1 //===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that performs load / store related peephole 10 // optimizations. This pass should be run after register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AArch64InstrInfo.h" 15 #include "AArch64MachineFunctionInfo.h" 16 #include "AArch64Subtarget.h" 17 #include "MCTargetDesc/AArch64AddressingModes.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/TargetRegisterInfo.h" 32 #include "llvm/IR/DebugLoc.h" 33 #include "llvm/MC/MCAsmInfo.h" 34 #include "llvm/MC/MCRegisterInfo.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/DebugCounter.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cassert> 42 #include <cstdint> 43 #include <functional> 44 #include <iterator> 45 #include <limits> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "aarch64-ldst-opt" 50 51 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 52 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 53 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 54 STATISTIC(NumUnscaledPairCreated, 55 "Number of load/store from unscaled generated"); 56 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 57 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 58 59 DEBUG_COUNTER(RegRenamingCounter, DEBUG_TYPE "-reg-renaming", 60 "Controls which pairs are considered for renaming"); 61 62 // The LdStLimit limits how far we search for load/store pairs. 63 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 64 cl::init(20), cl::Hidden); 65 66 // The UpdateLimit limits how far we search for update instructions when we form 67 // pre-/post-index instructions. 68 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 69 cl::Hidden); 70 71 // Enable register renaming to find additional store pairing opportunities. 72 static cl::opt<bool> EnableRenaming("aarch64-load-store-renaming", 73 cl::init(true), cl::Hidden); 74 75 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 76 77 namespace { 78 79 using LdStPairFlags = struct LdStPairFlags { 80 // If a matching instruction is found, MergeForward is set to true if the 81 // merge is to remove the first instruction and replace the second with 82 // a pair-wise insn, and false if the reverse is true. 83 bool MergeForward = false; 84 85 // SExtIdx gives the index of the result of the load pair that must be 86 // extended. The value of SExtIdx assumes that the paired load produces the 87 // value in this order: (I, returned iterator), i.e., -1 means no value has 88 // to be extended, 0 means I, and 1 means the returned iterator. 89 int SExtIdx = -1; 90 91 // If not none, RenameReg can be used to rename the result register of the 92 // first store in a pair. Currently this only works when merging stores 93 // forward. 94 Optional<MCPhysReg> RenameReg = None; 95 96 LdStPairFlags() = default; 97 98 void setMergeForward(bool V = true) { MergeForward = V; } 99 bool getMergeForward() const { return MergeForward; } 100 101 void setSExtIdx(int V) { SExtIdx = V; } 102 int getSExtIdx() const { return SExtIdx; } 103 104 void setRenameReg(MCPhysReg R) { RenameReg = R; } 105 void clearRenameReg() { RenameReg = None; } 106 Optional<MCPhysReg> getRenameReg() const { return RenameReg; } 107 }; 108 109 struct AArch64LoadStoreOpt : public MachineFunctionPass { 110 static char ID; 111 112 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 113 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 114 } 115 116 AliasAnalysis *AA; 117 const AArch64InstrInfo *TII; 118 const TargetRegisterInfo *TRI; 119 const AArch64Subtarget *Subtarget; 120 121 // Track which register units have been modified and used. 122 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 123 LiveRegUnits DefinedInBB; 124 125 void getAnalysisUsage(AnalysisUsage &AU) const override { 126 AU.addRequired<AAResultsWrapperPass>(); 127 MachineFunctionPass::getAnalysisUsage(AU); 128 } 129 130 // Scan the instructions looking for a load/store that can be combined 131 // with the current instruction into a load/store pair. 132 // Return the matching instruction if one is found, else MBB->end(). 133 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 134 LdStPairFlags &Flags, 135 unsigned Limit, 136 bool FindNarrowMerge); 137 138 // Scan the instructions looking for a store that writes to the address from 139 // which the current load instruction reads. Return true if one is found. 140 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 141 MachineBasicBlock::iterator &StoreI); 142 143 // Merge the two instructions indicated into a wider narrow store instruction. 144 MachineBasicBlock::iterator 145 mergeNarrowZeroStores(MachineBasicBlock::iterator I, 146 MachineBasicBlock::iterator MergeMI, 147 const LdStPairFlags &Flags); 148 149 // Merge the two instructions indicated into a single pair-wise instruction. 150 MachineBasicBlock::iterator 151 mergePairedInsns(MachineBasicBlock::iterator I, 152 MachineBasicBlock::iterator Paired, 153 const LdStPairFlags &Flags); 154 155 // Promote the load that reads directly from the address stored to. 156 MachineBasicBlock::iterator 157 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 158 MachineBasicBlock::iterator StoreI); 159 160 // Scan the instruction list to find a base register update that can 161 // be combined with the current instruction (a load or store) using 162 // pre or post indexed addressing with writeback. Scan forwards. 163 MachineBasicBlock::iterator 164 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 165 int UnscaledOffset, unsigned Limit); 166 167 // Scan the instruction list to find a base register update that can 168 // be combined with the current instruction (a load or store) using 169 // pre or post indexed addressing with writeback. Scan backwards. 170 MachineBasicBlock::iterator 171 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 172 173 // Find an instruction that updates the base register of the ld/st 174 // instruction. 175 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, 176 unsigned BaseReg, int Offset); 177 178 // Merge a pre- or post-index base register update into a ld/st instruction. 179 MachineBasicBlock::iterator 180 mergeUpdateInsn(MachineBasicBlock::iterator I, 181 MachineBasicBlock::iterator Update, bool IsPreIdx); 182 183 // Find and merge zero store instructions. 184 bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI); 185 186 // Find and pair ldr/str instructions. 187 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 188 189 // Find and promote load instructions which read directly from store. 190 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 191 192 // Find and merge a base register updates before or after a ld/st instruction. 193 bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI); 194 195 bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt); 196 197 bool runOnMachineFunction(MachineFunction &Fn) override; 198 199 MachineFunctionProperties getRequiredProperties() const override { 200 return MachineFunctionProperties().set( 201 MachineFunctionProperties::Property::NoVRegs); 202 } 203 204 StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } 205 }; 206 207 char AArch64LoadStoreOpt::ID = 0; 208 209 } // end anonymous namespace 210 211 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 212 AARCH64_LOAD_STORE_OPT_NAME, false, false) 213 214 static bool isNarrowStore(unsigned Opc) { 215 switch (Opc) { 216 default: 217 return false; 218 case AArch64::STRBBui: 219 case AArch64::STURBBi: 220 case AArch64::STRHHui: 221 case AArch64::STURHHi: 222 return true; 223 } 224 } 225 226 // These instruction set memory tag and either keep memory contents unchanged or 227 // set it to zero, ignoring the address part of the source register. 228 static bool isTagStore(const MachineInstr &MI) { 229 switch (MI.getOpcode()) { 230 default: 231 return false; 232 case AArch64::STGOffset: 233 case AArch64::STZGOffset: 234 case AArch64::ST2GOffset: 235 case AArch64::STZ2GOffset: 236 return true; 237 } 238 } 239 240 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 241 bool *IsValidLdStrOpc = nullptr) { 242 if (IsValidLdStrOpc) 243 *IsValidLdStrOpc = true; 244 switch (Opc) { 245 default: 246 if (IsValidLdStrOpc) 247 *IsValidLdStrOpc = false; 248 return std::numeric_limits<unsigned>::max(); 249 case AArch64::STRDui: 250 case AArch64::STURDi: 251 case AArch64::STRDpre: 252 case AArch64::STRQui: 253 case AArch64::STURQi: 254 case AArch64::STRQpre: 255 case AArch64::STRBBui: 256 case AArch64::STURBBi: 257 case AArch64::STRHHui: 258 case AArch64::STURHHi: 259 case AArch64::STRWui: 260 case AArch64::STRWpre: 261 case AArch64::STURWi: 262 case AArch64::STRXui: 263 case AArch64::STRXpre: 264 case AArch64::STURXi: 265 case AArch64::LDRDui: 266 case AArch64::LDURDi: 267 case AArch64::LDRDpre: 268 case AArch64::LDRQui: 269 case AArch64::LDURQi: 270 case AArch64::LDRQpre: 271 case AArch64::LDRWui: 272 case AArch64::LDURWi: 273 case AArch64::LDRWpre: 274 case AArch64::LDRXui: 275 case AArch64::LDURXi: 276 case AArch64::LDRXpre: 277 case AArch64::STRSui: 278 case AArch64::STURSi: 279 case AArch64::STRSpre: 280 case AArch64::LDRSui: 281 case AArch64::LDURSi: 282 case AArch64::LDRSpre: 283 return Opc; 284 case AArch64::LDRSWui: 285 return AArch64::LDRWui; 286 case AArch64::LDURSWi: 287 return AArch64::LDURWi; 288 } 289 } 290 291 static unsigned getMatchingWideOpcode(unsigned Opc) { 292 switch (Opc) { 293 default: 294 llvm_unreachable("Opcode has no wide equivalent!"); 295 case AArch64::STRBBui: 296 return AArch64::STRHHui; 297 case AArch64::STRHHui: 298 return AArch64::STRWui; 299 case AArch64::STURBBi: 300 return AArch64::STURHHi; 301 case AArch64::STURHHi: 302 return AArch64::STURWi; 303 case AArch64::STURWi: 304 return AArch64::STURXi; 305 case AArch64::STRWui: 306 return AArch64::STRXui; 307 } 308 } 309 310 static unsigned getMatchingPairOpcode(unsigned Opc) { 311 switch (Opc) { 312 default: 313 llvm_unreachable("Opcode has no pairwise equivalent!"); 314 case AArch64::STRSui: 315 case AArch64::STURSi: 316 return AArch64::STPSi; 317 case AArch64::STRSpre: 318 return AArch64::STPSpre; 319 case AArch64::STRDui: 320 case AArch64::STURDi: 321 return AArch64::STPDi; 322 case AArch64::STRDpre: 323 return AArch64::STPDpre; 324 case AArch64::STRQui: 325 case AArch64::STURQi: 326 return AArch64::STPQi; 327 case AArch64::STRQpre: 328 return AArch64::STPQpre; 329 case AArch64::STRWui: 330 