
1616   // Make sure we were given a valid extend opcode.
1617   assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
1618          "Invalid opcode");
1619 
1620   // We are extending an element we extract from a vector, so the source type
1621   // of the extend is the element type of the vector.
1622   auto *Src = VecTy->getElementType();
1623 
1624   // Sign- and zero-extends are for integer types only.
1625   assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");
1626 
1627   // Get the cost for the extract. We compute the cost (if any) for the extend
1628   // below.
1629   InstructionCost Cost =
1630       getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);
1631 
1632   // Legalize the types.
1633   auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
1634   auto DstVT = TLI->getValueType(DL, Dst);
1635   auto SrcVT = TLI->getValueType(DL, Src);
1636   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1637 
1638   // If the resulting type is still a vector and the destination type is legal,
1639   // we may get the extension for free. If not, get the default cost for the
1640   // extend.
1641   if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
1642     return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
1643                                    CostKind);
1644 
1645   // The destination type should be larger than the element type. If not, get
1646   // the default cost for the extend.
1647   if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits())
1648     return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
1649                                    CostKind);
1650 
1651   switch (Opcode) {
1652   default:
1653     llvm_unreachable("Opcode should be either SExt or ZExt");
1654 
1655   // For sign-extends, we only need a smov, which performs the extension
1656   // automatically.
1657   case Instruction::SExt:
1658     return Cost;
1659 
1660   // For zero-extends, the extend is performed automatically by a umov unless
1661   // the destination type is i64 and the element type is i8 or i16.
1662   case Instruction::ZExt:
1663     if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
1664       return Cost;
1665   }
1666 
1667   // If we are unable to perform the extend for free, get the default cost.
1668   return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
1669                                  CostKind);
1670 }
1671 
1672 InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode,
1673                                                TTI::TargetCostKind CostKind,
1674                                                const Instruction *I) {
1675   if (CostKind != TTI::TCK_RecipThroughput)
1676     return Opcode == Instruction::PHI ? 0 : 1;
1677   assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind");
1678   // Branches are assumed to be predicted.
1679   return 0;
1680 }
1681 
1682 InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
1683                                                    unsigned Index) {
1684   assert(Val->isVectorTy() && "This must be a vector type");
1685 
1686   if (Index != -1U) {
1687     // Legalize the type.
1688     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
1689 
1690     // This type is legalized to a scalar type.
1691     if (!LT.second.isVector())
1692       return 0;
1693 
1694     // The type may be split. For fixed-width vectors we can normalize the
1695     // index to the new type.
1696     if (LT.second.isFixedLengthVector()) {
1697       unsigned Width = LT.second.getVectorNumElements();
1698       Index = Index % Width;
1699     }
1700 
1701     // The element at index zero is already inside the vector.
1702     if (Index == 0)
1703       return 0;
1704   }
1705 
1706   // All other insert/extracts cost this much.
1707   return ST->getVectorInsertExtractBaseCost();
1708 }
1709 
1710 InstructionCost AArch64TTIImpl::getArithmeticInstrCost(
1711     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
1712     TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
1713     TTI::OperandValueProperties Opd1PropInfo,
1714     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
1715     const Instruction *CxtI) {
1716   // TODO: Handle more cost kinds.
1717   if (CostKind != TTI::TCK_RecipThroughput)
1718     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
1719                                          Opd2Info, Opd1PropInfo,
1720                                          Opd2PropInfo, Args, CxtI);
1721 
1722   // Legalize the type.
1723   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
1724 
1725   // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
1726   // add in the widening overhead specified by the sub-target. Since the
1727   // extends feeding widening instructions are performed automatically, they
1728   // aren't present in the generated code and have a zero cost. By adding a
1729   // widening overhead here, we attach the total cost of the combined operation
1730   // to the widening instruction.
1731   InstructionCost Cost = 0;
1732   if (isWideningInstruction(Ty, Opcode, Args))
1733     Cost += ST->getWideningBaseCost();
1734 
1735   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1736 
1737   switch (ISD) {
1738   default:
1739     return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
1740                                                 Opd2Info,
1741                                                 Opd1PropInfo, Opd2PropInfo);
1742   case ISD::SDIV:
1743     if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
1744         Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
1745       // On AArch64, scalar signed division by constants power-of-two are
1746       // normally expanded to the sequence ADD + CMP + SELECT + SRA.
1747       // The OperandValue properties many not be same as that of previous
1748       // operation; conservatively assume OP_None.
1749       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind,
1750                                      Opd1Info, Opd2Info,
1751                                      TargetTransformInfo::OP_None,
1752                                      TargetTransformInfo::OP_None);
1753       Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind,
1754                                      Opd1Info, Opd2Info,
1755                                      TargetTransformInfo::OP_None,
1756                                      TargetTransformInfo::OP_None);
1757       Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind,
1758                                      Opd1Info, Opd2Info,
1759                                      TargetTransformInfo::OP_None,
1760                                      TargetTransformInfo::OP_None);
1761       Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
1762                                      Opd1Info, Opd2Info,
1763                                      TargetTransformInfo::OP_None,
1764                                      TargetTransformInfo::OP_None);
1765       return Cost;
1766     }
1767     LLVM_FALLTHROUGH;
1768   case ISD::UDIV:
1769     if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) {
1770       auto VT = TLI->getValueType(DL, Ty);
1771       if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
1772         // Vector signed division by constant are expanded to the
1773         // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
1774         // to MULHS + SUB + SRL + ADD + SRL.
