1 //=- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -*- C++ -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that performs load / store related peephole 11 // optimizations. This pass should be run after register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AArch64InstrInfo.h" 16 #include "AArch64Subtarget.h" 17 #include "MCTargetDesc/AArch64AddressingModes.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 using namespace llvm; 33 34 #define DEBUG_TYPE "aarch64-ldst-opt" 35 36 /// AArch64AllocLoadStoreOpt - Post-register allocation pass to combine 37 /// load / store instructions to form ldp / stp instructions. 38 39 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 40 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 41 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 42 STATISTIC(NumUnscaledPairCreated, 43 "Number of load/store from unscaled generated"); 44 STATISTIC(NumNarrowLoadsPromoted, "Number of narrow loads promoted"); 45 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 46 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 47 48 static cl::opt<unsigned> ScanLimit("aarch64-load-store-scan-limit", 49 cl::init(20), cl::Hidden); 50 51 namespace llvm { 52 void initializeAArch64LoadStoreOptPass(PassRegistry &); 53 } 54 55 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 56 57 namespace { 58 59 typedef struct LdStPairFlags { 60 // If a matching instruction is found, MergeForward is set to true if the 61 // merge is to remove the first instruction and replace the second with 62 // a pair-wise insn, and false if the reverse is true. 63 bool MergeForward; 64 65 // SExtIdx gives the index of the result of the load pair that must be 66 // extended. The value of SExtIdx assumes that the paired load produces the 67 // value in this order: (I, returned iterator), i.e., -1 means no value has 68 // to be extended, 0 means I, and 1 means the returned iterator. 69 int SExtIdx; 70 71 LdStPairFlags() : MergeForward(false), SExtIdx(-1) {} 72 73 void setMergeForward(bool V = true) { MergeForward = V; } 74 bool getMergeForward() const { return MergeForward; } 75 76 void setSExtIdx(int V) { SExtIdx = V; } 77 int getSExtIdx() const { return SExtIdx; } 78 79 } LdStPairFlags; 80 81 struct AArch64LoadStoreOpt : public MachineFunctionPass { 82 static char ID; 83 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 84 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 85 } 86 87 const AArch64InstrInfo *TII; 88 const TargetRegisterInfo *TRI; 89 const AArch64Subtarget *Subtarget; 90 91 // Scan the instructions looking for a load/store that can be combined 92 // with the current instruction into a load/store pair. 93 // Return the matching instruction if one is found, else MBB->end(). 94 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 95 LdStPairFlags &Flags, 96 unsigned Limit); 97 98 // Scan the instructions looking for a store that writes to the address from 99 // which the current load instruction reads. Return true if one is found. 100 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 101 MachineBasicBlock::iterator &StoreI); 102 103 // Merge the two instructions indicated into a single pair-wise instruction. 104 // If MergeForward is true, erase the first instruction and fold its 105 // operation into the second. If false, the reverse. Return the instruction 106 // following the first instruction (which may change during processing). 107 MachineBasicBlock::iterator 108 mergePairedInsns(MachineBasicBlock::iterator I, 109 MachineBasicBlock::iterator Paired, 110 const LdStPairFlags &Flags); 111 112 // Promote the load that reads directly from the address stored to. 113 MachineBasicBlock::iterator 114 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 115 MachineBasicBlock::iterator StoreI); 116 117 // Scan the instruction list to find a base register update that can 118 // be combined with the current instruction (a load or store) using 119 // pre or post indexed addressing with writeback. Scan forwards. 120 MachineBasicBlock::iterator 121 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 122 int UnscaledOffset); 123 124 // Scan the instruction list to find a base register update that can 125 // be combined with the current instruction (a load or store) using 126 // pre or post indexed addressing with writeback. Scan backwards. 127 MachineBasicBlock::iterator 128 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I); 129 130 // Find an instruction that updates the base register of the ld/st 131 // instruction. 132 bool isMatchingUpdateInsn(MachineInstr *MemMI, MachineInstr *MI, 133 unsigned BaseReg, int Offset); 134 135 // Merge a pre- or post-index base register update into a ld/st instruction. 136 MachineBasicBlock::iterator 137 mergeUpdateInsn(MachineBasicBlock::iterator I, 138 MachineBasicBlock::iterator Update, bool IsPreIdx); 139 140 // Find and merge foldable ldr/str instructions. 141 bool tryToMergeLdStInst(MachineBasicBlock::iterator &MBBI); 142 143 // Find and promote load instructions which read directly from store. 144 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 145 146 // Check if converting two narrow loads into a single wider load with 147 // bitfield extracts could be enabled. 148 bool enableNarrowLdMerge(MachineFunction &Fn); 149 150 bool optimizeBlock(MachineBasicBlock &MBB, bool enableNarrowLdOpt); 151 152 bool runOnMachineFunction(MachineFunction &Fn) override; 153 154 const char *getPassName() const override { 155 return AARCH64_LOAD_STORE_OPT_NAME; 156 } 157 }; 158 char AArch64LoadStoreOpt::ID = 0; 159 } // namespace 160 161 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 162 AARCH64_LOAD_STORE_OPT_NAME, false, false) 163 164 static bool isUnscaledLdSt(unsigned Opc) { 165 switch (Opc) { 166 default: 167 return false; 168 case AArch64::STURSi: 169 case AArch64::STURDi: 170 case AArch64::STURQi: 171 case AArch64::STURBBi: 172 case AArch64::STURHHi: 173 case AArch64::STURWi: 174 case AArch64::STURXi: 175 case AArch64::LDURSi: 176 case AArch64::LDURDi: 177 case AArch64::LDURQi: 178 case AArch64::LDURWi: 179 case AArch64::LDURXi: 180 case AArch64::LDURSWi: 181 case AArch64::LDURHHi: 182 case AArch64::LDURBBi: 183 case AArch64::LDURSBWi: 184 case AArch64::LDURSHWi: 185 return true; 186 } 187 } 188 189 static bool isUnscaledLdSt(MachineInstr *MI) { 190 return isUnscaledLdSt(MI->getOpcode()); 191 } 192 193 static unsigned getBitExtrOpcode(MachineInstr *MI) { 194 switch (MI->getOpcode()) { 195 default: 196 llvm_unreachable("Unexpected opcode."); 197 case AArch64::LDRBBui: 198 case AArch64::LDURBBi: 199 case AArch64::LDRHHui: 200 case AArch64::LDURHHi: 201 return AArch64::UBFMWri; 202 case AArch64::LDRSBWui: 203 case AArch64::LDURSBWi: 204 case AArch64::LDRSHWui: 205 case AArch64::LDURSHWi: 206 return AArch64::SBFMWri; 207 } 208 } 209 210 static bool isNarrowStore(unsigned Opc) { 211 switch (Opc) { 212 default: 213 return false; 214 case AArch64::STRBBui: 215 case AArch64::STURBBi: 216 case AArch64::STRHHui: 217 case AArch64::STURHHi: 218 return true; 219 } 220 } 221 222 static bool isNarrowStore(MachineInstr *MI) { 223 return isNarrowStore(MI->getOpcode()); 224 } 225 226 static bool isNarrowLoad(unsigned Opc) { 227 switch (Opc) { 228 default: 229 return false; 230 case AArch64::LDRHHui: 231 case AArch64::LDURHHi: 232 case AArch64::LDRBBui: 233 case AArch64::LDURBBi: 234 case AArch64::LDRSHWui: 235 case AArch64::LDURSHWi: 236 case AArch64::LDRSBWui: 237 case AArch64::LDURSBWi: 238 return true; 239 } 240 } 241 242 static bool isNarrowLoad(MachineInstr *MI) { 243 return isNarrowLoad(MI->getOpcode()); 244 } 245 246 // Scaling factor for unscaled load or store. 