1 //=- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -*- C++ -*-=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that performs load / store related peephole
11 // optimizations. This pass should be run after register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AArch64InstrInfo.h"
16 #include "AArch64Subtarget.h"
17 #include "MCTargetDesc/AArch64AddressingModes.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "aarch64-ldst-opt"
35 
36 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated");
37 STATISTIC(NumPostFolded, "Number of post-index updates folded");
38 STATISTIC(NumPreFolded, "Number of pre-index updates folded");
39 STATISTIC(NumUnscaledPairCreated,
40           "Number of load/store from unscaled generated");
41 STATISTIC(NumNarrowLoadsPromoted, "Number of narrow loads promoted");
42 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted");
43 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted");
44 
45 // The LdStLimit limits how far we search for load/store pairs.
46 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit",
47                                    cl::init(20), cl::Hidden);
48 
49 // The UpdateLimit limits how far we search for update instructions when we form
50 // pre-/post-index instructions.
51 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100),
52                                      cl::Hidden);
53 
54 namespace llvm {
55 void initializeAArch64LoadStoreOptPass(PassRegistry &);
56 }
57 
58 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass"
59 
60 namespace {
61 
62 typedef struct LdStPairFlags {
63   // If a matching instruction is found, MergeForward is set to true if the
64   // merge is to remove the first instruction and replace the second with
65   // a pair-wise insn, and false if the reverse is true.
66   bool MergeForward;
67 
68   // SExtIdx gives the index of the result of the load pair that must be
69   // extended. The value of SExtIdx assumes that the paired load produces the
70   // value in this order: (I, returned iterator), i.e., -1 means no value has
71   // to be extended, 0 means I, and 1 means the returned iterator.
72   int SExtIdx;
73 
74   LdStPairFlags() : MergeForward(false), SExtIdx(-1) {}
75 
76   void setMergeForward(bool V = true) { MergeForward = V; }
77   bool getMergeForward() const { return MergeForward; }
78 
79   void setSExtIdx(int V) { SExtIdx = V; }
80   int getSExtIdx() const { return SExtIdx; }
81 
82 } LdStPairFlags;
83 
84 struct AArch64LoadStoreOpt : public MachineFunctionPass {
85   static char ID;
86   AArch64LoadStoreOpt() : MachineFunctionPass(ID) {
87     initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry());
88   }
89 
90   const AArch64InstrInfo *TII;
91   const TargetRegisterInfo *TRI;
92   const AArch64Subtarget *Subtarget;
93 
94   // Track which registers have been modified and used.
95   BitVector ModifiedRegs, UsedRegs;
96 
97   // Scan the instructions looking for a load/store that can be combined
98   // with the current instruction into a load/store pair.
99   // Return the matching instruction if one is found, else MBB->end().
100   MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I,
101                                                LdStPairFlags &Flags,
102                                                unsigned Limit,
103                                                bool FindNarrowMerge);
104 
105   // Scan the instructions looking for a store that writes to the address from
106   // which the current load instruction reads. Return true if one is found.
107   bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit,
108                          MachineBasicBlock::iterator &StoreI);
109 
110   // Merge the two instructions indicated into a wider instruction.
111   MachineBasicBlock::iterator
112   mergeNarrowInsns(MachineBasicBlock::iterator I,
113                    MachineBasicBlock::iterator MergeMI,
114                    const LdStPairFlags &Flags);
115 
116   // Merge the two instructions indicated into a single pair-wise instruction.
117   MachineBasicBlock::iterator
118   mergePairedInsns(MachineBasicBlock::iterator I,
119                    MachineBasicBlock::iterator Paired,
120                    const LdStPairFlags &Flags);
121 
122   // Promote the load that reads directly from the address stored to.
123   MachineBasicBlock::iterator
124   promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
125                        MachineBasicBlock::iterator StoreI);
126 
127   // Scan the instruction list to find a base register update that can
128   // be combined with the current instruction (a load or store) using
129   // pre or post indexed addressing with writeback. Scan forwards.
130   MachineBasicBlock::iterator
131   findMatchingUpdateInsnForward(MachineBasicBlock::iterator I,
132                                 int UnscaledOffset, unsigned Limit);
133 
134   // Scan the instruction list to find a base register update that can
135   // be combined with the current instruction (a load or store) using
136   // pre or post indexed addressing with writeback. Scan backwards.
137   MachineBasicBlock::iterator
138   findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit);
139 
140   // Find an instruction that updates the base register of the ld/st
141   // instruction.
142   bool isMatchingUpdateInsn(MachineInstr *MemMI, MachineInstr *MI,
143                             unsigned BaseReg, int Offset);
144 
145   // Merge a pre- or post-index base register update into a ld/st instruction.
146   MachineBasicBlock::iterator
147   mergeUpdateInsn(MachineBasicBlock::iterator I,
148                   MachineBasicBlock::iterator Update, bool IsPreIdx);
149 
150   // Find and merge foldable ldr/str instructions.
151   bool tryToMergeLdStInst(MachineBasicBlock::iterator &MBBI);
152 
153   // Find and pair ldr/str instructions.
154   bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI);
155 
156   // Find and promote load instructions which read directly from store.
157   bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI);
158 
159   // Check if converting two narrow loads into a single wider load with
160   // bitfield extracts could be enabled.
161   bool enableNarrowLdMerge(MachineFunction &Fn);
162 
163   bool optimizeBlock(MachineBasicBlock &MBB, bool enableNarrowLdOpt);
164 
165   bool runOnMachineFunction(MachineFunction &Fn) override;
166 
167   MachineFunctionProperties getRequiredProperties() const override {
168     return MachineFunctionProperties().set(
169         MachineFunctionProperties::Property::AllVRegsAllocated);
170   }
171 
172   const char *getPassName() const override {
173     return AARCH64_LOAD_STORE_OPT_NAME;
174   }
175 };
176 char AArch64LoadStoreOpt::ID = 0;
177 } // namespace
178 
179 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt",
180                 AARCH64_LOAD_STORE_OPT_NAME, false, false)
181 
182 static unsigned getBitExtrOpcode(MachineInstr *MI) {
183   switch (MI->getOpcode()) {
184   default:
185     llvm_unreachable("Unexpected opcode.");
186   case AArch64::LDRBBui:
187   case AArch64::LDURBBi:
188   case AArch64::LDRHHui:
189   case AArch64::LDURHHi:
190     return AArch64::UBFMWri;
191   case AArch64::LDRSBWui:
192   case AArch64::LDURSBWi:
193   case AArch64::LDRSHWui:
194   case AArch64::LDURSHWi:
195     return AArch64::SBFMWri;
196   }
197 }
198 
199 static bool isNarrowStore(unsigned Opc) {
200   switch (Opc) {
201   default:
202     return false;
203   case AArch64::STRBBui:
204   case AArch64::STURBBi:
205   case AArch64::STRHHui:
206   case AArch64::STURHHi:
207     return true;
208   }
209 }
210 
211 static bool isNarrowLoad(unsigned Opc) {
212   switch (Opc) {
213   default:
214     return false;
215   case AArch64::LDRHHui:
216   case AArch64::LDURHHi:
217   case AArch64::LDRBBui:
218   case AArch64::LDURBBi:
219   case AArch64::LDRSHWui:
220   case AArch64::LDURSHWi:
221   case AArch64::LDRSBWui:
222   case AArch64::LDURSBWi:
223     return true;
224   }
225 }
226 
227 static bool isNarrowLoad(MachineInstr *MI) {
228   return isNarrowLoad(MI->getOpcode());
229 }
230 
231 static bool isNarrowLoadOrStore(unsigned Opc) {
232   return isNarrowLoad(Opc) || isNarrowStore(Opc);
233 }
234 
235 // Scaling factor for unscaled load or store.