1775         InstructionCost MulCost = getArithmeticInstrCost(
1776             Instruction::Mul, Ty, CostKind, Opd1Info, Opd2Info,
1777             TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1778         InstructionCost AddCost = getArithmeticInstrCost(
1779             Instruction::Add, Ty, CostKind, Opd1Info, Opd2Info,
1780             TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1781         InstructionCost ShrCost = getArithmeticInstrCost(
1782             Instruction::AShr, Ty, CostKind, Opd1Info, Opd2Info,
1783             TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
1784         return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
1785       }
1786     }
1787 
1788     Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
1789                                           Opd2Info,
1790                                           Opd1PropInfo, Opd2PropInfo);
1791     if (Ty->isVectorTy()) {
1792       // On AArch64, vector divisions are not supported natively and are
1793       // expanded into scalar divisions of each pair of elements.
1794       Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind,
1795                                      Opd1Info, Opd2Info, Opd1PropInfo,
1796                                      Opd2PropInfo);
1797       Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind,
1798                                      Opd1Info, Opd2Info, Opd1PropInfo,
1799                                      Opd2PropInfo);
1800       // TODO: if one of the arguments is scalar, then it's not necessary to
1801       // double the cost of handling the vector elements.
1802       Cost += Cost;
1803     }
1804     return Cost;
1805 
1806   case ISD::MUL:
1807     if (LT.second != MVT::v2i64)
1808       return (Cost + 1) * LT.first;
1809     // Since we do not have a MUL.2d instruction, a mul <2 x i64> is expensive
1810     // as elements are extracted from the vectors and the muls scalarized.
1811     // As getScalarizationOverhead is a bit too pessimistic, we estimate the
1812     // cost for a i64 vector directly here, which is:
1813     // - four i64 extracts,
1814     // - two i64 inserts, and
1815     // - two muls.
1816     // So, for a v2i64 with LT.First = 1 the cost is 8, and for a v4i64 with
1817     // LT.first = 2 the cost is 16.
1818     return LT.first * 8;
1819   case ISD::ADD:
1820   case ISD::XOR:
1821   case ISD::OR:
1822   case ISD::AND:
1823     // These nodes are marked as 'custom' for combining purposes only.
1824     // We know that they are legal. See LowerAdd in ISelLowering.
1825     return (Cost + 1) * LT.first;
1826 
1827   case ISD::FADD:
1828   case ISD::FSUB:
1829   case ISD::FMUL:
1830   case ISD::FDIV:
1831   case ISD::FNEG:
1832     // These nodes are marked as 'custom' just to lower them to SVE.
1833     // We know said lowering will incur no additional cost.
1834     if (!Ty->getScalarType()->isFP128Ty())
1835       return (Cost + 2) * LT.first;
1836 
1837     return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
1838                                                 Opd2Info,
1839                                                 Opd1PropInfo, Opd2PropInfo);
1840   }
1841 }
1842 
1843 InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty,
1844                                                           ScalarEvolution *SE,
1845                                                           const SCEV *Ptr) {
1846   // Address computations in vectorized code with non-consecutive addresses will
1847   // likely result in more instructions compared to scalar code where the
1848   // computation can more often be merged into the index mode. The resulting
1849   // extra micro-ops can significantly decrease throughput.
1850   unsigned NumVectorInstToHideOverhead = 10;
1851   int MaxMergeDistance = 64;
1852 
1853   if (Ty->isVectorTy() && SE &&
1854       !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
1855     return NumVectorInstToHideOverhead;
1856 
1857   // In many cases the address computation is not merged into the instruction
1858   // addressing mode.
1859   return 1;
1860 }
1861 
1862 InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
1863                                                    Type *CondTy,
1864                                                    CmpInst::Predicate VecPred,
1865                                                    TTI::TargetCostKind CostKind,
1866                                                    const Instruction *I) {
1867   // TODO: Handle other cost kinds.
1868   if (CostKind != TTI::TCK_RecipThroughput)
1869     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
1870                                      I);
1871 
1872   int ISD = TLI->InstructionOpcodeToISD(Opcode);
1873   // We don't lower some vector selects well that are wider than the register
1874   // width.
1875   if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) {
1876     // We would need this many instructions to hide the scalarization happening.
1877     const int AmortizationCost = 20;
1878 
1879     // If VecPred is not set, check if we can get a predicate from the context
1880     // instruction, if its type matches the requested ValTy.
1881     if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) {
1882       CmpInst::Predicate CurrentPred;
1883       if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(),
1884                             m_Value())))
1885         VecPred = CurrentPred;
1886     }
1887     // Check if we have a compare/select chain that can be lowered using
1888     // a (F)CMxx & BFI pair.
1889     if (CmpInst::isIntPredicate(VecPred) || VecPred == CmpInst::FCMP_OLE ||
1890         VecPred == CmpInst::FCMP_OLT || VecPred == CmpInst::FCMP_OGT ||
1891         VecPred == CmpInst::FCMP_OGE || VecPred == CmpInst::FCMP_OEQ ||
1892         VecPred == CmpInst::FCMP_UNE) {
1893       static const auto ValidMinMaxTys = {
1894           MVT::v8i8,  MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32,
1895           MVT::v4i32, MVT::v2i64, MVT::v2f32, MVT::v4f32, MVT::v2f64};
1896       static const auto ValidFP16MinMaxTys = {MVT::v4f16, MVT::v8f16};
1897 
1898       auto LT = TLI->getTypeLegalizationCost(DL, ValTy);
1899       if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }) ||
1900           (ST->hasFullFP16() &&
1901            any_of(ValidFP16MinMaxTys, [&LT](MVT M) { return M == LT.second; })))
1902         return LT.first;
1903     }
1904 
1905     static const TypeConversionCostTblEntry
1906     VectorSelectTbl[] = {
1907       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
1908       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
1909       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
1910       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
1911       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
1912       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
1913     };
1914 
1915     EVT SelCondTy = TLI->getValueType(DL, CondTy);
1916     EVT SelValTy = TLI->getValueType(DL, ValTy);
1917     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
1918       if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
1919                                                      SelCondTy.getSimpleVT(),
1920                                                      SelValTy.getSimpleVT()))
1921         return Entry->Cost;
1922     }
1923   }
1924   // The base case handles scalable vectors fine for now, since it treats the
1925   // cost as 1 * legalization cost.