case AArch64::STURWi: 331 return AArch64::STPWi; 332 case AArch64::STRWpre: 333 return AArch64::STPWpre; 334 case AArch64::STRXui: 335 case AArch64::STURXi: 336 return AArch64::STPXi; 337 case AArch64::STRXpre: 338 return AArch64::STPXpre; 339 case AArch64::LDRSui: 340 case AArch64::LDURSi: 341 return AArch64::LDPSi; 342 case AArch64::LDRSpre: 343 return AArch64::LDPSpre; 344 case AArch64::LDRDui: 345 case AArch64::LDURDi: 346 return AArch64::LDPDi; 347 case AArch64::LDRDpre: 348 return AArch64::LDPDpre; 349 case AArch64::LDRQui: 350 case AArch64::LDURQi: 351 return AArch64::LDPQi; 352 case AArch64::LDRQpre: 353 return AArch64::LDPQpre; 354 case AArch64::LDRWui: 355 case AArch64::LDURWi: 356 return AArch64::LDPWi; 357 case AArch64::LDRWpre: 358 return AArch64::LDPWpre; 359 case AArch64::LDRXui: 360 case AArch64::LDURXi: 361 return AArch64::LDPXi; 362 case AArch64::LDRXpre: 363 return AArch64::LDPXpre; 364 case AArch64::LDRSWui: 365 case AArch64::LDURSWi: 366 return AArch64::LDPSWi; 367 } 368 } 369 370 static unsigned isMatchingStore(MachineInstr &LoadInst, 371 MachineInstr &StoreInst) { 372 unsigned LdOpc = LoadInst.getOpcode(); 373 unsigned StOpc = StoreInst.getOpcode(); 374 switch (LdOpc) { 375 default: 376 llvm_unreachable("Unsupported load instruction!"); 377 case AArch64::LDRBBui: 378 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 379 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 380 case AArch64::LDURBBi: 381 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 382 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 383 case AArch64::LDRHHui: 384 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 385 StOpc == AArch64::STRXui; 386 case AArch64::LDURHHi: 387 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 388 StOpc == AArch64::STURXi; 389 case AArch64::LDRWui: 390 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 391 case AArch64::LDURWi: 392 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 393 case AArch64::LDRXui: 394 return StOpc == AArch64::STRXui; 395 case AArch64::LDURXi: 396 return StOpc == AArch64::STURXi; 397 } 398 } 399 400 static unsigned getPreIndexedOpcode(unsigned Opc) { 401 // FIXME: We don't currently support creating pre-indexed loads/stores when 402 // the load or store is the unscaled version. If we decide to perform such an 403 // optimization in the future the cases for the unscaled loads/stores will 404 // need to be added here. 405 switch (Opc) { 406 default: 407 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 408 case AArch64::STRSui: 409 return AArch64::STRSpre; 410 case AArch64::STRDui: 411 return AArch64::STRDpre; 412 case AArch64::STRQui: 413 return AArch64::STRQpre; 414 case AArch64::STRBBui: 415 return AArch64::STRBBpre; 416 case AArch64::STRHHui: 417 return AArch64::STRHHpre; 418 case AArch64::STRWui: 419 return AArch64::STRWpre; 420 case AArch64::STRXui: 421 return AArch64::STRXpre; 422 case AArch64::LDRSui: 423 return AArch64::LDRSpre; 424 case AArch64::LDRDui: 425 return AArch64::LDRDpre; 426 case AArch64::LDRQui: 427 return AArch64::LDRQpre; 428 case AArch64::LDRBBui: 429 return AArch64::LDRBBpre; 430 case AArch64::LDRHHui: 431 return AArch64::LDRHHpre; 432 case AArch64::LDRWui: 433 return AArch64::LDRWpre; 434 case AArch64::LDRXui: 435 return AArch64::LDRXpre; 436 case AArch64::LDRSWui: 437 return AArch64::LDRSWpre; 438 case AArch64::LDPSi: 439 return AArch64::LDPSpre; 440 case AArch64::LDPSWi: 441 return AArch64::LDPSWpre; 442 case AArch64::LDPDi: 443 return AArch64::LDPDpre; 444 case AArch64::LDPQi: 445 return AArch64::LDPQpre; 446 case AArch64::LDPWi: 447 return AArch64::LDPWpre; 448 case AArch64::LDPXi: 449 return AArch64::LDPXpre; 450 case AArch64::STPSi: 451 return AArch64::STPSpre; 452 case AArch64::STPDi: 453 return AArch64::STPDpre; 454 case AArch64::STPQi: 455 return AArch64::STPQpre; 456 case AArch64::STPWi: 457 return AArch64::STPWpre; 458 case AArch64::STPXi: 459 return AArch64::STPXpre; 460 case AArch64::STGOffset: 461 return AArch64::STGPreIndex; 462 case AArch64::STZGOffset: 463 return AArch64::STZGPreIndex; 464 case AArch64::ST2GOffset: 465 return AArch64::ST2GPreIndex; 466 case AArch64::STZ2GOffset: 467 return AArch64::STZ2GPreIndex; 468 case AArch64::STGPi: 469 return AArch64::STGPpre; 470 } 471 } 472 473 static unsigned getPostIndexedOpcode(unsigned Opc) { 474 switch (Opc) { 475 default: 476 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 477 case AArch64::STRSui: 478 case AArch64::STURSi: 479 return AArch64::STRSpost; 480 case AArch64::STRDui: 481 case AArch64::STURDi: 482 return AArch64::STRDpost; 483 case AArch64::STRQui: 484 case AArch64::STURQi: 485 return AArch64::STRQpost; 486 case AArch64::STRBBui: 487 return AArch64::STRBBpost; 488 case AArch64::STRHHui: 489 return AArch64::STRHHpost; 490 case AArch64::STRWui: 491 case AArch64::STURWi: 492 return AArch64::STRWpost; 493 case AArch64::STRXui: 494 case AArch64::STURXi: 495 return AArch64::STRXpost; 496 case AArch64::LDRSui: 497 case AArch64::LDURSi: 498 return AArch64::LDRSpost; 499 case AArch64::LDRDui: 500 case AArch64::LDURDi: 501 return AArch64::LDRDpost; 502 case AArch64::LDRQui: 503 case AArch64::LDURQi: 504 return AArch64::LDRQpost; 505 case AArch64::LDRBBui: 506 return AArch64::LDRBBpost; 507 case AArch64::LDRHHui: 508 return AArch64::LDRHHpost; 509 case AArch64::LDRWui: 510 case AArch64::LDURWi: 511 return AArch64::LDRWpost; 512 case AArch64::LDRXui: 513 case AArch64::LDURXi: 514 return AArch64::LDRXpost; 515 case AArch64::LDRSWui: 516 return AArch64::LDRSWpost; 517 case AArch64::LDPSi: 518 return AArch64::LDPSpost; 519 case AArch64::LDPSWi: 520 return AArch64::LDPSWpost; 521 case AArch64::LDPDi: 522 return AArch64::LDPDpost; 523 case AArch64::LDPQi: 524 return AArch64::LDPQpost; 525 case AArch64::LDPWi: 526 return AArch64::LDPWpost; 527 case AArch64::LDPXi: 528 return AArch64::LDPXpost; 529 case AArch64::STPSi: 530 return AArch64::STPSpost; 531 case AArch64::STPDi: 532 return AArch64::STPDpost; 533 case AArch64::STPQi: 534 return AArch64::STPQpost; 535 case AArch64::STPWi: 536 return AArch64::STPWpost; 537 case AArch64::STPXi: 538 return AArch64::STPXpost; 539 case AArch64::STGOffset: 540 return AArch64::STGPostIndex; 541 case AArch64::STZGOffset: 542 return AArch64::STZGPostIndex; 543 case AArch64::ST2GOffset: 544 return AArch64::ST2GPostIndex; 545 case AArch64::STZ2GOffset: 546 return AArch64::STZ2GPostIndex; 547 case AArch64::STGPi: 548 return AArch64::STGPpost; 549 } 550 } 551 552 static bool isPairedLdSt(const MachineInstr &MI) { 553 switch (MI.getOpcode()) { 554 default: 555 return false; 556 case AArch64::LDPSi: 557 case AArch64::LDPSWi: 558 case AArch64::LDPDi: 559 case AArch64::LDPQi: 560 case AArch64::LDPWi: 561 case AArch64::LDPXi: 562 case AArch64::STPSi: 563 case AArch64::STPDi: 564 case AArch64::STPQi: 565 case AArch64::STPWi: 566 case AArch64::STPXi: 567 case AArch64::STGPi: 568 return true; 569 } 570 } 571 572 static bool isPreLdStPairCandidate(MachineInstr &FirstMI, MachineInstr &MI) { 573 574 unsigned OpcA = FirstMI.getOpcode(); 575 unsigned OpcB = MI.getOpcode(); 576 577 switch (OpcA) { 578 default: 579 return false; 580 case AArch64::STRSpre: 581 return (OpcB == AArch64::STRSui) || (OpcB == AArch64::STURSi); 582 case AArch64::STRDpre: 583 return (OpcB == AArch64::STRDui) || (OpcB == AArch64::STURDi); 584 case AArch64::STRQpre: 585 return (OpcB == AArch64::STRQui) || (OpcB == AArch64::STURQi); 586 case AArch64::STRWpre: 587 return (OpcB == AArch64::STRWui) || (OpcB == AArch64::STURWi); 588 case AArch64::STRXpre: 589 return (OpcB == AArch64::STRXui) || (OpcB == AArch64::STURXi); 590 case AArch64::LDRSpre: 591 return (OpcB == AArch64::LDRSui) || (OpcB == AArch64::LDURSi); 592 case AArch64::LDRDpre: 593 return (OpcB == AArch64::LDRDui) || (OpcB == AArch64::LDURDi); 594 case AArch64::LDRQpre: 595 return (OpcB == AArch64::LDRQui) || (OpcB == AArch64::LDURQi); 596 case AArch64::LDRWpre: 597 return (OpcB == AArch64::LDRWui) || (OpcB == AArch64::LDURWi); 598 case AArch64::LDRXpre: 599 return (OpcB == AArch64::LDRXui) || (OpcB == AArch64::LDURXi); 600 } 601 } 602 603 // Returns the scale and offset range of pre/post indexed variants of MI. 604 static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale, 605 int &MinOffset, int &MaxOffset) { 606 bool IsPaired = isPairedLdSt(MI); 607 bool IsTagStore = isTagStore(MI); 608 // ST*G and all paired ldst have the same scale in pre/post-indexed variants 609 // as in the "unsigned offset" variant. 610 // All other pre/post indexed ldst instructions are unscaled. 611 Scale = (IsTagStore || IsPaired) ? AArch64InstrInfo::getMemScale(MI) : 1; 612 613 if (IsPaired) { 614 MinOffset = -64; 615 MaxOffset = 63; 616 } else { 617 MinOffset = -256; 618 MaxOffset = 255; 619 } 620 } 621 622 static MachineOperand &getLdStRegOp(MachineInstr &MI, 623 unsigned PairedRegOp = 0) { 624 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 625 bool IsPreLdSt = AArch64InstrInfo::isPreLdSt(MI); 626 if (IsPreLdSt) 627 PairedRegOp += 1; 628 unsigned Idx = isPairedLdSt(MI) || IsPreLdSt ? PairedRegOp : 0; 629 return MI.getOperand(Idx); 630 } 631 632 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) { 633 unsigned Idx = isPairedLdSt(MI) || AArch64InstrInfo::isPreLdSt(MI) ? 2 : 1; 634 return MI.getOperand(Idx); 635 } 636 637 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) { 638 unsigned Idx = isPairedLdSt(MI) || AArch64InstrInfo::isPreLdSt(MI) ? 3 : 2; 639 return MI.getOperand(Idx); 640 } 641 642 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, 643 MachineInstr &StoreInst, 644 const AArch64InstrInfo *TII) { 645 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 646 int LoadSize = TII->getMemScale(LoadInst); 647 int StoreSize = TII->getMemScale(StoreInst); 648 int UnscaledStOffset = TII->hasUnscaledLdStOffset(StoreInst) 649 ? getLdStOffsetOp(StoreInst).getImm() 650 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 651 int UnscaledLdOffset = TII->hasUnscaledLdStOffset(LoadInst) 652 ? getLdStOffsetOp(LoadInst).getImm() 653 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 654 return (UnscaledStOffset <= UnscaledLdOffset) && 655 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 656 } 657 658 static bool isPromotableZeroStoreInst(MachineInstr &MI) { 659 unsigned Opc = MI.getOpcode(); 660 return (Opc == AArch64::STRWui || Opc == AArch64::STURWi || 661 isNarrowStore(Opc)) && 662 getLdStRegOp(MI).getReg() == AArch64::WZR; 663 } 664 665 static bool isPromotableLoadFromStore(MachineInstr &MI) { 666 switch (MI.getOpcode()) { 667 default: 668 return false; 669 // Scaled instructions. 