236 static int getMemScale(MachineInstr *MI) {
237   switch (MI->getOpcode()) {
238   default:
239     llvm_unreachable("Opcode has unknown scale!");
240   case AArch64::LDRBBui:
241   case AArch64::LDURBBi:
242   case AArch64::LDRSBWui:
243   case AArch64::LDURSBWi:
244   case AArch64::STRBBui:
245   case AArch64::STURBBi:
246     return 1;
247   case AArch64::LDRHHui:
248   case AArch64::LDURHHi:
249   case AArch64::LDRSHWui:
250   case AArch64::LDURSHWi:
251   case AArch64::STRHHui:
252   case AArch64::STURHHi:
253     return 2;
254   case AArch64::LDRSui:
255   case AArch64::LDURSi:
256   case AArch64::LDRSWui:
257   case AArch64::LDURSWi:
258   case AArch64::LDRWui:
259   case AArch64::LDURWi:
260   case AArch64::STRSui:
261   case AArch64::STURSi:
262   case AArch64::STRWui:
263   case AArch64::STURWi:
264   case AArch64::LDPSi:
265   case AArch64::LDPSWi:
266   case AArch64::LDPWi:
267   case AArch64::STPSi:
268   case AArch64::STPWi:
269     return 4;
270   case AArch64::LDRDui:
271   case AArch64::LDURDi:
272   case AArch64::LDRXui:
273   case AArch64::LDURXi:
274   case AArch64::STRDui:
275   case AArch64::STURDi:
276   case AArch64::STRXui:
277   case AArch64::STURXi:
278   case AArch64::LDPDi:
279   case AArch64::LDPXi:
280   case AArch64::STPDi:
281   case AArch64::STPXi:
282     return 8;
283   case AArch64::LDRQui:
284   case AArch64::LDURQi:
285   case AArch64::STRQui:
286   case AArch64::STURQi:
287   case AArch64::LDPQi:
288   case AArch64::STPQi:
289     return 16;
290   }
291 }
292 
293 static unsigned getMatchingNonSExtOpcode(unsigned Opc,
294                                          bool *IsValidLdStrOpc = nullptr) {
295   if (IsValidLdStrOpc)
296     *IsValidLdStrOpc = true;
297   switch (Opc) {
298   default:
299     if (IsValidLdStrOpc)
300       *IsValidLdStrOpc = false;
301     return UINT_MAX;
302   case AArch64::STRDui:
303   case AArch64::STURDi:
304   case AArch64::STRQui:
305   case AArch64::STURQi:
306   case AArch64::STRBBui:
307   case AArch64::STURBBi:
308   case AArch64::STRHHui:
309   case AArch64::STURHHi:
310   case AArch64::STRWui:
311   case AArch64::STURWi:
312   case AArch64::STRXui:
313   case AArch64::STURXi:
314   case AArch64::LDRDui:
315   case AArch64::LDURDi:
316   case AArch64::LDRQui:
317   case AArch64::LDURQi:
318   case AArch64::LDRWui:
319   case AArch64::LDURWi:
320   case AArch64::LDRXui:
321   case AArch64::LDURXi:
322   case AArch64::STRSui:
323   case AArch64::STURSi:
324   case AArch64::LDRSui:
325   case AArch64::LDURSi:
326   case AArch64::LDRHHui:
327   case AArch64::LDURHHi:
328   case AArch64::LDRBBui:
329   case AArch64::LDURBBi:
330     return Opc;
331   case AArch64::LDRSWui:
332     return AArch64::LDRWui;
333   case AArch64::LDURSWi:
334     return AArch64::LDURWi;
335   case AArch64::LDRSBWui:
336     return AArch64::LDRBBui;
337   case AArch64::LDRSHWui:
338     return AArch64::LDRHHui;
339   case AArch64::LDURSBWi:
340     return AArch64::LDURBBi;
341   case AArch64::LDURSHWi:
342     return AArch64::LDURHHi;
343   }
344 }
345 
346 static unsigned getMatchingWideOpcode(unsigned Opc) {
347   switch (Opc) {
348   default:
349     llvm_unreachable("Opcode has no wide equivalent!");
350   case AArch64::STRBBui:
351     return AArch64::STRHHui;
352   case AArch64::STRHHui:
353     return AArch64::STRWui;
354   case AArch64::STURBBi:
355     return AArch64::STURHHi;
356   case AArch64::STURHHi:
357     return AArch64::STURWi;
358   case AArch64::STURWi:
359     return AArch64::STURXi;
360   case AArch64::STRWui:
361     return AArch64::STRXui;
362   case AArch64::LDRHHui:
363   case AArch64::LDRSHWui:
364     return AArch64::LDRWui;
365   case AArch64::LDURHHi:
366   case AArch64::LDURSHWi:
367     return AArch64::LDURWi;
368   case AArch64::LDRBBui:
369   case AArch64::LDRSBWui:
370     return AArch64::LDRHHui;
371   case AArch64::LDURBBi:
372   case AArch64::LDURSBWi:
373     return AArch64::LDURHHi;
374   }
375 }
376 
377 static unsigned getMatchingPairOpcode(unsigned Opc) {
378   switch (Opc) {
379   default:
380     llvm_unreachable("Opcode has no pairwise equivalent!");
381   case AArch64::STRSui:
382   case AArch64::STURSi:
383     return AArch64::STPSi;
384   case AArch64::STRDui:
385   case AArch64::STURDi:
386     return AArch64::STPDi;
387   case AArch64::STRQui:
388   case AArch64::STURQi:
389     return AArch64::STPQi;
390   case AArch64::STRWui:
391   case AArch64::STURWi:
392     return AArch64::STPWi;
393   case AArch64::STRXui:
394   case AArch64::STURXi:
395     return AArch64::STPXi;
396   case AArch64::LDRSui:
397   case AArch64::LDURSi:
398     return AArch64::LDPSi;
399   case AArch64::LDRDui:
400   case AArch64::LDURDi:
401     return AArch64::LDPDi;
402   case AArch64::LDRQui:
403   case AArch64::LDURQi:
404     return AArch64::LDPQi;
405   case AArch64::LDRWui:
406   case AArch64::LDURWi:
407     return AArch64::LDPWi;
408   case AArch64::LDRXui:
409   case AArch64::LDURXi:
410     return AArch64::LDPXi;
411   case AArch64::LDRSWui:
412   case AArch64::LDURSWi:
413     return AArch64::LDPSWi;
414   }
415 }
416 
417 static unsigned isMatchingStore(MachineInstr *LoadInst,
418                                 MachineInstr *StoreInst) {
419   unsigned LdOpc = LoadInst->getOpcode();
420   unsigned StOpc = StoreInst->getOpcode();
421   switch (LdOpc) {
422   default:
