1 //===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that performs load / store related peephole 10 // optimizations. This pass should be run after register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AArch64InstrInfo.h" 15 #include "AArch64Subtarget.h" 16 #include "MCTargetDesc/AArch64AddressingModes.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/TargetRegisterInfo.h" 31 #include "llvm/IR/DebugLoc.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCRegisterInfo.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/DebugCounter.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <cassert> 41 #include <cstdint> 42 #include <functional> 43 #include <iterator> 44 #include <limits> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "aarch64-ldst-opt" 49 50 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 51 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 52 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 53 STATISTIC(NumUnscaledPairCreated, 54 "Number of load/store from unscaled generated"); 55 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 56 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 57 58 DEBUG_COUNTER(RegRenamingCounter, DEBUG_TYPE "-reg-renaming", 59 "Controls which pairs are considered for renaming"); 60 61 // The LdStLimit limits how far we search for load/store pairs. 62 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 63 cl::init(20), cl::Hidden); 64 65 // The UpdateLimit limits how far we search for update instructions when we form 66 // pre-/post-index instructions. 67 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 68 cl::Hidden); 69 70 // Enable register renaming to find additional store pairing opportunities. 71 static cl::opt<bool> EnableRenaming("aarch64-load-store-renaming", 72 cl::init(true), cl::Hidden); 73 74 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 75 76 namespace { 77 78 using LdStPairFlags = struct LdStPairFlags { 79 // If a matching instruction is found, MergeForward is set to true if the 80 // merge is to remove the first instruction and replace the second with 81 // a pair-wise insn, and false if the reverse is true. 82 bool MergeForward = false; 83 84 // SExtIdx gives the index of the result of the load pair that must be 85 // extended. The value of SExtIdx assumes that the paired load produces the 86 // value in this order: (I, returned iterator), i.e., -1 means no value has 87 // to be extended, 0 means I, and 1 means the returned iterator. 88 int SExtIdx = -1; 89 90 // If not none, RenameReg can be used to rename the result register of the 91 // first store in a pair. Currently this only works when merging stores 92 // forward. 93 Optional<MCPhysReg> RenameReg = None; 94 95 LdStPairFlags() = default; 96 97 void setMergeForward(bool V = true) { MergeForward = V; } 98 bool getMergeForward() const { return MergeForward; } 99 100 void setSExtIdx(int V) { SExtIdx = V; } 101 int getSExtIdx() const { return SExtIdx; } 102 103 void setRenameReg(MCPhysReg R) { RenameReg = R; } 104 void clearRenameReg() { RenameReg = None; } 105 Optional<MCPhysReg> getRenameReg() const { return RenameReg; } 106 }; 107 108 struct AArch64LoadStoreOpt : public MachineFunctionPass { 109 static char ID; 110 111 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 112 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 113 } 114 115 AliasAnalysis *AA; 116 const AArch64InstrInfo *TII; 117 const TargetRegisterInfo *TRI; 118 const AArch64Subtarget *Subtarget; 119 120 // Track which register units have been modified and used. 121 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 122 LiveRegUnits DefinedInBB; 123 124 void getAnalysisUsage(AnalysisUsage &AU) const override { 125 AU.addRequired<AAResultsWrapperPass>(); 126 MachineFunctionPass::getAnalysisUsage(AU); 127 } 128 129 // Scan the instructions looking for a load/store that can be combined 130 // with the current instruction into a load/store pair. 131 // Return the matching instruction if one is found, else MBB->end(). 132 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 133 LdStPairFlags &Flags, 134 unsigned Limit, 135 bool FindNarrowMerge); 136 137 // Scan the instructions looking for a store that writes to the address from 138 // which the current load instruction reads. Return true if one is found. 139 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 140 MachineBasicBlock::iterator &StoreI); 141 142 // Merge the two instructions indicated into a wider narrow store instruction. 143 MachineBasicBlock::iterator 144 mergeNarrowZeroStores(MachineBasicBlock::iterator I, 145 MachineBasicBlock::iterator MergeMI, 146 const LdStPairFlags &Flags); 147 148 // Merge the two instructions indicated into a single pair-wise instruction. 149 MachineBasicBlock::iterator 150 mergePairedInsns(MachineBasicBlock::iterator I, 151 MachineBasicBlock::iterator Paired, 152 const LdStPairFlags &Flags); 153 154 // Promote the load that reads directly from the address stored to. 155 MachineBasicBlock::iterator 156 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 157 MachineBasicBlock::iterator StoreI); 158 159 // Scan the instruction list to find a base register update that can 160 // be combined with the current instruction (a load or store) using 161 // pre or post indexed addressing with writeback. Scan forwards. 162 MachineBasicBlock::iterator 163 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 164 int UnscaledOffset, unsigned Limit); 165 166 // Scan the instruction list to find a base register update that can 167 // be combined with the current instruction (a load or store) using 168 // pre or post indexed addressing with writeback. Scan backwards. 169 MachineBasicBlock::iterator 170 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 171 172 // Find an instruction that updates the base register of the ld/st 173 // instruction. 174 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, 175 unsigned BaseReg, int Offset); 176 177 // Merge a pre- or post-index base register update into a ld/st instruction. 178 MachineBasicBlock::iterator 179 mergeUpdateInsn(MachineBasicBlock::iterator I, 180 MachineBasicBlock::iterator Update, bool IsPreIdx); 181 182 // Find and merge zero store instructions. 183 bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI); 184 185 // Find and pair ldr/str instructions. 186 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 187 188 // Find and promote load instructions which read directly from store. 189 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 190 191 // Find and merge a base register updates before or after a ld/st instruction. 192 bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI); 193 194 bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt); 195 196 bool runOnMachineFunction(MachineFunction &Fn) override; 197 198 MachineFunctionProperties getRequiredProperties() const override { 199 return MachineFunctionProperties().set( 200 MachineFunctionProperties::Property::NoVRegs); 201 } 202 203 StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } 204 }; 205 206 char AArch64LoadStoreOpt::ID = 0; 207 208 } // end anonymous namespace 209 210 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 211 AARCH64_LOAD_STORE_OPT_NAME, false, false) 212 213 static bool isNarrowStore(unsigned Opc) { 214 switch (Opc) { 215 default: 216 return false; 217 case AArch64::STRBBui: 218 case AArch64::STURBBi: 219 case AArch64::STRHHui: 220 case AArch64::STURHHi: 221 return true; 222 } 223 } 224 225 // These instruction set memory tag and either keep memory contents unchanged or 226 // set it to zero, ignoring the address part of the source register. 227 static bool isTagStore(const MachineInstr &MI) { 228 switch (MI.getOpcode()) { 229 default: 230 return false; 231 case AArch64::STGOffset: 232 case AArch64::STZGOffset: 233 case AArch64::ST2GOffset: 234 case AArch64::STZ2GOffset: 235 return true; 236 } 237 } 238 239 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 240 bool *IsValidLdStrOpc = nullptr) { 241 if (IsValidLdStrOpc) 242 *IsValidLdStrOpc = true; 243 switch (Opc) { 244 default: 245 if (IsValidLdStrOpc) 246 *IsValidLdStrOpc = false; 247 return std::numeric_limits<unsigned>::max(); 248 case AArch64::STRDui: 249 case AArch64::STURDi: 250 case AArch64::STRQui: 251 case AArch64::STURQi: 252 case AArch64::STRBBui: 253 case AArch64::STURBBi: 254 case AArch64::STRHHui: 255 case AArch64::STURHHi: 256 case AArch64::STRWui: 257 case AArch64::STURWi: 258 case AArch64::STRXui: 259 case AArch64::STURXi: 260 case AArch64::LDRDui: 261 case AArch64::LDURDi: 262 case AArch64::LDRQui: 263 case AArch64::LDURQi: 264 case AArch64::LDRWui: 265 case AArch64::LDURWi: 266 case AArch64::LDRXui: 267 case AArch64::LDURXi: 268 case AArch64::STRSui: 269 case AArch64::STURSi: 270 case AArch64::LDRSui: 271 case AArch64::LDURSi: 272 return Opc; 273 case AArch64::LDRSWui: 274 return AArch64::LDRWui; 275 case AArch64::LDURSWi: 276 return AArch64::LDURWi; 277 } 278 } 279 280 static unsigned getMatchingWideOpcode(unsigned Opc) { 281 switch (Opc) { 282 default: 283 llvm_unreachable("Opcode has no wide equivalent!"); 284 case AArch64::STRBBui: 285 return AArch64::STRHHui; 286 case AArch64::STRHHui: 287 return AArch64::STRWui; 288 case AArch64::STURBBi: 289 return AArch64::STURHHi; 290 case AArch64::STURHHi: 291 return