670 case AArch64::LDRBBui: 671 case AArch64::LDRHHui: 672 case AArch64::LDRWui: 673 case AArch64::LDRXui: 674 // Unscaled instructions. 675 case AArch64::LDURBBi: 676 case AArch64::LDURHHi: 677 case AArch64::LDURWi: 678 case AArch64::LDURXi: 679 return true; 680 } 681 } 682 683 static bool isMergeableLdStUpdate(MachineInstr &MI) { 684 unsigned Opc = MI.getOpcode(); 685 switch (Opc) { 686 default: 687 return false; 688 // Scaled instructions. 689 case AArch64::STRSui: 690 case AArch64::STRDui: 691 case AArch64::STRQui: 692 case AArch64::STRXui: 693 case AArch64::STRWui: 694 case AArch64::STRHHui: 695 case AArch64::STRBBui: 696 case AArch64::LDRSui: 697 case AArch64::LDRDui: 698 case AArch64::LDRQui: 699 case AArch64::LDRXui: 700 case AArch64::LDRWui: 701 case AArch64::LDRHHui: 702 case AArch64::LDRBBui: 703 case AArch64::STGOffset: 704 case AArch64::STZGOffset: 705 case AArch64::ST2GOffset: 706 case AArch64::STZ2GOffset: 707 case AArch64::STGPi: 708 // Unscaled instructions. 709 case AArch64::STURSi: 710 case AArch64::STURDi: 711 case AArch64::STURQi: 712 case AArch64::STURWi: 713 case AArch64::STURXi: 714 case AArch64::LDURSi: 715 case AArch64::LDURDi: 716 case AArch64::LDURQi: 717 case AArch64::LDURWi: 718 case AArch64::LDURXi: 719 // Paired instructions. 720 case AArch64::LDPSi: 721 case AArch64::LDPSWi: 722 case AArch64::LDPDi: 723 case AArch64::LDPQi: 724 case AArch64::LDPWi: 725 case AArch64::LDPXi: 726 case AArch64::STPSi: 727 case AArch64::STPDi: 728 case AArch64::STPQi: 729 case AArch64::STPWi: 730 case AArch64::STPXi: 731 // Make sure this is a reg+imm (as opposed to an address reloc). 732 if (!getLdStOffsetOp(MI).isImm()) 733 return false; 734 735 return true; 736 } 737 } 738 739 MachineBasicBlock::iterator 740 AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I, 741 MachineBasicBlock::iterator MergeMI, 742 const LdStPairFlags &Flags) { 743 assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && 744 "Expected promotable zero stores."); 745 746 MachineBasicBlock::iterator E = I->getParent()->end(); 747 MachineBasicBlock::iterator NextI = next_nodbg(I, E); 748 // If NextI is the second of the two instructions to be merged, we need 749 // to skip one further. Either way we merge will invalidate the iterator, 750 // and we don't need to scan the new instruction, as it's a pairwise 751 // instruction, which we're not considering for further action anyway. 752 if (NextI == MergeMI) 753 NextI = next_nodbg(NextI, E); 754 755 unsigned Opc = I->getOpcode(); 756 bool IsScaled = !TII->hasUnscaledLdStOffset(Opc); 757 int OffsetStride = IsScaled ? 1 : TII->getMemScale(*I); 758 759 bool MergeForward = Flags.getMergeForward(); 760 // Insert our new paired instruction after whichever of the paired 761 // instructions MergeForward indicates. 762 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 763 // Also based on MergeForward is from where we copy the base register operand 764 // so we get the flags compatible with the input code. 765 const MachineOperand &BaseRegOp = 766 MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I); 767 768 // Which register is Rt and which is Rt2 depends on the offset order. 769 MachineInstr *RtMI; 770 if (getLdStOffsetOp(*I).getImm() == 771 getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) 772 RtMI = &*MergeMI; 773 else 774 RtMI = &*I; 775 776 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 777 // Change the scaled offset from small to large type. 778 if (IsScaled) { 779 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 780 OffsetImm /= 2; 781 } 782 783 // Construct the new instruction. 784 DebugLoc DL = I->getDebugLoc(); 785 MachineBasicBlock *MBB = I->getParent(); 786 MachineInstrBuilder MIB; 787 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 788 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 789 .add(BaseRegOp) 790 .addImm(OffsetImm) 791 .cloneMergedMemRefs({&*I, &*MergeMI}) 792 .setMIFlags(I->mergeFlagsWith(*MergeMI)); 793 (void)MIB; 794 795 LLVM_DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n "); 796 LLVM_DEBUG(I->print(dbgs())); 797 LLVM_DEBUG(dbgs() << " "); 798 LLVM_DEBUG(MergeMI->print(dbgs())); 799 LLVM_DEBUG(dbgs() << " with instruction:\n "); 800 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 801 LLVM_DEBUG(dbgs() << "\n"); 802 803 // Erase the old instructions. 804 I->eraseFromParent(); 805 MergeMI->eraseFromParent(); 806 return NextI; 807 } 808 809 // Apply Fn to all instructions between MI and the beginning of the block, until 810 // a def for DefReg is reached. Returns true, iff Fn returns true for all 811 // visited instructions. Stop after visiting Limit iterations. 812 static bool forAllMIsUntilDef(MachineInstr &MI, MCPhysReg DefReg, 813 const TargetRegisterInfo *TRI, unsigned Limit, 814 std::function<bool(MachineInstr &, bool)> &Fn) { 815 auto MBB = MI.getParent(); 816 for (MachineInstr &I : 817 instructionsWithoutDebug(MI.getReverseIterator(), MBB->instr_rend())) { 818 if (!Limit) 819 return false; 820 --Limit; 821 822 bool isDef = any_of(I.operands(), [DefReg, TRI](MachineOperand &MOP) { 823 return MOP.isReg() && MOP.isDef() && !MOP.isDebug() && MOP.getReg() && 824 TRI->regsOverlap(MOP.getReg(), DefReg); 825 }); 826 if (!Fn(I, isDef)) 827 return false; 828 if (isDef) 829 break; 830 } 831 return true; 832 } 833 834 static void updateDefinedRegisters(MachineInstr &MI, LiveRegUnits &Units, 835 const TargetRegisterInfo *TRI) { 836 837 for (const MachineOperand &MOP : phys_regs_and_masks(MI)) 838 if (MOP.isReg() && MOP.isKill()) 839 Units.removeReg(MOP.getReg()); 840 841 for (const MachineOperand &MOP : phys_regs_and_masks(MI)) 842 if (MOP.isReg() && !MOP.isKill()) 843 Units.addReg(MOP.getReg()); 844 } 845 846 MachineBasicBlock::iterator 847 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 848 MachineBasicBlock::iterator Paired, 849 const LdStPairFlags &Flags) { 850 MachineBasicBlock::iterator E = I->getParent()->end(); 851 MachineBasicBlock::iterator NextI = next_nodbg(I, E); 852 // If NextI is the second of the two instructions to be merged, we need 853 // to skip one further. Either way we merge will invalidate the iterator, 854 // and we don't need to scan the new instruction, as it's a pairwise 855 // instruction, which we're not considering for further action anyway. 856 if (NextI == Paired) 857 NextI = next_nodbg(NextI, E); 858 859 int SExtIdx = Flags.getSExtIdx(); 860 unsigned Opc = 861 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 862 bool IsUnscaled = TII->hasUnscaledLdStOffset(Opc); 863 int OffsetStride = IsUnscaled ? TII->getMemScale(*I) : 1; 864 865 bool MergeForward = Flags.getMergeForward(); 866 867 Optional<MCPhysReg> RenameReg = Flags.getRenameReg(); 868 if (MergeForward && RenameReg) { 869 MCRegister RegToRename = getLdStRegOp(*I).getReg(); 870 DefinedInBB.addReg(*RenameReg); 871 872 // Return the sub/super register for RenameReg, matching the size of 873 // OriginalReg. 874 auto GetMatchingSubReg = [this, 875 RenameReg](MCPhysReg OriginalReg) -> MCPhysReg { 876 for (MCPhysReg SubOrSuper : TRI->sub_and_superregs_inclusive(*RenameReg)) 877 if (TRI->getMinimalPhysRegClass(OriginalReg) == 878 TRI->getMinimalPhysRegClass(SubOrSuper)) 879 return SubOrSuper; 880 llvm_unreachable("Should have found matching sub or super register!"); 881 }; 882 883 std::function<bool(MachineInstr &, bool)> UpdateMIs = 884 [this, RegToRename, GetMatchingSubReg](MachineInstr &MI, bool IsDef) { 885 if (IsDef) { 886 bool SeenDef = false; 887 for (auto &MOP : MI.operands()) { 888 // Rename the first explicit definition and all implicit 889 // definitions matching RegToRename. 890 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 891 (!SeenDef || (MOP.isDef() && MOP.isImplicit())) && 892 TRI->regsOverlap(MOP.getReg(), RegToRename)) { 893 assert((MOP.isImplicit() || 894 (MOP.isRenamable() && !MOP.isEarlyClobber())) && 895 "Need renamable operands"); 896 MOP.setReg(GetMatchingSubReg(MOP.getReg())); 897 SeenDef = true; 898 } 899 } 900 } else { 901 for (auto &MOP : MI.operands()) { 902 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 903 TRI->regsOverlap(MOP.getReg(), RegToRename)) { 904 assert((MOP.isImplicit() || 905 (MOP.isRenamable() && !MOP.isEarlyClobber())) && 906 "Need renamable operands"); 907 MOP.setReg(GetMatchingSubReg(MOP.getReg())); 908 } 909 } 910 } 911 LLVM_DEBUG(dbgs() << "Renamed " << MI << "\n"); 912 return true; 913 }; 914 forAllMIsUntilDef(*I, RegToRename, TRI, LdStLimit, UpdateMIs); 915 916 #if !defined(NDEBUG) 917 // Make sure the register used for renaming is not used between the paired 918 // instructions. That would trash the content before the new paired 919 // instruction. 920 for (auto &MI : 921 iterator_range<MachineInstrBundleIterator<llvm::MachineInstr>>( 922 std::next(I), std::next(Paired))) 923 assert(all_of(MI.operands(), 924 [this, &RenameReg](const MachineOperand &MOP) { 925 return !MOP.isReg() || MOP.isDebug() || !MOP.getReg() || 926 !TRI->regsOverlap(MOP.getReg(), *RenameReg); 927 }) && 928 "Rename register used between paired instruction, trashing the " 929 "content"); 930 #endif 931 } 932 933 // Insert our new paired instruction after whichever of the paired 934 // instructions MergeForward indicates. 935 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 936 // Also based on MergeForward is from where we copy the base register operand 937 // so we get the flags compatible with the input code. 938 const MachineOperand &BaseRegOp = 939 MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I); 940 941 int Offset = getLdStOffsetOp(*I).getImm(); 942 int PairedOffset = getLdStOffsetOp(*Paired).getImm(); 943 bool PairedIsUnscaled = TII->hasUnscaledLdStOffset(Paired->getOpcode()); 944 if (IsUnscaled != PairedIsUnscaled) { 945 // We're trying to pair instructions that differ in how they are scaled. If 946 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 947 // the opposite (i.e., make Paired's offset unscaled). 948 int MemSize = TII->getMemScale(*Paired); 949 if (PairedIsUnscaled) { 950 // If the unscaled offset isn't a multiple of the MemSize, we can't 951 // pair the operations together. 952 assert(!