247 static int getMemScale(MachineInstr *MI) { 248 switch (MI->getOpcode()) { 249 default: 250 llvm_unreachable("Opcode has unknown scale!"); 251 case AArch64::LDRBBui: 252 case AArch64::LDURBBi: 253 case AArch64::LDRSBWui: 254 case AArch64::LDURSBWi: 255 case AArch64::STRBBui: 256 case AArch64::STURBBi: 257 return 1; 258 case AArch64::LDRHHui: 259 case AArch64::LDURHHi: 260 case AArch64::LDRSHWui: 261 case AArch64::LDURSHWi: 262 case AArch64::STRHHui: 263 case AArch64::STURHHi: 264 return 2; 265 case AArch64::LDRSui: 266 case AArch64::LDURSi: 267 case AArch64::LDRSWui: 268 case AArch64::LDURSWi: 269 case AArch64::LDRWui: 270 case AArch64::LDURWi: 271 case AArch64::STRSui: 272 case AArch64::STURSi: 273 case AArch64::STRWui: 274 case AArch64::STURWi: 275 case AArch64::LDPSi: 276 case AArch64::LDPSWi: 277 case AArch64::LDPWi: 278 case AArch64::STPSi: 279 case AArch64::STPWi: 280 return 4; 281 case AArch64::LDRDui: 282 case AArch64::LDURDi: 283 case AArch64::LDRXui: 284 case AArch64::LDURXi: 285 case AArch64::STRDui: 286 case AArch64::STURDi: 287 case AArch64::STRXui: 288 case AArch64::STURXi: 289 case AArch64::LDPDi: 290 case AArch64::LDPXi: 291 case AArch64::STPDi: 292 case AArch64::STPXi: 293 return 8; 294 case AArch64::LDRQui: 295 case AArch64::LDURQi: 296 case AArch64::STRQui: 297 case AArch64::STURQi: 298 case AArch64::LDPQi: 299 case AArch64::STPQi: 300 return 16; 301 } 302 } 303 304 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 305 bool *IsValidLdStrOpc = nullptr) { 306 if (IsValidLdStrOpc) 307 *IsValidLdStrOpc = true; 308 switch (Opc) { 309 default: 310 if (IsValidLdStrOpc) 311 *IsValidLdStrOpc = false; 312 return UINT_MAX; 313 case AArch64::STRDui: 314 case AArch64::STURDi: 315 case AArch64::STRQui: 316 case AArch64::STURQi: 317 case AArch64::STRBBui: 318 case AArch64::STURBBi: 319 case AArch64::STRHHui: 320 case AArch64::STURHHi: 321 case AArch64::STRWui: 322 case AArch64::STURWi: 323 case AArch64::STRXui: 324 case AArch64::STURXi: 325 case AArch64::LDRDui: 326 case AArch64::LDURDi: 327 case AArch64::LDRQui: 328 case AArch64::LDURQi: 329 case AArch64::LDRWui: 330 case AArch64::LDURWi: 331 case AArch64::LDRXui: 332 case AArch64::LDURXi: 333 case AArch64::STRSui: 334 case AArch64::STURSi: 335 case AArch64::LDRSui: 336 case AArch64::LDURSi: 337 case AArch64::LDRHHui: 338 case AArch64::LDURHHi: 339 case AArch64::LDRBBui: 340 case AArch64::LDURBBi: 341 return Opc; 342 case AArch64::LDRSWui: 343 return AArch64::LDRWui; 344 case AArch64::LDURSWi: 345 return AArch64::LDURWi; 346 case AArch64::LDRSBWui: 347 return AArch64::LDRBBui; 348 case AArch64::LDRSHWui: 349 return AArch64::LDRHHui; 350 case AArch64::LDURSBWi: 351 return AArch64::LDURBBi; 352 case AArch64::LDURSHWi: 353 return AArch64::LDURHHi; 354 } 355 } 356 357 static unsigned getMatchingPairOpcode(unsigned Opc) { 358 switch (Opc) { 359 default: 360 llvm_unreachable("Opcode has no pairwise equivalent!"); 361 case AArch64::STRSui: 362 case AArch64::STURSi: 363 return AArch64::STPSi; 364 case AArch64::STRDui: 365 case AArch64::STURDi: 366 return AArch64::STPDi; 367 case AArch64::STRQui: 368 case AArch64::STURQi: 369 return AArch64::STPQi; 370 case AArch64::STRBBui: 371 return AArch64::STRHHui; 372 case AArch64::STRHHui: 373 return AArch64::STRWui; 374 case AArch64::STURBBi: 375 return AArch64::STURHHi; 376 case AArch64::STURHHi: 377 return AArch64::STURWi; 378 case AArch64::STRWui: 379 case AArch64::STURWi: 380 return AArch64::STPWi; 381 case AArch64::STRXui: 382 case AArch64::STURXi: 383 return AArch64::STPXi; 384 case AArch64::LDRSui: 385 case AArch64::LDURSi: 386 return AArch64::LDPSi; 387 case AArch64::LDRDui: 388 case AArch64::LDURDi: 389 return AArch64::LDPDi; 390 case AArch64::LDRQui: 391 case AArch64::LDURQi: 392 return AArch64::LDPQi; 393 case AArch64::LDRWui: 394 case AArch64::LDURWi: 395 return AArch64::LDPWi; 396 case AArch64::LDRXui: 397 case AArch64::LDURXi: 398 return AArch64::LDPXi; 399 case AArch64::LDRSWui: 400 case AArch64::LDURSWi: 401 return AArch64::LDPSWi; 402 case AArch64::LDRHHui: 403 case AArch64::LDRSHWui: 404 return AArch64::LDRWui; 405 case AArch64::LDURHHi: 406 case AArch64::LDURSHWi: 407 return AArch64::LDURWi; 408 case AArch64::LDRBBui: 409 case AArch64::LDRSBWui: 410 return AArch64::LDRHHui; 411 case AArch64::LDURBBi: 412 case AArch64::LDURSBWi: 413 return AArch64::LDURHHi; 414 } 415 } 416 417 static unsigned isMatchingStore(MachineInstr *LoadInst, 418 MachineInstr *StoreInst) { 419 unsigned LdOpc = LoadInst->getOpcode(); 420 unsigned StOpc = StoreInst->getOpcode(); 421 switch (LdOpc) { 422 default: 423 llvm_unreachable("Unsupported load instruction!"); 424 case AArch64::LDRBBui: 425 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 426 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 427 case AArch64::LDURBBi: 428 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 429 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 430 case AArch64::LDRHHui: 431 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 432 StOpc == AArch64::STRXui; 433 case AArch64::LDURHHi: 434 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 435 StOpc == AArch64::STURXi; 436 case AArch64::LDRWui: 437 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 438 case AArch64::LDURWi: 439 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 440 case AArch64::LDRXui: 441 return StOpc == AArch64::STRXui; 442 case AArch64::LDURXi: 443 return StOpc == AArch64::STURXi; 444 } 445 } 446 447 static unsigned getPreIndexedOpcode(unsigned Opc) { 448 switch (Opc) { 449 default: 450 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 451 case AArch64::STRSui: 452 return AArch64::STRSpre; 453 case AArch64::STRDui: 454 return AArch64::STRDpre; 455 case AArch64::STRQui: 456 return AArch64::STRQpre; 457 case AArch64::STRBBui: 458 return AArch64::STRBBpre; 459 case AArch64::STRHHui: 460 return AArch64::STRHHpre; 461 case AArch64::STRWui: 462 return AArch64::STRWpre; 463 case AArch64::STRXui: 464 return AArch64::STRXpre; 465 case AArch64::LDRSui: 466 return AArch64::LDRSpre; 467 case AArch64::LDRDui: 468 return AArch64::LDRDpre; 469 case AArch64::LDRQui: 470 return AArch64::LDRQpre; 471 case AArch64::LDRBBui: 472 return AArch64::LDRBBpre; 473 case AArch64::LDRHHui: 474 return AArch64::LDRHHpre; 475 case AArch64::LDRWui: 476 return AArch64::LDRWpre; 477 case AArch64::LDRXui: 478 return AArch64::LDRXpre; 479 case AArch64::LDRSWui: 480 return AArch64::LDRSWpre; 481 case AArch64::LDPSi: 482 return AArch64::LDPSpre; 483 case AArch64::LDPSWi: 484 return AArch64::LDPSWpre; 485 case AArch64::LDPDi: 486 return AArch64::LDPDpre; 487 case AArch64::LDPQi: 488 return AArch64::LDPQpre; 489 case AArch64::LDPWi: 490 return AArch64::LDPWpre; 491 case AArch64::LDPXi: 492 return AArch64::LDPXpre; 493 case AArch64::STPSi: 494 return AArch64::STPSpre; 495 case AArch64::STPDi: 496 return AArch64::STPDpre; 497 case AArch64::STPQi: 498 return AArch64::STPQpre; 499 case AArch64::STPWi: 500 return AArch64::STPWpre; 501 case AArch64::STPXi: 502 return AArch64::STPXpre; 503 } 504 } 505 506 static unsigned getPostIndexedOpcode(unsigned Opc) { 507 switch (Opc) { 508 default: 509 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 