AArch64::STURWi; 292 case AArch64::STURWi: 293 return AArch64::STURXi; 294 case AArch64::STRWui: 295 return AArch64::STRXui; 296 } 297 } 298 299 static unsigned getMatchingPairOpcode(unsigned Opc) { 300 switch (Opc) { 301 default: 302 llvm_unreachable("Opcode has no pairwise equivalent!"); 303 case AArch64::STRSui: 304 case AArch64::STURSi: 305 return AArch64::STPSi; 306 case AArch64::STRDui: 307 case AArch64::STURDi: 308 return AArch64::STPDi; 309 case AArch64::STRQui: 310 case AArch64::STURQi: 311 return AArch64::STPQi; 312 case AArch64::STRWui: 313 case AArch64::STURWi: 314 return AArch64::STPWi; 315 case AArch64::STRXui: 316 case AArch64::STURXi: 317 return AArch64::STPXi; 318 case AArch64::LDRSui: 319 case AArch64::LDURSi: 320 return AArch64::LDPSi; 321 case AArch64::LDRDui: 322 case AArch64::LDURDi: 323 return AArch64::LDPDi; 324 case AArch64::LDRQui: 325 case AArch64::LDURQi: 326 return AArch64::LDPQi; 327 case AArch64::LDRWui: 328 case AArch64::LDURWi: 329 return AArch64::LDPWi; 330 case AArch64::LDRXui: 331 case AArch64::LDURXi: 332 return AArch64::LDPXi; 333 case AArch64::LDRSWui: 334 case AArch64::LDURSWi: 335 return AArch64::LDPSWi; 336 } 337 } 338 339 static unsigned isMatchingStore(MachineInstr &LoadInst, 340 MachineInstr &StoreInst) { 341 unsigned LdOpc = LoadInst.getOpcode(); 342 unsigned StOpc = StoreInst.getOpcode(); 343 switch (LdOpc) { 344 default: 345 llvm_unreachable("Unsupported load instruction!"); 346 case AArch64::LDRBBui: 347 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 348 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 349 case AArch64::LDURBBi: 350 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 351 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 352 case AArch64::LDRHHui: 353 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 354 StOpc == AArch64::STRXui; 355 case AArch64::LDURHHi: 356 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 357 StOpc == AArch64::STURXi; 358 case AArch64::LDRWui: 359 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 360 case AArch64::LDURWi: 361 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 362 case AArch64::LDRXui: 363 return StOpc == AArch64::STRXui; 364 case AArch64::LDURXi: 365 return StOpc == AArch64::STURXi; 366 } 367 } 368 369 static unsigned getPreIndexedOpcode(unsigned Opc) { 370 // FIXME: We don't currently support creating pre-indexed loads/stores when 371 // the load or store is the unscaled version. If we decide to perform such an 372 // optimization in the future the cases for the unscaled loads/stores will 373 // need to be added here. 374 switch (Opc) { 375 default: 376 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 377 case AArch64::STRSui: 378 return AArch64::STRSpre; 379 case AArch64::STRDui: 380 return AArch64::STRDpre; 381 case AArch64::STRQui: 382 return AArch64::STRQpre; 383 case AArch64::STRBBui: 384 return AArch64::STRBBpre; 385 case AArch64::STRHHui: 386 return AArch64::STRHHpre; 387 case AArch64::STRWui: 388 return AArch64::STRWpre; 389 case AArch64::STRXui: 390 return AArch64::STRXpre; 391 case AArch64::LDRSui: 392 return AArch64::LDRSpre; 393 case AArch64::LDRDui: 394 return AArch64::LDRDpre; 395 case AArch64::LDRQui: 396 return AArch64::LDRQpre; 397 case AArch64::LDRBBui: 398 return AArch64::LDRBBpre; 399 case AArch64::LDRHHui: 400 return AArch64::LDRHHpre; 401 case AArch64::LDRWui: 402 return AArch64::LDRWpre; 403 case AArch64::LDRXui: 404 return AArch64::LDRXpre; 405 case AArch64::LDRSWui: 406 return AArch64::LDRSWpre; 407 case AArch64::LDPSi: 408 return AArch64::LDPSpre; 409 case AArch64::LDPSWi: 410 return AArch64::LDPSWpre; 411 case AArch64::LDPDi: 412 return AArch64::LDPDpre; 413 case AArch64::LDPQi: 414 return AArch64::LDPQpre; 415 case AArch64::LDPWi: 416 return AArch64::LDPWpre; 417 case AArch64::LDPXi: 418 return AArch64::LDPXpre; 419 case AArch64::STPSi: 420 return AArch64::STPSpre; 421 case AArch64::STPDi: 422 return AArch64::STPDpre; 423 case AArch64::STPQi: 424 return AArch64::STPQpre; 425 case AArch64::STPWi: 426 return AArch64::STPWpre; 427 case AArch64::STPXi: 428 return AArch64::STPXpre; 429 case AArch64::STGOffset: 430 return AArch64::STGPreIndex; 431 case AArch64::STZGOffset: 432 return AArch64::STZGPreIndex; 433 case AArch64::ST2GOffset: 434 return AArch64::ST2GPreIndex; 435 case AArch64::STZ2GOffset: 436 return AArch64::STZ2GPreIndex; 437 case AArch64::STGPi: 438 return AArch64::STGPpre; 439 } 440 } 441 442 static unsigned getPostIndexedOpcode(unsigned Opc) { 443 switch (Opc) { 444 default: 445 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 446 case AArch64::STRSui: 447 case AArch64::STURSi: 448 return AArch64::STRSpost; 449 case AArch64::STRDui: 450 case AArch64::STURDi: 451 return AArch64::STRDpost; 452 case AArch64::STRQui: 453 case AArch64::STURQi: 454 return AArch64::STRQpost; 455 case AArch64::STRBBui: 456 return AArch64::STRBBpost; 457 case AArch64::STRHHui: 458 return AArch64::STRHHpost; 459 case AArch64::STRWui: 460 case AArch64::STURWi: 461 return AArch64::STRWpost; 462 case AArch64::STRXui: 463 case AArch64::STURXi: 464 return AArch64::STRXpost; 465 case AArch64::LDRSui: 466 case AArch64::LDURSi: 467 return AArch64::LDRSpost; 468 case AArch64::LDRDui: 469 case AArch64::LDURDi: 470 return AArch64::LDRDpost; 471 case AArch64::LDRQui: 472 case AArch64::LDURQi: 473 return AArch64::LDRQpost; 474 case AArch64::LDRBBui: 475 return AArch64::LDRBBpost; 476 case AArch64::LDRHHui: 477 return AArch64::LDRHHpost; 478 case AArch64::LDRWui: 479 case AArch64::LDURWi: 480 return AArch64::LDRWpost; 481 case AArch64::LDRXui: 482 case AArch64::LDURXi: 483 return AArch64::LDRXpost; 484 case AArch64::LDRSWui: 485 return AArch64::LDRSWpost; 486 case AArch64::LDPSi: 487 return AArch64::LDPSpost; 488 case AArch64::LDPSWi: 489 return AArch64::LDPSWpost; 490 case AArch64::LDPDi: 491 return AArch64::LDPDpost; 492 case AArch64::LDPQi: 493 return AArch64::LDPQpost; 494 case AArch64::LDPWi: 495 return AArch64::LDPWpost; 496 case AArch64::LDPXi: 497 return AArch64::LDPXpost; 498 case AArch64::STPSi: 499 return AArch64::STPSpost; 500 case AArch64::STPDi: 501 return AArch64::STPDpost; 502 case AArch64::STPQi: 503 return AArch64::STPQpost; 504 case AArch64::STPWi: 505 return AArch64::STPWpost; 506 case AArch64::STPXi: 507 return AArch64::STPXpost; 508 case AArch64::STGOffset: 509 return AArch64::STGPostIndex; 510 case AArch64::STZGOffset: 511 return AArch64::STZGPostIndex; 512 case AArch64::ST2GOffset: 513 return AArch64::ST2GPostIndex; 514 case AArch64::STZ2GOffset: 515 return AArch64::STZ2GPostIndex; 516 case AArch64::STGPi: 517 return AArch64::STGPpost; 518 } 519 } 520 521 static bool isPairedLdSt(const MachineInstr &MI) { 522 switch (MI.getOpcode()) { 523 default: 524 return false; 525 case AArch64::LDPSi: 526 case AArch64::LDPSWi: 527 case AArch64::LDPDi: 528 case AArch64::LDPQi: 529 case AArch64::LDPWi: 530 case AArch64::LDPXi: 531 case AArch64::STPSi: 532 case AArch64::STPDi: 533 case AArch64::STPQi: 534 case AArch64::STPWi: 535 case AArch64::STPXi: 536 case AArch64::STGPi: 537 return true; 538 } 539 } 540 541 // Returns the scale and offset range of pre/post indexed variants of MI. 542 static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale, 543 int &MinOffset, int &MaxOffset) { 544 bool IsPaired = isPairedLdSt(MI); 545 bool IsTagStore = isTagStore(MI); 546 // ST*G and all paired ldst have the same scale in pre/post-indexed variants 547 // as in the "unsigned offset" variant. 548 // All other pre/post indexed ldst instructions are unscaled. 549 Scale = (IsTagStore || IsPaired) ? AArch64InstrInfo::getMemScale(MI) : 1; 550 551 if (IsPaired) { 552 MinOffset = -64; 553 MaxOffset = 63; 554 } else { 555 MinOffset = -256; 556 MaxOffset = 255; 557 } 558 } 559 560 static MachineOperand &getLdStRegOp(MachineInstr &MI, 561 unsigned PairedRegOp = 0) { 562 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 563 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 564 return MI.getOperand(Idx); 565 } 566 567 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) { 568 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 569 return MI.getOperand(Idx); 570 } 571 572 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) { 573 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 574 return MI.getOperand(Idx); 575 } 576 577 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, 578 MachineInstr &StoreInst, 579 const AArch64InstrInfo *TII) { 580 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 581 int LoadSize = TII->getMemScale(LoadInst); 582 int StoreSize = TII->getMemScale(StoreInst); 583 int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst) 584 ? getLdStOffsetOp(StoreInst).getImm() 585 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 586 int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst) 587 ? getLdStOffsetOp(LoadInst).getImm() 588 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 589 return (UnscaledStOffset <= UnscaledLdOffset) && 590 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 591 } 592 593 static bool isPromotableZeroStoreInst(MachineInstr &MI) { 594 unsigned Opc = MI.getOpcode(); 595 return (Opc == AArch64::STRWui || Opc == AArch64::STURWi || 596 isNarrowStore(Opc)) && 597 getLdStRegOp(MI).getReg() == AArch64::WZR; 598 } 599 600 static bool isPromotableLoadFromStore(MachineInstr &MI) { 601 switch (MI.getOpcode()) { 602 default: 603 return false; 604 // Scaled instructions. 