(PairedOffset % TII->getMemScale(*Paired)) && 953 "Offset should be a multiple of the stride!"); 954 PairedOffset /= MemSize; 955 } else { 956 PairedOffset *= MemSize; 957 } 958 } 959 960 // Which register is Rt and which is Rt2 depends on the offset order. 961 // However, for pre load/stores the Rt should be the one of the pre 962 // load/store. 963 MachineInstr *RtMI, *Rt2MI; 964 if (Offset == PairedOffset + OffsetStride && 965 !AArch64InstrInfo::isPreLdSt(*I)) { 966 RtMI = &*Paired; 967 Rt2MI = &*I; 968 // Here we swapped the assumption made for SExtIdx. 969 // I.e., we turn ldp I, Paired into ldp Paired, I. 970 // Update the index accordingly. 971 if (SExtIdx != -1) 972 SExtIdx = (SExtIdx + 1) % 2; 973 } else { 974 RtMI = &*I; 975 Rt2MI = &*Paired; 976 } 977 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 978 // Scale the immediate offset, if necessary. 979 if (TII->hasUnscaledLdStOffset(RtMI->getOpcode())) { 980 assert(!(OffsetImm % TII->getMemScale(*RtMI)) && 981 "Unscaled offset cannot be scaled."); 982 OffsetImm /= TII->getMemScale(*RtMI); 983 } 984 985 // Construct the new instruction. 986 MachineInstrBuilder MIB; 987 DebugLoc DL = I->getDebugLoc(); 988 MachineBasicBlock *MBB = I->getParent(); 989 MachineOperand RegOp0 = getLdStRegOp(*RtMI); 990 MachineOperand RegOp1 = getLdStRegOp(*Rt2MI); 991 // Kill flags may become invalid when moving stores for pairing. 992 if (RegOp0.isUse()) { 993 if (!MergeForward) { 994 // Clear kill flags on store if moving upwards. Example: 995 // STRWui %w0, ... 996 // USE %w1 997 // STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards 998 RegOp0.setIsKill(false); 999 RegOp1.setIsKill(false); 1000 } else { 1001 // Clear kill flags of the first stores register. Example: 1002 // STRWui %w1, ... 1003 // USE kill %w1 ; need to clear kill flag when moving STRWui downwards 1004 // STRW %w0 1005 Register Reg = getLdStRegOp(*I).getReg(); 1006 for (MachineInstr &MI : make_range(std::next(I), Paired)) 1007 MI.clearRegisterKills(Reg, TRI); 1008 } 1009 } 1010 1011 unsigned int MatchPairOpcode = getMatchingPairOpcode(Opc); 1012 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(MatchPairOpcode)); 1013 1014 // Adds the pre-index operand for pre-indexed ld/st pairs. 1015 if (AArch64InstrInfo::isPreLdSt(*RtMI)) 1016 MIB.addReg(BaseRegOp.getReg(), RegState::Define); 1017 1018 MIB.add(RegOp0) 1019 .add(RegOp1) 1020 .add(BaseRegOp) 1021 .addImm(OffsetImm) 1022 .cloneMergedMemRefs({&*I, &*Paired}) 1023 .setMIFlags(I->mergeFlagsWith(*Paired)); 1024 1025 (void)MIB; 1026 1027 LLVM_DEBUG( 1028 dbgs() << "Creating pair load/store. Replacing instructions:\n "); 1029 LLVM_DEBUG(I->print(dbgs())); 1030 LLVM_DEBUG(dbgs() << " "); 1031 LLVM_DEBUG(Paired->print(dbgs())); 1032 LLVM_DEBUG(dbgs() << " with instruction:\n "); 1033 if (SExtIdx != -1) { 1034 // Generate the sign extension for the proper result of the ldp. 1035 // I.e., with X1, that would be: 1036 // %w1 = KILL %w1, implicit-def %x1 1037 // %x1 = SBFMXri killed %x1, 0, 31 1038 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 1039 // Right now, DstMO has the extended register, since it comes from an 1040 // extended opcode. 1041 Register DstRegX = DstMO.getReg(); 1042 // Get the W variant of that register. 1043 Register DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 1044 // Update the result of LDP to use the W instead of the X variant. 1045 DstMO.setReg(DstRegW); 1046 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1047 LLVM_DEBUG(dbgs() << "\n"); 1048 // Make the machine verifier happy by providing a definition for 1049 // the X register. 1050 // Insert this definition right after the generated LDP, i.e., before 1051 // InsertionPoint. 1052 MachineInstrBuilder MIBKill = 1053 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 1054 .addReg(DstRegW) 1055 .addReg(DstRegX, RegState::Define); 1056 MIBKill->getOperand(2).setImplicit(); 1057 // Create the sign extension. 1058 MachineInstrBuilder MIBSXTW = 1059 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 1060 .addReg(DstRegX) 1061 .addImm(0) 1062 .addImm(31); 1063 (void)MIBSXTW; 1064 LLVM_DEBUG(dbgs() << " Extend operand:\n "); 1065 LLVM_DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 1066 } else { 1067 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1068 } 1069 LLVM_DEBUG(dbgs() << "\n"); 1070 1071 if (MergeForward) 1072 for (const MachineOperand &MOP : phys_regs_and_masks(*I)) 1073 if (MOP.isReg() && MOP.isKill()) 1074 DefinedInBB.addReg(MOP.getReg()); 1075 1076 // Erase the old instructions. 1077 I->eraseFromParent(); 1078 Paired->eraseFromParent(); 1079 1080 return NextI; 1081 } 1082 1083 MachineBasicBlock::iterator 1084 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 1085 MachineBasicBlock::iterator StoreI) { 1086 MachineBasicBlock::iterator NextI = 1087 next_nodbg(LoadI, LoadI->getParent()->end()); 1088 1089 int LoadSize = TII->getMemScale(*LoadI); 1090 int StoreSize = TII->getMemScale(*StoreI); 1091 Register LdRt = getLdStRegOp(*LoadI).getReg(); 1092 const MachineOperand &StMO = getLdStRegOp(*StoreI); 1093 Register StRt = getLdStRegOp(*StoreI).getReg(); 1094 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 1095 1096 assert((IsStoreXReg || 1097 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 1098 "Unexpected RegClass"); 1099 1100 MachineInstr *BitExtMI; 1101 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 1102 // Remove the load, if the destination register of the loads is the same 1103 // register for stored value. 1104 if (StRt == LdRt && LoadSize == 8) { 1105 for (MachineInstr &MI : make_range(StoreI->getIterator(), 1106 LoadI->getIterator())) { 1107 if (MI.killsRegister(StRt, TRI)) { 1108 MI.clearRegisterKills(StRt, TRI); 1109 break; 1110 } 1111 } 1112 LLVM_DEBUG(dbgs() << "Remove load instruction:\n "); 1113 LLVM_DEBUG(LoadI->print(dbgs())); 1114 LLVM_DEBUG(dbgs() << "\n"); 1115 LoadI->eraseFromParent(); 1116 return NextI; 1117 } 1118 // Replace the load with a mov if the load and store are in the same size. 1119 BitExtMI = 1120 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1121 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 1122 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 1123 .add(StMO) 1124 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 1125 .setMIFlags(LoadI->getFlags()); 1126 } else { 1127 // FIXME: Currently we disable this transformation in big-endian targets as 1128 // performance and correctness are verified only in little-endian. 1129 if (!Subtarget->isLittleEndian()) 1130 return NextI; 1131 bool IsUnscaled = TII->hasUnscaledLdStOffset(*LoadI); 1132 assert(IsUnscaled == TII->hasUnscaledLdStOffset(*StoreI) && 1133 "Unsupported ld/st match"); 1134 assert(LoadSize <= StoreSize && "Invalid load size"); 1135 int UnscaledLdOffset = IsUnscaled 1136 ? getLdStOffsetOp(*LoadI).getImm() 1137 : getLdStOffsetOp(*LoadI).getImm() * LoadSize; 1138 int UnscaledStOffset = IsUnscaled 1139 ? getLdStOffsetOp(*StoreI).getImm() 1140 : getLdStOffsetOp(*StoreI).getImm() * StoreSize; 1141 int Width = LoadSize * 8; 1142 unsigned DestReg = 1143 IsStoreXReg ? Register(TRI->getMatchingSuperReg( 1144 LdRt, AArch64::sub_32, &AArch64::GPR64RegClass)) 1145 : LdRt; 1146 1147 assert((UnscaledLdOffset >= UnscaledStOffset && 1148 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 1149 "Invalid offset"); 1150 1151 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 1152 int Imms = Immr + Width - 1; 1153 if (UnscaledLdOffset == UnscaledStOffset) { 1154 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 1155 | ((Immr) << 6) // immr 1156 | ((Imms) << 0) // imms 1157 ; 1158 1159 BitExtMI = 1160 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1161 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 1162 DestReg) 1163 .add(StMO) 1164 .addImm(AndMaskEncoded) 1165 .setMIFlags(LoadI->getFlags()); 1166 } else { 1167 BitExtMI = 1168 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1169 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 1170 DestReg) 1171 .add(StMO) 1172 .addImm(Immr) 1173 .addImm(Imms) 1174 .setMIFlags(LoadI->getFlags()); 1175 } 1176 } 1177 1178 // Clear kill flags between store and load. 1179 for (MachineInstr &MI : make_range(StoreI->getIterator(), 1180 BitExtMI->getIterator())) 1181 if (MI.killsRegister(StRt, TRI)) { 1182 MI.clearRegisterKills(StRt, TRI); 1183 break; 1184 } 1185 1186 LLVM_DEBUG(dbgs() << "Promoting load by replacing :\n "); 1187 LLVM_DEBUG(StoreI->print(dbgs())); 1188 LLVM_DEBUG(dbgs() << " "); 1189 LLVM_DEBUG(LoadI->print(dbgs())); 1190 LLVM_DEBUG(dbgs() << " with instructions:\n "); 1191 LLVM_DEBUG(StoreI->print(dbgs())); 1192 LLVM_DEBUG(dbgs() << " "); 1193 LLVM_DEBUG((BitExtMI)->print(dbgs())); 1194 LLVM_DEBUG(dbgs() << "\n"); 1195 1196 // Erase the old instructions. 1197 LoadI->eraseFromParent(); 1198 return NextI; 1199 } 1200 1201 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 1202 // Convert the byte-offset used by unscaled into an "element" offset used 1203 // by the scaled pair load/store instructions. 1204 if (IsUnscaled) { 1205 // If the byte-offset isn't a multiple of the stride, there's no point 1206 // trying to match it. 1207 if (Offset % OffsetStride) 1208 return false; 1209 Offset /= OffsetStride; 1210 } 1211 return Offset <= 63 && Offset >= -64; 1212 } 1213 1214 // Do alignment, specialized to power of 2 and for signed ints, 1215 // avoiding having to do a C-style cast from uint_64t to int when 1216 // using alignTo from include/llvm/Support/MathExtras.h. 1217 // FIXME: Move this function to include/MathExtras.h? 1218 static int alignTo(int Num, int PowOf2) { 1219 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 1220 } 1221 1222 static bool mayAlias(MachineInstr &MIa, 1223 SmallVectorImpl<MachineInstr *> &MemInsns, 1224 AliasAnalysis *AA) { 1225 for (MachineInstr *MIb : MemInsns) 1226 if (MIa.mayAlias(AA, *MIb, /*UseTBAA*/ false)) 1227 return true; 1228 1229 return false; 1230 } 1231 1232 bool AArch64LoadStoreOpt::findMatchingStore( 1233 MachineBasicBlock::iterator I, unsigned Limit, 1234 MachineBasicBlock::iterator &StoreI) { 1235 MachineBasicBlock::iterator B = I->getParent()->begin(); 1236 MachineBasicBlock::iterator MBBI = I; 1237 MachineInstr &LoadMI = *I; 1238 Register BaseReg = getLdStBaseOp(LoadMI).getReg(); 1239 1240 // If the load is the first instruction in the block, there's obviously 1241 // not any matching store. 