1926   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
1927 }
1928 
1929 AArch64TTIImpl::TTI::MemCmpExpansionOptions
1930 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
1931   TTI::MemCmpExpansionOptions Options;
1932   if (ST->requiresStrictAlign()) {
1933     // TODO: Add cost modeling for strict align. Misaligned loads expand to
1934     // a bunch of instructions when strict align is enabled.
1935     return Options;
1936   }
1937   Options.AllowOverlappingLoads = true;
1938   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
1939   Options.NumLoadsPerBlock = Options.MaxNumLoads;
1940   // TODO: Though vector loads usually perform well on AArch64, in some targets
1941   // they may wake up the FP unit, which raises the power consumption.  Perhaps
1942   // they could be used with no holds barred (-O3).
1943   Options.LoadSizes = {8, 4, 2, 1};
1944   return Options;
1945 }
1946 
1947 InstructionCost
1948 AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
1949                                       Align Alignment, unsigned AddressSpace,
1950                                       TTI::TargetCostKind CostKind) {
1951   if (useNeonVector(Src))
1952     return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1953                                         CostKind);
1954   auto LT = TLI->getTypeLegalizationCost(DL, Src);
1955   if (!LT.first.isValid())
1956     return InstructionCost::getInvalid();
1957 
1958   // The code-generator is currently not able to handle scalable vectors
1959   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
1960   // it. This change will be removed when code-generation for these types is
1961   // sufficiently reliable.
1962   if (cast<VectorType>(Src)->getElementCount() == ElementCount::getScalable(1))
1963     return InstructionCost::getInvalid();
1964 
1965   return LT.first * 2;
1966 }
1967 
1968 static unsigned getSVEGatherScatterOverhead(unsigned Opcode) {
1969   return Opcode == Instruction::Load ? SVEGatherOverhead : SVEScatterOverhead;
1970 }
1971 
1972 InstructionCost AArch64TTIImpl::getGatherScatterOpCost(
1973     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1974     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
1975   if (useNeonVector(DataTy))
1976     return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
1977                                          Alignment, CostKind, I);
1978   auto *VT = cast<VectorType>(DataTy);
1979   auto LT = TLI->getTypeLegalizationCost(DL, DataTy);
1980   if (!LT.first.isValid())
1981     return InstructionCost::getInvalid();
1982 
1983   // The code-generator is currently not able to handle scalable vectors
1984   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
1985   // it. This change will be removed when code-generation for these types is
1986   // sufficiently reliable.
1987   if (cast<VectorType>(DataTy)->getElementCount() ==
1988       ElementCount::getScalable(1))
1989     return InstructionCost::getInvalid();
1990 
1991   ElementCount LegalVF = LT.second.getVectorElementCount();
1992   InstructionCost MemOpCost =
1993       getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind, I);
1994   // Add on an overhead cost for using gathers/scatters.
1995   // TODO: At the moment this is applied unilaterally for all CPUs, but at some
1996   // point we may want a per-CPU overhead.
1997   MemOpCost *= getSVEGatherScatterOverhead(Opcode);
1998   return LT.first * MemOpCost * getMaxNumElements(LegalVF);
1999 }
2000 
2001 bool AArch64TTIImpl::useNeonVector(const Type *Ty) const {
2002   return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors();
2003 }
2004 
2005 InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
2006                                                 MaybeAlign Alignment,
2007                                                 unsigned AddressSpace,
2008                                                 TTI::TargetCostKind CostKind,
2009                                                 const Instruction *I) {
2010   EVT VT = TLI->getValueType(DL, Ty, true);
2011   // Type legalization can't handle structs
2012   if (VT == MVT::Other)
2013     return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
2014                                   CostKind);
2015 
2016   auto LT = TLI->getTypeLegalizationCost(DL, Ty);
2017   if (!LT.first.isValid())
2018     return InstructionCost::getInvalid();
2019 
2020   // The code-generator is currently not able to handle scalable vectors
2021   // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
2022   // it. This change will be removed when code-generation for these types is
2023   // sufficiently reliable.
2024   if (auto *VTy = dyn_cast<ScalableVectorType>(Ty))
2025     if (VTy->getElementCount() == ElementCount::getScalable(1))
2026       return InstructionCost::getInvalid();
2027 
2028   // TODO: consider latency as well for TCK_SizeAndLatency.
2029   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
2030     return LT.first;
2031 
2032   if (CostKind != TTI::TCK_RecipThroughput)
2033     return 1;
2034 
2035   if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
2036       LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
2037     // Unaligned stores are extremely inefficient. We don't split all
2038     // unaligned 128-bit stores because the negative impact that has shown in
2039     // practice on inlined block copy code.
2040     // We make such stores expensive so that we will only vectorize if there
2041     // are 6 other instructions getting vectorized.
2042     const int AmortizationCost = 6;
2043 
2044     return LT.first * 2 * AmortizationCost;
2045   }
2046 
2047   // Check truncating stores and extending loads.