605 case AArch64::LDRBBui: 606 case AArch64::LDRHHui: 607 case AArch64::LDRWui: 608 case AArch64::LDRXui: 609 // Unscaled instructions. 610 case AArch64::LDURBBi: 611 case AArch64::LDURHHi: 612 case AArch64::LDURWi: 613 case AArch64::LDURXi: 614 return true; 615 } 616 } 617 618 static bool isMergeableLdStUpdate(MachineInstr &MI) { 619 unsigned Opc = MI.getOpcode(); 620 switch (Opc) { 621 default: 622 return false; 623 // Scaled instructions. 624 case AArch64::STRSui: 625 case AArch64::STRDui: 626 case AArch64::STRQui: 627 case AArch64::STRXui: 628 case AArch64::STRWui: 629 case AArch64::STRHHui: 630 case AArch64::STRBBui: 631 case AArch64::LDRSui: 632 case AArch64::LDRDui: 633 case AArch64::LDRQui: 634 case AArch64::LDRXui: 635 case AArch64::LDRWui: 636 case AArch64::LDRHHui: 637 case AArch64::LDRBBui: 638 case AArch64::STGOffset: 639 case AArch64::STZGOffset: 640 case AArch64::ST2GOffset: 641 case AArch64::STZ2GOffset: 642 case AArch64::STGPi: 643 // Unscaled instructions. 644 case AArch64::STURSi: 645 case AArch64::STURDi: 646 case AArch64::STURQi: 647 case AArch64::STURWi: 648 case AArch64::STURXi: 649 case AArch64::LDURSi: 650 case AArch64::LDURDi: 651 case AArch64::LDURQi: 652 case AArch64::LDURWi: 653 case AArch64::LDURXi: 654 // Paired instructions. 655 case AArch64::LDPSi: 656 case AArch64::LDPSWi: 657 case AArch64::LDPDi: 658 case AArch64::LDPQi: 659 case AArch64::LDPWi: 660 case AArch64::LDPXi: 661 case AArch64::STPSi: 662 case AArch64::STPDi: 663 case AArch64::STPQi: 664 case AArch64::STPWi: 665 case AArch64::STPXi: 666 // Make sure this is a reg+imm (as opposed to an address reloc). 667 if (!getLdStOffsetOp(MI).isImm()) 668 return false; 669 670 return true; 671 } 672 } 673 674 MachineBasicBlock::iterator 675 AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I, 676 MachineBasicBlock::iterator MergeMI, 677 const LdStPairFlags &Flags) { 678 assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && 679 "Expected promotable zero stores."); 680 681 MachineBasicBlock::iterator NextI = I; 682 ++NextI; 683 // If NextI is the second of the two instructions to be merged, we need 684 // to skip one further. Either way we merge will invalidate the iterator, 685 // and we don't need to scan the new instruction, as it's a pairwise 686 // instruction, which we're not considering for further action anyway. 687 if (NextI == MergeMI) 688 ++NextI; 689 690 unsigned Opc = I->getOpcode(); 691 bool IsScaled = !TII->isUnscaledLdSt(Opc); 692 int OffsetStride = IsScaled ? 1 : TII->getMemScale(*I); 693 694 bool MergeForward = Flags.getMergeForward(); 695 // Insert our new paired instruction after whichever of the paired 696 // instructions MergeForward indicates. 697 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 698 // Also based on MergeForward is from where we copy the base register operand 699 // so we get the flags compatible with the input code. 700 const MachineOperand &BaseRegOp = 701 MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I); 702 703 // Which register is Rt and which is Rt2 depends on the offset order. 704 MachineInstr *RtMI; 705 if (getLdStOffsetOp(*I).getImm() == 706 getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) 707 RtMI = &*MergeMI; 708 else 709 RtMI = &*I; 710 711 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 712 // Change the scaled offset from small to large type. 713 if (IsScaled) { 714 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 715 OffsetImm /= 2; 716 } 717 718 // Construct the new instruction. 719 DebugLoc DL = I->getDebugLoc(); 720 MachineBasicBlock *MBB = I->getParent(); 721 MachineInstrBuilder MIB; 722 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 723 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 724 .add(BaseRegOp) 725 .addImm(OffsetImm) 726 .cloneMergedMemRefs({&*I, &*MergeMI}) 727 .setMIFlags(I->mergeFlagsWith(*MergeMI)); 728 (void)MIB; 729 730 LLVM_DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n "); 731 LLVM_DEBUG(I->print(dbgs())); 732 LLVM_DEBUG(dbgs() << " "); 733 LLVM_DEBUG(MergeMI->print(dbgs())); 734 LLVM_DEBUG(dbgs() << " with instruction:\n "); 735 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 736 LLVM_DEBUG(dbgs() << "\n"); 737 738 // Erase the old instructions. 739 I->eraseFromParent(); 740 MergeMI->eraseFromParent(); 741 return NextI; 742 } 743 744 // Apply Fn to all instructions between MI and the beginning of the block, until 745 // a def for DefReg is reached. Returns true, iff Fn returns true for all 746 // visited instructions. Stop after visiting Limit iterations. 747 static bool forAllMIsUntilDef(MachineInstr &MI, MCPhysReg DefReg, 748 const TargetRegisterInfo *TRI, unsigned Limit, 749 std::function<bool(MachineInstr &, bool)> &Fn) { 750 auto MBB = MI.getParent(); 751 for (MachineBasicBlock::reverse_iterator I = MI.getReverseIterator(), 752 E = MBB->rend(); 753 I != E; I++) { 754 if (!Limit) 755 return false; 756 --Limit; 757 758 bool isDef = any_of(I->operands(), [DefReg, TRI](MachineOperand &MOP) { 759 return MOP.isReg() && MOP.isDef() && !MOP.isDebug() && MOP.getReg() && 760 TRI->regsOverlap(MOP.getReg(), DefReg); 761 }); 762 if (!Fn(*I, isDef)) 763 return false; 764 if (isDef) 765 break; 766 } 767 return true; 768 } 769 770 static void updateDefinedRegisters(MachineInstr &MI, LiveRegUnits &Units, 771 const TargetRegisterInfo *TRI) { 772 773 for (const MachineOperand &MOP : phys_regs_and_masks(MI)) 774 if (MOP.isReg() && MOP.isKill()) 775 Units.removeReg(MOP.getReg()); 776 777 for (const MachineOperand &MOP : phys_regs_and_masks(MI)) 778 if (MOP.isReg() && !MOP.isKill()) 779 Units.addReg(MOP.getReg()); 780 } 781 782 MachineBasicBlock::iterator 783 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 784 MachineBasicBlock::iterator Paired, 785 const LdStPairFlags &Flags) { 786 MachineBasicBlock::iterator NextI = I; 787 ++NextI; 788 // If NextI is the second of the two instructions to be merged, we need 789 // to skip one further. Either way we merge will invalidate the iterator, 790 // and we don't need to scan the new instruction, as it's a pairwise 791 // instruction, which we're not considering for further action anyway. 792 if (NextI == Paired) 793 ++NextI; 794 795 int SExtIdx = Flags.getSExtIdx(); 796 unsigned Opc = 797 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 798 bool IsUnscaled = TII->isUnscaledLdSt(Opc); 799 int OffsetStride = IsUnscaled ? TII->getMemScale(*I) : 1; 800 801 bool MergeForward = Flags.getMergeForward(); 802 803 Optional<MCPhysReg> RenameReg = Flags.getRenameReg(); 804 if (MergeForward && RenameReg) { 805 MCRegister RegToRename = getLdStRegOp(*I).getReg(); 806 DefinedInBB.addReg(*RenameReg); 807 808 // Return the sub/super register for RenameReg, matching the size of 809 // OriginalReg. 810 auto GetMatchingSubReg = [this, 811 RenameReg](MCPhysReg OriginalReg) -> MCPhysReg { 812 for (MCPhysReg SubOrSuper : TRI->sub_and_superregs_inclusive(*RenameReg)) 813 if (TRI->getMinimalPhysRegClass(OriginalReg) == 814 TRI->getMinimalPhysRegClass(SubOrSuper)) 815 return SubOrSuper; 816 llvm_unreachable("Should have found matching sub or super register!"); 817 }; 818 819 std::function<bool(MachineInstr &, bool)> UpdateMIs = 820 [this, RegToRename, GetMatchingSubReg](MachineInstr &MI, bool IsDef) { 821 if (IsDef) { 822 bool SeenDef = false; 823 for (auto &MOP : MI.operands()) { 824 // Rename the first explicit definition and all implicit 825 // definitions matching RegToRename. 826 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 827 (!SeenDef || (MOP.isDef() && MOP.isImplicit())) && 828 TRI->regsOverlap(MOP.getReg(), RegToRename)) { 829 assert((MOP.isImplicit() || 830 (MOP.isRenamable() && !MOP.isEarlyClobber())) && 831 "Need renamable operands"); 832 MOP.setReg(GetMatchingSubReg(MOP.getReg())); 833 SeenDef = true; 834 } 835 } 836 } else { 837 for (auto &MOP : MI.operands()) { 838 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 839 TRI->regsOverlap(MOP.getReg(), RegToRename)) { 840 assert((MOP.isImplicit() || 841 (MOP.isRenamable() && !MOP.isEarlyClobber())) && 842 "Need renamable operands"); 843 MOP.setReg(GetMatchingSubReg(MOP.getReg())); 844 } 845 } 846 } 847 LLVM_DEBUG(dbgs() << "Renamed " << MI << "\n"); 848 return true; 849 }; 850 forAllMIsUntilDef(*I, RegToRename, TRI, LdStLimit, UpdateMIs); 851 852 #if !defined(NDEBUG) 853 // Make sure the register used for renaming is not used between the paired 854 // instructions. That would trash the content before the new paired 855 // instruction. 856 for (auto &MI : 857 iterator_range<MachineInstrBundleIterator<llvm::MachineInstr>>( 858 std::next(I), std::next(Paired))) 859 assert(all_of(MI.operands(), 860 [this, &RenameReg](const MachineOperand &MOP) { 861 return !MOP.isReg() || MOP.isDebug() || !MOP.getReg() || 862 !TRI->regsOverlap(MOP.getReg(), *RenameReg); 863 }) && 864 "Rename register used between paired instruction, trashing the " 865 "content"); 866 #endif 867 } 868 869 // Insert our new paired instruction after whichever of the paired 870 // instructions MergeForward indicates. 