510 case AArch64::STRSui: 511 return AArch64::STRSpost; 512 case AArch64::STRDui: 513 return AArch64::STRDpost; 514 case AArch64::STRQui: 515 return AArch64::STRQpost; 516 case AArch64::STRBBui: 517 return AArch64::STRBBpost; 518 case AArch64::STRHHui: 519 return AArch64::STRHHpost; 520 case AArch64::STRWui: 521 return AArch64::STRWpost; 522 case AArch64::STRXui: 523 return AArch64::STRXpost; 524 case AArch64::LDRSui: 525 return AArch64::LDRSpost; 526 case AArch64::LDRDui: 527 return AArch64::LDRDpost; 528 case AArch64::LDRQui: 529 return AArch64::LDRQpost; 530 case AArch64::LDRBBui: 531 return AArch64::LDRBBpost; 532 case AArch64::LDRHHui: 533 return AArch64::LDRHHpost; 534 case AArch64::LDRWui: 535 return AArch64::LDRWpost; 536 case AArch64::LDRXui: 537 return AArch64::LDRXpost; 538 case AArch64::LDRSWui: 539 return AArch64::LDRSWpost; 540 case AArch64::LDPSi: 541 return AArch64::LDPSpost; 542 case AArch64::LDPSWi: 543 return AArch64::LDPSWpost; 544 case AArch64::LDPDi: 545 return AArch64::LDPDpost; 546 case AArch64::LDPQi: 547 return AArch64::LDPQpost; 548 case AArch64::LDPWi: 549 return AArch64::LDPWpost; 550 case AArch64::LDPXi: 551 return AArch64::LDPXpost; 552 case AArch64::STPSi: 553 return AArch64::STPSpost; 554 case AArch64::STPDi: 555 return AArch64::STPDpost; 556 case AArch64::STPQi: 557 return AArch64::STPQpost; 558 case AArch64::STPWi: 559 return AArch64::STPWpost; 560 case AArch64::STPXi: 561 return AArch64::STPXpost; 562 } 563 } 564 565 static bool isPairedLdSt(const MachineInstr *MI) { 566 switch (MI->getOpcode()) { 567 default: 568 return false; 569 case AArch64::LDPSi: 570 case AArch64::LDPSWi: 571 case AArch64::LDPDi: 572 case AArch64::LDPQi: 573 case AArch64::LDPWi: 574 case AArch64::LDPXi: 575 case AArch64::STPSi: 576 case AArch64::STPDi: 577 case AArch64::STPQi: 578 case AArch64::STPWi: 579 case AArch64::STPXi: 580 return true; 581 } 582 } 583 584 static const MachineOperand &getLdStRegOp(const MachineInstr *MI, 585 unsigned PairedRegOp = 0) { 586 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 587 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 588 return MI->getOperand(Idx); 589 } 590 591 static const MachineOperand &getLdStBaseOp(const MachineInstr *MI) { 592 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 593 return MI->getOperand(Idx); 594 } 595 596 static const MachineOperand &getLdStOffsetOp(const MachineInstr *MI) { 597 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 598 return MI->getOperand(Idx); 599 } 600 601 static bool isLdOffsetInRangeOfSt(MachineInstr *LoadInst, 602 MachineInstr *StoreInst) { 603 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 604 int LoadSize = getMemScale(LoadInst); 605 int StoreSize = getMemScale(StoreInst); 606 int UnscaledStOffset = isUnscaledLdSt(StoreInst) 607 ? getLdStOffsetOp(StoreInst).getImm() 608 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 609 int UnscaledLdOffset = isUnscaledLdSt(LoadInst) 610 ? getLdStOffsetOp(LoadInst).getImm() 611 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 612 return (UnscaledStOffset <= UnscaledLdOffset) && 613 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 614 } 615 616 MachineBasicBlock::iterator 617 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 618 MachineBasicBlock::iterator Paired, 619 const LdStPairFlags &Flags) { 620 MachineBasicBlock::iterator NextI = I; 621 ++NextI; 622 // If NextI is the second of the two instructions to be merged, we need 623 // to skip one further. Either way we merge will invalidate the iterator, 624 // and we don't need to scan the new instruction, as it's a pairwise 625 // instruction, which we're not considering for further action anyway. 626 if (NextI == Paired) 627 ++NextI; 628 629 int SExtIdx = Flags.getSExtIdx(); 630 unsigned Opc = 631 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 632 bool IsUnscaled = isUnscaledLdSt(Opc); 633 int OffsetStride = IsUnscaled ? getMemScale(I) : 1; 634 635 bool MergeForward = Flags.getMergeForward(); 636 unsigned NewOpc = getMatchingPairOpcode(Opc); 637 // Insert our new paired instruction after whichever of the paired 638 // instructions MergeForward indicates. 639 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 640 // Also based on MergeForward is from where we copy the base register operand 641 // so we get the flags compatible with the input code. 642 const MachineOperand &BaseRegOp = 643 MergeForward ? getLdStBaseOp(Paired) : getLdStBaseOp(I); 644 645 // Which register is Rt and which is Rt2 depends on the offset order. 646 MachineInstr *RtMI, *Rt2MI; 647 if (getLdStOffsetOp(I).getImm() == 648 getLdStOffsetOp(Paired).getImm() + OffsetStride) { 649 RtMI = Paired; 650 Rt2MI = I; 651 // Here we swapped the assumption made for SExtIdx. 652 // I.e., we turn ldp I, Paired into ldp Paired, I. 653 // Update the index accordingly. 654 if (SExtIdx != -1) 655 SExtIdx = (SExtIdx + 1) % 2; 656 } else { 657 RtMI = I; 658 Rt2MI = Paired; 659 } 660 661 int OffsetImm = getLdStOffsetOp(RtMI).getImm(); 662 663 if (isNarrowLoad(Opc)) { 664 // Change the scaled offset from small to large type. 665 if (!IsUnscaled) { 666 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 667 OffsetImm /= 2; 668 } 669 MachineInstr *RtNewDest = MergeForward ? I : Paired; 670 // When merging small (< 32 bit) loads for big-endian targets, the order of 671 // the component parts gets swapped. 672 if (!Subtarget->isLittleEndian()) 673 std::swap(RtMI, Rt2MI); 674 // Construct the new load instruction. 675 MachineInstr *NewMemMI, *BitExtMI1, *BitExtMI2; 676 NewMemMI = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 677 TII->get(NewOpc)) 678 .addOperand(getLdStRegOp(RtNewDest)) 679 .addOperand(BaseRegOp) 680 .addImm(OffsetImm) 681 .setMemRefs(I->mergeMemRefsWith(*Paired)); 682 683 DEBUG( 684 dbgs() 685 << "Creating the new load and extract. Replacing instructions:\n "); 686 DEBUG(I->print(dbgs())); 687 DEBUG(dbgs() << " "); 688 DEBUG(Paired->print(dbgs())); 689 DEBUG(dbgs() << " with instructions:\n "); 690 DEBUG((NewMemMI)->print(dbgs())); 691 692 int Width = getMemScale(I) == 1 ? 8 : 16; 693 int LSBLow = 0; 694 int LSBHigh = Width; 695 int ImmsLow = LSBLow + Width - 1; 696 int ImmsHigh = LSBHigh + Width - 1; 697 MachineInstr *ExtDestMI = MergeForward ? Paired : I; 698 if ((ExtDestMI == Rt2MI) == Subtarget->isLittleEndian()) { 699 // Create the bitfield extract for high bits. 700 BitExtMI1 = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 701 TII->get(getBitExtrOpcode(Rt2MI))) 702 .addOperand(getLdStRegOp(Rt2MI)) 703 .addReg(getLdStRegOp(RtNewDest).getReg()) 704 .addImm(LSBHigh) 705 .addImm(ImmsHigh); 706 // Create the bitfield extract for low bits. 707 if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) { 708 // For unsigned, prefer to use AND for low bits. 709 BitExtMI2 = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 710 TII->get(AArch64::ANDWri)) 711 .addOperand(getLdStRegOp(RtMI)) 712 .addReg(getLdStRegOp(RtNewDest).getReg()) 713 .addImm(ImmsLow); 714 } else { 715 BitExtMI2 = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 716 TII->get(getBitExtrOpcode(RtMI))) 717 .addOperand(getLdStRegOp(RtMI)) 718 .addReg(getLdStRegOp(RtNewDest).getReg()) 719 .addImm(LSBLow) 720 .addImm(ImmsLow); 721 } 722 } else { 723 // Create the bitfield extract for low bits. 724 if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) { 725 // For unsigned, prefer to use AND for low bits. 726 BitExtMI1 = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 727 TII->get(AArch64::ANDWri)) 728 .addOperand(getLdStRegOp(RtMI)) 729 .addReg(getLdStRegOp(RtNewDest).getReg()) 730 .addImm(ImmsLow); 731 } else { 732 BitExtMI1 = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 733 TII->get(getBitExtrOpcode(RtMI))) 734 .addOperand(getLdStRegOp(RtMI)) 735 .addReg(getLdStRegOp(RtNewDest).getReg()) 736 .addImm(LSBLow) 737 .addImm(ImmsLow); 738 } 739 740 // Create the bitfield extract for high bits. 741 BitExtMI2 = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 742 TII->get(getBitExtrOpcode(Rt2MI))) 743 .addOperand(getLdStRegOp(Rt2MI)) 744 .addReg(getLdStRegOp(RtNewDest).getReg()) 745 .addImm(LSBHigh) 746 .addImm(ImmsHigh); 747 } 748 DEBUG(dbgs() << " "); 749 DEBUG((BitExtMI1)->print(dbgs())); 750 DEBUG(dbgs() << " "); 751 DEBUG((BitExtMI2)->print(dbgs())); 752 DEBUG(dbgs() << "\n"); 753 754 // Erase the old instructions. 