2048   if (useNeonVector(Ty) &&
2049       Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) {
2050     // v4i8 types are lowered to scalar a load/store and sshll/xtn.
2051     if (VT == MVT::v4i8)
2052       return 2;
2053     // Otherwise we need to scalarize.
2054     return cast<FixedVectorType>(Ty)->getNumElements() * 2;
2055   }
2056 
2057   return LT.first;
2058 }
2059 
2060 InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost(
2061     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
2062     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
2063     bool UseMaskForCond, bool UseMaskForGaps) {
2064   assert(Factor >= 2 && "Invalid interleave factor");
2065   auto *VecVTy = cast<FixedVectorType>(VecTy);
2066 
2067   if (!UseMaskForCond && !UseMaskForGaps &&
2068       Factor <= TLI->getMaxSupportedInterleaveFactor()) {
2069     unsigned NumElts = VecVTy->getNumElements();
2070     auto *SubVecTy =
2071         FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
2072 
2073     // ldN/stN only support legal vector types of size 64 or 128 in bits.
2074     // Accesses having vector types that are a multiple of 128 bits can be
2075     // matched to more than one ldN/stN instruction.
2076     bool UseScalable;
2077     if (NumElts % Factor == 0 &&
2078         TLI->isLegalInterleavedAccessType(SubVecTy, DL, UseScalable))
2079       return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL, UseScalable);
2080   }
2081 
2082   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2083                                            Alignment, AddressSpace, CostKind,
2084                                            UseMaskForCond, UseMaskForGaps);
2085 }
2086 
2087 InstructionCost
2088 AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
2089   InstructionCost Cost = 0;
2090   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
2091   for (auto *I : Tys) {
2092     if (!I->isVectorTy())
2093       continue;
2094     if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() ==
2095         128)
2096       Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) +
2097               getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind);
2098   }
2099   return Cost;
2100 }
2101 
2102 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
2103   return ST->getMaxInterleaveFactor();
2104 }
2105 
2106 // For Falkor, we want to avoid having too many strided loads in a loop since
2107 // that can exhaust the HW prefetcher resources.  We adjust the unroller
2108 // MaxCount preference below to attempt to ensure unrolling doesn't create too
2109 // many strided loads.
2110 static void
2111 getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
2112                               TargetTransformInfo::UnrollingPreferences &UP) {
2113   enum { MaxStridedLoads = 7 };
2114   auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
2115     int StridedLoads = 0;
2116     // FIXME? We could make this more precise by looking at the CFG and
2117     // e.g. not counting loads in each side of an if-then-else diamond.
2118     for (const auto BB : L->blocks()) {
2119       for (auto &I : *BB) {
2120         LoadInst *LMemI = dyn_cast<LoadInst>(&I);
2121         if (!LMemI)
2122           continue;
2123 
2124         Value *PtrValue = LMemI->getPointerOperand();
2125         if (L->isLoopInvariant(PtrValue))
2126           continue;
2127 
2128         const SCEV *LSCEV = SE.getSCEV(PtrValue);
2129         const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
2130         if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
2131           continue;
2132 
2133         // FIXME? We could take pairing of unrolled load copies into account
2134         // by looking at the AddRec, but we would probably have to limit this
2135         // to loops with no stores or other memory optimization barriers.
2136         ++StridedLoads;
2137         // We've seen enough strided loads that seeing more won't make a
2138         // difference.
2139         if (StridedLoads > MaxStridedLoads / 2)
2140           return StridedLoads;
2141       }
2142     }
2143     return StridedLoads;
2144   };
2145 
2146   int StridedLoads = countStridedLoads(L, SE);
2147   LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
2148                     << " strided loads\n");
2149   // Pick the largest power of 2 unroll count that won't result in too many
2150   // strided loads.
2151   if (StridedLoads) {
2152     UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
2153     LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
2154                       << UP.MaxCount << '\n');
2155   }
2156 }
2157 
2158 void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
2159                                              TTI::UnrollingPreferences &UP,
2160                                              OptimizationRemarkEmitter *ORE) {
2161   // Enable partial unrolling and runtime unrolling.
2162   BaseT::getUnrollingPreferences(L, SE, UP, ORE);
2163 
2164   UP.UpperBound = true;
2165 
2166   // For inner loop, it is more likely to be a hot one, and the runtime check
2167   // can be promoted out from LICM pass, so the overhead is less, let's try
2168   // a larger threshold to unroll more loops.
2169   if (L->getLoopDepth() > 1)
2170     UP.PartialThreshold *= 2;
2171 
2172   // Disable partial & runtime unrolling on -Os.
2173   UP.PartialOptSizeThreshold = 0;
2174 
2175   if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
2176       EnableFalkorHWPFUnrollFix)
2177     getFalkorUnrollingPreferences(L, SE, UP);
2178 
2179   // Scan the loop: don't unroll loops with calls as this could prevent
2180   // inlining. Don't unroll vector loops either, as they don't benefit much from
2181   // unrolling.
2182   for (auto *BB : L->getBlocks()) {
2183     for (auto &I : *BB) {
2184       // Don't unroll vectorised loop.