871 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 872 // Also based on MergeForward is from where we copy the base register operand 873 // so we get the flags compatible with the input code. 874 const MachineOperand &BaseRegOp = 875 MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I); 876 877 int Offset = getLdStOffsetOp(*I).getImm(); 878 int PairedOffset = getLdStOffsetOp(*Paired).getImm(); 879 bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode()); 880 if (IsUnscaled != PairedIsUnscaled) { 881 // We're trying to pair instructions that differ in how they are scaled. If 882 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 883 // the opposite (i.e., make Paired's offset unscaled). 884 int MemSize = TII->getMemScale(*Paired); 885 if (PairedIsUnscaled) { 886 // If the unscaled offset isn't a multiple of the MemSize, we can't 887 // pair the operations together. 888 assert(!(PairedOffset % TII->getMemScale(*Paired)) && 889 "Offset should be a multiple of the stride!"); 890 PairedOffset /= MemSize; 891 } else { 892 PairedOffset *= MemSize; 893 } 894 } 895 896 // Which register is Rt and which is Rt2 depends on the offset order. 897 MachineInstr *RtMI, *Rt2MI; 898 if (Offset == PairedOffset + OffsetStride) { 899 RtMI = &*Paired; 900 Rt2MI = &*I; 901 // Here we swapped the assumption made for SExtIdx. 902 // I.e., we turn ldp I, Paired into ldp Paired, I. 903 // Update the index accordingly. 904 if (SExtIdx != -1) 905 SExtIdx = (SExtIdx + 1) % 2; 906 } else { 907 RtMI = &*I; 908 Rt2MI = &*Paired; 909 } 910 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 911 // Scale the immediate offset, if necessary. 912 if (TII->isUnscaledLdSt(RtMI->getOpcode())) { 913 assert(!(OffsetImm % TII->getMemScale(*RtMI)) && 914 "Unscaled offset cannot be scaled."); 915 OffsetImm /= TII->getMemScale(*RtMI); 916 } 917 918 // Construct the new instruction. 919 MachineInstrBuilder MIB; 920 DebugLoc DL = I->getDebugLoc(); 921 MachineBasicBlock *MBB = I->getParent(); 922 MachineOperand RegOp0 = getLdStRegOp(*RtMI); 923 MachineOperand RegOp1 = getLdStRegOp(*Rt2MI); 924 // Kill flags may become invalid when moving stores for pairing. 925 if (RegOp0.isUse()) { 926 if (!MergeForward) { 927 // Clear kill flags on store if moving upwards. Example: 928 // STRWui %w0, ... 929 // USE %w1 930 // STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards 931 RegOp0.setIsKill(false); 932 RegOp1.setIsKill(false); 933 } else { 934 // Clear kill flags of the first stores register. Example: 935 // STRWui %w1, ... 936 // USE kill %w1 ; need to clear kill flag when moving STRWui downwards 937 // STRW %w0 938 Register Reg = getLdStRegOp(*I).getReg(); 939 for (MachineInstr &MI : make_range(std::next(I), Paired)) 940 MI.clearRegisterKills(Reg, TRI); 941 } 942 } 943 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc))) 944 .add(RegOp0) 945 .add(RegOp1) 946 .add(BaseRegOp) 947 .addImm(OffsetImm) 948 .cloneMergedMemRefs({&*I, &*Paired}) 949 .setMIFlags(I->mergeFlagsWith(*Paired)); 950 951 (void)MIB; 952 953 LLVM_DEBUG( 954 dbgs() << "Creating pair load/store. Replacing instructions:\n "); 955 LLVM_DEBUG(I->print(dbgs())); 956 LLVM_DEBUG(dbgs() << " "); 957 LLVM_DEBUG(Paired->print(dbgs())); 958 LLVM_DEBUG(dbgs() << " with instruction:\n "); 959 if (SExtIdx != -1) { 960 // Generate the sign extension for the proper result of the ldp. 961 // I.e., with X1, that would be: 962 // %w1 = KILL %w1, implicit-def %x1 963 // %x1 = SBFMXri killed %x1, 0, 31 964 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 965 // Right now, DstMO has the extended register, since it comes from an 966 // extended opcode. 967 Register DstRegX = DstMO.getReg(); 968 // Get the W variant of that register. 969 Register DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 970 // Update the result of LDP to use the W instead of the X variant. 971 DstMO.setReg(DstRegW); 972 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 973 LLVM_DEBUG(dbgs() << "\n"); 974 // Make the machine verifier happy by providing a definition for 975 // the X register. 976 // Insert this definition right after the generated LDP, i.e., before 977 // InsertionPoint. 978 MachineInstrBuilder MIBKill = 979 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 980 .addReg(DstRegW) 981 .addReg(DstRegX, RegState::Define); 982 MIBKill->getOperand(2).setImplicit(); 983 // Create the sign extension. 984 MachineInstrBuilder MIBSXTW = 985 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 986 .addReg(DstRegX) 987 .addImm(0) 988 .addImm(31); 989 (void)MIBSXTW; 990 LLVM_DEBUG(dbgs() << " Extend operand:\n "); 991 LLVM_DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 992 } else { 993 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 994 } 995 LLVM_DEBUG(dbgs() << "\n"); 996 997 if (MergeForward) 998 for (const MachineOperand &MOP : phys_regs_and_masks(*I)) 999 if (MOP.isReg() && MOP.isKill()) 1000 DefinedInBB.addReg(MOP.getReg()); 1001 1002 // Erase the old instructions. 1003 I->eraseFromParent(); 1004 Paired->eraseFromParent(); 1005 1006 return NextI; 1007 } 1008 1009 MachineBasicBlock::iterator 1010 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 1011 MachineBasicBlock::iterator StoreI) { 1012 MachineBasicBlock::iterator NextI = LoadI; 1013 ++NextI; 1014 1015 int LoadSize = TII->getMemScale(*LoadI); 1016 int StoreSize = TII->getMemScale(*StoreI); 1017 Register LdRt = getLdStRegOp(*LoadI).getReg(); 1018 const MachineOperand &StMO = getLdStRegOp(*StoreI); 1019 Register StRt = getLdStRegOp(*StoreI).getReg(); 1020 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 1021 1022 assert((IsStoreXReg || 1023 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 1024 "Unexpected RegClass"); 1025 1026 MachineInstr *BitExtMI; 1027 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 1028 // Remove the load, if the destination register of the loads is the same 1029 // register for stored value. 1030 if (StRt == LdRt && LoadSize == 8) { 1031 for (MachineInstr &MI : make_range(StoreI->getIterator(), 1032 LoadI->getIterator())) { 1033 if (MI.killsRegister(StRt, TRI)) { 1034 MI.clearRegisterKills(StRt, TRI); 1035 break; 1036 } 1037 } 1038 LLVM_DEBUG(dbgs() << "Remove load instruction:\n "); 1039 LLVM_DEBUG(LoadI->print(dbgs())); 1040 LLVM_DEBUG(dbgs() << "\n"); 1041 LoadI->eraseFromParent(); 1042 return NextI; 1043 } 1044 // Replace the load with a mov if the load and store are in the same size. 1045 BitExtMI = 1046 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1047 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 1048 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 1049 .add(StMO) 1050 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 1051 .setMIFlags(LoadI->getFlags()); 1052 } else { 1053 // FIXME: Currently we disable this transformation in big-endian targets as 1054 // performance and correctness are verified only in little-endian. 1055 if (!Subtarget->isLittleEndian()) 1056 return NextI; 1057 bool IsUnscaled = TII->isUnscaledLdSt(*LoadI); 1058 assert(IsUnscaled == TII->isUnscaledLdSt(*StoreI) && 1059 "Unsupported ld/st match"); 1060 assert(LoadSize <= StoreSize && "Invalid load size"); 1061 int UnscaledLdOffset = IsUnscaled 1062 ? getLdStOffsetOp(*LoadI).getImm() 1063 : getLdStOffsetOp(*LoadI).getImm() * LoadSize; 1064 int UnscaledStOffset = IsUnscaled 1065 ? getLdStOffsetOp(*StoreI).getImm() 1066 : getLdStOffsetOp(*StoreI).getImm() * StoreSize; 1067 int Width = LoadSize * 8; 1068 unsigned DestReg = 1069 IsStoreXReg ? Register(TRI->getMatchingSuperReg( 1070 LdRt, AArch64::sub_32, &AArch64::GPR64RegClass)) 1071 : LdRt; 1072 1073 assert((UnscaledLdOffset >= UnscaledStOffset && 1074 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 1075 "Invalid offset"); 1076 1077 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 1078 int Imms = Immr + Width - 1; 1079 if (UnscaledLdOffset == UnscaledStOffset) { 1080 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 1081 | ((Immr) << 6) // immr 1082 | ((Imms) << 0) // imms 1083 ; 1084 1085 BitExtMI = 1086 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1087 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 1088 DestReg) 1089 .add(StMO) 1090 .addImm(AndMaskEncoded) 1091 .setMIFlags(LoadI->getFlags()); 1092 } else { 1093 BitExtMI = 1094 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1095 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 1096 DestReg) 1097 .add(StMO) 1098 .addImm(Immr) 1099 .addImm(Imms) 1100 .setMIFlags(LoadI->getFlags()); 1101 } 1102 } 1103 1104 // Clear kill flags between store and load. 1105 for (MachineInstr &MI : make_range(StoreI->getIterator(), 1106 BitExtMI->getIterator())) 1107 if (MI.killsRegister(StRt, TRI)) { 1108 MI.clearRegisterKills(StRt, TRI); 1109 break; 1110 } 1111 1112 LLVM_DEBUG(dbgs() << "Promoting load by replacing :\n "); 1113 LLVM_DEBUG(StoreI->print(dbgs())); 1114 LLVM_DEBUG(dbgs() << " "); 1115 LLVM_DEBUG(LoadI->print(dbgs())); 1116 LLVM_DEBUG(dbgs() << " with instructions:\n "); 1117 LLVM_DEBUG(StoreI->print(dbgs())); 1118 LLVM_DEBUG(dbgs() << " "); 1119 LLVM_DEBUG((BitExtMI)->print(dbgs())); 1120 LLVM_DEBUG(dbgs() << "\n"); 1121 1122 // Erase the old instructions. 1123 LoadI->eraseFromParent(); 1124 return NextI; 1125 } 1126 1127 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 1128 // Convert the byte-offset used by unscaled into an "element" offset used 1129 // by the scaled pair load/store instructions. 