1 //=- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -*- C++ -*-=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that performs load / store related peephole
11 // optimizations. This pass should be run after register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AArch64InstrInfo.h"
16 #include "AArch64Subtarget.h"
17 #include "MCTargetDesc/AArch64AddressingModes.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "aarch64-ldst-opt"
35 
36 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated");
37 STATISTIC(NumPostFolded, "Number of post-index updates folded");
38 STATISTIC(NumPreFolded, "Number of pre-index updates folded");
39 STATISTIC(NumUnscaledPairCreated,
40           "Number of load/store from unscaled generated");
41 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted");
42 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted");
43 
44 // The LdStLimit limits how far we search for load/store pairs.
45 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit",
46                                    cl::init(20), cl::Hidden);
47 
48 // The UpdateLimit limits how far we search for update instructions when we form
49 // pre-/post-index instructions.
50 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100),
51                                      cl::Hidden);
52 
53 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass"
54 
55 namespace {
56 
57 typedef struct LdStPairFlags {
58   // If a matching instruction is found, MergeForward is set to true if the
59   // merge is to remove the first instruction and replace the second with
60   // a pair-wise insn, and false if the reverse is true.
61   bool MergeForward;
62 
63   // SExtIdx gives the index of the result of the load pair that must be
64   // extended. The value of SExtIdx assumes that the paired load produces the
65   // value in this order: (I, returned iterator), i.e., -1 means no value has
66   // to be extended, 0 means I, and 1 means the returned iterator.
67   int SExtIdx;
68 
69   LdStPairFlags() : MergeForward(false), SExtIdx(-1) {}
70 
71   void setMergeForward(bool V = true) { MergeForward = V; }
72   bool getMergeForward() const { return MergeForward; }
73 
74   void setSExtIdx(int V) { SExtIdx = V; }
75   int getSExtIdx() const { return SExtIdx; }
76 
77 } LdStPairFlags;
78 
79 struct AArch64LoadStoreOpt : public MachineFunctionPass {
80   static char ID;
81   AArch64LoadStoreOpt() : MachineFunctionPass(ID) {
82     initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry());
83   }
84 
85   const AArch64InstrInfo *TII;
86   const TargetRegisterInfo *TRI;
87   const AArch64Subtarget *Subtarget;
88 
89   // Track which registers have been modified and used.
90   BitVector ModifiedRegs, UsedRegs;
91 
92   // Scan the instructions looking for a load/store that can be combined
93   // with the current instruction into a load/store pair.
94   // Return the matching instruction if one is found, else MBB->end().
95   MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I,
96                                                LdStPairFlags &Flags,
97                                                unsigned Limit,
98                                                bool FindNarrowMerge);
99 
100   // Scan the instructions looking for a store that writes to the address from
101   // which the current load instruction reads. Return true if one is found.
102   bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit,
103                          MachineBasicBlock::iterator &StoreI);
104 
105   // Merge the two instructions indicated into a wider narrow store instruction.
106   MachineBasicBlock::iterator
107   mergeNarrowZeroStores(MachineBasicBlock::iterator I,
108                         MachineBasicBlock::iterator MergeMI,
109                         const LdStPairFlags &Flags);
110 
111   // Merge the two instructions indicated into a single pair-wise instruction.
112   MachineBasicBlock::iterator
113   mergePairedInsns(MachineBasicBlock::iterator I,
114                    MachineBasicBlock::iterator Paired,
115                    const LdStPairFlags &Flags);
116 
117   // Promote the load that reads directly from the address stored to.
118   MachineBasicBlock::iterator
119   promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
120                        MachineBasicBlock::iterator StoreI);
121 
122   // Scan the instruction list to find a base register update that can
123   // be combined with the current instruction (a load or store) using
124   // pre or post indexed addressing with writeback. Scan forwards.
125   MachineBasicBlock::iterator
126   findMatchingUpdateInsnForward(MachineBasicBlock::iterator I,
127                                 int UnscaledOffset, unsigned Limit);
128 
129   // Scan the instruction list to find a base register update that can
130   // be combined with the current instruction (a load or store) using
131   // pre or post indexed addressing with writeback. Scan backwards.
132   MachineBasicBlock::iterator
133   findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit);
134 
135   // Find an instruction that updates the base register of the ld/st
136   // instruction.
137   bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI,
138                             unsigned BaseReg, int Offset);
139 
140   // Merge a pre- or post-index base register update into a ld/st instruction.
141   MachineBasicBlock::iterator
142   mergeUpdateInsn(MachineBasicBlock::iterator I,
143                   MachineBasicBlock::iterator Update, bool IsPreIdx);
144 
145   // Find and merge zero store instructions.
146   bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI);
147 
148   // Find and pair ldr/str instructions.
149   bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI);
150 
151   // Find and promote load instructions which read directly from store.
152   bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI);
153 
154   bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt);
155 
156   bool runOnMachineFunction(MachineFunction &Fn) override;
157 
158   MachineFunctionProperties getRequiredProperties() const override {
159     return MachineFunctionProperties().set(
160         MachineFunctionProperties::Property::NoVRegs);
161   }
162 
163   StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; }
164 };
165 char AArch64LoadStoreOpt::ID = 0;
166 } // namespace
167 
168 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt",
169                 AARCH64_LOAD_STORE_OPT_NAME, false, false)
170 
171 static bool isNarrowStore(unsigned Opc) {
172   switch (Opc) {
173   default:
174     return false;
175   case AArch64::STRBBui:
176   case AArch64::STURBBi:
177   case AArch64::STRHHui:
178   case AArch64::STURHHi:
179     return true;
180   }
181 }
182 
183 // Scaling factor for unscaled load or store.