423     llvm_unreachable("Unsupported load instruction!");
424   case AArch64::LDRBBui:
425     return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui ||
426            StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
427   case AArch64::LDURBBi:
428     return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi ||
429            StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
430   case AArch64::LDRHHui:
431     return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui ||
432            StOpc == AArch64::STRXui;
433   case AArch64::LDURHHi:
434     return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi ||
435            StOpc == AArch64::STURXi;
436   case AArch64::LDRWui:
437     return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
438   case AArch64::LDURWi:
439     return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
440   case AArch64::LDRXui:
441     return StOpc == AArch64::STRXui;
442   case AArch64::LDURXi:
443     return StOpc == AArch64::STURXi;
444   }
445 }
446 
447 static unsigned getPreIndexedOpcode(unsigned Opc) {
448   switch (Opc) {
449   default:
450     llvm_unreachable("Opcode has no pre-indexed equivalent!");
451   case AArch64::STRSui:
452     return AArch64::STRSpre;
453   case AArch64::STRDui:
454     return AArch64::STRDpre;
455   case AArch64::STRQui:
456     return AArch64::STRQpre;
457   case AArch64::STRBBui:
458     return AArch64::STRBBpre;
459   case AArch64::STRHHui:
460     return AArch64::STRHHpre;
461   case AArch64::STRWui:
462     return AArch64::STRWpre;
463   case AArch64::STRXui:
464     return AArch64::STRXpre;
465   case AArch64::LDRSui:
466     return AArch64::LDRSpre;
467   case AArch64::LDRDui:
468     return AArch64::LDRDpre;
469   case AArch64::LDRQui:
470     return AArch64::LDRQpre;
471   case AArch64::LDRBBui:
472     return AArch64::LDRBBpre;
473   case AArch64::LDRHHui:
474     return AArch64::LDRHHpre;
475   case AArch64::LDRWui:
476     return AArch64::LDRWpre;
477   case AArch64::LDRXui:
478     return AArch64::LDRXpre;
479   case AArch64::LDRSWui:
480     return AArch64::LDRSWpre;
481   case AArch64::LDPSi:
482     return AArch64::LDPSpre;
483   case AArch64::LDPSWi:
484     return AArch64::LDPSWpre;
485   case AArch64::LDPDi:
486     return AArch64::LDPDpre;
487   case AArch64::LDPQi:
488     return AArch64::LDPQpre;
489   case AArch64::LDPWi:
490     return AArch64::LDPWpre;
491   case AArch64::LDPXi:
492     return AArch64::LDPXpre;
493   case AArch64::STPSi:
494     return AArch64::STPSpre;
495   case AArch64::STPDi:
496     return AArch64::STPDpre;
497   case AArch64::STPQi:
498     return AArch64::STPQpre;
499   case AArch64::STPWi:
500     return AArch64::STPWpre;
501   case AArch64::STPXi:
502     return AArch64::STPXpre;
503   }
504 }
505 
506 static unsigned getPostIndexedOpcode(unsigned Opc) {
507   switch (Opc) {
508   default:
509     llvm_unreachable("Opcode has no post-indexed wise equivalent!");
510   case AArch64::STRSui:
511     return AArch64::STRSpost;
512   case AArch64::STRDui:
513     return AArch64::STRDpost;
514   case AArch64::STRQui:
515     return AArch64::STRQpost;
516   case AArch64::STRBBui:
517     return AArch64::STRBBpost;
518   case AArch64::STRHHui:
519     return AArch64::STRHHpost;
520   case AArch64::STRWui:
521     return AArch64::STRWpost;
522   case AArch64::STRXui:
523     return AArch64::STRXpost;
524   case AArch64::LDRSui:
525     return AArch64::LDRSpost;
526   case AArch64::LDRDui:
527     return AArch64::LDRDpost;
528   case AArch64::LDRQui:
529     return AArch64::LDRQpost;
530   case AArch64::LDRBBui:
531     return AArch64::LDRBBpost;
532   case AArch64::LDRHHui:
533     return AArch64::LDRHHpost;
534   case AArch64::LDRWui:
535     return AArch64::LDRWpost;
536   case AArch64::LDRXui:
537     return AArch64::LDRXpost;
538   case AArch64::LDRSWui:
539     return AArch64::LDRSWpost;
540   case AArch64::LDPSi:
541     return AArch64::LDPSpost;
542   case AArch64::LDPSWi:
543     return AArch64::LDPSWpost;
544   case AArch64::LDPDi:
545     return AArch64::LDPDpost;
546   case AArch64::LDPQi:
547     return AArch64::LDPQpost;
548   case AArch64::LDPWi:
549     return AArch64::LDPWpost;
550   case AArch64::LDPXi:
551     return AArch64::LDPXpost;
552   case AArch64::STPSi:
553     return AArch64::STPSpost;
554   case AArch64::STPDi:
555     return AArch64::STPDpost;
556   case AArch64::STPQi:
557     return AArch64::STPQpost;
558   case AArch64::STPWi:
559     return AArch64::STPWpost;
560   case AArch64::STPXi:
561     return AArch64::STPXpost;
562   }
563 }
564 
565 static bool isPairedLdSt(const MachineInstr *MI) {
566   switch (MI->getOpcode()) {
567   default:
568     return false;
569   case AArch64::LDPSi:
570   case AArch64::LDPSWi:
571   case AArch64::LDPDi:
572   case AArch64::LDPQi:
573   case AArch64::LDPWi:
574   case AArch64::LDPXi:
575   case AArch64::STPSi:
576   case AArch64::STPDi:
577   case AArch64::STPQi:
578   case AArch64::STPWi:
579   case AArch64::STPXi:
580     return true;
581   }
582 }
583 
584 static const MachineOperand &getLdStRegOp(const MachineInstr *MI,
585                                           unsigned PairedRegOp = 0) {
586   assert(PairedRegOp < 2 && "Unexpected register operand idx.");
587   unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0;
588   return MI->getOperand(Idx);