2185       if (I.getType()->isVectorTy())
2186         return;
2187 
2188       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
2189         if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
2190           if (!isLoweredToCall(F))
2191             continue;
2192         }
2193         return;
2194       }
2195     }
2196   }
2197 
2198   // Enable runtime unrolling for in-order models
2199   // If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by
2200   // checking for that case, we can ensure that the default behaviour is
2201   // unchanged
2202   if (ST->getProcFamily() != AArch64Subtarget::Others &&
2203       !ST->getSchedModel().isOutOfOrder()) {
2204     UP.Runtime = true;
2205     UP.Partial = true;
2206     UP.UnrollRemainder = true;
2207     UP.DefaultUnrollRuntimeCount = 4;
2208 
2209     UP.UnrollAndJam = true;
2210     UP.UnrollAndJamInnerLoopThreshold = 60;
2211   }
2212 }
2213 
2214 void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
2215                                            TTI::PeelingPreferences &PP) {
2216   BaseT::getPeelingPreferences(L, SE, PP);
2217 }
2218 
2219 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
2220                                                          Type *ExpectedType) {
2221   switch (Inst->getIntrinsicID()) {
2222   default:
2223     return nullptr;
2224   case Intrinsic::aarch64_neon_st2:
2225   case Intrinsic::aarch64_neon_st3:
2226   case Intrinsic::aarch64_neon_st4: {
2227     // Create a struct type
2228     StructType *ST = dyn_cast<StructType>(ExpectedType);
2229     if (!ST)
2230       return nullptr;
2231     unsigned NumElts = Inst->arg_size() - 1;
2232     if (ST->getNumElements() != NumElts)
2233       return nullptr;
2234     for (unsigned i = 0, e = NumElts; i != e; ++i) {
2235       if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
2236         return nullptr;
2237     }
2238     Value *Res = UndefValue::get(ExpectedType);
2239     IRBuilder<> Builder(Inst);
2240     for (unsigned i = 0, e = NumElts; i != e; ++i) {
2241       Value *L = Inst->getArgOperand(i);
2242       Res = Builder.CreateInsertValue(Res, L, i);
2243     }
2244     return Res;
2245   }
2246   case Intrinsic::aarch64_neon_ld2:
2247   case Intrinsic::aarch64_neon_ld3:
2248   case Intrinsic::aarch64_neon_ld4:
2249     if (Inst->getType() == ExpectedType)
2250       return Inst;
2251     return nullptr;
2252   }
2253 }
2254 
2255 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
2256                                         MemIntrinsicInfo &Info) {
2257   switch (Inst->getIntrinsicID()) {
2258   default:
2259     break;
2260   case Intrinsic::aarch64_neon_ld2:
2261   case Intrinsic::aarch64_neon_ld3:
2262   case Intrinsic::aarch64_neon_ld4:
2263     Info.ReadMem = true;
2264     Info.WriteMem = false;
2265     Info.PtrVal = Inst->getArgOperand(0);
2266     break;
2267   case Intrinsic::aarch64_neon_st2:
2268   case Intrinsic::aarch64_neon_st3:
2269   case Intrinsic::aarch64_neon_st4:
2270     Info.ReadMem = false;
2271     Info.WriteMem = true;
2272     Info.PtrVal = Inst->getArgOperand(Inst->arg_size() - 1);
2273     break;
2274   }
2275 
2276   switch (Inst->getIntrinsicID()) {
2277   default:
2278     return false;
2279   case Intrinsic::aarch64_neon_ld2:
2280   case Intrinsic::aarch64_neon_st2:
2281     Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
2282     break;
2283   case Intrinsic::aarch64_neon_ld3:
2284   case Intrinsic::aarch64_neon_st3:
2285     Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
2286     break;
2287   case Intrinsic::aarch64_neon_ld4:
2288   case Intrinsic::aarch64_neon_st4:
2289     Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
2290     break;
2291   }
2292   return true;
2293 }
2294 
2295 /// See if \p I should be considered for address type promotion. We check if \p
2296 /// I is a sext with right type and used in memory accesses. If it used in a
2297 /// "complex" getelementptr, we allow it to be promoted without finding other
2298 /// sext instructions that sign extended the same initial value. A getelementptr
2299 /// is considered as "complex" if it has more than 2 operands.
2300 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
2301     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
2302   bool Considerable = false;
2303   AllowPromotionWithoutCommonHeader = false;
2304   if (!isa<SExtInst>(&I))
2305     return false;
2306   Type *ConsideredSExtType =
2307       Type::getInt64Ty(I.getParent()->getParent()->getContext());
2308   if (I.getType() != ConsideredSExtType)
2309     return false;
2310   // See if the sext is the one with the right type and used in at least one
2311   // GetElementPtrInst.
2312   for (const User *U : I.users()) {
2313     if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
2314       Considerable = true;
2315       // A getelementptr is considered as "complex" if it has more than 2
2316       // operands. We will promote a SExt used in such complex GEP as we
2317       // expect some computation to be merged if they are done on 64 bits.