184 static int getMemScale(MachineInstr &MI) {
185   switch (MI.getOpcode()) {
186   default:
187     llvm_unreachable("Opcode has unknown scale!");
188   case AArch64::LDRBBui:
189   case AArch64::LDURBBi:
190   case AArch64::LDRSBWui:
191   case AArch64::LDURSBWi:
192   case AArch64::STRBBui:
193   case AArch64::STURBBi:
194     return 1;
195   case AArch64::LDRHHui:
196   case AArch64::LDURHHi:
197   case AArch64::LDRSHWui:
198   case AArch64::LDURSHWi:
199   case AArch64::STRHHui:
200   case AArch64::STURHHi:
201     return 2;
202   case AArch64::LDRSui:
203   case AArch64::LDURSi:
204   case AArch64::LDRSWui:
205   case AArch64::LDURSWi:
206   case AArch64::LDRWui:
207   case AArch64::LDURWi:
208   case AArch64::STRSui:
209   case AArch64::STURSi:
210   case AArch64::STRWui:
211   case AArch64::STURWi:
212   case AArch64::LDPSi:
213   case AArch64::LDPSWi:
214   case AArch64::LDPWi:
215   case AArch64::STPSi:
216   case AArch64::STPWi:
217     return 4;
218   case AArch64::LDRDui:
219   case AArch64::LDURDi:
220   case AArch64::LDRXui:
221   case AArch64::LDURXi:
222   case AArch64::STRDui:
223   case AArch64::STURDi:
224   case AArch64::STRXui:
225   case AArch64::STURXi:
226   case AArch64::LDPDi:
227   case AArch64::LDPXi:
228   case AArch64::STPDi:
229   case AArch64::STPXi:
230     return 8;
231   case AArch64::LDRQui:
232   case AArch64::LDURQi:
233   case AArch64::STRQui:
234   case AArch64::STURQi:
235   case AArch64::LDPQi:
236   case AArch64::STPQi:
237     return 16;
238   }
239 }
240 
241 static unsigned getMatchingNonSExtOpcode(unsigned Opc,
242                                          bool *IsValidLdStrOpc = nullptr) {
243   if (IsValidLdStrOpc)
244     *IsValidLdStrOpc = true;
245   switch (Opc) {
246   default:
247     if (IsValidLdStrOpc)
248       *IsValidLdStrOpc = false;
249     return UINT_MAX;
250   case AArch64::STRDui:
251   case AArch64::STURDi:
252   case AArch64::STRQui:
253   case AArch64::STURQi:
254   case AArch64::STRBBui:
255   case AArch64::STURBBi:
256   case AArch64::STRHHui:
257   case AArch64::STURHHi:
258   case AArch64::STRWui:
259   case AArch64::STURWi:
260   case AArch64::STRXui:
261   case AArch64::STURXi:
262   case AArch64::LDRDui:
263   case AArch64::LDURDi:
264   case AArch64::LDRQui:
265   case AArch64::LDURQi:
266   case AArch64::LDRWui:
267   case AArch64::LDURWi:
268   case AArch64::LDRXui:
269   case AArch64::LDURXi:
270   case AArch64::STRSui:
271   case AArch64::STURSi:
272   case AArch64::LDRSui:
273   case AArch64::LDURSi:
274     return Opc;
275   case AArch64::LDRSWui:
276     return AArch64::LDRWui;
277   case AArch64::LDURSWi:
278     return AArch64::LDURWi;
279   }
280 }
281 
282 static unsigned getMatchingWideOpcode(unsigned Opc) {
283   switch (Opc) {
284   default:
285     llvm_unreachable("Opcode has no wide equivalent!");
286   case AArch64::STRBBui:
287     return AArch64::STRHHui;
288   case AArch64::STRHHui:
289     return AArch64::STRWui;
290   case AArch64::STURBBi:
291     return AArch64::STURHHi;
292   case AArch64::STURHHi:
293     return AArch64::STURWi;
294   case AArch64::STURWi:
295     return AArch64::STURXi;
296   case AArch64::STRWui:
297     return AArch64::STRXui;
298   }
299 }
300 
301 static unsigned getMatchingPairOpcode(unsigned Opc) {
302   switch (Opc) {
303   default:
304     llvm_unreachable("Opcode has no pairwise equivalent!");
305   case AArch64::STRSui:
306   case AArch64::STURSi:
307     return AArch64::STPSi;
308   case AArch64::STRDui:
309   case AArch64::STURDi:
310     return AArch64::STPDi;
311   case AArch64::STRQui:
312   case AArch64::STURQi:
313     return AArch64::STPQi;
314   case AArch64::STRWui:
315   case AArch64::STURWi:
316     return AArch64::STPWi;
317   case AArch64::STRXui:
318   case AArch64::STURXi:
319     return AArch64::STPXi;
320   case AArch64::LDRSui:
321   case AArch64::LDURSi:
322     return AArch64::LDPSi;
323   case AArch64::LDRDui:
324   case AArch64::LDURDi:
325     return AArch64::LDPDi;
326   case AArch64::LDRQui:
327   case AArch64::LDURQi:
328     return AArch64::LDPQi;
329   case AArch64::LDRWui:
330   case AArch64::LDURWi:
331     return AArch64::LDPWi;
332   case AArch64::LDRXui:
333   case AArch64::LDURXi:
334     return AArch64::LDPXi;
335   case AArch64::LDRSWui:
336   case AArch64::LDURSWi:
337     return AArch64::LDPSWi;
338   }
339 }
340 
341 static unsigned isMatchingStore(MachineInstr &LoadInst,
342                                 MachineInstr &StoreInst) {
343   unsigned LdOpc = LoadInst.getOpcode();
344   unsigned StOpc = StoreInst.getOpcode();
345   switch (LdOpc) {
346   default:
347     llvm_unreachable("Unsupported load instruction!");
348   case AArch64::LDRBBui:
349     return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui ||
350            StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
351   case AArch64::LDURBBi:
352     return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi ||
353            StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
354   case AArch64::LDRHHui:
355     return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui ||
356            StOpc == AArch64::STRXui;
357   case AArch64::LDURHHi:
358     return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi ||
359            StOpc == AArch64::STURXi;
360   case AArch64::LDRWui:
361     return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
362   case AArch64::LDURWi:
363     return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
364   case AArch64::LDRXui:
365     return StOpc == AArch64::STRXui;
366   case AArch64::LDURXi:
367     return StOpc == AArch64::STURXi;
368   }
369 }
370 
371 static unsigned getPreIndexedOpcode(unsigned Opc) {
372   switch (Opc) {
373   default:
374     llvm_unreachable("Opcode has no pre-indexed equivalent!");
375   case AArch64::STRSui:
376     return AArch64::STRSpre;
377   case AArch64::STRDui:
378     return AArch64::STRDpre;
379   case AArch64::STRQui:
380     return AArch64::STRQpre;
381   case AArch64::STRBBui:
382     return AArch64::STRBBpre;
383   case AArch64::STRHHui:
384     return AArch64::STRHHpre;
385   case AArch64::STRWui:
386     return AArch64::STRWpre;
387   case AArch64::STRXui:
388     return AArch64::STRXpre;
389   case AArch64::LDRSui:
390     return AArch64::LDRSpre;
391   case AArch64::LDRDui:
392     return AArch64::LDRDpre;
393   case AArch64::LDRQui:
394     return AArch64::LDRQpre;
395   case AArch64::LDRBBui:
396     return AArch64::LDRBBpre;
397   case AArch64::LDRHHui:
398     return AArch64::LDRHHpre;
399   case AArch64::LDRWui:
400     return AArch64::LDRWpre;
401   case AArch64::LDRXui:
402     return AArch64::LDRXpre;
403   case AArch64::LDRSWui:
404     return AArch64::LDRSWpre;
405   case AArch64::LDPSi:
406     return AArch64::LDPSpre;
407   case AArch64::LDPSWi:
408     return AArch64::LDPSWpre;
409   case AArch64::LDPDi:
410     return AArch64::LDPDpre;
411   case AArch64::LDPQi:
412     return AArch64::LDPQpre;
413   case AArch64::LDPWi:
414     return AArch64::LDPWpre;
415   case AArch64::LDPXi:
416     return AArch64::LDPXpre;
417   case AArch64::STPSi:
418     return AArch64::STPSpre;
419   case AArch64::STPDi:
420     return AArch64::STPDpre;
421   case AArch64::STPQi:
422     return AArch64::STPQpre;
423   case AArch64::STPWi:
424     return AArch64::STPWpre;
425   case AArch64::STPXi:
426     return AArch64::STPXpre;
427   }
428 }
429 
430 static unsigned getPostIndexedOpcode(unsigned Opc) {
431   switch (Opc) {
432   default:
433     llvm_unreachable("Opcode has no post-indexed wise equivalent!");
434   case AArch64::STRSui:
435     return AArch64::STRSpost;
436   case AArch64::STRDui:
437     return AArch64::STRDpost;
438   case AArch64::STRQui:
439     return AArch64::STRQpost;
440   case AArch64::STRBBui:
441     return AArch64::STRBBpost;
442   case AArch64::STRHHui:
443     return AArch64::STRHHpost;
444   case AArch64::STRWui:
445     return AArch64::STRWpost;
446   case AArch64::STRXui:
447     return AArch64::STRXpost;
448   case AArch64::LDRSui:
449     return AArch64::LDRSpost;
450   case AArch64::LDRDui:
451     return AArch64::LDRDpost;
452   case AArch64::LDRQui:
453     return AArch64::LDRQpost;
454   case AArch64::LDRBBui:
455     return AArch64::LDRBBpost;
456   case AArch64::LDRHHui:
457     return AArch64::LDRHHpost;
458   case AArch64::LDRWui:
459     return AArch64::LDRWpost;
460   case AArch64::LDRXui:
461     return AArch64::LDRXpost;
462   case AArch64::LDRSWui:
463     return AArch64::LDRSWpost;
464   case AArch64::LDPSi:
465     return AArch64::LDPSpost;
466   case AArch64::LDPSWi:
467     return AArch64::LDPSWpost;
468   case AArch64::LDPDi:
469     return AArch64::LDPDpost;
470   case AArch64::LDPQi:
471     return AArch64::LDPQpost;
472   case AArch64::LDPWi:
473     return AArch64::LDPWpost;
474   case AArch64::LDPXi:
475     return AArch64::LDPXpost;
476   case AArch64::STPSi:
477     return AArch64::STPSpost;
478   case AArch64::STPDi:
479     return AArch64::STPDpost;
480   case AArch64::STPQi:
481     return AArch64::STPQpost;
482   case AArch64::STPWi:
483     return AArch64::STPWpost;
484   case AArch64::STPXi:
485     return AArch64::STPXpost;
486   }
487 }
488 
489 static bool isPairedLdSt(const MachineInstr &MI) {
490   switch (MI.getOpcode()) {
491   default:
492     return false;
493   case AArch64::LDPSi:
494   case AArch64::LDPSWi:
495   case AArch64::LDPDi:
496   case AArch64::LDPQi:
497   case AArch64::LDPWi:
498   case AArch64::LDPXi:
499   case AArch64::STPSi:
500   case AArch64::STPDi:
501   case AArch64::STPQi:
502   case AArch64::STPWi:
503   case AArch64::STPXi:
504     return true;
505   }
506 }
507 
508 static const MachineOperand &getLdStRegOp(const MachineInstr &MI,
509                                           unsigned PairedRegOp = 0) {
510   assert(PairedRegOp < 2 && "Unexpected register operand idx.");
511   unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0;
512   return MI.getOperand(Idx);
513 }
514 
515 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) {
516   unsigned Idx = isPairedLdSt(MI) ? 2 : 1;
517   return MI.getOperand(Idx);
518 }
519 
520 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) {
521   unsigned Idx = isPairedLdSt(MI) ? 3 : 2;
522   return MI.getOperand(Idx);
523 }
524 
525 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst,
526                                   MachineInstr &StoreInst,
527                                   const AArch64InstrInfo *TII) {
528   assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st.");
529   int LoadSize = getMemScale(LoadInst);
530   int StoreSize = getMemScale(StoreInst);
531   int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst)
532                              ? getLdStOffsetOp(StoreInst).getImm()
533                              : getLdStOffsetOp(StoreInst).getImm() * StoreSize;
534   int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst)
535                              ? getLdStOffsetOp(LoadInst).getImm()
536                              : getLdStOffsetOp(LoadInst).getImm() * LoadSize;
537   return (UnscaledStOffset <= UnscaledLdOffset) &&
538          (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize));
539 }
540 
541 static bool isPromotableZeroStoreInst(MachineInstr &MI) {
542   unsigned Opc = MI.getOpcode();
543   return (Opc == AArch64::STRWui || Opc == AArch64::STURWi ||
544           isNarrowStore(Opc)) &&
545          getLdStRegOp(MI).getReg() == AArch64::WZR;
546 }
547 
548 MachineBasicBlock::iterator
549 AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I,
550                                            MachineBasicBlock::iterator MergeMI,
551                                            const LdStPairFlags &Flags) {
552   assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) &&
553          "Expected promotable zero stores.");
554 
555   MachineBasicBlock::iterator NextI = I;
556   ++NextI;
557   // If NextI is the second of the two instructions to be merged, we need
558   // to skip one further. Either way we merge will invalidate the iterator,
559   // and we don't need to scan the new instruction, as it's a pairwise
560   // instruction, which we're not considering for further action anyway.
561   if (NextI == MergeMI)
562     ++NextI;
563 
564   unsigned Opc = I->getOpcode();
565   bool IsScaled = !TII->isUnscaledLdSt(Opc);
566   int OffsetStride = IsScaled ? 1 : getMemScale(*I);
567 
568   bool MergeForward = Flags.getMergeForward();
569   // Insert our new paired instruction after whichever of the paired
570   // instructions MergeForward indicates.
571   MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I;
572   // Also based on MergeForward is from where we copy the base register operand
573   // so we get the flags compatible with the input code.
574   const MachineOperand &BaseRegOp =
575       MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I);
576 
577   // Which register is Rt and which is Rt2 depends on the offset order.
578   MachineInstr *RtMI;
579   if (getLdStOffsetOp(*I).getImm() ==
580       getLdStOffsetOp(*MergeMI).getImm() + OffsetStride)
581     RtMI = &*MergeMI;
582   else
583     RtMI = &*I;
584 
585   int OffsetImm = getLdStOffsetOp(*RtMI).getImm();
586   // Change the scaled offset from small to large type.
587   if (IsScaled) {
588     assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge");
589     OffsetImm /= 2;
590   }
591 
592   // Construct the new instruction.
593   DebugLoc DL = I->getDebugLoc();
594   MachineBasicBlock *MBB = I->getParent();
595   MachineInstrBuilder MIB;
596   MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc)))
597             .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR)
598             .addOperand(BaseRegOp)
599             .addImm(OffsetImm)
600             .setMemRefs(I->mergeMemRefsWith(*MergeMI));
601   (void)MIB;
602 
603   DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n    ");
604   DEBUG(I->print(dbgs()));
605   DEBUG(dbgs() << "    ");
606   DEBUG(MergeMI->print(dbgs()));
607   DEBUG(dbgs() << "  with instruction:\n    ");
608   DEBUG(((MachineInstr *)MIB)->print(dbgs()));
609   DEBUG(dbgs() << "\n");
610 
611   // Erase the old instructions.
612   I->eraseFromParent();
613   MergeMI->eraseFromParent();
614   return NextI;
615 }
616 
617 MachineBasicBlock::iterator
618 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I,
619                                       MachineBasicBlock::iterator Paired,
620                                       const LdStPairFlags &Flags) {
621   MachineBasicBlock::iterator NextI = I;
622   ++NextI;
623   // If NextI is the second of the two instructions to be merged, we need
624   // to skip one further. Either way we merge will invalidate the iterator,
625   // and we don't need to scan the new instruction, as it's a pairwise
626   // instruction, which we're not considering for further action anyway.
627   if (NextI == Paired)
628     ++NextI;
629 
630   int SExtIdx = Flags.getSExtIdx();
631   unsigned Opc =
632       SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode());
633   bool IsUnscaled = TII->isUnscaledLdSt(Opc);
634   int OffsetStride = IsUnscaled ? getMemScale(*I) : 1;
635 
636   bool MergeForward = Flags.getMergeForward();
637   // Insert our new paired instruction after whichever of the paired
638   // instructions MergeForward indicates.
639   MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I;
640   // Also based on MergeForward is from where we copy the base register operand
641   // so we get the flags compatible with the input code.
642   const MachineOperand &BaseRegOp =
643       MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I);
644 
645   int Offset = getLdStOffsetOp(*I).getImm();
646   int PairedOffset = getLdStOffsetOp(*Paired).getImm();
647   bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode());
648   if (IsUnscaled != PairedIsUnscaled) {
649     // We're trying to pair instructions that differ in how they are scaled.  If
650     // I is scaled then scale the offset of Paired accordingly.  Otherwise, do
651     // the opposite (i.e., make Paired's offset unscaled).
652     int MemSize = getMemScale(*Paired);
653     if (PairedIsUnscaled) {
654       // If the unscaled offset isn't a multiple of the MemSize, we can't
655       // pair the operations together.
656       assert(!(PairedOffset % getMemScale(*Paired)) &&
657              "Offset should be a multiple of the stride!");
658       PairedOffset /= MemSize;
659     } else {
660       PairedOffset *= MemSize;
661     }
662   }
663 
664   // Which register is Rt and which is Rt2 depends on the offset order.
665   MachineInstr *RtMI, *Rt2MI;
666   if (Offset == PairedOffset + OffsetStride) {
667     RtMI = &*Paired;
668     Rt2MI = &*I;
669     // Here we swapped the assumption made for SExtIdx.
670     // I.e., we turn ldp I, Paired into ldp Paired, I.
671     // Update the index accordingly.