589 }
590 
591 static const MachineOperand &getLdStBaseOp(const MachineInstr *MI) {
592   unsigned Idx = isPairedLdSt(MI) ? 2 : 1;
593   return MI->getOperand(Idx);
594 }
595 
596 static const MachineOperand &getLdStOffsetOp(const MachineInstr *MI) {
597   unsigned Idx = isPairedLdSt(MI) ? 3 : 2;
598   return MI->getOperand(Idx);
599 }
600 
601 static bool isLdOffsetInRangeOfSt(MachineInstr *LoadInst,
602                                   MachineInstr *StoreInst,
603                                   const AArch64InstrInfo *TII) {
604   assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st.");
605   int LoadSize = getMemScale(LoadInst);
606   int StoreSize = getMemScale(StoreInst);
607   int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst)
608                              ? getLdStOffsetOp(StoreInst).getImm()
609                              : getLdStOffsetOp(StoreInst).getImm() * StoreSize;
610   int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst)
611                              ? getLdStOffsetOp(LoadInst).getImm()
612                              : getLdStOffsetOp(LoadInst).getImm() * LoadSize;
613   return (UnscaledStOffset <= UnscaledLdOffset) &&
614          (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize));
615 }
616 
617 static bool isPromotableZeroStoreOpcode(MachineInstr *MI) {
618   unsigned Opc = MI->getOpcode();
619   return isNarrowStore(Opc) || Opc == AArch64::STRWui || Opc == AArch64::STURWi;
620 }
621 
622 static bool isPromotableZeroStoreInst(MachineInstr *MI) {
623   return (isPromotableZeroStoreOpcode(MI)) &&
624          getLdStRegOp(MI).getReg() == AArch64::WZR;
625 }
626 
627 MachineBasicBlock::iterator
628 AArch64LoadStoreOpt::mergeNarrowInsns(MachineBasicBlock::iterator I,
629                                       MachineBasicBlock::iterator MergeMI,
630                                       const LdStPairFlags &Flags) {
631   MachineBasicBlock::iterator NextI = I;
632   ++NextI;
633   // If NextI is the second of the two instructions to be merged, we need
634   // to skip one further. Either way we merge will invalidate the iterator,
635   // and we don't need to scan the new instruction, as it's a pairwise
636   // instruction, which we're not considering for further action anyway.
637   if (NextI == MergeMI)
638     ++NextI;
639 
640   unsigned Opc = I->getOpcode();
641   bool IsScaled = !TII->isUnscaledLdSt(Opc);
642   int OffsetStride = IsScaled ? 1 : getMemScale(I);
643 
644   bool MergeForward = Flags.getMergeForward();
645   // Insert our new paired instruction after whichever of the paired
646   // instructions MergeForward indicates.
647   MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I;
648   // Also based on MergeForward is from where we copy the base register operand
649   // so we get the flags compatible with the input code.
650   const MachineOperand &BaseRegOp =
651       MergeForward ? getLdStBaseOp(MergeMI) : getLdStBaseOp(I);
652 
653   // Which register is Rt and which is Rt2 depends on the offset order.
654   MachineInstr *RtMI, *Rt2MI;
655   if (getLdStOffsetOp(I).getImm() ==
656       getLdStOffsetOp(MergeMI).getImm() + OffsetStride) {
657     RtMI = MergeMI;
658     Rt2MI = I;
659   } else {
660     RtMI = I;
661     Rt2MI = MergeMI;
662   }
663 
664   int OffsetImm = getLdStOffsetOp(RtMI).getImm();
665   // Change the scaled offset from small to large type.
666   if (IsScaled) {
667     assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge");
668     OffsetImm /= 2;
669   }
670 
671   DebugLoc DL = I->getDebugLoc();
672   MachineBasicBlock *MBB = I->getParent();
673   if (isNarrowLoad(Opc)) {
674     MachineInstr *RtNewDest = MergeForward ? I : MergeMI;
675     // When merging small (< 32 bit) loads for big-endian targets, the order of
676     // the component parts gets swapped.
677     if (!Subtarget->isLittleEndian())
678       std::swap(RtMI, Rt2MI);
679     // Construct the new load instruction.
680     MachineInstr *NewMemMI, *BitExtMI1, *BitExtMI2;
681     NewMemMI =
682         BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc)))
683             .addOperand(getLdStRegOp(RtNewDest))
684             .addOperand(BaseRegOp)
685             .addImm(OffsetImm)
686             .setMemRefs(I->mergeMemRefsWith(*MergeMI));
687     (void)NewMemMI;
688 
689     DEBUG(
690         dbgs()
691         << "Creating the new load and extract. Replacing instructions:\n    ");
692     DEBUG(I->print(dbgs()));
693     DEBUG(dbgs() << "    ");
694     DEBUG(MergeMI->print(dbgs()));
695     DEBUG(dbgs() << "  with instructions:\n    ");
696     DEBUG((NewMemMI)->print(dbgs()));
697 
698     int Width = getMemScale(I) == 1 ? 8 : 16;
699     int LSBLow = 0;
700     int LSBHigh = Width;
701     int ImmsLow = LSBLow + Width - 1;
702     int ImmsHigh = LSBHigh + Width - 1;
703     MachineInstr *ExtDestMI = MergeForward ? MergeMI : I;
704     if ((ExtDestMI == Rt2MI) == Subtarget->isLittleEndian()) {
705       // Create the bitfield extract for high bits.
706       BitExtMI1 =
707           BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(Rt2MI)))
708               .addOperand(getLdStRegOp(Rt2MI))
709               .addReg(getLdStRegOp(RtNewDest).getReg())
710               .addImm(LSBHigh)
711               .addImm(ImmsHigh);
712       // Create the bitfield extract for low bits.