1242 if (MBBI == B) 1243 return false; 1244 1245 // Track which register units have been modified and used between the first 1246 // insn and the second insn. 1247 ModifiedRegUnits.clear(); 1248 UsedRegUnits.clear(); 1249 1250 unsigned Count = 0; 1251 do { 1252 MBBI = prev_nodbg(MBBI, B); 1253 MachineInstr &MI = *MBBI; 1254 1255 // Don't count transient instructions towards the search limit since there 1256 // may be different numbers of them if e.g. debug information is present. 1257 if (!MI.isTransient()) 1258 ++Count; 1259 1260 // If the load instruction reads directly from the address to which the 1261 // store instruction writes and the stored value is not modified, we can 1262 // promote the load. Since we do not handle stores with pre-/post-index, 1263 // it's unnecessary to check if BaseReg is modified by the store itself. 1264 // Also we can't handle stores without an immediate offset operand, 1265 // while the operand might be the address for a global variable. 1266 if (MI.mayStore() && isMatchingStore(LoadMI, MI) && 1267 BaseReg == getLdStBaseOp(MI).getReg() && getLdStOffsetOp(MI).isImm() && 1268 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1269 ModifiedRegUnits.available(getLdStRegOp(MI).getReg())) { 1270 StoreI = MBBI; 1271 return true; 1272 } 1273 1274 if (MI.isCall()) 1275 return false; 1276 1277 // Update modified / uses register units. 1278 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1279 1280 // Otherwise, if the base register is modified, we have no match, so 1281 // return early. 1282 if (!ModifiedRegUnits.available(BaseReg)) 1283 return false; 1284 1285 // If we encounter a store aliased with the load, return early. 1286 if (MI.mayStore() && LoadMI.mayAlias(AA, MI, /*UseTBAA*/ false)) 1287 return false; 1288 } while (MBBI != B && Count < Limit); 1289 return false; 1290 } 1291 1292 // Returns true if FirstMI and MI are candidates for merging or pairing. 1293 // Otherwise, returns false. 1294 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, 1295 LdStPairFlags &Flags, 1296 const AArch64InstrInfo *TII) { 1297 // If this is volatile or if pairing is suppressed, not a candidate. 1298 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1299 return false; 1300 1301 // We should have already checked FirstMI for pair suppression and volatility. 1302 assert(!FirstMI.hasOrderedMemoryRef() && 1303 !TII->isLdStPairSuppressed(FirstMI) && 1304 "FirstMI shouldn't get here if either of these checks are true."); 1305 1306 unsigned OpcA = FirstMI.getOpcode(); 1307 unsigned OpcB = MI.getOpcode(); 1308 1309 // Opcodes match: If the opcodes are pre ld/st there is nothing more to check. 1310 if (OpcA == OpcB) 1311 return !AArch64InstrInfo::isPreLdSt(FirstMI); 1312 1313 // Try to match a sign-extended load/store with a zero-extended load/store. 1314 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1315 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1316 assert(IsValidLdStrOpc && 1317 "Given Opc should be a Load or Store with an immediate"); 1318 // OpcA will be the first instruction in the pair. 1319 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1320 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1321 return true; 1322 } 1323 1324 // If the second instruction isn't even a mergable/pairable load/store, bail 1325 // out. 1326 if (!PairIsValidLdStrOpc) 1327 return false; 1328 1329 // FIXME: We don't support merging narrow stores with mixed scaled/unscaled 1330 // offsets. 1331 if (isNarrowStore(OpcA) || isNarrowStore(OpcB)) 1332 return false; 1333 1334 // The STR<S,D,Q,W,X>pre - STR<S,D,Q,W,X>ui and 1335 // LDR<S,D,Q,W,X>pre-LDR<S,D,Q,W,X>ui 1336 // are candidate pairs that can be merged. 1337 if (isPreLdStPairCandidate(FirstMI, MI)) 1338 return true; 1339 1340 // Try to match an unscaled load/store with a scaled load/store. 1341 return TII->hasUnscaledLdStOffset(OpcA) != TII->hasUnscaledLdStOffset(OpcB) && 1342 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1343 1344 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1345 } 1346 1347 static bool 1348 canRenameUpToDef(MachineInstr &FirstMI, LiveRegUnits &UsedInBetween, 1349 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1350 const TargetRegisterInfo *TRI) { 1351 if (!FirstMI.mayStore()) 1352 return false; 1353 1354 // Check if we can find an unused register which we can use to rename 1355 // the register used by the first load/store. 1356 auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg()); 1357 MachineFunction &MF = *FirstMI.getParent()->getParent(); 1358 if (!RegClass || !MF.getRegInfo().tracksLiveness()) 1359 return false; 1360 1361 auto RegToRename = getLdStRegOp(FirstMI).getReg(); 1362 // For now, we only rename if the store operand gets killed at the store. 1363 if (!getLdStRegOp(FirstMI).isKill() && 1364 !any_of(FirstMI.operands(), 1365 [TRI, RegToRename](const MachineOperand &MOP) { 1366 return MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 1367 MOP.isImplicit() && MOP.isKill() && 1368 TRI->regsOverlap(RegToRename, MOP.getReg()); 1369 })) { 1370 LLVM_DEBUG(dbgs() << " Operand not killed at " << FirstMI << "\n"); 1371 return false; 1372 } 1373 auto canRenameMOP = [TRI](const MachineOperand &MOP) { 1374 if (MOP.isReg()) { 1375 auto *RegClass = TRI->getMinimalPhysRegClass(MOP.getReg()); 1376 // Renaming registers with multiple disjunct sub-registers (e.g. the 1377 // result of a LD3) means that all sub-registers are renamed, potentially 1378 // impacting other instructions we did not check. Bail out. 1379 // Note that this relies on the structure of the AArch64 register file. In 1380 // particular, a subregister cannot be written without overwriting the 1381 // whole register. 1382 if (RegClass->HasDisjunctSubRegs) { 1383 LLVM_DEBUG( 1384 dbgs() 1385 << " Cannot rename operands with multiple disjunct subregisters (" 1386 << MOP << ")\n"); 1387 return false; 1388 } 1389 } 1390 return MOP.isImplicit() || 1391 (MOP.isRenamable() && !MOP.isEarlyClobber() && !MOP.isTied()); 1392 }; 1393 1394 bool FoundDef = false; 1395 1396 // For each instruction between FirstMI and the previous def for RegToRename, 1397 // we 1398 // * check if we can rename RegToRename in this instruction 1399 // * collect the registers used and required register classes for RegToRename. 1400 std::function<bool(MachineInstr &, bool)> CheckMIs = [&](MachineInstr &MI, 1401 bool IsDef) { 1402 LLVM_DEBUG(dbgs() << "Checking " << MI << "\n"); 1403 // Currently we do not try to rename across frame-setup instructions. 1404 if (MI.getFlag(MachineInstr::FrameSetup)) { 1405 LLVM_DEBUG(dbgs() << " Cannot rename framesetup instructions currently (" 1406 << MI << ")\n"); 1407 return false; 1408 } 1409 1410 UsedInBetween.accumulate(MI); 1411 1412 // For a definition, check that we can rename the definition and exit the 1413 // loop. 1414 FoundDef = IsDef; 1415 1416 // For defs, check if we can rename the first def of RegToRename. 1417 if (FoundDef) { 1418 // For some pseudo instructions, we might not generate code in the end 1419 // (e.g. KILL) and we would end up without a correct def for the rename 1420 // register. 1421 // TODO: This might be overly conservative and we could handle those cases 1422 // in multiple ways: 1423 // 1. Insert an extra copy, to materialize the def. 1424 // 2. Skip pseudo-defs until we find an non-pseudo def. 1425 if (MI.isPseudo()) { 1426 LLVM_DEBUG(dbgs() << " Cannot rename pseudo instruction " << MI 1427 << "\n"); 1428 return false; 1429 } 1430 1431 for (auto &MOP : MI.operands()) { 1432 if (!MOP.isReg() || !MOP.isDef() || MOP.isDebug() || !MOP.getReg() || 1433 !TRI->regsOverlap(MOP.getReg(), RegToRename)) 1434 continue; 1435 if (!canRenameMOP(MOP)) { 1436 LLVM_DEBUG(dbgs() 1437 << " Cannot rename " << MOP << " in " << MI << "\n"); 1438 return false; 1439 } 1440 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); 1441 } 1442 return true; 1443 } else { 1444 for (auto &MOP : MI.operands()) { 1445 if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() || 1446 !TRI->regsOverlap(MOP.getReg(), RegToRename)) 1447 continue; 1448 1449 if (!canRenameMOP(MOP)) { 1450 LLVM_DEBUG(dbgs() 1451 << " Cannot rename " << MOP << " in " << MI << "\n"); 1452 return false; 1453 } 1454 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); 1455 } 1456 } 1457 return true; 1458 }; 1459 1460 if (!forAllMIsUntilDef(FirstMI, RegToRename, TRI, LdStLimit, CheckMIs)) 1461 return false; 1462 1463 if (!FoundDef) { 1464 LLVM_DEBUG(dbgs() << " Did not find definition for register in BB\n"); 1465 return false; 1466 } 1467 return true; 1468 } 1469 1470 // Check if we can find a physical register for renaming. This register must: 1471 // * not be defined up to FirstMI (checking DefinedInBB) 1472 // * not used between the MI and the defining instruction of the register to 1473 // rename (checked using UsedInBetween). 1474 // * is available in all used register classes (checked using RequiredClasses). 1475 static Optional<MCPhysReg> tryToFindRegisterToRename( 1476 MachineInstr &FirstMI, MachineInstr &MI, LiveRegUnits &DefinedInBB, 1477 LiveRegUnits &UsedInBetween, 1478 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1479 const TargetRegisterInfo *TRI) { 1480 auto &MF = *FirstMI.getParent()->getParent(); 1481 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1482 1483 // Checks if any sub- or super-register of PR is callee saved. 1484 auto AnySubOrSuperRegCalleePreserved = [&MF, TRI](MCPhysReg PR) { 1485 return any_of(TRI->sub_and_superregs_inclusive(PR), 1486 [&MF, TRI](MCPhysReg SubOrSuper) { 1487 return TRI->isCalleeSavedPhysReg(SubOrSuper, MF); 1488 }); 1489 }; 1490 1491 // Check if PR or one of its sub- or super-registers can be used for all 1492 // required register classes. 1493 auto CanBeUsedForAllClasses = [&RequiredClasses, TRI](MCPhysReg PR) { 1494 return all_of(RequiredClasses, [PR, TRI](const TargetRegisterClass *C) { 1495 return any_of(TRI->sub_and_superregs_inclusive(PR), 1496 [C, TRI](MCPhysReg SubOrSuper) { 1497 return C == TRI->getMinimalPhysRegClass(SubOrSuper); 1498 }); 1499 }); 1500 }; 1501 1502 auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg()); 1503 for (const MCPhysReg &PR : *RegClass) { 1504 if (DefinedInBB.available(PR) && UsedInBetween.available(PR) && 1505 !RegInfo.isReserved(PR) && !AnySubOrSuperRegCalleePreserved(PR) && 1506 CanBeUsedForAllClasses(PR)) { 1507 DefinedInBB.addReg(PR); 1508 LLVM_DEBUG(dbgs() << "Found rename register " << printReg(PR, TRI) 1509 << "\n"); 1510 return {PR}; 1511 } 1512 } 1513 LLVM_DEBUG(dbgs() << "No rename register found from " 1514 << TRI->getRegClassName(RegClass) << "\n"); 1515 return None; 1516 } 1517 1518 // Returns a boolean that represents whether there exists a register 1519 // from FirstMI to the beginning of the block that can be renamed. If 1520 // one exists, we update Flags with its value. 