672     if (SExtIdx != -1)
673       SExtIdx = (SExtIdx + 1) % 2;
674   } else {
675     RtMI = &*I;
676     Rt2MI = &*Paired;
677   }
678   int OffsetImm = getLdStOffsetOp(*RtMI).getImm();
679   // Scale the immediate offset, if necessary.
680   if (TII->isUnscaledLdSt(RtMI->getOpcode())) {
681     assert(!(OffsetImm % getMemScale(*RtMI)) &&
682            "Unscaled offset cannot be scaled.");
683     OffsetImm /= getMemScale(*RtMI);
684   }
685 
686   // Construct the new instruction.
687   MachineInstrBuilder MIB;
688   DebugLoc DL = I->getDebugLoc();
689   MachineBasicBlock *MBB = I->getParent();
690   MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc)))
691             .addOperand(getLdStRegOp(*RtMI))
692             .addOperand(getLdStRegOp(*Rt2MI))
693             .addOperand(BaseRegOp)
694             .addImm(OffsetImm)
695             .setMemRefs(I->mergeMemRefsWith(*Paired));
696 
697   (void)MIB;
698 
699   DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n    ");
700   DEBUG(I->print(dbgs()));
701   DEBUG(dbgs() << "    ");
702   DEBUG(Paired->print(dbgs()));
703   DEBUG(dbgs() << "  with instruction:\n    ");
704   if (SExtIdx != -1) {
705     // Generate the sign extension for the proper result of the ldp.
706     // I.e., with X1, that would be:
707     // %W1<def> = KILL %W1, %X1<imp-def>
708     // %X1<def> = SBFMXri %X1<kill>, 0, 31
709     MachineOperand &DstMO = MIB->getOperand(SExtIdx);
710     // Right now, DstMO has the extended register, since it comes from an
711     // extended opcode.
712     unsigned DstRegX = DstMO.getReg();
713     // Get the W variant of that register.
714     unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32);
715     // Update the result of LDP to use the W instead of the X variant.
716     DstMO.setReg(DstRegW);
717     DEBUG(((MachineInstr *)MIB)->print(dbgs()));
718     DEBUG(dbgs() << "\n");
719     // Make the machine verifier happy by providing a definition for
720     // the X register.
721     // Insert this definition right after the generated LDP, i.e., before
722     // InsertionPoint.
723     MachineInstrBuilder MIBKill =
724         BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW)
725             .addReg(DstRegW)
726             .addReg(DstRegX, RegState::Define);
727     MIBKill->getOperand(2).setImplicit();
728     // Create the sign extension.
729     MachineInstrBuilder MIBSXTW =
730         BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX)
731             .addReg(DstRegX)
732             .addImm(0)
733             .addImm(31);
734     (void)MIBSXTW;
735     DEBUG(dbgs() << "  Extend operand:\n    ");
736     DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs()));
737   } else {
738     DEBUG(((MachineInstr *)MIB)->print(dbgs()));
739   }
740   DEBUG(dbgs() << "\n");
741 
742   // Erase the old instructions.
743   I->eraseFromParent();
744   Paired->eraseFromParent();
745 
746   return NextI;
747 }
748 
749 MachineBasicBlock::iterator
750 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
751                                           MachineBasicBlock::iterator StoreI) {
752   MachineBasicBlock::iterator NextI = LoadI;
753   ++NextI;
754 
755   int LoadSize = getMemScale(*LoadI);
756   int StoreSize = getMemScale(*StoreI);
757   unsigned LdRt = getLdStRegOp(*LoadI).getReg();
758   unsigned StRt = getLdStRegOp(*StoreI).getReg();
759   bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt);
760 
761   assert((IsStoreXReg ||
762           TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) &&
763          "Unexpected RegClass");
764 
765   MachineInstr *BitExtMI;
766   if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) {
767     // Remove the load, if the destination register of the loads is the same
768     // register for stored value.
769     if (StRt == LdRt && LoadSize == 8) {
770       DEBUG(dbgs() << "Remove load instruction:\n    ");
771       DEBUG(LoadI->print(dbgs()));
772       DEBUG(dbgs() << "\n");
773       LoadI->eraseFromParent();
774       return NextI;
775     }
776     // Replace the load with a mov if the load and store are in the same size.
777     BitExtMI =
778         BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
779                 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt)
780             .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR)
781             .addReg(StRt)
782             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
783   } else {
784     // FIXME: Currently we disable this transformation in big-endian targets as
785     // performance and correctness are verified only in little-endian.
786     if (!Subtarget->isLittleEndian())
787       return NextI;
788     bool IsUnscaled = TII->isUnscaledLdSt(*LoadI);
789     assert(IsUnscaled == TII->isUnscaledLdSt(*StoreI) &&
790            "Unsupported ld/st match");
791     assert(LoadSize <= StoreSize && "Invalid load size");
792     int UnscaledLdOffset = IsUnscaled
793                                ? getLdStOffsetOp(*LoadI).getImm()
794                                : getLdStOffsetOp(*LoadI).getImm() * LoadSize;
795     int UnscaledStOffset = IsUnscaled
796                                ? getLdStOffsetOp(*StoreI).getImm()
797                                : getLdStOffsetOp(*StoreI).getImm() * StoreSize;
798     int Width = LoadSize * 8;
799     int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset);
800     int Imms = Immr + Width - 1;
801     unsigned DestReg = IsStoreXReg
802                            ? TRI->getMatchingSuperReg(LdRt, AArch64::sub_32,
803                                                       &AArch64::GPR64RegClass)
804                            : LdRt;
805 
806     assert((UnscaledLdOffset >= UnscaledStOffset &&
807             (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) &&
808            "Invalid offset");
809 
810     Immr = 8 * (UnscaledLdOffset - UnscaledStOffset);
811     Imms = Immr + Width - 1;
812     if (UnscaledLdOffset == UnscaledStOffset) {
813       uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N
814                                 | ((Immr) << 6)               // immr
815                                 | ((Imms) << 0)               // imms
816           ;
817 
818       BitExtMI =
819           BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
820                   TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri),
821                   DestReg)
822               .addReg(StRt)
823               .addImm(AndMaskEncoded);
824     } else {
825       BitExtMI =
826           BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
827                   TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri),
828                   DestReg)
829               .addReg(StRt)
830               .addImm(Immr)
831               .addImm(Imms);
832     }
833   }
834   (void)BitExtMI;
835 
836   DEBUG(dbgs() << "Promoting load by replacing :\n    ");
837   DEBUG(StoreI->print(dbgs()));
838   DEBUG(dbgs() << "    ");
839   DEBUG(LoadI->print(dbgs()));
840   DEBUG(dbgs() << "  with instructions:\n    ");
841   DEBUG(StoreI->print(dbgs()));
842   DEBUG(dbgs() << "    ");
843   DEBUG((BitExtMI)->print(dbgs()));
844   DEBUG(dbgs() << "\n");
845 
846   // Erase the old instructions.
847   LoadI->eraseFromParent();
848   return NextI;
849 }
850 
851 /// trackRegDefsUses - Remember what registers the specified instruction uses
852 /// and modifies.
853 static void trackRegDefsUses(const MachineInstr &MI, BitVector &ModifiedRegs,
854                              BitVector &UsedRegs,
855                              const TargetRegisterInfo *TRI) {
856   for (const MachineOperand &MO : MI.operands()) {
857     if (MO.isRegMask())
858       ModifiedRegs.setBitsNotInMask(MO.getRegMask());
859 
860     if (!MO.isReg())
861       continue;
862     unsigned Reg = MO.getReg();
863     if (!Reg)
864       continue;
865     if (MO.isDef()) {
866       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
867         ModifiedRegs.set(*AI);
868     } else {
869       assert(MO.isUse() && "Reg operand not a def and not a use?!?");
870       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
871         UsedRegs.set(*AI);
872     }
873   }
874 }
875 
876 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) {
877   // Convert the byte-offset used by unscaled into an "element" offset used
878   // by the scaled pair load/store instructions.