713       if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) {
714         // For unsigned, prefer to use AND for low bits.
715         BitExtMI2 = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::ANDWri))
716                         .addOperand(getLdStRegOp(RtMI))
717                         .addReg(getLdStRegOp(RtNewDest).getReg())
718                         .addImm(ImmsLow);
719       } else {
720         BitExtMI2 =
721             BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(RtMI)))
722                 .addOperand(getLdStRegOp(RtMI))
723                 .addReg(getLdStRegOp(RtNewDest).getReg())
724                 .addImm(LSBLow)
725                 .addImm(ImmsLow);
726       }
727     } else {
728       // Create the bitfield extract for low bits.
729       if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) {
730         // For unsigned, prefer to use AND for low bits.
731         BitExtMI1 = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::ANDWri))
732                         .addOperand(getLdStRegOp(RtMI))
733                         .addReg(getLdStRegOp(RtNewDest).getReg())
734                         .addImm(ImmsLow);
735       } else {
736         BitExtMI1 =
737             BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(RtMI)))
738                 .addOperand(getLdStRegOp(RtMI))
739                 .addReg(getLdStRegOp(RtNewDest).getReg())
740                 .addImm(LSBLow)
741                 .addImm(ImmsLow);
742       }
743 
744       // Create the bitfield extract for high bits.
745       BitExtMI2 =
746           BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(Rt2MI)))
747               .addOperand(getLdStRegOp(Rt2MI))
748               .addReg(getLdStRegOp(RtNewDest).getReg())
749               .addImm(LSBHigh)
750               .addImm(ImmsHigh);
751     }
752     (void)BitExtMI1;
753     (void)BitExtMI2;
754 
755     DEBUG(dbgs() << "    ");
756     DEBUG((BitExtMI1)->print(dbgs()));
757     DEBUG(dbgs() << "    ");
758     DEBUG((BitExtMI2)->print(dbgs()));
759     DEBUG(dbgs() << "\n");
760 
761     // Erase the old instructions.
762     I->eraseFromParent();
763     MergeMI->eraseFromParent();
764     return NextI;
765   }
766   assert(isPromotableZeroStoreInst(I) && isPromotableZeroStoreInst(MergeMI) &&
767          "Expected promotable zero store");
768 
769   // Construct the new instruction.
770   MachineInstrBuilder MIB;
771   MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc)))
772             .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR)
773             .addOperand(BaseRegOp)
774             .addImm(OffsetImm)
775             .setMemRefs(I->mergeMemRefsWith(*MergeMI));
776   (void)MIB;
777 
778   DEBUG(dbgs() << "Creating wider load/store. Replacing instructions:\n    ");
779   DEBUG(I->print(dbgs()));
780   DEBUG(dbgs() << "    ");
781   DEBUG(MergeMI->print(dbgs()));
782   DEBUG(dbgs() << "  with instruction:\n    ");
783   DEBUG(((MachineInstr *)MIB)->print(dbgs()));
784   DEBUG(dbgs() << "\n");
785 
786   // Erase the old instructions.
787   I->eraseFromParent();
788   MergeMI->eraseFromParent();
789   return NextI;
790 }
791 
792 MachineBasicBlock::iterator
793 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I,
794                                       MachineBasicBlock::iterator Paired,
795                                       const LdStPairFlags &Flags) {
796   MachineBasicBlock::iterator NextI = I;
797   ++NextI;
798   // If NextI is the second of the two instructions to be merged, we need
799   // to skip one further. Either way we merge will invalidate the iterator,
800   // and we don't need to scan the new instruction, as it's a pairwise
801   // instruction, which we're not considering for further action anyway.
802   if (NextI == Paired)
803     ++NextI;
804 
805   int SExtIdx = Flags.getSExtIdx();
806   unsigned Opc =
807       SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode());
808   bool IsUnscaled = TII->isUnscaledLdSt(Opc);
809   int OffsetStride = IsUnscaled ? getMemScale(I) : 1;
810 
811   bool MergeForward = Flags.getMergeForward();
812   // Insert our new paired instruction after whichever of the paired
813   // instructions MergeForward indicates.
814   MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I;
815   // Also based on MergeForward is from where we copy the base register operand
816   // so we get the flags compatible with the input code.
817   const MachineOperand &BaseRegOp =
818       MergeForward ? getLdStBaseOp(Paired) : getLdStBaseOp(I);
819 
820   int Offset = getLdStOffsetOp(I).getImm();
821   int PairedOffset = getLdStOffsetOp(Paired).getImm();
822   bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode());
823   if (IsUnscaled != PairedIsUnscaled) {
824     // We're trying to pair instructions that differ in how they are scaled.  If
825     // I is scaled then scale the offset of Paired accordingly.  Otherwise, do
826     // the opposite (i.e., make Paired's offset unscaled).
827     int MemSize = getMemScale(Paired);
828     if (PairedIsUnscaled) {
829       // If the unscaled offset isn't a multiple of the MemSize, we can't
830       // pair the operations together.
831       assert(!(PairedOffset % getMemScale(Paired)) &&
832              "Offset should be a multiple of the stride!");
833       PairedOffset /= MemSize;
834     } else {
835       PairedOffset *= MemSize;
836     }
837   }
838 
839   // Which register is Rt and which is Rt2 depends on the offset order.
840   MachineInstr *RtMI, *Rt2MI;
841   if (Offset == PairedOffset + OffsetStride) {
842     RtMI = Paired;
843     Rt2MI = I;
844     // Here we swapped the assumption made for SExtIdx.
845     // I.e., we turn ldp I, Paired into ldp Paired, I.
846     // Update the index accordingly.
847     if (SExtIdx != -1)
848       SExtIdx = (SExtIdx + 1) % 2;
849   } else {
850     RtMI = I;
851     Rt2MI = Paired;
852   }
853   int OffsetImm = getLdStOffsetOp(RtMI).getImm();
854   // Scale the immediate offset, if necessary.
855   if (TII->isUnscaledLdSt(RtMI->getOpcode())) {
856     assert(!(OffsetImm % getMemScale(RtMI)) &&
857            "Unscaled offset cannot be scaled.");
858     OffsetImm /= getMemScale(RtMI);
859   }
860 
861   // Construct the new instruction.