1130 if (IsUnscaled) { 1131 // If the byte-offset isn't a multiple of the stride, there's no point 1132 // trying to match it. 1133 if (Offset % OffsetStride) 1134 return false; 1135 Offset /= OffsetStride; 1136 } 1137 return Offset <= 63 && Offset >= -64; 1138 } 1139 1140 // Do alignment, specialized to power of 2 and for signed ints, 1141 // avoiding having to do a C-style cast from uint_64t to int when 1142 // using alignTo from include/llvm/Support/MathExtras.h. 1143 // FIXME: Move this function to include/MathExtras.h? 1144 static int alignTo(int Num, int PowOf2) { 1145 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 1146 } 1147 1148 static bool mayAlias(MachineInstr &MIa, MachineInstr &MIb, 1149 AliasAnalysis *AA) { 1150 // One of the instructions must modify memory. 1151 if (!MIa.mayStore() && !MIb.mayStore()) 1152 return false; 1153 1154 // Both instructions must be memory operations. 1155 if (!MIa.mayLoadOrStore() && !MIb.mayLoadOrStore()) 1156 return false; 1157 1158 return MIa.mayAlias(AA, MIb, /*UseTBAA*/false); 1159 } 1160 1161 static bool mayAlias(MachineInstr &MIa, 1162 SmallVectorImpl<MachineInstr *> &MemInsns, 1163 AliasAnalysis *AA) { 1164 for (MachineInstr *MIb : MemInsns) 1165 if (mayAlias(MIa, *MIb, AA)) 1166 return true; 1167 1168 return false; 1169 } 1170 1171 bool AArch64LoadStoreOpt::findMatchingStore( 1172 MachineBasicBlock::iterator I, unsigned Limit, 1173 MachineBasicBlock::iterator &StoreI) { 1174 MachineBasicBlock::iterator B = I->getParent()->begin(); 1175 MachineBasicBlock::iterator MBBI = I; 1176 MachineInstr &LoadMI = *I; 1177 Register BaseReg = getLdStBaseOp(LoadMI).getReg(); 1178 1179 // If the load is the first instruction in the block, there's obviously 1180 // not any matching store. 1181 if (MBBI == B) 1182 return false; 1183 1184 // Track which register units have been modified and used between the first 1185 // insn and the second insn. 1186 ModifiedRegUnits.clear(); 1187 UsedRegUnits.clear(); 1188 1189 unsigned Count = 0; 1190 do { 1191 --MBBI; 1192 MachineInstr &MI = *MBBI; 1193 1194 // Don't count transient instructions towards the search limit since there 1195 // may be different numbers of them if e.g. debug information is present. 1196 if (!MI.isTransient()) 1197 ++Count; 1198 1199 // If the load instruction reads directly from the address to which the 1200 // store instruction writes and the stored value is not modified, we can 1201 // promote the load. Since we do not handle stores with pre-/post-index, 1202 // it's unnecessary to check if BaseReg is modified by the store itself. 1203 if (MI.mayStore() && isMatchingStore(LoadMI, MI) && 1204 BaseReg == getLdStBaseOp(MI).getReg() && 1205 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1206 ModifiedRegUnits.available(getLdStRegOp(MI).getReg())) { 1207 StoreI = MBBI; 1208 return true; 1209 } 1210 1211 if (MI.isCall()) 1212 return false; 1213 1214 // Update modified / uses register units. 1215 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1216 1217 // Otherwise, if the base register is modified, we have no match, so 1218 // return early. 1219 if (!ModifiedRegUnits.available(BaseReg)) 1220 return false; 1221 1222 // If we encounter a store aliased with the load, return early. 1223 if (MI.mayStore() && mayAlias(LoadMI, MI, AA)) 1224 return false; 1225 } while (MBBI != B && Count < Limit); 1226 return false; 1227 } 1228 1229 // Returns true if FirstMI and MI are candidates for merging or pairing. 1230 // Otherwise, returns false. 1231 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, 1232 LdStPairFlags &Flags, 1233 const AArch64InstrInfo *TII) { 1234 // If this is volatile or if pairing is suppressed, not a candidate. 1235 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1236 return false; 1237 1238 // We should have already checked FirstMI for pair suppression and volatility. 1239 assert(!FirstMI.hasOrderedMemoryRef() && 1240 !TII->isLdStPairSuppressed(FirstMI) && 1241 "FirstMI shouldn't get here if either of these checks are true."); 1242 1243 unsigned OpcA = FirstMI.getOpcode(); 1244 unsigned OpcB = MI.getOpcode(); 1245 1246 // Opcodes match: nothing more to check. 1247 if (OpcA == OpcB) 1248 return true; 1249 1250 // Try to match a sign-extended load/store with a zero-extended load/store. 1251 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1252 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1253 assert(IsValidLdStrOpc && 1254 "Given Opc should be a Load or Store with an immediate"); 1255 // OpcA will be the first instruction in the pair. 1256 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1257 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1258 return true; 1259 } 1260 1261 // If the second instruction isn't even a mergable/pairable load/store, bail 1262 // out. 1263 if (!PairIsValidLdStrOpc) 1264 return false; 1265 1266 // FIXME: We don't support merging narrow stores with mixed scaled/unscaled 1267 // offsets. 1268 if (isNarrowStore(OpcA) || isNarrowStore(OpcB)) 1269 return false; 1270 1271 // Try to match an unscaled load/store with a scaled load/store. 1272 return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) && 1273 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1274 1275 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1276 } 1277 1278 static bool 1279 canRenameUpToDef(MachineInstr &FirstMI, LiveRegUnits &UsedInBetween, 1280 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1281 const TargetRegisterInfo *TRI) { 1282 if (!FirstMI.mayStore()) 1283 return false; 1284 1285 // Check if we can find an unused register which we can use to rename 1286 // the register used by the first load/store. 1287 auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg()); 1288 MachineFunction &MF = *FirstMI.getParent()->getParent(); 1289 if (!RegClass || !MF.getRegInfo().tracksLiveness()) 1290 return false; 1291 1292 auto RegToRename = getLdStRegOp(FirstMI).getReg(); 1293 // For now, we only rename if the store operand gets killed at the store. 1294 if (!getLdStRegOp(FirstMI).isKill() && 1295 !any_of(FirstMI.operands(), 1296 [TRI, RegToRename](const MachineOperand &MOP) { 1297 return MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 1298 MOP.isImplicit() && MOP.isKill() && 1299 TRI->regsOverlap(RegToRename, MOP.getReg()); 1300 })) { 1301 LLVM_DEBUG(dbgs() << " Operand not killed at " << FirstMI << "\n"); 1302 return false; 1303 } 1304 auto canRenameMOP = [](const MachineOperand &MOP) { 1305 return MOP.isImplicit() || 1306 (MOP.isRenamable() && !MOP.isEarlyClobber() && !MOP.isTied()); 1307 }; 1308 1309 bool FoundDef = false; 1310 1311 // For each instruction between FirstMI and the previous def for RegToRename, 1312 // we 1313 // * check if we can rename RegToRename in this instruction 1314 // * collect the registers used and required register classes for RegToRename. 1315 std::function<bool(MachineInstr &, bool)> CheckMIs = [&](MachineInstr &MI, 1316 bool IsDef) { 1317 LLVM_DEBUG(dbgs() << "Checking " << MI << "\n"); 1318 // Currently we do not try to rename across frame-setup instructions. 1319 if (MI.getFlag(MachineInstr::FrameSetup)) { 1320 LLVM_DEBUG(dbgs() << " Cannot rename framesetup instructions currently (" 1321 << MI << ")\n"); 1322 return false; 1323 } 1324 1325 UsedInBetween.accumulate(MI); 1326 1327 // For a definition, check that we can rename the definition and exit the 1328 // loop. 1329 FoundDef = IsDef; 1330 1331 // For defs, check if we can rename the first def of RegToRename. 1332 if (FoundDef) { 1333 // For some pseudo instructions, we might not generate code in the end 1334 // (e.g. KILL) and we would end up without a correct def for the rename 1335 // register. 1336 // TODO: This might be overly conservative and we could handle those cases 1337 // in multiple ways: 1338 // 1. Insert an extra copy, to materialize the def. 1339 // 2. Skip pseudo-defs until we find an non-pseudo def. 1340 if (MI.isPseudo()) { 1341 LLVM_DEBUG(dbgs() << " Cannot rename pseudo instruction " << MI 1342 << "\n"); 1343 return false; 1344 } 1345 1346 for (auto &MOP : MI.operands()) { 1347 if (!MOP.isReg() || !MOP.isDef() || MOP.isDebug() || !MOP.getReg() || 1348 !TRI->regsOverlap(MOP.getReg(), RegToRename)) 1349 continue; 1350 if (!canRenameMOP(MOP)) { 1351 LLVM_DEBUG(dbgs() 1352 << " Cannot rename " << MOP << " in " << MI << "\n"); 1353 return false; 1354 } 1355 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); 1356 } 1357 return true; 1358 } else { 1359 for (auto &MOP : MI.operands()) { 1360 if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() || 1361 !TRI->regsOverlap(MOP.getReg(), RegToRename)) 1362 continue; 1363 1364 if (!canRenameMOP(MOP)) { 1365 LLVM_DEBUG(dbgs() 1366 << " Cannot rename " << MOP << " in " << MI << "\n"); 1367 return false; 1368 } 1369 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); 1370 } 1371 } 1372 return true; 1373 }; 1374 1375 if (!forAllMIsUntilDef(FirstMI, RegToRename, TRI, LdStLimit, CheckMIs)) 1376 return false; 1377 1378 if (!FoundDef) { 1379 LLVM_DEBUG(dbgs() << " Did not find definition for register in BB\n"); 1380 return false; 1381 } 1382 return true; 1383 } 1384 1385 // Check if we can find a physical register for renaming. This register must: 1386 // * not be defined up to FirstMI (checking DefinedInBB) 1387 // * not used between the MI and the defining instruction of the register to 1388 // rename (checked using UsedInBetween). 