755 I->eraseFromParent(); 756 Paired->eraseFromParent(); 757 return NextI; 758 } 759 760 // Construct the new instruction. 761 MachineInstrBuilder MIB; 762 if (isNarrowStore(Opc)) { 763 // Change the scaled offset from small to large type. 764 if (!IsUnscaled) { 765 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 766 OffsetImm /= 2; 767 } 768 MIB = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 769 TII->get(NewOpc)) 770 .addOperand(getLdStRegOp(I)) 771 .addOperand(BaseRegOp) 772 .addImm(OffsetImm) 773 .setMemRefs(I->mergeMemRefsWith(*Paired)); 774 } else { 775 // Handle Unscaled 776 if (IsUnscaled) 777 OffsetImm /= OffsetStride; 778 MIB = BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 779 TII->get(NewOpc)) 780 .addOperand(getLdStRegOp(RtMI)) 781 .addOperand(getLdStRegOp(Rt2MI)) 782 .addOperand(BaseRegOp) 783 .addImm(OffsetImm); 784 } 785 786 (void)MIB; 787 788 // FIXME: Do we need/want to copy the mem operands from the source 789 // instructions? Probably. What uses them after this? 790 791 DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n "); 792 DEBUG(I->print(dbgs())); 793 DEBUG(dbgs() << " "); 794 DEBUG(Paired->print(dbgs())); 795 DEBUG(dbgs() << " with instruction:\n "); 796 797 if (SExtIdx != -1) { 798 // Generate the sign extension for the proper result of the ldp. 799 // I.e., with X1, that would be: 800 // %W1<def> = KILL %W1, %X1<imp-def> 801 // %X1<def> = SBFMXri %X1<kill>, 0, 31 802 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 803 // Right now, DstMO has the extended register, since it comes from an 804 // extended opcode. 805 unsigned DstRegX = DstMO.getReg(); 806 // Get the W variant of that register. 807 unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 808 // Update the result of LDP to use the W instead of the X variant. 809 DstMO.setReg(DstRegW); 810 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 811 DEBUG(dbgs() << "\n"); 812 // Make the machine verifier happy by providing a definition for 813 // the X register. 814 // Insert this definition right after the generated LDP, i.e., before 815 // InsertionPoint. 816 MachineInstrBuilder MIBKill = 817 BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 818 TII->get(TargetOpcode::KILL), DstRegW) 819 .addReg(DstRegW) 820 .addReg(DstRegX, RegState::Define); 821 MIBKill->getOperand(2).setImplicit(); 822 // Create the sign extension. 823 MachineInstrBuilder MIBSXTW = 824 BuildMI(*I->getParent(), InsertionPoint, I->getDebugLoc(), 825 TII->get(AArch64::SBFMXri), DstRegX) 826 .addReg(DstRegX) 827 .addImm(0) 828 .addImm(31); 829 (void)MIBSXTW; 830 DEBUG(dbgs() << " Extend operand:\n "); 831 DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 832 DEBUG(dbgs() << "\n"); 833 } else { 834 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 835 DEBUG(dbgs() << "\n"); 836 } 837 838 // Erase the old instructions. 839 I->eraseFromParent(); 840 Paired->eraseFromParent(); 841 842 return NextI; 843 } 844 845 MachineBasicBlock::iterator 846 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 847 MachineBasicBlock::iterator StoreI) { 848 MachineBasicBlock::iterator NextI = LoadI; 849 ++NextI; 850 851 int LoadSize = getMemScale(LoadI); 852 int StoreSize = getMemScale(StoreI); 853 unsigned LdRt = getLdStRegOp(LoadI).getReg(); 854 unsigned StRt = getLdStRegOp(StoreI).getReg(); 855 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 856 857 assert((IsStoreXReg || 858 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 859 "Unexpected RegClass"); 860 861 MachineInstr *BitExtMI; 862 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 863 // Remove the load, if the destination register of the loads is the same 864 // register for stored value. 865 if (StRt == LdRt && LoadSize == 8) { 866 DEBUG(dbgs() << "Remove load instruction:\n "); 867 DEBUG(LoadI->print(dbgs())); 868 DEBUG(dbgs() << "\n"); 869 LoadI->eraseFromParent(); 870 return NextI; 871 } 872 // Replace the load with a mov if the load and store are in the same size. 873 BitExtMI = 874 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 875 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 876 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 877 .addReg(StRt) 878 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); 879 } else { 880 // FIXME: Currently we disable this transformation in big-endian targets as 881 // performance and correctness are verified only in little-endian. 882 if (!Subtarget->isLittleEndian()) 883 return NextI; 884 bool IsUnscaled = isUnscaledLdSt(LoadI); 885 assert(IsUnscaled == isUnscaledLdSt(StoreI) && "Unsupported ld/st match"); 886 assert(LoadSize <= StoreSize && "Invalid load size"); 887 int UnscaledLdOffset = IsUnscaled 888 ? getLdStOffsetOp(LoadI).getImm() 889 : getLdStOffsetOp(LoadI).getImm() * LoadSize; 890 int UnscaledStOffset = IsUnscaled 891 ? getLdStOffsetOp(StoreI).getImm() 892 : getLdStOffsetOp(StoreI).getImm() * StoreSize; 893 int Width = LoadSize * 8; 894 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 895 int Imms = Immr + Width - 1; 896 unsigned DestReg = IsStoreXReg 897 ? TRI->getMatchingSuperReg(LdRt, AArch64::sub_32, 898 &AArch64::GPR64RegClass) 899 : LdRt; 900 901 assert((UnscaledLdOffset >= UnscaledStOffset && 902 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 903 "Invalid offset"); 904 905 Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 906 Imms = Immr + Width - 1; 907 if (UnscaledLdOffset == UnscaledStOffset) { 908 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 909 | ((Immr) << 6) // immr 910 | ((Imms) << 0) // imms 911 ; 912 913 BitExtMI = 914 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 915 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 916 DestReg) 917 .addReg(StRt) 918 .addImm(AndMaskEncoded); 919 } else { 920 BitExtMI = 921 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 922 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 923 DestReg) 924 .addReg(StRt) 925 .addImm(Immr) 926 .addImm(Imms); 927 } 928 } 929 930 DEBUG(dbgs() << "Promoting load by replacing :\n "); 931 DEBUG(StoreI->print(dbgs())); 932 DEBUG(dbgs() << " "); 933 DEBUG(LoadI->print(dbgs())); 934 DEBUG(dbgs() << " with instructions:\n "); 935 DEBUG(StoreI->print(dbgs())); 936 DEBUG(dbgs() << " "); 937 DEBUG((BitExtMI)->print(dbgs())); 938 DEBUG(dbgs() << "\n"); 939 940 // Erase the old instructions. 941 LoadI->eraseFromParent(); 942 return NextI; 943 } 944 945 /// trackRegDefsUses - Remember what registers the specified instruction uses 946 /// and modifies. 