862   MachineInstrBuilder MIB;
863   DebugLoc DL = I->getDebugLoc();
864   MachineBasicBlock *MBB = I->getParent();
865   MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc)))
866             .addOperand(getLdStRegOp(RtMI))
867             .addOperand(getLdStRegOp(Rt2MI))
868             .addOperand(BaseRegOp)
869             .addImm(OffsetImm)
870             .setMemRefs(I->mergeMemRefsWith(*Paired));
871 
872   (void)MIB;
873 
874   DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n    ");
875   DEBUG(I->print(dbgs()));
876   DEBUG(dbgs() << "    ");
877   DEBUG(Paired->print(dbgs()));
878   DEBUG(dbgs() << "  with instruction:\n    ");
879   if (SExtIdx != -1) {
880     // Generate the sign extension for the proper result of the ldp.
881     // I.e., with X1, that would be:
882     // %W1<def> = KILL %W1, %X1<imp-def>
883     // %X1<def> = SBFMXri %X1<kill>, 0, 31
884     MachineOperand &DstMO = MIB->getOperand(SExtIdx);
885     // Right now, DstMO has the extended register, since it comes from an
886     // extended opcode.
887     unsigned DstRegX = DstMO.getReg();
888     // Get the W variant of that register.
889     unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32);
890     // Update the result of LDP to use the W instead of the X variant.
891     DstMO.setReg(DstRegW);
892     DEBUG(((MachineInstr *)MIB)->print(dbgs()));
893     DEBUG(dbgs() << "\n");
894     // Make the machine verifier happy by providing a definition for
895     // the X register.
896     // Insert this definition right after the generated LDP, i.e., before
897     // InsertionPoint.
898     MachineInstrBuilder MIBKill =
899         BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW)
900             .addReg(DstRegW)
901             .addReg(DstRegX, RegState::Define);
902     MIBKill->getOperand(2).setImplicit();
903     // Create the sign extension.
904     MachineInstrBuilder MIBSXTW =
905         BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX)
906             .addReg(DstRegX)
907             .addImm(0)
908             .addImm(31);
909     (void)MIBSXTW;
910     DEBUG(dbgs() << "  Extend operand:\n    ");
911     DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs()));
912   } else {
913     DEBUG(((MachineInstr *)MIB)->print(dbgs()));
914   }
915   DEBUG(dbgs() << "\n");
916 
917   // Erase the old instructions.
918   I->eraseFromParent();
919   Paired->eraseFromParent();
920 
921   return NextI;
922 }
923 
924 MachineBasicBlock::iterator
925 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
926                                           MachineBasicBlock::iterator StoreI) {
927   MachineBasicBlock::iterator NextI = LoadI;
928   ++NextI;
929 
930   int LoadSize = getMemScale(LoadI);
931   int StoreSize = getMemScale(StoreI);
932   unsigned LdRt = getLdStRegOp(LoadI).getReg();
933   unsigned StRt = getLdStRegOp(StoreI).getReg();
934   bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt);
935 
936   assert((IsStoreXReg ||
937           TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) &&
938          "Unexpected RegClass");
939 
940   MachineInstr *BitExtMI;
941   if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) {
942     // Remove the load, if the destination register of the loads is the same
943     // register for stored value.
944     if (StRt == LdRt && LoadSize == 8) {
945       DEBUG(dbgs() << "Remove load instruction:\n    ");
946       DEBUG(LoadI->print(dbgs()));
947       DEBUG(dbgs() << "\n");
948       LoadI->eraseFromParent();
949       return NextI;
950     }
951     // Replace the load with a mov if the load and store are in the same size.
952     BitExtMI =
953         BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
954                 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt)
955             .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR)
956             .addReg(StRt)
957             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
958   } else {
959     // FIXME: Currently we disable this transformation in big-endian targets as
960     // performance and correctness are verified only in little-endian.
961     if (!Subtarget->isLittleEndian())
962       return NextI;
963     bool IsUnscaled = TII->isUnscaledLdSt(LoadI);
964     assert(IsUnscaled == TII->isUnscaledLdSt(StoreI) &&
965            "Unsupported ld/st match");
966     assert(LoadSize <= StoreSize && "Invalid load size");
967     int UnscaledLdOffset = IsUnscaled
968                                ? getLdStOffsetOp(LoadI).getImm()
969                                : getLdStOffsetOp(LoadI).getImm() * LoadSize;
970     int UnscaledStOffset = IsUnscaled
971                                ? getLdStOffsetOp(StoreI).getImm()
972                                : getLdStOffsetOp(StoreI).getImm() * StoreSize;
973     int Width = LoadSize * 8;
974     int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset);
975     int Imms = Immr + Width - 1;
976     unsigned DestReg = IsStoreXReg
977                            ? TRI->getMatchingSuperReg(LdRt, AArch64::sub_32,
978                                                       &AArch64::GPR64RegClass)
979                            : LdRt;
980 
981     assert((UnscaledLdOffset >= UnscaledStOffset &&
982             (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) &&
983            "Invalid offset");
984 
985     Immr = 8 * (UnscaledLdOffset - UnscaledStOffset);
986     Imms = Immr + Width - 1;
987     if (UnscaledLdOffset == UnscaledStOffset) {
988       uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N
989                                 | ((Immr) << 6)               // immr
990                                 | ((Imms) << 0)               // imms
991           ;
992 
993       BitExtMI =
994           BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
995                   TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri),
996                   DestReg)
997               .addReg(StRt)
998               .addImm(AndMaskEncoded);
999     } else {
1000       BitExtMI =
1001           BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
1002                   TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri),
1003                   DestReg)
1004               .addReg(StRt)
1005               .addImm(Immr)
1006               .addImm(Imms);
1007     }
1008   }
1009   (void)BitExtMI;
1010 
1011   DEBUG(dbgs() << "Promoting load by replacing :\n    ");
1012   DEBUG(StoreI->print(dbgs()));
1013   DEBUG(dbgs() << "    ");
1014   DEBUG(LoadI->print(dbgs()));
1015   DEBUG(dbgs() << "  with instructions:\n    ");
1016   DEBUG(StoreI->print(dbgs()));
1017   DEBUG(dbgs() << "    ");
1018   DEBUG((BitExtMI)->print(dbgs()));
1019   DEBUG(dbgs() << "\n");
1020 
1021   // Erase the old instructions.
1022   LoadI->eraseFromParent();
1023   return NextI;
1024 }
1025 
1026 /// trackRegDefsUses - Remember what registers the specified instruction uses
1027 /// and modifies.