1389 // * is available in all used register classes (checked using RequiredClasses). 1390 static Optional<MCPhysReg> tryToFindRegisterToRename( 1391 MachineInstr &FirstMI, MachineInstr &MI, LiveRegUnits &DefinedInBB, 1392 LiveRegUnits &UsedInBetween, 1393 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1394 const TargetRegisterInfo *TRI) { 1395 auto &MF = *FirstMI.getParent()->getParent(); 1396 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1397 1398 // Checks if any sub- or super-register of PR is callee saved. 1399 auto AnySubOrSuperRegCalleePreserved = [&MF, TRI](MCPhysReg PR) { 1400 return any_of(TRI->sub_and_superregs_inclusive(PR), 1401 [&MF, TRI](MCPhysReg SubOrSuper) { 1402 return TRI->isCalleeSavedPhysReg(SubOrSuper, MF); 1403 }); 1404 }; 1405 1406 // Check if PR or one of its sub- or super-registers can be used for all 1407 // required register classes. 1408 auto CanBeUsedForAllClasses = [&RequiredClasses, TRI](MCPhysReg PR) { 1409 return all_of(RequiredClasses, [PR, TRI](const TargetRegisterClass *C) { 1410 return any_of(TRI->sub_and_superregs_inclusive(PR), 1411 [C, TRI](MCPhysReg SubOrSuper) { 1412 return C == TRI->getMinimalPhysRegClass(SubOrSuper); 1413 }); 1414 }); 1415 }; 1416 1417 auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg()); 1418 for (const MCPhysReg &PR : *RegClass) { 1419 if (DefinedInBB.available(PR) && UsedInBetween.available(PR) && 1420 !RegInfo.isReserved(PR) && !AnySubOrSuperRegCalleePreserved(PR) && 1421 CanBeUsedForAllClasses(PR)) { 1422 DefinedInBB.addReg(PR); 1423 LLVM_DEBUG(dbgs() << "Found rename register " << printReg(PR, TRI) 1424 << "\n"); 1425 return {PR}; 1426 } 1427 } 1428 LLVM_DEBUG(dbgs() << "No rename register found from " 1429 << TRI->getRegClassName(RegClass) << "\n"); 1430 return None; 1431 } 1432 1433 /// Scan the instructions looking for a load/store that can be combined with the 1434 /// current instruction into a wider equivalent or a load/store pair. 1435 MachineBasicBlock::iterator 1436 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1437 LdStPairFlags &Flags, unsigned Limit, 1438 bool FindNarrowMerge) { 1439 MachineBasicBlock::iterator E = I->getParent()->end(); 1440 MachineBasicBlock::iterator MBBI = I; 1441 MachineBasicBlock::iterator MBBIWithRenameReg; 1442 MachineInstr &FirstMI = *I; 1443 ++MBBI; 1444 1445 bool MayLoad = FirstMI.mayLoad(); 1446 bool IsUnscaled = TII->isUnscaledLdSt(FirstMI); 1447 Register Reg = getLdStRegOp(FirstMI).getReg(); 1448 Register BaseReg = getLdStBaseOp(FirstMI).getReg(); 1449 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1450 int OffsetStride = IsUnscaled ? TII->getMemScale(FirstMI) : 1; 1451 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1452 1453 Optional<bool> MaybeCanRename = None; 1454 if (!EnableRenaming) 1455 MaybeCanRename = {false}; 1456 1457 SmallPtrSet<const TargetRegisterClass *, 5> RequiredClasses; 1458 LiveRegUnits UsedInBetween; 1459 UsedInBetween.init(*TRI); 1460 1461 Flags.clearRenameReg(); 1462 1463 // Track which register units have been modified and used between the first 1464 // insn (inclusive) and the second insn. 1465 ModifiedRegUnits.clear(); 1466 UsedRegUnits.clear(); 1467 1468 // Remember any instructions that read/write memory between FirstMI and MI. 1469 SmallVector<MachineInstr *, 4> MemInsns; 1470 1471 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1472 MachineInstr &MI = *MBBI; 1473 1474 UsedInBetween.accumulate(MI); 1475 1476 // Don't count transient instructions towards the search limit since there 1477 // may be different numbers of them if e.g. debug information is present. 1478 if (!MI.isTransient()) 1479 ++Count; 1480 1481 Flags.setSExtIdx(-1); 1482 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && 1483 getLdStOffsetOp(MI).isImm()) { 1484 assert(MI.mayLoadOrStore() && "Expected memory operation."); 1485 // If we've found another instruction with the same opcode, check to see 1486 // if the base and offset are compatible with our starting instruction. 1487 // These instructions all have scaled immediate operands, so we just 1488 // check for +1/-1. Make sure to check the new instruction offset is 1489 // actually an immediate and not a symbolic reference destined for 1490 // a relocation. 1491 Register MIBaseReg = getLdStBaseOp(MI).getReg(); 1492 int MIOffset = getLdStOffsetOp(MI).getImm(); 1493 bool MIIsUnscaled = TII->isUnscaledLdSt(MI); 1494 if (IsUnscaled != MIIsUnscaled) { 1495 // We're trying to pair instructions that differ in how they are scaled. 1496 // If FirstMI is scaled then scale the offset of MI accordingly. 1497 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1498 int MemSize = TII->getMemScale(MI); 1499 if (MIIsUnscaled) { 1500 // If the unscaled offset isn't a multiple of the MemSize, we can't 1501 // pair the operations together: bail and keep looking. 1502 if (MIOffset % MemSize) { 1503 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1504 UsedRegUnits, TRI); 1505 MemInsns.push_back(&MI); 1506 continue; 1507 } 1508 MIOffset /= MemSize; 1509 } else { 1510 MIOffset *= MemSize; 1511 } 1512 } 1513 1514 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1515 (Offset + OffsetStride == MIOffset))) { 1516 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1517 if (FindNarrowMerge) { 1518 // If the alignment requirements of the scaled wide load/store 1519 // instruction can't express the offset of the scaled narrow input, 1520 // bail and keep looking. For promotable zero stores, allow only when 1521 // the stored value is the same (i.e., WZR). 1522 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1523 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1524 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1525 UsedRegUnits, TRI); 1526 MemInsns.push_back(&MI); 1527 continue; 1528 } 1529 } else { 1530 // Pairwise instructions have a 7-bit signed offset field. Single 1531 // insns have a 12-bit unsigned offset field. If the resultant 1532 // immediate offset of merging these instructions is out of range for 1533 // a pairwise instruction, bail and keep looking. 1534 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1535 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1536 UsedRegUnits, TRI); 1537 MemInsns.push_back(&MI); 1538 continue; 1539 } 1540 // If the alignment requirements of the paired (scaled) instruction 1541 // can't express the offset of the unscaled input, bail and keep 1542 // looking. 1543 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1544 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1545 UsedRegUnits, TRI); 1546 MemInsns.push_back(&MI); 1547 continue; 1548 } 1549 } 1550 // If the destination register of the loads is the same register, bail 1551 // and keep looking. A load-pair instruction with both destination 1552 // registers the same is UNPREDICTABLE and will result in an exception. 1553 if (MayLoad && Reg == getLdStRegOp(MI).getReg()) { 1554 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1555 TRI); 1556 MemInsns.push_back(&MI); 1557 continue; 1558 } 1559 1560 // If the Rt of the second instruction was not modified or used between 1561 // the two instructions and none of the instructions between the second 1562 // and first alias with the second, we can combine the second into the 1563 // first. 1564 if (ModifiedRegUnits.available(getLdStRegOp(MI).getReg()) && 1565 !(MI.mayLoad() && 1566 !UsedRegUnits.available(getLdStRegOp(MI).getReg())) && 1567 !mayAlias(MI, MemInsns, AA)) { 1568 1569 Flags.setMergeForward(false); 1570 Flags.clearRenameReg(); 1571 return MBBI; 1572 } 1573 1574 // Likewise, if the Rt of the first instruction is not modified or used 1575 // between the two instructions and none of the instructions between the 1576 // first and the second alias with the first, we can combine the first 1577 // into the second. 1578 if (!(MayLoad && 1579 !UsedRegUnits.available(getLdStRegOp(FirstMI).getReg())) && 1580 !mayAlias(FirstMI, MemInsns, AA)) { 1581 1582 if (ModifiedRegUnits.available(getLdStRegOp(FirstMI).getReg())) { 1583 Flags.setMergeForward(true); 1584 Flags.clearRenameReg(); 1585 return MBBI; 1586 } 1587 1588 if (DebugCounter::shouldExecute(RegRenamingCounter)) { 1589 if (!MaybeCanRename) 1590 MaybeCanRename = {canRenameUpToDef(FirstMI, UsedInBetween, 1591 RequiredClasses, TRI)}; 1592 1593 if (*MaybeCanRename) { 1594 Optional<MCPhysReg> MaybeRenameReg = tryToFindRegisterToRename( 1595 FirstMI, MI, DefinedInBB, UsedInBetween, RequiredClasses, 1596 TRI); 1597 if (MaybeRenameReg) { 1598 Flags.setRenameReg(*MaybeRenameReg); 1599 Flags.setMergeForward(true); 1600 MBBIWithRenameReg = MBBI; 1601 } 1602 } 1603 } 1604 } 1605 // Unable to combine these instructions due to interference in between. 1606 // Keep looking. 1607 } 1608 } 1609 1610 if (Flags.getRenameReg()) 1611 return MBBIWithRenameReg; 1612 1613 // If the instruction wasn't a matching load or store. Stop searching if we 1614 // encounter a call instruction that might modify memory. 1615 if (MI.isCall()) 1616 return E; 1617 1618 // Update modified / uses register units. 1619 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1620 1621 // Otherwise, if the base register is modified, we have no match, so 1622 // return early. 1623 if (!ModifiedRegUnits.available(BaseReg)) 1624 return E; 1625 1626 // Update list of instructions that read/write memory. 