947 static void trackRegDefsUses(const MachineInstr *MI, BitVector &ModifiedRegs, 948 BitVector &UsedRegs, 949 const TargetRegisterInfo *TRI) { 950 for (const MachineOperand &MO : MI->operands()) { 951 if (MO.isRegMask()) 952 ModifiedRegs.setBitsNotInMask(MO.getRegMask()); 953 954 if (!MO.isReg()) 955 continue; 956 unsigned Reg = MO.getReg(); 957 if (MO.isDef()) { 958 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 959 ModifiedRegs.set(*AI); 960 } else { 961 assert(MO.isUse() && "Reg operand not a def and not a use?!?"); 962 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 963 UsedRegs.set(*AI); 964 } 965 } 966 } 967 968 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 969 // Convert the byte-offset used by unscaled into an "element" offset used 970 // by the scaled pair load/store instructions. 971 if (IsUnscaled) 972 Offset /= OffsetStride; 973 974 return Offset <= 63 && Offset >= -64; 975 } 976 977 // Do alignment, specialized to power of 2 and for signed ints, 978 // avoiding having to do a C-style cast from uint_64t to int when 979 // using alignTo from include/llvm/Support/MathExtras.h. 980 // FIXME: Move this function to include/MathExtras.h? 981 static int alignTo(int Num, int PowOf2) { 982 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 983 } 984 985 static bool mayAlias(MachineInstr *MIa, MachineInstr *MIb, 986 const AArch64InstrInfo *TII) { 987 // One of the instructions must modify memory. 988 if (!MIa->mayStore() && !MIb->mayStore()) 989 return false; 990 991 // Both instructions must be memory operations. 992 if (!MIa->mayLoadOrStore() && !MIb->mayLoadOrStore()) 993 return false; 994 995 return !TII->areMemAccessesTriviallyDisjoint(MIa, MIb); 996 } 997 998 static bool mayAlias(MachineInstr *MIa, 999 SmallVectorImpl<MachineInstr *> &MemInsns, 1000 const AArch64InstrInfo *TII) { 1001 for (auto &MIb : MemInsns) 1002 if (mayAlias(MIa, MIb, TII)) 1003 return true; 1004 1005 return false; 1006 } 1007 1008 bool AArch64LoadStoreOpt::findMatchingStore( 1009 MachineBasicBlock::iterator I, unsigned Limit, 1010 MachineBasicBlock::iterator &StoreI) { 1011 MachineBasicBlock::iterator E = I->getParent()->begin(); 1012 MachineBasicBlock::iterator MBBI = I; 1013 MachineInstr *FirstMI = I; 1014 unsigned BaseReg = getLdStBaseOp(FirstMI).getReg(); 1015 1016 // Track which registers have been modified and used between the first insn 1017 // and the second insn. 1018 BitVector ModifiedRegs, UsedRegs; 1019 ModifiedRegs.resize(TRI->getNumRegs()); 1020 UsedRegs.resize(TRI->getNumRegs()); 1021 1022 for (unsigned Count = 0; MBBI != E && Count < Limit;) { 1023 --MBBI; 1024 MachineInstr *MI = MBBI; 1025 // Skip DBG_VALUE instructions. Otherwise debug info can affect the 1026 // optimization by changing how far we scan. 1027 if (MI->isDebugValue()) 1028 continue; 1029 // Now that we know this is a real instruction, count it. 1030 ++Count; 1031 1032 // If the load instruction reads directly from the address to which the 1033 // store instruction writes and the stored value is not modified, we can 1034 // promote the load. Since we do not handle stores with pre-/post-index, 1035 // it's unnecessary to check if BaseReg is modified by the store itself. 1036 if (MI->mayStore() && isMatchingStore(FirstMI, MI) && 1037 BaseReg == getLdStBaseOp(MI).getReg() && 1038 isLdOffsetInRangeOfSt(FirstMI, MI) && 1039 !ModifiedRegs[getLdStRegOp(MI).getReg()]) { 1040 StoreI = MBBI; 1041 return true; 1042 } 1043 1044 if (MI->isCall()) 1045 return false; 1046 1047 // Update modified / uses register lists. 1048 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1049 1050 // Otherwise, if the base register is modified, we have no match, so 1051 // return early. 1052 if (ModifiedRegs[BaseReg]) 1053 return false; 1054 1055 // If we encounter a store aliased with the load, return early. 1056 if (MI->mayStore() && mayAlias(FirstMI, MI, TII)) 1057 return false; 1058 } 1059 return false; 1060 } 1061 1062 /// findMatchingInsn - Scan the instructions looking for a load/store that can 1063 /// be combined with the current instruction into a load/store pair. 1064 MachineBasicBlock::iterator 1065 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1066 LdStPairFlags &Flags, unsigned Limit) { 1067 MachineBasicBlock::iterator E = I->getParent()->end(); 1068 MachineBasicBlock::iterator MBBI = I; 1069 MachineInstr *FirstMI = I; 1070 ++MBBI; 1071 1072 unsigned Opc = FirstMI->getOpcode(); 1073 bool MayLoad = FirstMI->mayLoad(); 1074 bool IsUnscaled = isUnscaledLdSt(FirstMI); 1075 unsigned Reg = getLdStRegOp(FirstMI).getReg(); 1076 unsigned BaseReg = getLdStBaseOp(FirstMI).getReg(); 1077 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1078 bool IsNarrowStore = isNarrowStore(Opc); 1079 1080 // For narrow stores, find only the case where the stored value is WZR. 1081 if (IsNarrowStore && Reg != AArch64::WZR) 1082 return E; 1083 1084 // Early exit if the first instruction modifies the base register. 1085 // e.g., ldr x0, [x0] 1086 if (FirstMI->modifiesRegister(BaseReg, TRI)) 1087 return E; 1088 1089 // Early exit if the offset if not possible to match. (6 bits of positive 1090 // range, plus allow an extra one in case we find a later insn that matches 1091 // with Offset-1) 1092 int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1; 1093 if (!(isNarrowLoad(Opc) || IsNarrowStore) && 1094 !inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1095 return E; 1096 1097 // Track which registers have been modified and used between the first insn 1098 // (inclusive) and the second insn. 1099 BitVector ModifiedRegs, UsedRegs; 1100 ModifiedRegs.resize(TRI->getNumRegs()); 1101 UsedRegs.resize(TRI->getNumRegs()); 1102 1103 // Remember any instructions that read/write memory between FirstMI and MI. 1104 SmallVector<MachineInstr *, 4> MemInsns; 1105 1106 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1107 MachineInstr *MI = MBBI; 1108 // Skip DBG_VALUE instructions. Otherwise debug info can affect the 1109 // optimization by changing how far we scan. 1110 if (MI->isDebugValue()) 1111 continue; 1112 1113 // Now that we know this is a real instruction, count it. 1114 ++Count; 1115 1116 bool CanMergeOpc = Opc == MI->getOpcode(); 1117 Flags.setSExtIdx(-1); 1118 if (!CanMergeOpc) { 1119 bool IsValidLdStrOpc; 1120 unsigned NonSExtOpc = getMatchingNonSExtOpcode(Opc, &IsValidLdStrOpc); 1121 assert(IsValidLdStrOpc && 1122 "Given Opc should be a Load or Store with an immediate"); 1123 // Opc will be the first instruction in the pair. 1124 Flags.setSExtIdx(NonSExtOpc == (unsigned)Opc ? 1 : 0); 1125 CanMergeOpc = NonSExtOpc == getMatchingNonSExtOpcode(MI->getOpcode()); 1126 } 1127 1128 if (CanMergeOpc && getLdStOffsetOp(MI).isImm()) { 1129 assert(MI->mayLoadOrStore() && "Expected memory operation."); 1130 // If we've found another instruction with the same opcode, check to see 1131 // if the base and offset are compatible with our starting instruction. 1132 // These instructions all have scaled immediate operands, so we just 1133 // check for +1/-1. Make sure to check the new instruction offset is 1134 // actually an immediate and not a symbolic reference destined for 1135 // a relocation. 1136 // 1137 // Pairwise instructions have a 7-bit signed offset field. Single insns 1138 // have a 12-bit unsigned offset field. To be a valid combine, the 1139 // final offset must be in range. 