2318       if (GEPInst->getNumOperands() > 2) {
2319         AllowPromotionWithoutCommonHeader = true;
2320         break;
2321       }
2322     }
2323   }
2324   return Considerable;
2325 }
2326 
2327 bool AArch64TTIImpl::isLegalToVectorizeReduction(
2328     const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
2329   if (!VF.isScalable())
2330     return true;
2331 
2332   Type *Ty = RdxDesc.getRecurrenceType();
2333   if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty))
2334     return false;
2335 
2336   switch (RdxDesc.getRecurrenceKind()) {
2337   case RecurKind::Add:
2338   case RecurKind::FAdd:
2339   case RecurKind::And:
2340   case RecurKind::Or:
2341   case RecurKind::Xor:
2342   case RecurKind::SMin:
2343   case RecurKind::SMax:
2344   case RecurKind::UMin:
2345   case RecurKind::UMax:
2346   case RecurKind::FMin:
2347   case RecurKind::FMax:
2348   case RecurKind::SelectICmp:
2349   case RecurKind::SelectFCmp:
2350   case RecurKind::FMulAdd:
2351     return true;
2352   default:
2353     return false;
2354   }
2355 }
2356 
2357 InstructionCost
2358 AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
2359                                        bool IsUnsigned,
2360                                        TTI::TargetCostKind CostKind) {
2361   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
2362 
2363   if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16())
2364     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
2365 
2366   assert((isa<ScalableVectorType>(Ty) == isa<ScalableVectorType>(CondTy)) &&
2367          "Both vector needs to be equally scalable");
2368 
2369   InstructionCost LegalizationCost = 0;
2370   if (LT.first > 1) {
2371     Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext());
2372     unsigned MinMaxOpcode =
2373         Ty->isFPOrFPVectorTy()
2374             ? Intrinsic::maxnum
2375             : (IsUnsigned ? Intrinsic::umin : Intrinsic::smin);
2376     IntrinsicCostAttributes Attrs(MinMaxOpcode, LegalVTy, {LegalVTy, LegalVTy});
2377     LegalizationCost = getIntrinsicInstrCost(Attrs, CostKind) * (LT.first - 1);
2378   }
2379 
2380   return LegalizationCost + /*Cost of horizontal reduction*/ 2;
2381 }
2382 
2383 InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE(
2384     unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) {
2385   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2386   InstructionCost LegalizationCost = 0;
2387   if (LT.first > 1) {
2388     Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext());
2389     LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind);
2390     LegalizationCost *= LT.first - 1;
2391   }
2392 
2393   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2394   assert(ISD && "Invalid opcode");
2395   // Add the final reduction cost for the legal horizontal reduction
2396   switch (ISD) {
2397   case ISD::ADD:
2398   case ISD::AND:
2399   case ISD::OR:
2400   case ISD::XOR:
2401   case ISD::FADD:
2402     return LegalizationCost + 2;
2403   default:
2404     return InstructionCost::getInvalid();
2405   }
2406 }
2407 
2408 InstructionCost
2409 AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
2410                                            Optional<FastMathFlags> FMF,
2411                                            TTI::TargetCostKind CostKind) {
2412   if (TTI::requiresOrderedReduction(FMF)) {
2413     if (auto *FixedVTy = dyn_cast<FixedVectorType>(ValTy)) {
2414       InstructionCost BaseCost =
2415           BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
2416       // Add on extra cost to reflect the extra overhead on some CPUs. We still
2417       // end up vectorizing for more computationally intensive loops.
2418       return BaseCost + FixedVTy->getNumElements();
2419     }
2420 
2421     if (Opcode != Instruction::FAdd)
2422       return InstructionCost::getInvalid();
2423 
2424     auto *VTy = cast<ScalableVectorType>(ValTy);
2425     InstructionCost Cost =
2426         getArithmeticInstrCost(Opcode, VTy->getScalarType(), CostKind);
2427     Cost *= getMaxNumElements(VTy->getElementCount());
2428     return Cost;
2429   }
2430 
2431   if (isa<ScalableVectorType>(ValTy))
2432     return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind);
2433 
2434   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
2435   MVT MTy = LT.second;
2436   int ISD = TLI->InstructionOpcodeToISD(Opcode);
2437   assert(ISD && "Invalid opcode");
2438 
2439   // Horizontal adds can use the 'addv' instruction. We model the cost of these
2440   // instructions as twice a normal vector add, plus 1 for each legalization
2441   // step (LT.first). This is the only arithmetic vector reduction operation for
2442   // which we have an instruction.
2443   // OR, XOR and AND costs should match the codegen from:
2444   // OR: llvm/test/CodeGen/AArch64/reduce-or.ll
2445   // XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll
2446   // AND: llvm/test/CodeGen/AArch64/reduce-and.ll
2447   static const CostTblEntry CostTblNoPairwise[]{
2448       {ISD::ADD, MVT::v8i8,   2},
2449       {ISD::ADD, MVT::v16i8,  2},
2450       {ISD::ADD, MVT::v4i16,  2},
2451       {ISD::ADD, MVT::v8i16,  2},
2452       {ISD::ADD, MVT::v4i32,  2},
2453       {ISD::OR,  MVT::v8i8,  15},
2454       {ISD::OR,  MVT::v16i8, 17},
2455       {ISD::OR,  MVT::v4i16,  7},
2456       {ISD::OR,  MVT::v8i16,  9},
2457       {ISD::OR,  MVT::v2i32,  3},
2458       {ISD::OR,  MVT::v4i32,  5},
2459       {ISD::OR,  MVT::v2i64,  3},
2460       {ISD::XOR, MVT::v8i8,  15},
2461       {ISD::XOR, MVT::v16i8, 17},
2462       {ISD::XOR, MVT::v4i16,  7},
2463       {ISD::XOR, MVT::v8i16,  9},
2464       {ISD::XOR, MVT::v2i32,  3},
2465       {ISD::XOR, MVT::v4i32,  5},
2466       {ISD::XOR, MVT::v2i64,  3},
2467       {ISD::AND, MVT::v8i8,  15},
2468       {ISD::AND, MVT::v16i8, 17},
2469       {ISD::AND, MVT::v4i16,  7},
2470       {ISD::AND, MVT::v8i16,  9},
2471       {ISD::AND, MVT::v2i32,  3},
2472       {ISD::AND, MVT::v4i32,  5},
2473       {ISD::AND, MVT::v2i64,  3},
2474   };
2475   switch (ISD) {
2476   default:
2477     break;
2478   case ISD::ADD:
2479     if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
2480       return (LT.first - 1) + Entry->Cost;
2481     break;
2482   case ISD::XOR:
2483   case ISD::AND:
2484   case ISD::OR:
2485     const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy);
2486     if (!Entry)
2487       break;
2488     auto *ValVTy = cast<FixedVectorType>(ValTy);
2489     if (!ValVTy->getElementType()->isIntegerTy(1) &&
2490         MTy.getVectorNumElements() <= ValVTy->getNumElements() &&
2491         isPowerOf2_32(ValVTy->getNumElements())) {
2492       InstructionCost ExtraCost = 0;
2493       if (LT.first != 1) {
2494         // Type needs to be split, so there is an extra cost of LT.first - 1
2495         // arithmetic ops.