1627 if (MI.mayLoadOrStore()) 1628 MemInsns.push_back(&MI); 1629 } 1630 return E; 1631 } 1632 1633 MachineBasicBlock::iterator 1634 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1635 MachineBasicBlock::iterator Update, 1636 bool IsPreIdx) { 1637 assert((Update->getOpcode() == AArch64::ADDXri || 1638 Update->getOpcode() == AArch64::SUBXri) && 1639 "Unexpected base register update instruction to merge!"); 1640 MachineBasicBlock::iterator NextI = I; 1641 // Return the instruction following the merged instruction, which is 1642 // the instruction following our unmerged load. Unless that's the add/sub 1643 // instruction we're merging, in which case it's the one after that. 1644 if (++NextI == Update) 1645 ++NextI; 1646 1647 int Value = Update->getOperand(2).getImm(); 1648 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1649 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1650 if (Update->getOpcode() == AArch64::SUBXri) 1651 Value = -Value; 1652 1653 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1654 : getPostIndexedOpcode(I->getOpcode()); 1655 MachineInstrBuilder MIB; 1656 int Scale, MinOffset, MaxOffset; 1657 getPrePostIndexedMemOpInfo(*I, Scale, MinOffset, MaxOffset); 1658 if (!isPairedLdSt(*I)) { 1659 // Non-paired instruction. 1660 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1661 .add(getLdStRegOp(*Update)) 1662 .add(getLdStRegOp(*I)) 1663 .add(getLdStBaseOp(*I)) 1664 .addImm(Value / Scale) 1665 .setMemRefs(I->memoperands()) 1666 .setMIFlags(I->mergeFlagsWith(*Update)); 1667 } else { 1668 // Paired instruction. 1669 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1670 .add(getLdStRegOp(*Update)) 1671 .add(getLdStRegOp(*I, 0)) 1672 .add(getLdStRegOp(*I, 1)) 1673 .add(getLdStBaseOp(*I)) 1674 .addImm(Value / Scale) 1675 .setMemRefs(I->memoperands()) 1676 .setMIFlags(I->mergeFlagsWith(*Update)); 1677 } 1678 (void)MIB; 1679 1680 if (IsPreIdx) { 1681 ++NumPreFolded; 1682 LLVM_DEBUG(dbgs() << "Creating pre-indexed load/store."); 1683 } else { 1684 ++NumPostFolded; 1685 LLVM_DEBUG(dbgs() << "Creating post-indexed load/store."); 1686 } 1687 LLVM_DEBUG(dbgs() << " Replacing instructions:\n "); 1688 LLVM_DEBUG(I->print(dbgs())); 1689 LLVM_DEBUG(dbgs() << " "); 1690 LLVM_DEBUG(Update->print(dbgs())); 1691 LLVM_DEBUG(dbgs() << " with instruction:\n "); 1692 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1693 LLVM_DEBUG(dbgs() << "\n"); 1694 1695 // Erase the old instructions for the block. 1696 I->eraseFromParent(); 1697 Update->eraseFromParent(); 1698 1699 return NextI; 1700 } 1701 1702 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, 1703 MachineInstr &MI, 1704 unsigned BaseReg, int Offset) { 1705 switch (MI.getOpcode()) { 1706 default: 1707 break; 1708 case AArch64::SUBXri: 1709 case AArch64::ADDXri: 1710 // Make sure it's a vanilla immediate operand, not a relocation or 1711 // anything else we can't handle. 1712 if (!MI.getOperand(2).isImm()) 1713 break; 1714 // Watch out for 1 << 12 shifted value. 1715 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) 1716 break; 1717 1718 // The update instruction source and destination register must be the 1719 // same as the load/store base register. 1720 if (MI.getOperand(0).getReg() != BaseReg || 1721 MI.getOperand(1).getReg() != BaseReg) 1722 break; 1723 1724 int UpdateOffset = MI.getOperand(2).getImm(); 1725 if (MI.getOpcode() == AArch64::SUBXri) 1726 UpdateOffset = -UpdateOffset; 1727 1728 // The immediate must be a multiple of the scaling factor of the pre/post 1729 // indexed instruction. 1730 int Scale, MinOffset, MaxOffset; 1731 getPrePostIndexedMemOpInfo(MemMI, Scale, MinOffset, MaxOffset); 1732 if (UpdateOffset % Scale != 0) 1733 break; 1734 1735 // Scaled offset must fit in the instruction immediate. 1736 int ScaledOffset = UpdateOffset / Scale; 1737 if (ScaledOffset > MaxOffset || ScaledOffset < MinOffset) 1738 break; 1739 1740 // If we have a non-zero Offset, we check that it matches the amount 1741 // we're adding to the register. 1742 if (!Offset || Offset == UpdateOffset) 1743 return true; 1744 break; 1745 } 1746 return false; 1747 } 1748 1749 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1750 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1751 MachineBasicBlock::iterator E = I->getParent()->end(); 1752 MachineInstr &MemMI = *I; 1753 MachineBasicBlock::iterator MBBI = I; 1754 1755 Register BaseReg = getLdStBaseOp(MemMI).getReg(); 1756 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * TII->getMemScale(MemMI); 1757 1758 // Scan forward looking for post-index opportunities. Updating instructions 1759 // can't be formed if the memory instruction doesn't have the offset we're 1760 // looking for. 1761 if (MIUnscaledOffset != UnscaledOffset) 1762 return E; 1763 1764 // If the base register overlaps a source/destination register, we can't 1765 // merge the update. This does not apply to tag store instructions which 1766 // ignore the address part of the source register. 1767 // This does not apply to STGPi as well, which does not have unpredictable 1768 // behavior in this case unlike normal stores, and always performs writeback 1769 // after reading the source register value. 1770 if (!isTagStore(MemMI) && MemMI.getOpcode() != AArch64::STGPi) { 1771 bool IsPairedInsn = isPairedLdSt(MemMI); 1772 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1773 Register DestReg = getLdStRegOp(MemMI, i).getReg(); 1774 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1775 return E; 1776 } 1777 } 1778 1779 // Track which register units have been modified and used between the first 1780 // insn (inclusive) and the second insn. 1781 ModifiedRegUnits.clear(); 1782 UsedRegUnits.clear(); 1783 ++MBBI; 1784 1785 // We can't post-increment the stack pointer if any instruction between 1786 // the memory access (I) and the increment (MBBI) can access the memory 1787 // region defined by [SP, MBBI]. 1788 const bool BaseRegSP = BaseReg == AArch64::SP; 1789 if (BaseRegSP) { 1790 // FIXME: For now, we always block the optimization over SP in windows 1791 // targets as it requires to adjust the unwind/debug info, messing up 1792 // the unwind info can actually cause a miscompile. 1793 const MCAsmInfo *MAI = I->getMF()->getTarget().getMCAsmInfo(); 1794 if (MAI->usesWindowsCFI() && 1795 I->getMF()->getFunction().needsUnwindTableEntry()) 1796 return E; 1797 } 1798 1799 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1800 MachineInstr &MI = *MBBI; 1801 1802 // Don't count transient instructions towards the search limit since there 1803 // may be different numbers of them if e.g. debug information is present. 1804 if (!MI.isTransient()) 1805 ++Count; 1806 1807 // If we found a match, return it. 1808 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) 1809 return MBBI; 1810 1811 // Update the status of what the instruction clobbered and used. 1812 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1813 1814 // Otherwise, if the base register is used or modified, we have no match, so 1815 // return early. 1816 // If we are optimizing SP, do not allow instructions that may load or store 1817 // in between the load and the optimized value update. 1818 if (!ModifiedRegUnits.available(BaseReg) || 1819 !UsedRegUnits.available(BaseReg) || 1820 (BaseRegSP && MBBI->mayLoadOrStore())) 1821 return E; 1822 } 1823 return E; 1824 } 1825 1826 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1827 MachineBasicBlock::iterator I, unsigned Limit) { 1828 MachineBasicBlock::iterator B = I->getParent()->begin(); 1829 MachineBasicBlock::iterator E = I->getParent()->end(); 1830 MachineInstr &MemMI = *I; 1831 MachineBasicBlock::iterator MBBI = I; 1832 1833 Register BaseReg = getLdStBaseOp(MemMI).getReg(); 1834 int Offset = getLdStOffsetOp(MemMI).getImm(); 1835 1836 // If the load/store is the first instruction in the block, there's obviously 1837 // not any matching update. Ditto if the memory offset isn't zero. 1838 if (MBBI == B || Offset != 0) 1839 return E; 1840 // If the base register overlaps a destination register, we can't 1841 // merge the update. 1842 if (!isTagStore(MemMI)) { 1843 bool IsPairedInsn = isPairedLdSt(MemMI); 1844 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1845 Register DestReg = getLdStRegOp(MemMI, i).getReg(); 1846 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1847 return E; 1848 } 1849 } 1850 1851 // Track which register units have been modified and used between the first 1852 // insn (inclusive) and the second insn. 1853 ModifiedRegUnits.clear(); 1854 UsedRegUnits.clear(); 1855 unsigned Count = 0; 1856 do { 1857 --MBBI; 1858 MachineInstr &MI = *MBBI; 1859 1860 // Don't count transient instructions towards the search limit since there 1861 // may be different numbers of them if e.g. debug information is present. 1862 if (!MI.isTransient()) 1863 ++Count; 1864 1865 // If we found a match, return it. 1866 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) 1867 return MBBI; 1868 1869 // Update the status of what the instruction clobbered and used. 1870 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1871 1872 // Otherwise, if the base register is used or modified, we have no match, so 1873 // return early. 