879   if (IsUnscaled) {
880     // If the byte-offset isn't a multiple of the stride, there's no point
881     // trying to match it.
882     if (Offset % OffsetStride)
883       return false;
884     Offset /= OffsetStride;
885   }
886   return Offset <= 63 && Offset >= -64;
887 }
888 
889 // Do alignment, specialized to power of 2 and for signed ints,
890 // avoiding having to do a C-style cast from uint_64t to int when
891 // using alignTo from include/llvm/Support/MathExtras.h.
892 // FIXME: Move this function to include/MathExtras.h?
893 static int alignTo(int Num, int PowOf2) {
894   return (Num + PowOf2 - 1) & ~(PowOf2 - 1);
895 }
896 
897 static bool mayAlias(MachineInstr &MIa, MachineInstr &MIb,
898                      const AArch64InstrInfo *TII) {
899   // One of the instructions must modify memory.
900   if (!MIa.mayStore() && !MIb.mayStore())
901     return false;
902 
903   // Both instructions must be memory operations.
904   if (!MIa.mayLoadOrStore() && !MIb.mayLoadOrStore())
905     return false;
906 
907   return !TII->areMemAccessesTriviallyDisjoint(MIa, MIb);
908 }
909 
910 static bool mayAlias(MachineInstr &MIa,
911                      SmallVectorImpl<MachineInstr *> &MemInsns,
912                      const AArch64InstrInfo *TII) {
913   for (MachineInstr *MIb : MemInsns)
914     if (mayAlias(MIa, *MIb, TII))
915       return true;
916 
917   return false;
918 }
919 
920 bool AArch64LoadStoreOpt::findMatchingStore(
921     MachineBasicBlock::iterator I, unsigned Limit,
922     MachineBasicBlock::iterator &StoreI) {
923   MachineBasicBlock::iterator B = I->getParent()->begin();
924   MachineBasicBlock::iterator MBBI = I;
925   MachineInstr &LoadMI = *I;
926   unsigned BaseReg = getLdStBaseOp(LoadMI).getReg();
927 
928   // If the load is the first instruction in the block, there's obviously
929   // not any matching store.
930   if (MBBI == B)
931     return false;
932 
933   // Track which registers have been modified and used between the first insn
934   // and the second insn.
935   ModifiedRegs.reset();
936   UsedRegs.reset();
937 
938   unsigned Count = 0;
939   do {
940     --MBBI;
941     MachineInstr &MI = *MBBI;
942 
943     // Don't count transient instructions towards the search limit since there
944     // may be different numbers of them if e.g. debug information is present.
945     if (!MI.isTransient())
946       ++Count;
947 
948     // If the load instruction reads directly from the address to which the
949     // store instruction writes and the stored value is not modified, we can
950     // promote the load. Since we do not handle stores with pre-/post-index,
951     // it's unnecessary to check if BaseReg is modified by the store itself.
952     if (MI.mayStore() && isMatchingStore(LoadMI, MI) &&
953         BaseReg == getLdStBaseOp(MI).getReg() &&
954         isLdOffsetInRangeOfSt(LoadMI, MI, TII) &&
955         !ModifiedRegs[getLdStRegOp(MI).getReg()]) {
956       StoreI = MBBI;
957       return true;
958     }
959 
960     if (MI.isCall())
961       return false;
962 
963     // Update modified / uses register lists.
964     trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
965 
966     // Otherwise, if the base register is modified, we have no match, so
967     // return early.
968     if (ModifiedRegs[BaseReg])
969       return false;
970 
971     // If we encounter a store aliased with the load, return early.
972     if (MI.mayStore() && mayAlias(LoadMI, MI, TII))
973       return false;
974   } while (MBBI != B && Count < Limit);
975   return false;
976 }
977 
978 // Returns true if FirstMI and MI are candidates for merging or pairing.
979 // Otherwise, returns false.
980 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI,
981                                        LdStPairFlags &Flags,
982                                        const AArch64InstrInfo *TII) {
983   // If this is volatile or if pairing is suppressed, not a candidate.
984   if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI))
985     return false;
986 
987   // We should have already checked FirstMI for pair suppression and volatility.
988   assert(!FirstMI.hasOrderedMemoryRef() &&
989          !TII->isLdStPairSuppressed(FirstMI) &&
990          "FirstMI shouldn't get here if either of these checks are true.");
991 
992   unsigned OpcA = FirstMI.getOpcode();
993   unsigned OpcB = MI.getOpcode();
994 
995   // Opcodes match: nothing more to check.
996   if (OpcA == OpcB)
997     return true;
998 
999   // Try to match a sign-extended load/store with a zero-extended load/store.
1000   bool IsValidLdStrOpc, PairIsValidLdStrOpc;
1001   unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc);
1002   assert(IsValidLdStrOpc &&
1003          "Given Opc should be a Load or Store with an immediate");
1004   // OpcA will be the first instruction in the pair.
1005   if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) {
1006     Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0);
1007     return true;
1008   }
1009 
1010   // If the second instruction isn't even a mergable/pairable load/store, bail
1011   // out.
1012   if (!PairIsValidLdStrOpc)
1013     return false;
1014 
1015   // FIXME: We don't support merging narrow stores with mixed scaled/unscaled
1016   // offsets.
1017   if (isNarrowStore(OpcA) || isNarrowStore(OpcB))
1018     return false;
1019 
1020   // Try to match an unscaled load/store with a scaled load/store.
1021   return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) &&
1022          getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB);
1023 
1024   // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair?
1025 }
1026 
1027 /// Scan the instructions looking for a load/store that can be combined with the
1028 /// current instruction into a wider equivalent or a load/store pair.
1029 MachineBasicBlock::iterator
1030 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I,
1031                                       LdStPairFlags &Flags, unsigned Limit,
1032                                       bool FindNarrowMerge) {
1033   MachineBasicBlock::iterator E = I->getParent()->end();
1034   MachineBasicBlock::iterator MBBI = I;
1035   MachineInstr &FirstMI = *I;
1036   ++MBBI;
1037 
1038   bool MayLoad = FirstMI.mayLoad();
1039   bool IsUnscaled = TII->isUnscaledLdSt(FirstMI);
1040   unsigned Reg = getLdStRegOp(FirstMI).getReg();
1041   unsigned BaseReg = getLdStBaseOp(FirstMI).getReg();
1042   int Offset = getLdStOffsetOp(FirstMI).getImm();
1043   int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1;
1044   bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI);
1045 
1046   // Track which registers have been modified and used between the first insn
1047   // (inclusive) and the second insn.
1048   ModifiedRegs.reset();
1049   UsedRegs.reset();
1050 
1051   // Remember any instructions that read/write memory between FirstMI and MI.
1052   SmallVector<MachineInstr *, 4> MemInsns;
1053 
1054   for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) {
1055     MachineInstr &MI = *MBBI;
1056 
1057     // Don't count transient instructions towards the search limit since there
1058     // may be different numbers of them if e.g. debug information is present.
1059     if (!MI.isTransient())
1060       ++Count;
1061 
1062     Flags.setSExtIdx(-1);
1063     if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) &&
1064         getLdStOffsetOp(MI).isImm()) {
1065       assert(MI.mayLoadOrStore() && "Expected memory operation.");
1066       // If we've found another instruction with the same opcode, check to see
1067       // if the base and offset are compatible with our starting instruction.
1068       // These instructions all have scaled immediate operands, so we just
1069       // check for +1/-1. Make sure to check the new instruction offset is
1070       // actually an immediate and not a symbolic reference destined for
1071       // a relocation.
1072       unsigned MIBaseReg = getLdStBaseOp(MI).getReg();
1073       int MIOffset = getLdStOffsetOp(MI).getImm();
1074       bool MIIsUnscaled = TII->isUnscaledLdSt(MI);
1075       if (IsUnscaled != MIIsUnscaled) {
1076         // We're trying to pair instructions that differ in how they are scaled.