2496         auto *Ty = FixedVectorType::get(ValTy->getElementType(),
2497                                         MTy.getVectorNumElements());
2498         ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
2499         ExtraCost *= LT.first - 1;
2500       }
2501       return Entry->Cost + ExtraCost;
2502     }
2503     break;
2504   }
2505   return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
2506 }
2507 
2508 InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) {
2509   static const CostTblEntry ShuffleTbl[] = {
2510       { TTI::SK_Splice, MVT::nxv16i8,  1 },
2511       { TTI::SK_Splice, MVT::nxv8i16,  1 },
2512       { TTI::SK_Splice, MVT::nxv4i32,  1 },
2513       { TTI::SK_Splice, MVT::nxv2i64,  1 },
2514       { TTI::SK_Splice, MVT::nxv2f16,  1 },
2515       { TTI::SK_Splice, MVT::nxv4f16,  1 },
2516       { TTI::SK_Splice, MVT::nxv8f16,  1 },
2517       { TTI::SK_Splice, MVT::nxv2bf16, 1 },
2518       { TTI::SK_Splice, MVT::nxv4bf16, 1 },
2519       { TTI::SK_Splice, MVT::nxv8bf16, 1 },
2520       { TTI::SK_Splice, MVT::nxv2f32,  1 },
2521       { TTI::SK_Splice, MVT::nxv4f32,  1 },
2522       { TTI::SK_Splice, MVT::nxv2f64,  1 },
2523   };
2524 
2525   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
2526   Type *LegalVTy = EVT(LT.second).getTypeForEVT(Tp->getContext());
2527   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
2528   EVT PromotedVT = LT.second.getScalarType() == MVT::i1
2529                        ? TLI->getPromotedVTForPredicate(EVT(LT.second))
2530                        : LT.second;
2531   Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Tp->getContext());
2532   InstructionCost LegalizationCost = 0;
2533   if (Index < 0) {
2534     LegalizationCost =
2535         getCmpSelInstrCost(Instruction::ICmp, PromotedVTy, PromotedVTy,
2536                            CmpInst::BAD_ICMP_PREDICATE, CostKind) +
2537         getCmpSelInstrCost(Instruction::Select, PromotedVTy, LegalVTy,
2538                            CmpInst::BAD_ICMP_PREDICATE, CostKind);
2539   }
2540 
2541   // Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp
2542   // Cost performed on a promoted type.
2543   if (LT.second.getScalarType() == MVT::i1) {
2544     LegalizationCost +=
2545         getCastInstrCost(Instruction::ZExt, PromotedVTy, LegalVTy,
2546                          TTI::CastContextHint::None, CostKind) +
2547         getCastInstrCost(Instruction::Trunc, LegalVTy, PromotedVTy,
2548                          TTI::CastContextHint::None, CostKind);
2549   }
2550   const auto *Entry =
2551       CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT());
2552   assert(Entry && "Illegal Type for Splice");
2553   LegalizationCost += Entry->Cost;
2554   return LegalizationCost * LT.first;
2555 }
2556 
2557 InstructionCost AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
2558                                                VectorType *Tp,
2559                                                ArrayRef<int> Mask, int Index,
2560                                                VectorType *SubTp) {
2561   Kind = improveShuffleKindFromMask(Kind, Mask);
2562   if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
2563       Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc ||
2564       Kind == TTI::SK_Reverse) {
2565     static const CostTblEntry ShuffleTbl[] = {
2566       // Broadcast shuffle kinds can be performed with 'dup'.
2567       { TTI::SK_Broadcast, MVT::v8i8,  1 },
2568       { TTI::SK_Broadcast, MVT::v16i8, 1 },
2569       { TTI::SK_Broadcast, MVT::v4i16, 1 },
2570       { TTI::SK_Broadcast, MVT::v8i16, 1 },
2571       { TTI::SK_Broadcast, MVT::v2i32, 1 },
2572       { TTI::SK_Broadcast, MVT::v4i32, 1 },
2573       { TTI::SK_Broadcast, MVT::v2i64, 1 },
2574       { TTI::SK_Broadcast, MVT::v2f32, 1 },
2575       { TTI::SK_Broadcast, MVT::v4f32, 1 },
2576       { TTI::SK_Broadcast, MVT::v2f64, 1 },
2577       // Transpose shuffle kinds can be performed with 'trn1/trn2' and
2578       // 'zip1/zip2' instructions.
2579       { TTI::SK_Transpose, MVT::v8i8,  1 },
2580       { TTI::SK_Transpose, MVT::v16i8, 1 },
2581       { TTI::SK_Transpose, MVT::v4i16, 1 },
2582       { TTI::SK_Transpose, MVT::v8i16, 1 },
2583       { TTI::SK_Transpose, MVT::v2i32, 1 },
2584       { TTI::SK_Transpose, MVT::v4i32, 1 },
2585       { TTI::SK_Transpose, MVT::v2i64, 1 },
2586       { TTI::SK_Transpose, MVT::v2f32, 1 },
2587       { TTI::SK_Transpose, MVT::v4f32, 1 },
2588       { TTI::SK_Transpose, MVT::v2f64, 1 },
2589       // Select shuffle kinds.