1028 static void trackRegDefsUses(const MachineInstr *MI, BitVector &ModifiedRegs,
1029                              BitVector &UsedRegs,
1030                              const TargetRegisterInfo *TRI) {
1031   for (const MachineOperand &MO : MI->operands()) {
1032     if (MO.isRegMask())
1033       ModifiedRegs.setBitsNotInMask(MO.getRegMask());
1034 
1035     if (!MO.isReg())
1036       continue;
1037     unsigned Reg = MO.getReg();
1038     if (!Reg)
1039       continue;
1040     if (MO.isDef()) {
1041       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1042         ModifiedRegs.set(*AI);
1043     } else {
1044       assert(MO.isUse() && "Reg operand not a def and not a use?!?");
1045       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1046         UsedRegs.set(*AI);
1047     }
1048   }
1049 }
1050 
1051 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) {
1052   // Convert the byte-offset used by unscaled into an "element" offset used
1053   // by the scaled pair load/store instructions.
1054   if (IsUnscaled) {
1055     // If the byte-offset isn't a multiple of the stride, there's no point
1056     // trying to match it.
1057     if (Offset % OffsetStride)
1058       return false;
1059     Offset /= OffsetStride;
1060   }
1061   return Offset <= 63 && Offset >= -64;
1062 }
1063 
1064 // Do alignment, specialized to power of 2 and for signed ints,
1065 // avoiding having to do a C-style cast from uint_64t to int when
1066 // using alignTo from include/llvm/Support/MathExtras.h.
1067 // FIXME: Move this function to include/MathExtras.h?
1068 static int alignTo(int Num, int PowOf2) {
1069   return (Num + PowOf2 - 1) & ~(PowOf2 - 1);
1070 }
1071 
1072 static bool mayAlias(MachineInstr *MIa, MachineInstr *MIb,
1073                      const AArch64InstrInfo *TII) {
1074   // One of the instructions must modify memory.
1075   if (!MIa->mayStore() && !MIb->mayStore())
1076     return false;
1077 
1078   // Both instructions must be memory operations.
1079   if (!MIa->mayLoadOrStore() && !MIb->mayLoadOrStore())
1080     return false;
1081 
1082   return !TII->areMemAccessesTriviallyDisjoint(MIa, MIb);
1083 }
1084 
1085 static bool mayAlias(MachineInstr *MIa,
1086                      SmallVectorImpl<MachineInstr *> &MemInsns,
1087                      const AArch64InstrInfo *TII) {
1088   for (auto &MIb : MemInsns)
1089     if (mayAlias(MIa, MIb, TII))
1090       return true;
1091 
1092   return false;
1093 }
1094 
1095 bool AArch64LoadStoreOpt::findMatchingStore(
1096     MachineBasicBlock::iterator I, unsigned Limit,
1097     MachineBasicBlock::iterator &StoreI) {
1098   MachineBasicBlock::iterator B = I->getParent()->begin();
1099   MachineBasicBlock::iterator MBBI = I;
1100   MachineInstr *LoadMI = I;
1101   unsigned BaseReg = getLdStBaseOp(LoadMI).getReg();
1102 
1103   // If the load is the first instruction in the block, there's obviously
1104   // not any matching store.
1105   if (MBBI == B)
1106     return false;
1107 
1108   // Track which registers have been modified and used between the first insn
1109   // and the second insn.
1110   ModifiedRegs.reset();
1111   UsedRegs.reset();
1112 
1113   unsigned Count = 0;
1114   do {
1115     --MBBI;
1116     MachineInstr *MI = MBBI;
1117 
1118     // Don't count DBG_VALUE instructions towards the search limit.
1119     if (!MI->isDebugValue())
1120       ++Count;
1121 
1122     // If the load instruction reads directly from the address to which the
1123     // store instruction writes and the stored value is not modified, we can
1124     // promote the load. Since we do not handle stores with pre-/post-index,
1125     // it's unnecessary to check if BaseReg is modified by the store itself.
1126     if (MI->mayStore() && isMatchingStore(LoadMI, MI) &&
1127         BaseReg == getLdStBaseOp(MI).getReg() &&
1128         isLdOffsetInRangeOfSt(LoadMI, MI, TII) &&
1129         !ModifiedRegs[getLdStRegOp(MI).getReg()]) {
1130       StoreI = MBBI;
1131       return true;
1132     }
1133 
1134     if (MI->isCall())
1135       return false;
1136 
1137     // Update modified / uses register lists.
1138     trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1139 
1140     // Otherwise, if the base register is modified, we have no match, so
1141     // return early.
1142     if (ModifiedRegs[BaseReg])
1143       return false;
1144 
1145     // If we encounter a store aliased with the load, return early.
1146     if (MI->mayStore() && mayAlias(LoadMI, MI, TII))
1147       return false;
1148   } while (MBBI != B && Count < Limit);
1149   return false;
1150 }
1151 
1152 // Returns true if these two opcodes can be merged or paired.  Otherwise,
1153 // returns false.
1154 static bool canMergeOpc(unsigned OpcA, unsigned OpcB, LdStPairFlags &Flags,
1155                         const AArch64InstrInfo *TII) {
1156   // Opcodes match: nothing more to check.
1157   if (OpcA == OpcB)
1158     return true;
1159 
1160   // Try to match a sign-extended load/store with a zero-extended load/store.
1161   bool IsValidLdStrOpc, PairIsValidLdStrOpc;
1162   unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc);
1163   assert(IsValidLdStrOpc &&
1164          "Given Opc should be a Load or Store with an immediate");
1165   // OpcA will be the first instruction in the pair.
1166   if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) {
1167     Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0);
1168     return true;
1169   }
1170 
1171   // If the second instruction isn't even a load/store, bail out.
1172   if (!PairIsValidLdStrOpc)
1173     return false;
1174 
1175   // FIXME: We don't support merging narrow loads/stores with mixed
1176   // scaled/unscaled offsets.
1177   if (isNarrowLoadOrStore(OpcA) || isNarrowLoadOrStore(OpcB))
1178     return false;
1179 
1180   // Try to match an unscaled load/store with a scaled load/store.
1181   return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) &&
1182          getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB);
1183 
1184   // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair?
1185 }
1186 
1187 /// Scan the instructions looking for a load/store that can be combined with the
1188 /// current instruction into a wider equivalent or a load/store pair.
1189 MachineBasicBlock::iterator
1190 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I,
1191                                       LdStPairFlags &Flags, unsigned Limit,
1192                                       bool FindNarrowMerge) {
1193   MachineBasicBlock::iterator E = I->getParent()->end();
1194   MachineBasicBlock::iterator MBBI = I;
1195   MachineInstr *FirstMI = I;
1196   ++MBBI;
1197 
1198   unsigned Opc = FirstMI->getOpcode();
1199   bool MayLoad = FirstMI->mayLoad();
1200   bool IsUnscaled = TII->isUnscaledLdSt(FirstMI);
1201   unsigned Reg = getLdStRegOp(FirstMI).getReg();
1202   unsigned BaseReg = getLdStBaseOp(FirstMI).getReg();
1203   int Offset = getLdStOffsetOp(FirstMI).getImm();
1204   int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1;
1205   bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI);
1206 
1207   // Track which registers have been modified and used between the first insn
1208   // (inclusive) and the second insn.