1521 static bool updateFlagsWithRenameReg( 1522 Optional<bool> MaybeCanRename, LdStPairFlags &Flags, MachineInstr &FirstMI, 1523 MachineInstr &MI, LiveRegUnits &DefinedInBB, LiveRegUnits &UsedInBetween, 1524 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1525 const TargetRegisterInfo *TRI) { 1526 if (DebugCounter::shouldExecute(RegRenamingCounter)) { 1527 if (!MaybeCanRename) 1528 MaybeCanRename = { 1529 canRenameUpToDef(FirstMI, UsedInBetween, RequiredClasses, TRI)}; 1530 1531 if (*MaybeCanRename) { 1532 Optional<MCPhysReg> MaybeRenameReg = tryToFindRegisterToRename( 1533 FirstMI, MI, DefinedInBB, UsedInBetween, RequiredClasses, TRI); 1534 if (MaybeRenameReg) { 1535 Flags.setRenameReg(*MaybeRenameReg); 1536 Flags.setMergeForward(true); 1537 return true; 1538 } 1539 } 1540 } 1541 return false; 1542 } 1543 1544 /// Scan the instructions looking for a load/store that can be combined with the 1545 /// current instruction into a wider equivalent or a load/store pair. 1546 MachineBasicBlock::iterator 1547 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1548 LdStPairFlags &Flags, unsigned Limit, 1549 bool FindNarrowMerge) { 1550 MachineBasicBlock::iterator E = I->getParent()->end(); 1551 MachineBasicBlock::iterator MBBI = I; 1552 MachineBasicBlock::iterator MBBIWithRenameReg; 1553 MachineInstr &FirstMI = *I; 1554 MBBI = next_nodbg(MBBI, E); 1555 1556 bool MayLoad = FirstMI.mayLoad(); 1557 bool IsUnscaled = TII->hasUnscaledLdStOffset(FirstMI); 1558 Register Reg = getLdStRegOp(FirstMI).getReg(); 1559 Register BaseReg = getLdStBaseOp(FirstMI).getReg(); 1560 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1561 int OffsetStride = IsUnscaled ? TII->getMemScale(FirstMI) : 1; 1562 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1563 1564 Optional<bool> MaybeCanRename = None; 1565 if (!EnableRenaming) 1566 MaybeCanRename = {false}; 1567 1568 SmallPtrSet<const TargetRegisterClass *, 5> RequiredClasses; 1569 LiveRegUnits UsedInBetween; 1570 UsedInBetween.init(*TRI); 1571 1572 Flags.clearRenameReg(); 1573 1574 // Track which register units have been modified and used between the first 1575 // insn (inclusive) and the second insn. 1576 ModifiedRegUnits.clear(); 1577 UsedRegUnits.clear(); 1578 1579 // Remember any instructions that read/write memory between FirstMI and MI. 1580 SmallVector<MachineInstr *, 4> MemInsns; 1581 1582 for (unsigned Count = 0; MBBI != E && Count < Limit; 1583 MBBI = next_nodbg(MBBI, E)) { 1584 MachineInstr &MI = *MBBI; 1585 1586 UsedInBetween.accumulate(MI); 1587 1588 // Don't count transient instructions towards the search limit since there 1589 // may be different numbers of them if e.g. debug information is present. 1590 if (!MI.isTransient()) 1591 ++Count; 1592 1593 Flags.setSExtIdx(-1); 1594 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && 1595 getLdStOffsetOp(MI).isImm()) { 1596 assert(MI.mayLoadOrStore() && "Expected memory operation."); 1597 // If we've found another instruction with the same opcode, check to see 1598 // if the base and offset are compatible with our starting instruction. 1599 // These instructions all have scaled immediate operands, so we just 1600 // check for +1/-1. Make sure to check the new instruction offset is 1601 // actually an immediate and not a symbolic reference destined for 1602 // a relocation. 1603 Register MIBaseReg = getLdStBaseOp(MI).getReg(); 1604 int MIOffset = getLdStOffsetOp(MI).getImm(); 1605 bool MIIsUnscaled = TII->hasUnscaledLdStOffset(MI); 1606 if (IsUnscaled != MIIsUnscaled) { 1607 // We're trying to pair instructions that differ in how they are scaled. 1608 // If FirstMI is scaled then scale the offset of MI accordingly. 1609 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1610 int MemSize = TII->getMemScale(MI); 1611 if (MIIsUnscaled) { 1612 // If the unscaled offset isn't a multiple of the MemSize, we can't 1613 // pair the operations together: bail and keep looking. 1614 if (MIOffset % MemSize) { 1615 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1616 UsedRegUnits, TRI); 1617 MemInsns.push_back(&MI); 1618 continue; 1619 } 1620 MIOffset /= MemSize; 1621 } else { 1622 MIOffset *= MemSize; 1623 } 1624 } 1625 1626 bool IsPreLdSt = isPreLdStPairCandidate(FirstMI, MI); 1627 1628 if (BaseReg == MIBaseReg) { 1629 // If the offset of the second ld/st is not equal to the size of the 1630 // destination register it can’t be paired with a pre-index ld/st 1631 // pair. Additionally if the base reg is used or modified the operations 1632 // can't be paired: bail and keep looking. 1633 if (IsPreLdSt) { 1634 bool IsOutOfBounds = MIOffset != TII->getMemScale(MI); 1635 bool IsBaseRegUsed = 1636 !UsedRegUnits.available(getLdStBaseOp(MI).getReg()); 1637 bool IsBaseRegModified = 1638 !ModifiedRegUnits.available(getLdStBaseOp(MI).getReg()); 1639 // If the stored value and the address of the second instruction is 1640 // the same, it needs to be using the updated register and therefore 1641 // it must not be folded. 1642 bool IsMIRegTheSame = 1643 getLdStRegOp(MI).getReg() == getLdStBaseOp(MI).getReg(); 1644 if (IsOutOfBounds || IsBaseRegUsed || IsBaseRegModified || 1645 IsMIRegTheSame) { 1646 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1647 UsedRegUnits, TRI); 1648 MemInsns.push_back(&MI); 1649 continue; 1650 } 1651 } else { 1652 if ((Offset != MIOffset + OffsetStride) && 1653 (Offset + OffsetStride != MIOffset)) { 1654 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1655 UsedRegUnits, TRI); 1656 MemInsns.push_back(&MI); 1657 continue; 1658 } 1659 } 1660 1661 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1662 if (FindNarrowMerge) { 1663 // If the alignment requirements of the scaled wide load/store 1664 // instruction can't express the offset of the scaled narrow input, 1665 // bail and keep looking. For promotable zero stores, allow only when 1666 // the stored value is the same (i.e., WZR). 1667 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1668 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1669 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1670 UsedRegUnits, TRI); 1671 MemInsns.push_back(&MI); 1672 continue; 1673 } 1674 } else { 1675 // Pairwise instructions have a 7-bit signed offset field. Single 1676 // insns have a 12-bit unsigned offset field. If the resultant 1677 // immediate offset of merging these instructions is out of range for 1678 // a pairwise instruction, bail and keep looking. 1679 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1680 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1681 UsedRegUnits, TRI); 1682 MemInsns.push_back(&MI); 1683 continue; 1684 } 1685 // If the alignment requirements of the paired (scaled) instruction 1686 // can't express the offset of the unscaled input, bail and keep 1687 // looking. 1688 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1689 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1690 UsedRegUnits, TRI); 1691 MemInsns.push_back(&MI); 1692 continue; 1693 } 1694 } 1695 // If the load/store pattern has been optimized and reordered 1696 // into the following: 1697 // ldr q0, [x1, #16] 1698 // str q0, [x0, #16] 1699 // ldr q0, [x1] 1700 // str q0, [x0] 1701 // and the destination register of the load/store instruction is 1702 // the same register as or a sub/super register of the other 1703 // load/store, it will not generate an LDP/STP, so we attempt to 1704 // rename the register so that it can be recognised as a pair. 1705 // TODO: This is currently supported for STPs, LDPs are not 1706 // being generated yet. 1707 if (TRI->isSuperOrSubRegisterEq(Reg, getLdStRegOp(MI).getReg())) { 1708 bool flagsHaveRenameReg = updateFlagsWithRenameReg( 1709 MaybeCanRename, Flags, FirstMI, MI, DefinedInBB, UsedInBetween, 1710 RequiredClasses, TRI); 1711 if (flagsHaveRenameReg) { 1712 MBBIWithRenameReg = MBBI; 1713 continue; 1714 } 1715 } 1716 // If the destination register of one load is the same register or a 1717 // sub/super register of the other load, bail and keep looking. A 1718 // load-pair instruction with both destination registers the same is 1719 // UNPREDICTABLE and will result in an exception. 1720 if (MayLoad && 1721 TRI->isSuperOrSubRegisterEq(Reg, getLdStRegOp(MI).getReg())) { 1722 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1723 TRI); 1724 MemInsns.push_back(&MI); 1725 continue; 1726 } 1727 1728 // If the BaseReg has been modified, then we cannot do the optimization. 1729 // For example, in the following pattern 1730 // ldr x1 [x2] 1731 // ldr x2 [x3] 1732 // ldr x4 [x2, #8], 1733 // the first and third ldr cannot be converted to ldp x1, x4, [x2] 1734 if (!ModifiedRegUnits.available(BaseReg)) 1735 return E; 1736 1737 // If the Rt of the second instruction was not modified or used between 1738 // the two instructions and none of the instructions between the second 1739 // and first alias with the second, we can combine the second into the 1740 // first. 1741 if (ModifiedRegUnits.available(getLdStRegOp(MI).getReg()) && 1742 !(MI.mayLoad() && 1743 !UsedRegUnits.available(getLdStRegOp(MI).getReg())) && 1744 !mayAlias(MI, MemInsns, AA)) { 1745 1746 Flags.setMergeForward(false); 1747 Flags.clearRenameReg(); 1748 return MBBI; 1749 } 1750 1751 // Likewise, if the Rt of the first instruction is not modified or used 1752 // between the two instructions and none of the instructions between the 1753 // first and the second alias with the first, we can combine the first 1754 // into the second. 1755 if (!(MayLoad && 1756 !UsedRegUnits.available(getLdStRegOp(FirstMI).getReg())) && 1757 !mayAlias(FirstMI, MemInsns, AA)) { 1758 1759 if (ModifiedRegUnits.available(getLdStRegOp(FirstMI).getReg())) { 1760 Flags.setMergeForward(true); 1761 Flags.clearRenameReg(); 1762 return MBBI; 1763 } 1764 bool flagsHaveRenameReg = updateFlagsWithRenameReg( 1765 MaybeCanRename, Flags, FirstMI, MI, DefinedInBB, UsedInBetween, 1766 RequiredClasses, TRI); 1767 if (flagsHaveRenameReg) { 1768 MBBIWithRenameReg = MBBI; 1769 } 1770 } 1771 // Unable to combine these instructions due to interference in between. 