1874 if (!ModifiedRegUnits.available(BaseReg) || 1875 !UsedRegUnits.available(BaseReg)) 1876 return E; 1877 } while (MBBI != B && Count < Limit); 1878 return E; 1879 } 1880 1881 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1882 MachineBasicBlock::iterator &MBBI) { 1883 MachineInstr &MI = *MBBI; 1884 // If this is a volatile load, don't mess with it. 1885 if (MI.hasOrderedMemoryRef()) 1886 return false; 1887 1888 // Make sure this is a reg+imm. 1889 // FIXME: It is possible to extend it to handle reg+reg cases. 1890 if (!getLdStOffsetOp(MI).isImm()) 1891 return false; 1892 1893 // Look backward up to LdStLimit instructions. 1894 MachineBasicBlock::iterator StoreI; 1895 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 1896 ++NumLoadsFromStoresPromoted; 1897 // Promote the load. Keeping the iterator straight is a 1898 // pain, so we let the merge routine tell us what the next instruction 1899 // is after it's done mucking about. 1900 MBBI = promoteLoadFromStore(MBBI, StoreI); 1901 return true; 1902 } 1903 return false; 1904 } 1905 1906 // Merge adjacent zero stores into a wider store. 1907 bool AArch64LoadStoreOpt::tryToMergeZeroStInst( 1908 MachineBasicBlock::iterator &MBBI) { 1909 assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store."); 1910 MachineInstr &MI = *MBBI; 1911 MachineBasicBlock::iterator E = MI.getParent()->end(); 1912 1913 if (!TII->isCandidateToMergeOrPair(MI)) 1914 return false; 1915 1916 // Look ahead up to LdStLimit instructions for a mergable instruction. 1917 LdStPairFlags Flags; 1918 MachineBasicBlock::iterator MergeMI = 1919 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 1920 if (MergeMI != E) { 1921 ++NumZeroStoresPromoted; 1922 1923 // Keeping the iterator straight is a pain, so we let the merge routine tell 1924 // us what the next instruction is after it's done mucking about. 1925 MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags); 1926 return true; 1927 } 1928 return false; 1929 } 1930 1931 // Find loads and stores that can be merged into a single load or store pair 1932 // instruction. 1933 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 1934 MachineInstr &MI = *MBBI; 1935 MachineBasicBlock::iterator E = MI.getParent()->end(); 1936 1937 if (!TII->isCandidateToMergeOrPair(MI)) 1938 return false; 1939 1940 // Early exit if the offset is not possible to match. (6 bits of positive 1941 // range, plus allow an extra one in case we find a later insn that matches 1942 // with Offset-1) 1943 bool IsUnscaled = TII->isUnscaledLdSt(MI); 1944 int Offset = getLdStOffsetOp(MI).getImm(); 1945 int OffsetStride = IsUnscaled ? TII->getMemScale(MI) : 1; 1946 // Allow one more for offset. 1947 if (Offset > 0) 1948 Offset -= OffsetStride; 1949 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1950 return false; 1951 1952 // Look ahead up to LdStLimit instructions for a pairable instruction. 1953 LdStPairFlags Flags; 1954 MachineBasicBlock::iterator Paired = 1955 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 1956 if (Paired != E) { 1957 ++NumPairCreated; 1958 if (TII->isUnscaledLdSt(MI)) 1959 ++NumUnscaledPairCreated; 1960 // Keeping the iterator straight is a pain, so we let the merge routine tell 1961 // us what the next instruction is after it's done mucking about. 1962 auto Prev = std::prev(MBBI); 1963 MBBI = mergePairedInsns(MBBI, Paired, Flags); 1964 // Collect liveness info for instructions between Prev and the new position 1965 // MBBI. 1966 for (auto I = std::next(Prev); I != MBBI; I++) 1967 updateDefinedRegisters(*I, DefinedInBB, TRI); 1968 1969 return true; 1970 } 1971 return false; 1972 } 1973 1974 bool AArch64LoadStoreOpt::tryToMergeLdStUpdate 1975 (MachineBasicBlock::iterator &MBBI) { 1976 MachineInstr &MI = *MBBI; 1977 MachineBasicBlock::iterator E = MI.getParent()->end(); 1978 MachineBasicBlock::iterator Update; 1979 1980 // Look forward to try to form a post-index instruction. For example, 1981 // ldr x0, [x20] 1982 // add x20, x20, #32 1983 // merged into: 1984 // ldr x0, [x20], #32 1985 Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 1986 if (Update != E) { 1987 // Merge the update into the ld/st. 1988 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 1989 return true; 1990 } 1991 1992 // Don't know how to handle unscaled pre/post-index versions below, so bail. 1993 if (TII->isUnscaledLdSt(MI.getOpcode())) 1994 return false; 1995 1996 // Look back to try to find a pre-index instruction. For example, 1997 // add x0, x0, #8 1998 // ldr x1, [x0] 1999 // merged into: 2000 // ldr x1, [x0, #8]! 2001 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 2002 if (Update != E) { 2003 // Merge the update into the ld/st. 2004 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 2005 return true; 2006 } 2007 2008 // The immediate in the load/store is scaled by the size of the memory 2009 // operation. The immediate in the add we're looking for, 2010 // however, is not, so adjust here. 2011 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * TII->getMemScale(MI); 2012 2013 // Look forward to try to find a pre-index instruction. For example, 2014 // ldr x1, [x0, #64] 2015 // add x0, x0, #64 2016 // merged into: 2017 // ldr x1, [x0, #64]! 2018 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 2019 if (Update != E) { 2020 // Merge the update into the ld/st. 2021 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 2022 return true; 2023 } 2024 2025 return false; 2026 } 2027 2028 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 2029 bool EnableNarrowZeroStOpt) { 2030 2031 bool Modified = false; 2032 // Four tranformations to do here: 2033 // 1) Find loads that directly read from stores and promote them by 2034 // replacing with mov instructions. If the store is wider than the load, 2035 // the load will be replaced with a bitfield extract. 2036 // e.g., 2037 // str w1, [x0, #4] 2038 // ldrh w2, [x0, #6] 2039 // ; becomes 2040 // str w1, [x0, #4] 2041 // lsr w2, w1, #16 2042 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2043 MBBI != E;) { 2044 if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI)) 2045 Modified = true; 2046 else 2047 ++MBBI; 2048 } 2049 // 2) Merge adjacent zero stores into a wider store. 2050 // e.g., 2051 // strh wzr, [x0] 2052 // strh wzr, [x0, #2] 2053 // ; becomes 2054 // str wzr, [x0] 2055 // e.g., 2056 // str wzr, [x0] 2057 // str wzr, [x0, #4] 2058 // ; becomes 2059 // str xzr, [x0] 2060 if (EnableNarrowZeroStOpt) 2061 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2062 MBBI != E;) { 2063 if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI)) 2064 Modified = true; 2065 else 2066 ++MBBI; 2067 } 2068 // 3) Find loads and stores that can be merged into a single load or store 2069 // pair instruction. 2070 // e.g., 2071 // ldr x0, [x2] 2072 // ldr x1, [x2, #8] 2073 // ; becomes 2074 // ldp x0, x1, [x2] 2075 2076 if (MBB.getParent()->getRegInfo().tracksLiveness()) { 2077 DefinedInBB.clear(); 2078 DefinedInBB.addLiveIns(MBB); 2079 } 2080 2081 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2082 MBBI != E;) { 2083 // Track currently live registers up to this point, to help with 2084 // searching for a rename register on demand. 2085 updateDefinedRegisters(*MBBI, DefinedInBB, TRI); 2086 if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI)) 2087 Modified = true; 2088 else 2089 ++MBBI; 2090 } 2091 // 4) Find base register updates that can be merged into the load or store 2092 // as a base-reg writeback. 2093 // e.g., 2094 // ldr x0, [x2] 2095 // add x2, x2, #4 2096 // ; becomes 2097 // ldr x0, [x2], #4 2098 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2099 MBBI != E;) { 2100 if (isMergeableLdStUpdate(*MBBI) && tryToMergeLdStUpdate(MBBI)) 2101 Modified = true; 2102 else 2103 ++MBBI; 2104 } 2105 2106 return Modified; 2107 } 2108 2109 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 2110 if (skipFunction(Fn.getFunction())) 2111 return false; 2112 2113 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 2114 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 2115 TRI = Subtarget->getRegisterInfo(); 2116 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2117 2118 // Resize the modified and used register unit trackers. We do this once 2119 // per function and then clear the register units each time we optimize a load 2120 // or store. 2121 ModifiedRegUnits.init(*TRI); 2122 UsedRegUnits.init(*TRI); 2123 DefinedInBB.init(*TRI); 2124 2125 bool Modified = false; 2126 bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign(); 2127 for (auto &MBB : Fn) { 2128 auto M = optimizeBlock(MBB, enableNarrowZeroStOpt); 2129 Modified |= M; 2130 } 2131 2132 return Modified; 2133 } 2134 2135 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and 2136 // stores near one another? Note: The pre-RA instruction scheduler already has 2137 // hooks to try and schedule pairable loads/stores together to improve pairing 2138 // opportunities. Thus, pre-RA pairing pass may not be worth the effort. 2139 2140 // FIXME: When pairing store instructions it's very possible for this pass to 2141 // hoist a store with a KILL marker above another use (without a KILL marker). 2142 // The resulting IR is invalid, but nothing uses the KILL markers after this 2143 // pass, so it's never caused a problem in practice. 2144 2145 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 2146 /// load / store optimization pass. 2147 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 2148 return new AArch64LoadStoreOpt(); 2149 } 2150