1140 unsigned MIBaseReg = getLdStBaseOp(MI).getReg(); 1141 int MIOffset = getLdStOffsetOp(MI).getImm(); 1142 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1143 (Offset + OffsetStride == MIOffset))) { 1144 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1145 // If this is a volatile load/store that otherwise matched, stop looking 1146 // as something is going on that we don't have enough information to 1147 // safely transform. Similarly, stop if we see a hint to avoid pairs. 1148 if (MI->hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1149 return E; 1150 // If the resultant immediate offset of merging these instructions 1151 // is out of range for a pairwise instruction, bail and keep looking. 1152 bool MIIsUnscaled = isUnscaledLdSt(MI); 1153 bool IsNarrowLoad = isNarrowLoad(MI->getOpcode()); 1154 if (!IsNarrowLoad && 1155 !inBoundsForPair(MIIsUnscaled, MinOffset, OffsetStride)) { 1156 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1157 MemInsns.push_back(MI); 1158 continue; 1159 } 1160 1161 if (IsNarrowLoad || IsNarrowStore) { 1162 // If the alignment requirements of the scaled wide load/store 1163 // instruction can't express the offset of the scaled narrow 1164 // input, bail and keep looking. 1165 if (!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) { 1166 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1167 MemInsns.push_back(MI); 1168 continue; 1169 } 1170 } else { 1171 // If the alignment requirements of the paired (scaled) instruction 1172 // can't express the offset of the unscaled input, bail and keep 1173 // looking. 1174 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1175 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1176 MemInsns.push_back(MI); 1177 continue; 1178 } 1179 } 1180 // If the destination register of the loads is the same register, bail 1181 // and keep looking. A load-pair instruction with both destination 1182 // registers the same is UNPREDICTABLE and will result in an exception. 1183 // For narrow stores, allow only when the stored value is the same 1184 // (i.e., WZR). 1185 if ((MayLoad && Reg == getLdStRegOp(MI).getReg()) || 1186 (IsNarrowStore && Reg != getLdStRegOp(MI).getReg())) { 1187 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1188 MemInsns.push_back(MI); 1189 continue; 1190 } 1191 1192 // If the Rt of the second instruction was not modified or used between 1193 // the two instructions and none of the instructions between the second 1194 // and first alias with the second, we can combine the second into the 1195 // first. 1196 if (!ModifiedRegs[getLdStRegOp(MI).getReg()] && 1197 !(MI->mayLoad() && UsedRegs[getLdStRegOp(MI).getReg()]) && 1198 !mayAlias(MI, MemInsns, TII)) { 1199 Flags.setMergeForward(false); 1200 return MBBI; 1201 } 1202 1203 // Likewise, if the Rt of the first instruction is not modified or used 1204 // between the two instructions and none of the instructions between the 1205 // first and the second alias with the first, we can combine the first 1206 // into the second. 1207 if (!ModifiedRegs[getLdStRegOp(FirstMI).getReg()] && 1208 !(MayLoad && UsedRegs[getLdStRegOp(FirstMI).getReg()]) && 1209 !mayAlias(FirstMI, MemInsns, TII)) { 1210 Flags.setMergeForward(true); 1211 return MBBI; 1212 } 1213 // Unable to combine these instructions due to interference in between. 1214 // Keep looking. 1215 } 1216 } 1217 1218 // If the instruction wasn't a matching load or store. Stop searching if we 1219 // encounter a call instruction that might modify memory. 1220 if (MI->isCall()) 1221 return E; 1222 1223 // Update modified / uses register lists. 1224 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1225 1226 // Otherwise, if the base register is modified, we have no match, so 1227 // return early. 1228 if (ModifiedRegs[BaseReg]) 1229 return E; 1230 1231 // Update list of instructions that read/write memory. 1232 if (MI->mayLoadOrStore()) 1233 MemInsns.push_back(MI); 1234 } 1235 return E; 1236 } 1237 1238 MachineBasicBlock::iterator 1239 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1240 MachineBasicBlock::iterator Update, 1241 bool IsPreIdx) { 1242 assert((Update->getOpcode() == AArch64::ADDXri || 1243 Update->getOpcode() == AArch64::SUBXri) && 1244 "Unexpected base register update instruction to merge!"); 1245 MachineBasicBlock::iterator NextI = I; 1246 // Return the instruction following the merged instruction, which is 1247 // the instruction following our unmerged load. Unless that's the add/sub 1248 // instruction we're merging, in which case it's the one after that. 1249 if (++NextI == Update) 1250 ++NextI; 1251 1252 int Value = Update->getOperand(2).getImm(); 1253 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1254 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1255 if (Update->getOpcode() == AArch64::SUBXri) 1256 Value = -Value; 1257 1258 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1259 : getPostIndexedOpcode(I->getOpcode()); 1260 MachineInstrBuilder MIB; 1261 if (!isPairedLdSt(I)) { 1262 // Non-paired instruction. 1263 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1264 .addOperand(getLdStRegOp(Update)) 1265 .addOperand(getLdStRegOp(I)) 1266 .addOperand(getLdStBaseOp(I)) 1267 .addImm(Value) 1268 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1269 } else { 1270 // Paired instruction. 1271 int Scale = getMemScale(I); 1272 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1273 .addOperand(getLdStRegOp(Update)) 1274 .addOperand(getLdStRegOp(I, 0)) 1275 .addOperand(getLdStRegOp(I, 1)) 1276 .addOperand(getLdStBaseOp(I)) 1277 .addImm(Value / Scale) 1278 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1279 } 1280 (void)MIB; 1281 1282 if (IsPreIdx) 1283 DEBUG(dbgs() << "Creating pre-indexed load/store."); 1284 else 1285 DEBUG(dbgs() << "Creating post-indexed load/store."); 1286 DEBUG(dbgs() << " Replacing instructions:\n "); 1287 DEBUG(I->print(dbgs())); 1288 DEBUG(dbgs() << " "); 1289 DEBUG(Update->print(dbgs())); 1290 DEBUG(dbgs() << " with instruction:\n "); 1291 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1292 DEBUG(dbgs() << "\n"); 1293 1294 // Erase the old instructions for the block. 1295 I->eraseFromParent(); 1296 Update->eraseFromParent(); 1297 1298 return NextI; 1299 } 1300 1301 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr *MemMI, 1302 MachineInstr *MI, 1303 unsigned BaseReg, int Offset) { 1304 switch (MI->getOpcode()) { 1305 default: 1306 break; 1307 case AArch64::SUBXri: 1308 // Negate the offset for a SUB instruction. 1309 Offset *= -1; 1310 // FALLTHROUGH 1311 case AArch64::ADDXri: 1312 // Make sure it's a vanilla immediate operand, not a relocation or 1313 // anything else we can't handle. 1314 if (!MI->getOperand(2).isImm()) 1315 break; 1316 // Watch out for 1 << 12 shifted value. 1317 if (AArch64_AM::getShiftValue(MI->getOperand(3).getImm())) 1318 break; 1319 1320 // The update instruction source and destination register must be the 1321 // same as the load/store base register. 1322 if (MI->getOperand(0).getReg() != BaseReg || 1323 MI->getOperand(1).getReg() != BaseReg) 1324 break; 1325 1326 bool IsPairedInsn = isPairedLdSt(MemMI); 1327 int UpdateOffset = MI->getOperand(2).getImm(); 1328 // For non-paired load/store instructions, the immediate must fit in a 1329 // signed 9-bit integer. 