1772 // Keep looking. 1773 } 1774 } 1775 1776 if (Flags.getRenameReg()) 1777 return MBBIWithRenameReg; 1778 1779 // If the instruction wasn't a matching load or store. Stop searching if we 1780 // encounter a call instruction that might modify memory. 1781 if (MI.isCall()) 1782 return E; 1783 1784 // Update modified / uses register units. 1785 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1786 1787 // Otherwise, if the base register is modified, we have no match, so 1788 // return early. 1789 if (!ModifiedRegUnits.available(BaseReg)) 1790 return E; 1791 1792 // Update list of instructions that read/write memory. 1793 if (MI.mayLoadOrStore()) 1794 MemInsns.push_back(&MI); 1795 } 1796 return E; 1797 } 1798 1799 MachineBasicBlock::iterator 1800 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1801 MachineBasicBlock::iterator Update, 1802 bool IsPreIdx) { 1803 assert((Update->getOpcode() == AArch64::ADDXri || 1804 Update->getOpcode() == AArch64::SUBXri) && 1805 "Unexpected base register update instruction to merge!"); 1806 MachineBasicBlock::iterator E = I->getParent()->end(); 1807 MachineBasicBlock::iterator NextI = next_nodbg(I, E); 1808 // Return the instruction following the merged instruction, which is 1809 // the instruction following our unmerged load. Unless that's the add/sub 1810 // instruction we're merging, in which case it's the one after that. 1811 if (NextI == Update) 1812 NextI = next_nodbg(NextI, E); 1813 1814 int Value = Update->getOperand(2).getImm(); 1815 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1816 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1817 if (Update->getOpcode() == AArch64::SUBXri) 1818 Value = -Value; 1819 1820 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1821 : getPostIndexedOpcode(I->getOpcode()); 1822 MachineInstrBuilder MIB; 1823 int Scale, MinOffset, MaxOffset; 1824 getPrePostIndexedMemOpInfo(*I, Scale, MinOffset, MaxOffset); 1825 if (!isPairedLdSt(*I)) { 1826 // Non-paired instruction. 1827 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1828 .add(getLdStRegOp(*Update)) 1829 .add(getLdStRegOp(*I)) 1830 .add(getLdStBaseOp(*I)) 1831 .addImm(Value / Scale) 1832 .setMemRefs(I->memoperands()) 1833 .setMIFlags(I->mergeFlagsWith(*Update)); 1834 } else { 1835 // Paired instruction. 1836 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1837 .add(getLdStRegOp(*Update)) 1838 .add(getLdStRegOp(*I, 0)) 1839 .add(getLdStRegOp(*I, 1)) 1840 .add(getLdStBaseOp(*I)) 1841 .addImm(Value / Scale) 1842 .setMemRefs(I->memoperands()) 1843 .setMIFlags(I->mergeFlagsWith(*Update)); 1844 } 1845 (void)MIB; 1846 1847 if (IsPreIdx) { 1848 ++NumPreFolded; 1849 LLVM_DEBUG(dbgs() << "Creating pre-indexed load/store."); 1850 } else { 1851 ++NumPostFolded; 1852 LLVM_DEBUG(dbgs() << "Creating post-indexed load/store."); 1853 } 1854 LLVM_DEBUG(dbgs() << " Replacing instructions:\n "); 1855 LLVM_DEBUG(I->print(dbgs())); 1856 LLVM_DEBUG(dbgs() << " "); 1857 LLVM_DEBUG(Update->print(dbgs())); 1858 LLVM_DEBUG(dbgs() << " with instruction:\n "); 1859 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1860 LLVM_DEBUG(dbgs() << "\n"); 1861 1862 // Erase the old instructions for the block. 1863 I->eraseFromParent(); 1864 Update->eraseFromParent(); 1865 1866 return NextI; 1867 } 1868 1869 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, 1870 MachineInstr &MI, 1871 unsigned BaseReg, int Offset) { 1872 switch (MI.getOpcode()) { 1873 default: 1874 break; 1875 case AArch64::SUBXri: 1876 case AArch64::ADDXri: 1877 // Make sure it's a vanilla immediate operand, not a relocation or 1878 // anything else we can't handle. 1879 if (!MI.getOperand(2).isImm()) 1880 break; 1881 // Watch out for 1 << 12 shifted value. 1882 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) 1883 break; 1884 1885 // The update instruction source and destination register must be the 1886 // same as the load/store base register. 1887 if (MI.getOperand(0).getReg() != BaseReg || 1888 MI.getOperand(1).getReg() != BaseReg) 1889 break; 1890 1891 int UpdateOffset = MI.getOperand(2).getImm(); 1892 if (MI.getOpcode() == AArch64::SUBXri) 1893 UpdateOffset = -UpdateOffset; 1894 1895 // The immediate must be a multiple of the scaling factor of the pre/post 1896 // indexed instruction. 1897 int Scale, MinOffset, MaxOffset; 1898 getPrePostIndexedMemOpInfo(MemMI, Scale, MinOffset, MaxOffset); 1899 if (UpdateOffset % Scale != 0) 1900 break; 1901 1902 // Scaled offset must fit in the instruction immediate. 1903 int ScaledOffset = UpdateOffset / Scale; 1904 if (ScaledOffset > MaxOffset || ScaledOffset < MinOffset) 1905 break; 1906 1907 // If we have a non-zero Offset, we check that it matches the amount 1908 // we're adding to the register. 1909 if (!Offset || Offset == UpdateOffset) 1910 return true; 1911 break; 1912 } 1913 return false; 1914 } 1915 1916 static bool needsWinCFI(const MachineFunction *MF) { 1917 return MF->getTarget().getMCAsmInfo()->usesWindowsCFI() && 1918 MF->getFunction().needsUnwindTableEntry(); 1919 } 1920 1921 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1922 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1923 MachineBasicBlock::iterator E = I->getParent()->end(); 1924 MachineInstr &MemMI = *I; 1925 MachineBasicBlock::iterator MBBI = I; 1926 1927 Register BaseReg = getLdStBaseOp(MemMI).getReg(); 1928 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * TII->getMemScale(MemMI); 1929 1930 // Scan forward looking for post-index opportunities. Updating instructions 1931 // can't be formed if the memory instruction doesn't have the offset we're 1932 // looking for. 1933 if (MIUnscaledOffset != UnscaledOffset) 1934 return E; 1935 1936 // If the base register overlaps a source/destination register, we can't 1937 // merge the update. This does not apply to tag store instructions which 1938 // ignore the address part of the source register. 1939 // This does not apply to STGPi as well, which does not have unpredictable 1940 // behavior in this case unlike normal stores, and always performs writeback 1941 // after reading the source register value. 1942 if (!isTagStore(MemMI) && MemMI.getOpcode() != AArch64::STGPi) { 1943 bool IsPairedInsn = isPairedLdSt(MemMI); 1944 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1945 Register DestReg = getLdStRegOp(MemMI, i).getReg(); 1946 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1947 return E; 1948 } 1949 } 1950 1951 // Track which register units have been modified and used between the first 1952 // insn (inclusive) and the second insn. 1953 ModifiedRegUnits.clear(); 1954 UsedRegUnits.clear(); 1955 MBBI = next_nodbg(MBBI, E); 1956 1957 // We can't post-increment the stack pointer if any instruction between 1958 // the memory access (I) and the increment (MBBI) can access the memory 1959 // region defined by [SP, MBBI]. 1960 const bool BaseRegSP = BaseReg == AArch64::SP; 1961 if (BaseRegSP && needsWinCFI(I->getMF())) { 1962 // FIXME: For now, we always block the optimization over SP in windows 1963 // targets as it requires to adjust the unwind/debug info, messing up 1964 // the unwind info can actually cause a miscompile. 1965 return E; 1966 } 1967 1968 for (unsigned Count = 0; MBBI != E && Count < Limit; 1969 MBBI = next_nodbg(MBBI, E)) { 1970 MachineInstr &MI = *MBBI; 1971 1972 // Don't count transient instructions towards the search limit since there 1973 // may be different numbers of them if e.g. debug information is present. 1974 if (!MI.isTransient()) 1975 ++Count; 1976 1977 // If we found a match, return it. 1978 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) 1979 return MBBI; 1980 1981 // Update the status of what the instruction clobbered and used. 1982 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1983 1984 // Otherwise, if the base register is used or modified, we have no match, so 1985 // return early. 1986 // If we are optimizing SP, do not allow instructions that may load or store 1987 // in between the load and the optimized value update. 1988 if (!ModifiedRegUnits.available(BaseReg) || 1989 !UsedRegUnits.available(BaseReg) || 1990 (BaseRegSP && MBBI->mayLoadOrStore())) 1991 return E; 1992 } 1993 return E; 1994 } 1995 1996 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1997 MachineBasicBlock::iterator I, unsigned Limit) { 1998 MachineBasicBlock::iterator B = I->getParent()->begin(); 1999 MachineBasicBlock::iterator E = I->getParent()->end(); 2000 MachineInstr &MemMI = *I; 2001 MachineBasicBlock::iterator MBBI = I; 2002 MachineFunction &MF = *MemMI.getMF(); 2003 2004 Register BaseReg = getLdStBaseOp(MemMI).getReg(); 2005 int Offset = getLdStOffsetOp(MemMI).getImm(); 2006 2007 // If the load/store is the first instruction in the block, there's obviously 2008 // not any matching update. Ditto if the memory offset isn't zero. 2009 if (MBBI == B || Offset != 0) 2010 return E; 2011 // If the base register overlaps a destination register, we can't 2012 // merge the update. 2013 if (!isTagStore(MemMI)) { 2014 bool IsPairedInsn = isPairedLdSt(MemMI); 2015 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 2016 Register DestReg = getLdStRegOp(MemMI, i).getReg(); 2017 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 2018 return E; 2019 } 2020 } 2021 2022 const bool BaseRegSP = BaseReg == AArch64::SP; 2023 if (BaseRegSP && needsWinCFI(I->getMF())) { 2024 // FIXME: For now, we always block the optimization over SP in windows 2025 // targets as it requires to adjust the unwind/debug info, messing up 2026 // the unwind info can actually cause a miscompile. 2027 return E; 2028 } 2029 2030 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2031 unsigned RedZoneSize = 2032 Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction()); 2033 2034 // Track which register units have been modified and used between the first 2035 // insn (inclusive) and the second insn. 2036 ModifiedRegUnits.clear(); 2037 UsedRegUnits.clear(); 2038 unsigned Count = 0; 2039 bool MemAcessBeforeSPPreInc = false; 2040 do { 2041 MBBI = prev_nodbg(MBBI, B); 2042 MachineInstr &MI = *MBBI; 2043 2044 // Don't count transient instructions towards the search limit since there 2045 // may be different numbers of them if e.g. debug information is present. 