1077         // If FirstMI is scaled then scale the offset of MI accordingly.
1078         // Otherwise, do the opposite (i.e., make MI's offset unscaled).
1079         int MemSize = getMemScale(MI);
1080         if (MIIsUnscaled) {
1081           // If the unscaled offset isn't a multiple of the MemSize, we can't
1082           // pair the operations together: bail and keep looking.
1083           if (MIOffset % MemSize) {
1084             trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1085             MemInsns.push_back(&MI);
1086             continue;
1087           }
1088           MIOffset /= MemSize;
1089         } else {
1090           MIOffset *= MemSize;
1091         }
1092       }
1093 
1094       if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) ||
1095                                    (Offset + OffsetStride == MIOffset))) {
1096         int MinOffset = Offset < MIOffset ? Offset : MIOffset;
1097         if (FindNarrowMerge) {
1098           // If the alignment requirements of the scaled wide load/store
1099           // instruction can't express the offset of the scaled narrow input,
1100           // bail and keep looking. For promotable zero stores, allow only when
1101           // the stored value is the same (i.e., WZR).
1102           if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) ||
1103               (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) {
1104             trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1105             MemInsns.push_back(&MI);
1106             continue;
1107           }
1108         } else {
1109           // Pairwise instructions have a 7-bit signed offset field. Single
1110           // insns have a 12-bit unsigned offset field.  If the resultant
1111           // immediate offset of merging these instructions is out of range for
1112           // a pairwise instruction, bail and keep looking.
1113           if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) {
1114             trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1115             MemInsns.push_back(&MI);
1116             continue;
1117           }
1118           // If the alignment requirements of the paired (scaled) instruction
1119           // can't express the offset of the unscaled input, bail and keep
1120           // looking.
1121           if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) {
1122             trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1123             MemInsns.push_back(&MI);
1124             continue;
1125           }
1126         }
1127         // If the destination register of the loads is the same register, bail
1128         // and keep looking. A load-pair instruction with both destination
1129         // registers the same is UNPREDICTABLE and will result in an exception.
1130         if (MayLoad && Reg == getLdStRegOp(MI).getReg()) {
1131           trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1132           MemInsns.push_back(&MI);
1133           continue;
1134         }
1135 
1136         // If the Rt of the second instruction was not modified or used between
1137         // the two instructions and none of the instructions between the second
1138         // and first alias with the second, we can combine the second into the
1139         // first.
1140         if (!ModifiedRegs[getLdStRegOp(MI).getReg()] &&
1141             !(MI.mayLoad() && UsedRegs[getLdStRegOp(MI).getReg()]) &&
1142             !mayAlias(MI, MemInsns, TII)) {
1143           Flags.setMergeForward(false);
1144           return MBBI;
1145         }
1146 
1147         // Likewise, if the Rt of the first instruction is not modified or used
1148         // between the two instructions and none of the instructions between the
1149         // first and the second alias with the first, we can combine the first
1150         // into the second.
1151         if (!ModifiedRegs[getLdStRegOp(FirstMI).getReg()] &&
1152             !(MayLoad && UsedRegs[getLdStRegOp(FirstMI).getReg()]) &&
1153             !mayAlias(FirstMI, MemInsns, TII)) {
1154           Flags.setMergeForward(true);
1155           return MBBI;
1156         }
1157         // Unable to combine these instructions due to interference in between.
1158         // Keep looking.
1159       }
1160     }
1161 
1162     // If the instruction wasn't a matching load or store.  Stop searching if we
1163     // encounter a call instruction that might modify memory.
1164     if (MI.isCall())
1165       return E;
1166 
1167     // Update modified / uses register lists.
1168     trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1169 
1170     // Otherwise, if the base register is modified, we have no match, so
1171     // return early.
1172     if (ModifiedRegs[BaseReg])
1173       return E;
1174 
1175     // Update list of instructions that read/write memory.
1176     if (MI.mayLoadOrStore())
1177       MemInsns.push_back(&MI);
1178   }
1179   return E;
1180 }
1181 
1182 MachineBasicBlock::iterator
1183 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I,
1184                                      MachineBasicBlock::iterator Update,
1185                                      bool IsPreIdx) {
1186   assert((Update->getOpcode() == AArch64::ADDXri ||
1187           Update->getOpcode() == AArch64::SUBXri) &&
1188          "Unexpected base register update instruction to merge!");
1189   MachineBasicBlock::iterator NextI = I;
1190   // Return the instruction following the merged instruction, which is
1191   // the instruction following our unmerged load. Unless that's the add/sub
1192   // instruction we're merging, in which case it's the one after that.
1193   if (++NextI == Update)
1194     ++NextI;
1195 
1196   int Value = Update->getOperand(2).getImm();
1197   assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 &&
1198          "Can't merge 1 << 12 offset into pre-/post-indexed load / store");
1199   if (Update->getOpcode() == AArch64::SUBXri)
1200     Value = -Value;
1201 
1202   unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode())
1203                              : getPostIndexedOpcode(I->getOpcode());
1204   MachineInstrBuilder MIB;
1205   if (!isPairedLdSt(*I)) {
1206     // Non-paired instruction.
1207     MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
1208               .addOperand(getLdStRegOp(*Update))
1209               .addOperand(getLdStRegOp(*I))
1210               .addOperand(getLdStBaseOp(*I))
1211               .addImm(Value)
1212               .setMemRefs(I->memoperands_begin(), I->memoperands_end());
1213   } else {
1214     // Paired instruction.
1215     int Scale = getMemScale(*I);
1216     MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
1217               .addOperand(getLdStRegOp(*Update))
1218               .addOperand(getLdStRegOp(*I, 0))
1219               .addOperand(getLdStRegOp(*I, 1))
1220               .addOperand(getLdStBaseOp(*I))
1221               .addImm(Value / Scale)
1222               .setMemRefs(I->memoperands_begin(), I->memoperands_end());
1223   }
1224   (void)MIB;
1225 
1226   if (IsPreIdx)
1227     DEBUG(dbgs() << "Creating pre-indexed load/store.");
1228   else
1229     DEBUG(dbgs() << "Creating post-indexed load/store.");
1230   DEBUG(dbgs() << "    Replacing instructions:\n    ");
1231   DEBUG(I->print(dbgs()));
1232   DEBUG(dbgs() << "    ");
1233   DEBUG(Update->print(dbgs()));
1234   DEBUG(dbgs() << "  with instruction:\n    ");
1235   DEBUG(((MachineInstr *)MIB)->print(dbgs()));
1236   DEBUG(dbgs() << "\n");
1237 
1238   // Erase the old instructions for the block.
1239   I->eraseFromParent();
1240   Update->eraseFromParent();
1241 
1242   return NextI;
1243 }
1244 
1245 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI,
1246                                                MachineInstr &MI,
1247                                                unsigned BaseReg, int Offset) {
1248   switch (MI.getOpcode()) {
1249   default:
1250     break;
1251   case AArch64::SUBXri:
1252   case AArch64::ADDXri:
1253     // Make sure it's a vanilla immediate operand, not a relocation or
1254     // anything else we can't handle.
1255     if (!MI.getOperand(2).isImm())
1256       break;
1257     // Watch out for 1 << 12 shifted value.
1258     if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm()))
1259       break;
1260 
1261     // The update instruction source and destination register must be the
1262     // same as the load/store base register.
1263     if (MI.getOperand(0).getReg() != BaseReg ||
1264         MI.getOperand(1).getReg() != BaseReg)
1265       break;
1266 
1267     bool IsPairedInsn = isPairedLdSt(MemMI);
1268     int UpdateOffset = MI.getOperand(2).getImm();
1269     if (MI.getOpcode() == AArch64::SUBXri)
1270       UpdateOffset = -UpdateOffset;
1271 
1272     // For non-paired load/store instructions, the immediate must fit in a
1273     // signed 9-bit integer.