1330 if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256)) 1331 break; 1332 1333 // For paired load/store instructions, the immediate must be a multiple of 1334 // the scaling factor. The scaled offset must also fit into a signed 7-bit 1335 // integer. 1336 if (IsPairedInsn) { 1337 int Scale = getMemScale(MemMI); 1338 if (UpdateOffset % Scale != 0) 1339 break; 1340 1341 int ScaledOffset = UpdateOffset / Scale; 1342 if (ScaledOffset > 64 || ScaledOffset < -64) 1343 break; 1344 } 1345 1346 // If we have a non-zero Offset, we check that it matches the amount 1347 // we're adding to the register. 1348 if (!Offset || Offset == MI->getOperand(2).getImm()) 1349 return true; 1350 break; 1351 } 1352 return false; 1353 } 1354 1355 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1356 MachineBasicBlock::iterator I, int UnscaledOffset) { 1357 MachineBasicBlock::iterator E = I->getParent()->end(); 1358 MachineInstr *MemMI = I; 1359 MachineBasicBlock::iterator MBBI = I; 1360 1361 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1362 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI); 1363 1364 // Scan forward looking for post-index opportunities. Updating instructions 1365 // can't be formed if the memory instruction doesn't have the offset we're 1366 // looking for. 1367 if (MIUnscaledOffset != UnscaledOffset) 1368 return E; 1369 1370 // If the base register overlaps a destination register, we can't 1371 // merge the update. 1372 bool IsPairedInsn = isPairedLdSt(MemMI); 1373 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1374 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1375 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1376 return E; 1377 } 1378 1379 // Track which registers have been modified and used between the first insn 1380 // (inclusive) and the second insn. 1381 BitVector ModifiedRegs, UsedRegs; 1382 ModifiedRegs.resize(TRI->getNumRegs()); 1383 UsedRegs.resize(TRI->getNumRegs()); 1384 ++MBBI; 1385 for (; MBBI != E; ++MBBI) { 1386 MachineInstr *MI = MBBI; 1387 // Skip DBG_VALUE instructions. 1388 if (MI->isDebugValue()) 1389 continue; 1390 1391 // If we found a match, return it. 1392 if (isMatchingUpdateInsn(I, MI, BaseReg, UnscaledOffset)) 1393 return MBBI; 1394 1395 // Update the status of what the instruction clobbered and used. 1396 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1397 1398 // Otherwise, if the base register is used or modified, we have no match, so 1399 // return early. 1400 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1401 return E; 1402 } 1403 return E; 1404 } 1405 1406 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1407 MachineBasicBlock::iterator I) { 1408 MachineBasicBlock::iterator B = I->getParent()->begin(); 1409 MachineBasicBlock::iterator E = I->getParent()->end(); 1410 MachineInstr *MemMI = I; 1411 MachineBasicBlock::iterator MBBI = I; 1412 1413 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1414 int Offset = getLdStOffsetOp(MemMI).getImm(); 1415 1416 // If the load/store is the first instruction in the block, there's obviously 1417 // not any matching update. Ditto if the memory offset isn't zero. 1418 if (MBBI == B || Offset != 0) 1419 return E; 1420 // If the base register overlaps a destination register, we can't 1421 // merge the update. 1422 bool IsPairedInsn = isPairedLdSt(MemMI); 1423 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1424 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1425 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1426 return E; 1427 } 1428 1429 // Track which registers have been modified and used between the first insn 1430 // (inclusive) and the second insn. 1431 BitVector ModifiedRegs, UsedRegs; 1432 ModifiedRegs.resize(TRI->getNumRegs()); 1433 UsedRegs.resize(TRI->getNumRegs()); 1434 --MBBI; 1435 for (; MBBI != B; --MBBI) { 1436 MachineInstr *MI = MBBI; 1437 // Skip DBG_VALUE instructions. 1438 if (MI->isDebugValue()) 1439 continue; 1440 1441 // If we found a match, return it. 1442 if (isMatchingUpdateInsn(I, MI, BaseReg, Offset)) 1443 return MBBI; 1444 1445 // Update the status of what the instruction clobbered and used. 1446 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1447 1448 // Otherwise, if the base register is used or modified, we have no match, so 1449 // return early. 1450 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1451 return E; 1452 } 1453 return E; 1454 } 1455 1456 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1457 MachineBasicBlock::iterator &MBBI) { 1458 MachineInstr *MI = MBBI; 1459 // If this is a volatile load, don't mess with it. 1460 if (MI->hasOrderedMemoryRef()) 1461 return false; 1462 1463 // Make sure this is a reg+imm. 1464 // FIXME: It is possible to extend it to handle reg+reg cases. 1465 if (!getLdStOffsetOp(MI).isImm()) 1466 return false; 1467 1468 // Look backward up to ScanLimit instructions. 1469 MachineBasicBlock::iterator StoreI; 1470 if (findMatchingStore(MBBI, ScanLimit, StoreI)) { 1471 ++NumLoadsFromStoresPromoted; 1472 // Promote the load. Keeping the iterator straight is a 1473 // pain, so we let the merge routine tell us what the next instruction 1474 // is after it's done mucking about. 1475 MBBI = promoteLoadFromStore(MBBI, StoreI); 1476 return true; 1477 } 1478 return false; 1479 } 1480 1481 bool AArch64LoadStoreOpt::tryToMergeLdStInst( 1482 MachineBasicBlock::iterator &MBBI) { 1483 MachineInstr *MI = MBBI; 1484 MachineBasicBlock::iterator E = MI->getParent()->end(); 1485 // If this is a volatile load/store, don't mess with it. 1486 if (MI->hasOrderedMemoryRef()) 1487 return false; 1488 1489 // Make sure this is a reg+imm (as opposed to an address reloc). 1490 if (!getLdStOffsetOp(MI).isImm()) 1491 return false; 1492 1493 // Check if this load/store has a hint to avoid pair formation. 1494 // MachineMemOperands hints are set by the AArch64StorePairSuppress pass. 1495 if (TII->isLdStPairSuppressed(MI)) 1496 return false; 1497 1498 // Look ahead up to ScanLimit instructions for a pairable instruction. 1499 LdStPairFlags Flags; 1500 MachineBasicBlock::iterator Paired = findMatchingInsn(MBBI, Flags, ScanLimit); 1501 if (Paired != E) { 1502 if (isNarrowLoad(MI)) { 1503 ++NumNarrowLoadsPromoted; 1504 } else if (isNarrowStore(MI)) { 1505 ++NumZeroStoresPromoted; 1506 } else { 1507 ++NumPairCreated; 1508 if (isUnscaledLdSt(MI)) 1509 ++NumUnscaledPairCreated; 1510 } 1511 1512 // Merge the loads into a pair. Keeping the iterator straight is a 1513 // pain, so we let the merge routine tell us what the next instruction 1514 // is after it's done mucking about. 1515 MBBI = mergePairedInsns(MBBI, Paired, Flags); 1516 return true; 1517 } 1518 return false; 1519 } 1520 1521 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 1522 bool enableNarrowLdOpt) { 1523 bool Modified = false; 1524 // Three tranformations to do here: 1525 // 1) Find loads that directly read from stores and promote them by 1526 // replacing with mov instructions. If the store is wider than the load, 1527 // the load will be replaced with a bitfield extract. 1528 // e.g., 1529 // str w1, [x0, #4] 1530 // ldrh w2, [x0, #6] 1531 // ; becomes 1532 // str w1, [x0, #4] 1533 // lsr w2, w1, #16 1534 // 2) Find narrow loads that can be converted into a single wider load 1535 // with bitfield extract instructions. 1536 // e.g., 1537 // ldrh w0, [x2] 1538 // ldrh w1, [x2, #2] 1539 // ; becomes 1540 // ldr w0, [x2] 1541 // ubfx w1, w0, #16, #16 1542 // and w0, w0, #ffff 1543 // 3) Find loads and stores that can be merged into a single load or store 1544 // pair instruction. 