2590       // TODO: handle vXi8/vXi16.
2591       { TTI::SK_Select, MVT::v2i32, 1 }, // mov.
2592       { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar).
2593       { TTI::SK_Select, MVT::v2i64, 1 }, // mov.
2594       { TTI::SK_Select, MVT::v2f32, 1 }, // mov.
2595       { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar).
2596       { TTI::SK_Select, MVT::v2f64, 1 }, // mov.
2597       // PermuteSingleSrc shuffle kinds.
2598       { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov.
2599       { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case.
2600       { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov.
2601       { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov.
2602       { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case.
2603       { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov.
2604       { TTI::SK_PermuteSingleSrc, MVT::v4i16, 3 }, // perfectshuffle worst case.
2605       { TTI::SK_PermuteSingleSrc, MVT::v4f16, 3 }, // perfectshuffle worst case.
2606       { TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3 }, // perfectshuffle worst case.
2607       { TTI::SK_PermuteSingleSrc, MVT::v8i16, 8 }, // constpool + load + tbl
2608       { TTI::SK_PermuteSingleSrc, MVT::v8f16, 8 }, // constpool + load + tbl
2609       { TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8 }, // constpool + load + tbl
2610       { TTI::SK_PermuteSingleSrc, MVT::v8i8, 8 }, // constpool + load + tbl
2611       { TTI::SK_PermuteSingleSrc, MVT::v16i8, 8 }, // constpool + load + tbl
2612       // Reverse can be lowered with `rev`.
2613       { TTI::SK_Reverse, MVT::v2i32, 1 }, // mov.
2614       { TTI::SK_Reverse, MVT::v4i32, 2 }, // REV64; EXT
2615       { TTI::SK_Reverse, MVT::v2i64, 1 }, // mov.
2616       { TTI::SK_Reverse, MVT::v2f32, 1 }, // mov.
2617       { TTI::SK_Reverse, MVT::v4f32, 2 }, // REV64; EXT
2618       { TTI::SK_Reverse, MVT::v2f64, 1 }, // mov.
2619       // Broadcast shuffle kinds for scalable vectors
2620       { TTI::SK_Broadcast, MVT::nxv16i8,  1 },
2621       { TTI::SK_Broadcast, MVT::nxv8i16,  1 },
2622       { TTI::SK_Broadcast, MVT::nxv4i32,  1 },
2623       { TTI::SK_Broadcast, MVT::nxv2i64,  1 },
2624       { TTI::SK_Broadcast, MVT::nxv2f16,  1 },
2625       { TTI::SK_Broadcast, MVT::nxv4f16,  1 },
2626       { TTI::SK_Broadcast, MVT::nxv8f16,  1 },
2627       { TTI::SK_Broadcast, MVT::nxv2bf16, 1 },
2628       { TTI::SK_Broadcast, MVT::nxv4bf16, 1 },
2629       { TTI::SK_Broadcast, MVT::nxv8bf16, 1 },
2630       { TTI::SK_Broadcast, MVT::nxv2f32,  1 },
2631       { TTI::SK_Broadcast, MVT::nxv4f32,  1 },
2632       { TTI::SK_Broadcast, MVT::nxv2f64,  1 },
2633       { TTI::SK_Broadcast, MVT::nxv16i1,  1 },
2634       { TTI::SK_Broadcast, MVT::nxv8i1,   1 },
2635       { TTI::SK_Broadcast, MVT::nxv4i1,   1 },
2636       { TTI::SK_Broadcast, MVT::nxv2i1,   1 },
2637       // Handle the cases for vector.reverse with scalable vectors
2638       { TTI::SK_Reverse, MVT::nxv16i8,  1 },
2639       { TTI::SK_Reverse, MVT::nxv8i16,  1 },
2640       { TTI::SK_Reverse, MVT::nxv4i32,  1 },
2641       { TTI::SK_Reverse, MVT::nxv2i64,  1 },
2642       { TTI::SK_Reverse, MVT::nxv2f16,  1 },
2643       { TTI::SK_Reverse, MVT::nxv4f16,  1 },
2644       { TTI::SK_Reverse, MVT::nxv8f16,  1 },
2645       { TTI::SK_Reverse, MVT::nxv2bf16, 1 },
2646       { TTI::SK_Reverse, MVT::nxv4bf16, 1 },
2647       { TTI::SK_Reverse, MVT::nxv8bf16, 1 },
2648       { TTI::SK_Reverse, MVT::nxv2f32,  1 },
2649       { TTI::SK_Reverse, MVT::nxv4f32,  1 },
2650       { TTI::SK_Reverse, MVT::nxv2f64,  1 },
2651       { TTI::SK_Reverse, MVT::nxv16i1,  1 },
2652       { TTI::SK_Reverse, MVT::nxv8i1,   1 },
2653       { TTI::SK_Reverse, MVT::nxv4i1,   1 },
2654       { TTI::SK_Reverse, MVT::nxv2i1,   1 },
2655     };
2656     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
2657     if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
2658       return LT.first * Entry->Cost;
2659   }
2660   if (Kind == TTI::SK_Splice && isa<ScalableVectorType>(Tp))
2661     return getSpliceCost(Tp, Index);
2662   return BaseT::getShuffleCost(Kind, Tp, Mask, Index, SubTp);
2663 }
2664