1274     if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256))
1275       break;
1276 
1277     // For paired load/store instructions, the immediate must be a multiple of
1278     // the scaling factor.  The scaled offset must also fit into a signed 7-bit
1279     // integer.
1280     if (IsPairedInsn) {
1281       int Scale = getMemScale(MemMI);
1282       if (UpdateOffset % Scale != 0)
1283         break;
1284 
1285       int ScaledOffset = UpdateOffset / Scale;
1286       if (ScaledOffset > 63 || ScaledOffset < -64)
1287         break;
1288     }
1289 
1290     // If we have a non-zero Offset, we check that it matches the amount
1291     // we're adding to the register.
1292     if (!Offset || Offset == UpdateOffset)
1293       return true;
1294     break;
1295   }
1296   return false;
1297 }
1298 
1299 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward(
1300     MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) {
1301   MachineBasicBlock::iterator E = I->getParent()->end();
1302   MachineInstr &MemMI = *I;
1303   MachineBasicBlock::iterator MBBI = I;
1304 
1305   unsigned BaseReg = getLdStBaseOp(MemMI).getReg();
1306   int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI);
1307 
1308   // Scan forward looking for post-index opportunities.  Updating instructions
1309   // can't be formed if the memory instruction doesn't have the offset we're
1310   // looking for.
1311   if (MIUnscaledOffset != UnscaledOffset)
1312     return E;
1313 
1314   // If the base register overlaps a destination register, we can't
1315   // merge the update.
1316   bool IsPairedInsn = isPairedLdSt(MemMI);
1317   for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) {
1318     unsigned DestReg = getLdStRegOp(MemMI, i).getReg();
1319     if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
1320       return E;
1321   }
1322 
1323   // Track which registers have been modified and used between the first insn
1324   // (inclusive) and the second insn.
1325   ModifiedRegs.reset();
1326   UsedRegs.reset();
1327   ++MBBI;
1328   for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) {
1329     MachineInstr &MI = *MBBI;
1330 
1331     // Don't count transient instructions towards the search limit since there
1332     // may be different numbers of them if e.g. debug information is present.
1333     if (!MI.isTransient())
1334       ++Count;
1335 
1336     // If we found a match, return it.
1337     if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset))
1338       return MBBI;
1339 
1340     // Update the status of what the instruction clobbered and used.
1341     trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1342 
1343     // Otherwise, if the base register is used or modified, we have no match, so
1344     // return early.
1345     if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg])
1346       return E;
1347   }
1348   return E;
1349 }
1350 
1351 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward(
1352     MachineBasicBlock::iterator I, unsigned Limit) {
1353   MachineBasicBlock::iterator B = I->getParent()->begin();
1354   MachineBasicBlock::iterator E = I->getParent()->end();
1355   MachineInstr &MemMI = *I;
1356   MachineBasicBlock::iterator MBBI = I;
1357 
1358   unsigned BaseReg = getLdStBaseOp(MemMI).getReg();
1359   int Offset = getLdStOffsetOp(MemMI).getImm();
1360 
1361   // If the load/store is the first instruction in the block, there's obviously
1362   // not any matching update. Ditto if the memory offset isn't zero.
1363   if (MBBI == B || Offset != 0)
1364     return E;
1365   // If the base register overlaps a destination register, we can't
1366   // merge the update.
1367   bool IsPairedInsn = isPairedLdSt(MemMI);
1368   for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) {
1369     unsigned DestReg = getLdStRegOp(MemMI, i).getReg();
1370     if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
1371       return E;
1372   }
1373 
1374   // Track which registers have been modified and used between the first insn
1375   // (inclusive) and the second insn.
1376   ModifiedRegs.reset();
1377   UsedRegs.reset();
1378   unsigned Count = 0;
1379   do {
1380     --MBBI;
1381     MachineInstr &MI = *MBBI;
1382 
1383     // Don't count transient instructions towards the search limit since there
1384     // may be different numbers of them if e.g. debug information is present.
1385     if (!MI.isTransient())
1386       ++Count;
1387 
1388     // If we found a match, return it.
1389     if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset))
1390       return MBBI;
1391 
1392     // Update the status of what the instruction clobbered and used.
1393     trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1394 
1395     // Otherwise, if the base register is used or modified, we have no match, so
1396     // return early.
1397     if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg])
1398       return E;
1399   } while (MBBI != B && Count < Limit);
1400   return E;
1401 }
1402 
1403 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore(
1404     MachineBasicBlock::iterator &MBBI) {
1405   MachineInstr &MI = *MBBI;
1406   // If this is a volatile load, don't mess with it.
1407   if (MI.hasOrderedMemoryRef())
1408     return false;
1409 
1410   // Make sure this is a reg+imm.
1411   // FIXME: It is possible to extend it to handle reg+reg cases.
1412   if (!getLdStOffsetOp(MI).isImm())
1413     return false;
1414 
1415   // Look backward up to LdStLimit instructions.
1416   MachineBasicBlock::iterator StoreI;
1417   if (findMatchingStore(MBBI, LdStLimit, StoreI)) {
1418     ++NumLoadsFromStoresPromoted;
1419     // Promote the load. Keeping the iterator straight is a
1420     // pain, so we let the merge routine tell us what the next instruction
1421     // is after it's done mucking about.
1422     MBBI = promoteLoadFromStore(MBBI, StoreI);
1423     return true;
1424   }
1425   return false;
1426 }
1427 
1428 // Merge adjacent zero stores into a wider store.
1429 bool AArch64LoadStoreOpt::tryToMergeZeroStInst(
1430     MachineBasicBlock::iterator &MBBI) {
1431   assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store.");
1432   MachineInstr &MI = *MBBI;
1433   MachineBasicBlock::iterator E = MI.getParent()->end();
1434 
1435   if (!TII->isCandidateToMergeOrPair(MI))
1436     return false;
1437 
1438   // Look ahead up to LdStLimit instructions for a mergable instruction.
1439   LdStPairFlags Flags;
1440   MachineBasicBlock::iterator MergeMI =
1441       findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true);
1442   if (MergeMI != E) {
1443     ++NumZeroStoresPromoted;
1444 
1445     // Keeping the iterator straight is a pain, so we let the merge routine tell
1446     // us what the next instruction is after it's done mucking about.
1447     MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags);
1448     return true;
1449   }
1450   return false;
1451 }
1452 
1453 // Find loads and stores that can be merged into a single load or store pair
1454 // instruction.
1455 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) {
1456   MachineInstr &MI = *MBBI;
1457   MachineBasicBlock::iterator E = MI.getParent()->end();
1458 
1459   if (!TII->isCandidateToMergeOrPair(MI))
1460     return false;
1461 
1462   // Early exit if the offset is not possible to match. (6 bits of positive
1463   // range, plus allow an extra one in case we find a later insn that matches
1464   // with Offset-1)
1465   bool IsUnscaled = TII->isUnscaledLdSt(MI);
1466   int Offset = getLdStOffsetOp(MI).getImm();
1467   int OffsetStride = IsUnscaled ? getMemScale(MI) : 1;
1468   if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride))
1469     return false;
1470 
1471   // Look ahead up to LdStLimit instructions for a pairable instruction.
1472   LdStPairFlags Flags;
1473   MachineBasicBlock::iterator Paired =
1474       findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false);
1475   if (Paired != E) {
1476     ++NumPairCreated;
1477     if (TII->isUnscaledLdSt(MI))
1478       ++NumUnscaledPairCreated;
1479     // Keeping the iterator straight is a pain, so we let the merge routine tell
1480     // us what the next instruction is after it's done mucking about.
1481     MBBI = mergePairedInsns(MBBI, Paired, Flags);
1482     return true;
1483   }
1484   return false;
1485 }
1486 
1487 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB,
1488                                         bool EnableNarrowZeroStOpt) {
1489   bool Modified = false;
1490   // Four tranformations to do here:
1491   // 1) Find loads that directly read from stores and promote them by
1492   //    replacing with mov instructions. If the store is wider than the load,
1493   //    the load will be replaced with a bitfield extract.