1545 // e.g., 1546 // ldr x0, [x2] 1547 // ldr x1, [x2, #8] 1548 // ; becomes 1549 // ldp x0, x1, [x2] 1550 // 4) Find base register updates that can be merged into the load or store 1551 // as a base-reg writeback. 1552 // e.g., 1553 // ldr x0, [x2] 1554 // add x2, x2, #4 1555 // ; becomes 1556 // ldr x0, [x2], #4 1557 1558 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1559 MBBI != E;) { 1560 MachineInstr *MI = MBBI; 1561 switch (MI->getOpcode()) { 1562 default: 1563 // Just move on to the next instruction. 1564 ++MBBI; 1565 break; 1566 // Scaled instructions. 1567 case AArch64::LDRBBui: 1568 case AArch64::LDRHHui: 1569 case AArch64::LDRWui: 1570 case AArch64::LDRXui: 1571 // Unscaled instructions. 1572 case AArch64::LDURBBi: 1573 case AArch64::LDURHHi: 1574 case AArch64::LDURWi: 1575 case AArch64::LDURXi: { 1576 if (tryToPromoteLoadFromStore(MBBI)) { 1577 Modified = true; 1578 break; 1579 } 1580 ++MBBI; 1581 break; 1582 } 1583 } 1584 } 1585 1586 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1587 enableNarrowLdOpt && MBBI != E;) { 1588 MachineInstr *MI = MBBI; 1589 switch (MI->getOpcode()) { 1590 default: 1591 // Just move on to the next instruction. 1592 ++MBBI; 1593 break; 1594 // Scaled instructions. 1595 case AArch64::LDRBBui: 1596 case AArch64::LDRHHui: 1597 case AArch64::LDRSBWui: 1598 case AArch64::LDRSHWui: 1599 case AArch64::STRBBui: 1600 case AArch64::STRHHui: 1601 // Unscaled instructions. 1602 case AArch64::LDURBBi: 1603 case AArch64::LDURHHi: 1604 case AArch64::LDURSBWi: 1605 case AArch64::LDURSHWi: 1606 case AArch64::STURBBi: 1607 case AArch64::STURHHi: { 1608 if (tryToMergeLdStInst(MBBI)) { 1609 Modified = true; 1610 break; 1611 } 1612 ++MBBI; 1613 break; 1614 } 1615 } 1616 } 1617 1618 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1619 MBBI != E;) { 1620 MachineInstr *MI = MBBI; 1621 switch (MI->getOpcode()) { 1622 default: 1623 // Just move on to the next instruction. 1624 ++MBBI; 1625 break; 1626 // Scaled instructions. 1627 case AArch64::STRSui: 1628 case AArch64::STRDui: 1629 case AArch64::STRQui: 1630 case AArch64::STRXui: 1631 case AArch64::STRWui: 1632 case AArch64::LDRSui: 1633 case AArch64::LDRDui: 1634 case AArch64::LDRQui: 1635 case AArch64::LDRXui: 1636 case AArch64::LDRWui: 1637 case AArch64::LDRSWui: 1638 // Unscaled instructions. 1639 case AArch64::STURSi: 1640 case AArch64::STURDi: 1641 case AArch64::STURQi: 1642 case AArch64::STURWi: 1643 case AArch64::STURXi: 1644 case AArch64::LDURSi: 1645 case AArch64::LDURDi: 1646 case AArch64::LDURQi: 1647 case AArch64::LDURWi: 1648 case AArch64::LDURXi: 1649 case AArch64::LDURSWi: { 1650 if (tryToMergeLdStInst(MBBI)) { 1651 Modified = true; 1652 break; 1653 } 1654 ++MBBI; 1655 break; 1656 } 1657 } 1658 } 1659 1660 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1661 MBBI != E;) { 1662 MachineInstr *MI = MBBI; 1663 // Do update merging. It's simpler to keep this separate from the above 1664 // switch, though not strictly necessary. 1665 unsigned Opc = MI->getOpcode(); 1666 switch (Opc) { 1667 default: 1668 // Just move on to the next instruction. 1669 ++MBBI; 1670 break; 1671 // Scaled instructions. 1672 case AArch64::STRSui: 1673 case AArch64::STRDui: 1674 case AArch64::STRQui: 1675 case AArch64::STRXui: 1676 case AArch64::STRWui: 1677 case AArch64::STRHHui: 1678 case AArch64::STRBBui: 1679 case AArch64::LDRSui: 1680 case AArch64::LDRDui: 1681 case AArch64::LDRQui: 1682 case AArch64::LDRXui: 1683 case AArch64::LDRWui: 1684 case AArch64::LDRHHui: 1685 case AArch64::LDRBBui: 1686 // Unscaled instructions. 1687 case AArch64::STURSi: 1688 case AArch64::STURDi: 1689 case AArch64::STURQi: 1690 case AArch64::STURWi: 1691 case AArch64::STURXi: 1692 case AArch64::LDURSi: 1693 case AArch64::LDURDi: 1694 case AArch64::LDURQi: 1695 case AArch64::LDURWi: 1696 case AArch64::LDURXi: 1697 // Paired instructions. 1698 case AArch64::LDPSi: 1699 case AArch64::LDPSWi: 1700 case AArch64::LDPDi: 1701 case AArch64::LDPQi: 1702 case AArch64::LDPWi: 1703 case AArch64::LDPXi: 1704 case AArch64::STPSi: 1705 case AArch64::STPDi: 1706 case AArch64::STPQi: 1707 case AArch64::STPWi: 1708 case AArch64::STPXi: { 1709 // Make sure this is a reg+imm (as opposed to an address reloc). 1710 if (!getLdStOffsetOp(MI).isImm()) { 1711 ++MBBI; 1712 break; 1713 } 1714 // Look forward to try to form a post-index instruction. For example, 1715 // ldr x0, [x20] 1716 // add x20, x20, #32 1717 // merged into: 1718 // ldr x0, [x20], #32 1719 MachineBasicBlock::iterator Update = 1720 findMatchingUpdateInsnForward(MBBI, 0); 1721 if (Update != E) { 1722 // Merge the update into the ld/st. 1723 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 1724 Modified = true; 1725 ++NumPostFolded; 1726 break; 1727 } 1728 // Don't know how to handle pre/post-index versions, so move to the next 1729 // instruction. 1730 if (isUnscaledLdSt(Opc)) { 1731 ++MBBI; 1732 break; 1733 } 1734 1735 // Look back to try to find a pre-index instruction. For example, 1736 // add x0, x0, #8 1737 // ldr x1, [x0] 1738 // merged into: 1739 // ldr x1, [x0, #8]! 1740 Update = findMatchingUpdateInsnBackward(MBBI); 1741 if (Update != E) { 1742 // Merge the update into the ld/st. 1743 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1744 Modified = true; 1745 ++NumPreFolded; 1746 break; 1747 } 1748 // The immediate in the load/store is scaled by the size of the memory 1749 // operation. The immediate in the add we're looking for, 1750 // however, is not, so adjust here. 1751 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI); 1752 1753 // Look forward to try to find a post-index instruction. For example, 1754 // ldr x1, [x0, #64] 1755 // add x0, x0, #64 1756 // merged into: 1757 // ldr x1, [x0, #64]! 1758 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset); 1759 if (Update != E) { 1760 // Merge the update into the ld/st. 1761 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1762 Modified = true; 1763 ++NumPreFolded; 1764 break; 1765 } 1766 1767 // Nothing found. Just move to the next instruction. 1768 ++MBBI; 1769 break; 1770 } 1771 } 1772 } 1773 1774 return Modified; 1775 } 1776 1777 bool AArch64LoadStoreOpt::enableNarrowLdMerge(MachineFunction &Fn) { 1778 bool ProfitableArch = Subtarget->isCortexA57(); 1779 // FIXME: The benefit from converting narrow loads into a wider load could be 1780 // microarchitectural as it assumes that a single load with two bitfield 1781 // extracts is cheaper than two narrow loads. Currently, this conversion is 1782 // enabled only in cortex-a57 on which performance benefits were verified. 1783 return ProfitableArch && !Subtarget->requiresStrictAlign(); 1784 } 1785 1786 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 1787 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 1788 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 1789 TRI = Subtarget->getRegisterInfo(); 1790 1791 bool Modified = false; 1792 bool enableNarrowLdOpt = enableNarrowLdMerge(Fn); 1793 for (auto &MBB : Fn) 1794 Modified |= optimizeBlock(MBB, enableNarrowLdOpt); 1795 1796 return Modified; 1797 } 1798 1799 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep 1800 // loads and stores near one another? 1801 1802 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 1803 /// load / store optimization pass. 1804 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 1805 return new AArch64LoadStoreOpt(); 1806 } 1807