2046 if (!MI.isTransient()) 2047 ++Count; 2048 2049 // If we found a match, return it. 2050 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) { 2051 // Check that the update value is within our red zone limit (which may be 2052 // zero). 2053 if (MemAcessBeforeSPPreInc && MBBI->getOperand(2).getImm() > RedZoneSize) 2054 return E; 2055 return MBBI; 2056 } 2057 2058 // Update the status of what the instruction clobbered and used. 2059 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 2060 2061 // Otherwise, if the base register is used or modified, we have no match, so 2062 // return early. 2063 if (!ModifiedRegUnits.available(BaseReg) || 2064 !UsedRegUnits.available(BaseReg)) 2065 return E; 2066 // Keep track if we have a memory access before an SP pre-increment, in this 2067 // case we need to validate later that the update amount respects the red 2068 // zone. 2069 if (BaseRegSP && MBBI->mayLoadOrStore()) 2070 MemAcessBeforeSPPreInc = true; 2071 } while (MBBI != B && Count < Limit); 2072 return E; 2073 } 2074 2075 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 2076 MachineBasicBlock::iterator &MBBI) { 2077 MachineInstr &MI = *MBBI; 2078 // If this is a volatile load, don't mess with it. 2079 if (MI.hasOrderedMemoryRef()) 2080 return false; 2081 2082 // Make sure this is a reg+imm. 2083 // FIXME: It is possible to extend it to handle reg+reg cases. 2084 if (!getLdStOffsetOp(MI).isImm()) 2085 return false; 2086 2087 // Look backward up to LdStLimit instructions. 2088 MachineBasicBlock::iterator StoreI; 2089 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 2090 ++NumLoadsFromStoresPromoted; 2091 // Promote the load. Keeping the iterator straight is a 2092 // pain, so we let the merge routine tell us what the next instruction 2093 // is after it's done mucking about. 2094 MBBI = promoteLoadFromStore(MBBI, StoreI); 2095 return true; 2096 } 2097 return false; 2098 } 2099 2100 // Merge adjacent zero stores into a wider store. 2101 bool AArch64LoadStoreOpt::tryToMergeZeroStInst( 2102 MachineBasicBlock::iterator &MBBI) { 2103 assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store."); 2104 MachineInstr &MI = *MBBI; 2105 MachineBasicBlock::iterator E = MI.getParent()->end(); 2106 2107 if (!TII->isCandidateToMergeOrPair(MI)) 2108 return false; 2109 2110 // Look ahead up to LdStLimit instructions for a mergable instruction. 2111 LdStPairFlags Flags; 2112 MachineBasicBlock::iterator MergeMI = 2113 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 2114 if (MergeMI != E) { 2115 ++NumZeroStoresPromoted; 2116 2117 // Keeping the iterator straight is a pain, so we let the merge routine tell 2118 // us what the next instruction is after it's done mucking about. 2119 MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags); 2120 return true; 2121 } 2122 return false; 2123 } 2124 2125 // Find loads and stores that can be merged into a single load or store pair 2126 // instruction. 2127 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 2128 MachineInstr &MI = *MBBI; 2129 MachineBasicBlock::iterator E = MI.getParent()->end(); 2130 2131 if (!TII->isCandidateToMergeOrPair(MI)) 2132 return false; 2133 2134 // Early exit if the offset is not possible to match. (6 bits of positive 2135 // range, plus allow an extra one in case we find a later insn that matches 2136 // with Offset-1) 2137 bool IsUnscaled = TII->hasUnscaledLdStOffset(MI); 2138 int Offset = getLdStOffsetOp(MI).getImm(); 2139 int OffsetStride = IsUnscaled ? TII->getMemScale(MI) : 1; 2140 // Allow one more for offset. 2141 if (Offset > 0) 2142 Offset -= OffsetStride; 2143 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 2144 return false; 2145 2146 // Look ahead up to LdStLimit instructions for a pairable instruction. 2147 LdStPairFlags Flags; 2148 MachineBasicBlock::iterator Paired = 2149 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 2150 if (Paired != E) { 2151 ++NumPairCreated; 2152 if (TII->hasUnscaledLdStOffset(MI)) 2153 ++NumUnscaledPairCreated; 2154 // Keeping the iterator straight is a pain, so we let the merge routine tell 2155 // us what the next instruction is after it's done mucking about. 2156 auto Prev = std::prev(MBBI); 2157 MBBI = mergePairedInsns(MBBI, Paired, Flags); 2158 // Collect liveness info for instructions between Prev and the new position 2159 // MBBI. 2160 for (auto I = std::next(Prev); I != MBBI; I++) 2161 updateDefinedRegisters(*I, DefinedInBB, TRI); 2162 2163 return true; 2164 } 2165 return false; 2166 } 2167 2168 bool AArch64LoadStoreOpt::tryToMergeLdStUpdate 2169 (MachineBasicBlock::iterator &MBBI) { 2170 MachineInstr &MI = *MBBI; 2171 MachineBasicBlock::iterator E = MI.getParent()->end(); 2172 MachineBasicBlock::iterator Update; 2173 2174 // Look forward to try to form a post-index instruction. For example, 2175 // ldr x0, [x20] 2176 // add x20, x20, #32 2177 // merged into: 2178 // ldr x0, [x20], #32 2179 Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 2180 if (Update != E) { 2181 // Merge the update into the ld/st. 2182 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 2183 return true; 2184 } 2185 2186 // Don't know how to handle unscaled pre/post-index versions below, so bail. 2187 if (TII->hasUnscaledLdStOffset(MI.getOpcode())) 2188 return false; 2189 2190 // Look back to try to find a pre-index instruction. For example, 2191 // add x0, x0, #8 2192 // ldr x1, [x0] 2193 // merged into: 2194 // ldr x1, [x0, #8]! 2195 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 2196 if (Update != E) { 2197 // Merge the update into the ld/st. 2198 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 2199 return true; 2200 } 2201 2202 // The immediate in the load/store is scaled by the size of the memory 2203 // operation. The immediate in the add we're looking for, 2204 // however, is not, so adjust here. 2205 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * TII->getMemScale(MI); 2206 2207 // Look forward to try to find a pre-index instruction. For example, 2208 // ldr x1, [x0, #64] 2209 // add x0, x0, #64 2210 // merged into: 2211 // ldr x1, [x0, #64]! 2212 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 2213 if (Update != E) { 2214 // Merge the update into the ld/st. 2215 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 2216 return true; 2217 } 2218 2219 return false; 2220 } 2221 2222 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 2223 bool EnableNarrowZeroStOpt) { 2224 2225 bool Modified = false; 2226 // Four tranformations to do here: 2227 // 1) Find loads that directly read from stores and promote them by 2228 // replacing with mov instructions. If the store is wider than the load, 2229 // the load will be replaced with a bitfield extract. 2230 // e.g., 2231 // str w1, [x0, #4] 2232 // ldrh w2, [x0, #6] 2233 // ; becomes 2234 // str w1, [x0, #4] 2235 // lsr w2, w1, #16 2236 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2237 MBBI != E;) { 2238 if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI)) 2239 Modified = true; 2240 else 2241 ++MBBI; 2242 } 2243 // 2) Merge adjacent zero stores into a wider store. 2244 // e.g., 2245 // strh wzr, [x0] 2246 // strh wzr, [x0, #2] 2247 // ; becomes 2248 // str wzr, [x0] 2249 // e.g., 2250 // str wzr, [x0] 2251 // str wzr, [x0, #4] 2252 // ; becomes 2253 // str xzr, [x0] 2254 if (EnableNarrowZeroStOpt) 2255 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2256 MBBI != E;) { 2257 if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI)) 2258 Modified = true; 2259 else 2260 ++MBBI; 2261 } 2262 // 3) Find loads and stores that can be merged into a single load or store 2263 // pair instruction. 2264 // e.g., 2265 // ldr x0, [x2] 2266 // ldr x1, [x2, #8] 2267 // ; becomes 2268 // ldp x0, x1, [x2] 2269 2270 if (MBB.getParent()->getRegInfo().tracksLiveness()) { 2271 DefinedInBB.clear(); 2272 DefinedInBB.addLiveIns(MBB); 2273 } 2274 2275 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2276 MBBI != E;) { 2277 // Track currently live registers up to this point, to help with 2278 // searching for a rename register on demand. 2279 updateDefinedRegisters(*MBBI, DefinedInBB, TRI); 2280 if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI)) 2281 Modified = true; 2282 else 2283 ++MBBI; 2284 } 2285 // 4) Find base register updates that can be merged into the load or store 2286 // as a base-reg writeback. 2287 // e.g., 2288 // ldr x0, [x2] 2289 // add x2, x2, #4 2290 // ; becomes 2291 // ldr x0, [x2], #4 2292 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2293 MBBI != E;) { 2294 if (isMergeableLdStUpdate(*MBBI) && tryToMergeLdStUpdate(MBBI)) 2295 Modified = true; 2296 else 2297 ++MBBI; 2298 } 2299 2300 return Modified; 2301 } 2302 2303 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 2304 if (skipFunction(Fn.getFunction())) 2305 return false; 2306 2307 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 2308 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 2309 TRI = Subtarget->getRegisterInfo(); 2310 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2311 2312 // Resize the modified and used register unit trackers. We do this once 2313 // per function and then clear the register units each time we optimize a load 2314 // or store. 2315 ModifiedRegUnits.init(*TRI); 2316 UsedRegUnits.init(*TRI); 2317 DefinedInBB.init(*TRI); 2318 2319 bool Modified = false; 2320 bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign(); 2321 for (auto &MBB : Fn) { 2322 auto M = optimizeBlock(MBB, enableNarrowZeroStOpt); 2323 Modified |= M; 2324 } 2325 2326 return Modified; 2327 } 2328 2329 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and 2330 // stores near one another? Note: The pre-RA instruction scheduler already has 2331 // hooks to try and schedule pairable loads/stores together to improve pairing 2332 // opportunities. Thus, pre-RA pairing pass may not be worth the effort. 2333 2334 // FIXME: When pairing store instructions it's very possible for this pass to 2335 // hoist a store with a KILL marker above another use (without a KILL marker). 2336 // The resulting IR is invalid, but nothing uses the KILL markers after this 2337 // pass, so it's never caused a problem in practice. 2338 2339 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 2340 /// load / store optimization pass. 2341 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 2342 return new AArch64LoadStoreOpt(); 2343 } 2344