1494   //      e.g.,
1495   //        str w1, [x0, #4]
1496   //        ldrh w2, [x0, #6]
1497   //        ; becomes
1498   //        str w1, [x0, #4]
1499   //        lsr w2, w1, #16
1500   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
1501        MBBI != E;) {
1502     MachineInstr &MI = *MBBI;
1503     switch (MI.getOpcode()) {
1504     default:
1505       // Just move on to the next instruction.
1506       ++MBBI;
1507       break;
1508     // Scaled instructions.
1509     case AArch64::LDRBBui:
1510     case AArch64::LDRHHui:
1511     case AArch64::LDRWui:
1512     case AArch64::LDRXui:
1513     // Unscaled instructions.
1514     case AArch64::LDURBBi:
1515     case AArch64::LDURHHi:
1516     case AArch64::LDURWi:
1517     case AArch64::LDURXi: {
1518       if (tryToPromoteLoadFromStore(MBBI)) {
1519         Modified = true;
1520         break;
1521       }
1522       ++MBBI;
1523       break;
1524     }
1525     }
1526   }
1527   // 2) Merge adjacent zero stores into a wider store.
1528   //      e.g.,
1529   //        strh wzr, [x0]
1530   //        strh wzr, [x0, #2]
1531   //        ; becomes
1532   //        str wzr, [x0]
1533   //      e.g.,
1534   //        str wzr, [x0]
1535   //        str wzr, [x0, #4]
1536   //        ; becomes
1537   //        str xzr, [x0]
1538   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
1539        EnableNarrowZeroStOpt && MBBI != E;) {
1540     if (isPromotableZeroStoreInst(*MBBI)) {
1541       if (tryToMergeZeroStInst(MBBI)) {
1542         Modified = true;
1543       } else
1544         ++MBBI;
1545     } else
1546       ++MBBI;
1547   }
1548 
1549   // 3) Find loads and stores that can be merged into a single load or store
1550   //    pair instruction.
1551   //      e.g.,
1552   //        ldr x0, [x2]
1553   //        ldr x1, [x2, #8]
1554   //        ; becomes
1555   //        ldp x0, x1, [x2]
1556   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
1557        MBBI != E;) {
1558     if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI))
1559       Modified = true;
1560     else
1561       ++MBBI;
1562   }
1563   // 4) Find base register updates that can be merged into the load or store
1564   //    as a base-reg writeback.
1565   //      e.g.,
1566   //        ldr x0, [x2]
1567   //        add x2, x2, #4
1568   //        ; becomes
1569   //        ldr x0, [x2], #4
1570   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
1571        MBBI != E;) {
1572     MachineInstr &MI = *MBBI;
1573     // Do update merging. It's simpler to keep this separate from the above
1574     // switchs, though not strictly necessary.
1575     unsigned Opc = MI.getOpcode();
1576     switch (Opc) {
1577     default:
1578       // Just move on to the next instruction.
1579       ++MBBI;
1580       break;
1581     // Scaled instructions.
1582     case AArch64::STRSui:
1583     case AArch64::STRDui:
1584     case AArch64::STRQui:
1585     case AArch64::STRXui:
1586     case AArch64::STRWui:
1587     case AArch64::STRHHui:
1588     case AArch64::STRBBui:
1589     case AArch64::LDRSui:
1590     case AArch64::LDRDui:
1591     case AArch64::LDRQui:
1592     case AArch64::LDRXui:
1593     case AArch64::LDRWui:
1594     case AArch64::LDRHHui:
1595     case AArch64::LDRBBui:
1596     // Unscaled instructions.
1597     case AArch64::STURSi:
1598     case AArch64::STURDi:
1599     case AArch64::STURQi:
1600     case AArch64::STURWi:
1601     case AArch64::STURXi:
1602     case AArch64::LDURSi:
1603     case AArch64::LDURDi:
1604     case AArch64::LDURQi:
1605     case AArch64::LDURWi:
1606     case AArch64::LDURXi:
1607     // Paired instructions.
1608     case AArch64::LDPSi:
1609     case AArch64::LDPSWi:
1610     case AArch64::LDPDi:
1611     case AArch64::LDPQi:
1612     case AArch64::LDPWi:
1613     case AArch64::LDPXi:
1614     case AArch64::STPSi:
1615     case AArch64::STPDi:
1616     case AArch64::STPQi:
1617     case AArch64::STPWi:
1618     case AArch64::STPXi: {
1619       // Make sure this is a reg+imm (as opposed to an address reloc).
1620       if (!getLdStOffsetOp(MI).isImm()) {
1621         ++MBBI;
1622         break;
1623       }
1624       // Look forward to try to form a post-index instruction. For example,
1625       // ldr x0, [x20]
1626       // add x20, x20, #32
1627       //   merged into:
1628       // ldr x0, [x20], #32
1629       MachineBasicBlock::iterator Update =
1630           findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit);
1631       if (Update != E) {
1632         // Merge the update into the ld/st.
1633         MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false);
1634         Modified = true;
1635         ++NumPostFolded;
1636         break;
1637       }
1638       // Don't know how to handle pre/post-index versions, so move to the next
1639       // instruction.
1640       if (TII->isUnscaledLdSt(Opc)) {
1641         ++MBBI;
1642         break;
1643       }
1644 
1645       // Look back to try to find a pre-index instruction. For example,
1646       // add x0, x0, #8
1647       // ldr x1, [x0]
1648       //   merged into:
1649       // ldr x1, [x0, #8]!
1650       Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit);
1651       if (Update != E) {
1652         // Merge the update into the ld/st.
1653         MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true);
1654         Modified = true;
1655         ++NumPreFolded;
1656         break;
1657       }
1658       // The immediate in the load/store is scaled by the size of the memory
1659       // operation. The immediate in the add we're looking for,
1660       // however, is not, so adjust here.
1661       int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI);
1662 
1663       // Look forward to try to find a post-index instruction. For example,
1664       // ldr x1, [x0, #64]
1665       // add x0, x0, #64
1666       //   merged into:
1667       // ldr x1, [x0, #64]!
1668       Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit);
1669       if (Update != E) {
1670         // Merge the update into the ld/st.
1671         MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true);
1672         Modified = true;
1673         ++NumPreFolded;
1674         break;
1675       }
1676 
1677       // Nothing found. Just move to the next instruction.
1678       ++MBBI;
1679       break;
1680     }
1681     }
1682   }
1683 
1684   return Modified;
1685 }
1686 
1687 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
1688   if (skipFunction(*Fn.getFunction()))
1689     return false;
1690 
1691   Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget());
1692   TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo());
1693   TRI = Subtarget->getRegisterInfo();
1694 
1695   // Resize the modified and used register bitfield trackers.  We do this once
1696   // per function and then clear the bitfield each time we optimize a load or
1697   // store.
1698   ModifiedRegs.resize(TRI->getNumRegs());
1699   UsedRegs.resize(TRI->getNumRegs());
1700 
1701   bool Modified = false;
1702   bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign();
1703   for (auto &MBB : Fn)
1704     Modified |= optimizeBlock(MBB, enableNarrowZeroStOpt);
1705 
1706   return Modified;
1707 }
1708 
1709 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and
1710 // stores near one another?  Note: The pre-RA instruction scheduler already has
1711 // hooks to try and schedule pairable loads/stores together to improve pairing
1712 // opportunities.  Thus, pre-RA pairing pass may not be worth the effort.
1713 
1714 // FIXME: When pairing store instructions it's very possible for this pass to
1715 // hoist a store with a KILL marker above another use (without a KILL marker).
1716 // The resulting IR is invalid, but nothing uses the KILL markers after this
1717 // pass, so it's never caused a problem in practice.
1718 
1719 /// createAArch64LoadStoreOptimizationPass - returns an instance of the
1720 /// load / store optimization pass.
1721 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() {
1722   return new AArch64LoadStoreOpt();
1723 }
1724