1209   ModifiedRegs.reset();
1210   UsedRegs.reset();
1211 
1212   // Remember any instructions that read/write memory between FirstMI and MI.
1213   SmallVector<MachineInstr *, 4> MemInsns;
1214 
1215   for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) {
1216     MachineInstr *MI = MBBI;
1217     // Skip DBG_VALUE instructions. Otherwise debug info can affect the
1218     // optimization by changing how far we scan.
1219     if (MI->isDebugValue())
1220       continue;
1221 
1222     // Now that we know this is a real instruction, count it.
1223     ++Count;
1224 
1225     Flags.setSExtIdx(-1);
1226     if (canMergeOpc(Opc, MI->getOpcode(), Flags, TII) &&
1227         getLdStOffsetOp(MI).isImm()) {
1228       assert(MI->mayLoadOrStore() && "Expected memory operation.");
1229       // If we've found another instruction with the same opcode, check to see
1230       // if the base and offset are compatible with our starting instruction.
1231       // These instructions all have scaled immediate operands, so we just
1232       // check for +1/-1. Make sure to check the new instruction offset is
1233       // actually an immediate and not a symbolic reference destined for
1234       // a relocation.
1235       //
1236       // Pairwise instructions have a 7-bit signed offset field. Single insns
1237       // have a 12-bit unsigned offset field. To be a valid combine, the
1238       // final offset must be in range.
1239       unsigned MIBaseReg = getLdStBaseOp(MI).getReg();
1240       int MIOffset = getLdStOffsetOp(MI).getImm();
1241       bool MIIsUnscaled = TII->isUnscaledLdSt(MI);
1242       if (IsUnscaled != MIIsUnscaled) {
1243         // We're trying to pair instructions that differ in how they are scaled.
1244         // If FirstMI is scaled then scale the offset of MI accordingly.
1245         // Otherwise, do the opposite (i.e., make MI's offset unscaled).
1246         int MemSize = getMemScale(MI);
1247         if (MIIsUnscaled) {
1248           // If the unscaled offset isn't a multiple of the MemSize, we can't
1249           // pair the operations together: bail and keep looking.
1250           if (MIOffset % MemSize)
1251             continue;
1252           MIOffset /= MemSize;
1253         } else {
1254           MIOffset *= MemSize;
1255         }
1256       }
1257 
1258       if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) ||
1259                                    (Offset + OffsetStride == MIOffset))) {
1260         int MinOffset = Offset < MIOffset ? Offset : MIOffset;
1261         // If this is a volatile load/store that otherwise matched, stop looking
1262         // as something is going on that we don't have enough information to
1263         // safely transform. Similarly, stop if we see a hint to avoid pairs.
1264         if (MI->hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI))
1265           return E;
1266 
1267         if (FindNarrowMerge) {
1268           // If the alignment requirements of the scaled wide load/store
1269           // instruction can't express the offset of the scaled narrow input,
1270           // bail and keep looking. For promotable zero stores, allow only when
1271           // the stored value is the same (i.e., WZR).
1272           if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) ||
1273               (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) {
1274             trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1275             MemInsns.push_back(MI);
1276             continue;
1277           }
1278         } else {
1279           // If the resultant immediate offset of merging these instructions
1280           // is out of range for a pairwise instruction, bail and keep looking.
1281           if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) {
1282             trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1283             MemInsns.push_back(MI);
1284             continue;
1285           }
1286           // If the alignment requirements of the paired (scaled) instruction
1287           // can't express the offset of the unscaled input, bail and keep
1288           // looking.
1289           if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) {
1290             trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1291             MemInsns.push_back(MI);
1292             continue;
1293           }
1294         }
1295         // If the destination register of the loads is the same register, bail
1296         // and keep looking. A load-pair instruction with both destination
1297         // registers the same is UNPREDICTABLE and will result in an exception.
1298         if (MayLoad && Reg == getLdStRegOp(MI).getReg()) {
1299           trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1300           MemInsns.push_back(MI);
1301           continue;
1302         }
1303 
1304         // If the Rt of the second instruction was not modified or used between
1305         // the two instructions and none of the instructions between the second
1306         // and first alias with the second, we can combine the second into the
1307         // first.
1308         if (!ModifiedRegs[getLdStRegOp(MI).getReg()] &&
1309             !(MI->mayLoad() && UsedRegs[getLdStRegOp(MI).getReg()]) &&
1310             !mayAlias(MI, MemInsns, TII)) {
1311           Flags.setMergeForward(false);
1312           return MBBI;
1313         }
1314 
1315         // Likewise, if the Rt of the first instruction is not modified or used
1316         // between the two instructions and none of the instructions between the
1317         // first and the second alias with the first, we can combine the first
1318         // into the second.
1319         if (!ModifiedRegs[getLdStRegOp(FirstMI).getReg()] &&
1320             !(MayLoad && UsedRegs[getLdStRegOp(FirstMI).getReg()]) &&
1321             !mayAlias(FirstMI, MemInsns, TII)) {
1322           Flags.setMergeForward(true);
1323           return MBBI;
1324         }
1325         // Unable to combine these instructions due to interference in between.
1326         // Keep looking.
1327       }
1328     }
1329 
1330     // If the instruction wasn't a matching load or store.  Stop searching if we
1331     // encounter a call instruction that might modify memory.
1332     if (MI->isCall())
1333       return E;
1334 
1335     // Update modified / uses register lists.
1336     trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1337 
1338     // Otherwise, if the base register is modified, we have no match, so
1339     // return early.
1340     if (ModifiedRegs[BaseReg])
1341       return E;
1342 
1343     // Update list of instructions that read/write memory.
1344     if (MI->mayLoadOrStore())
1345       MemInsns.push_back(MI);
1346   }
1347   return E;
1348 }
1349 
1350 MachineBasicBlock::iterator
1351 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I,
1352                                      MachineBasicBlock::iterator Update,
1353                                      bool IsPreIdx) {
1354   assert((Update->getOpcode() == AArch64::ADDXri ||
1355           Update->getOpcode() == AArch64::SUBXri) &&
1356          "Unexpected base register update instruction to merge!");
1357   MachineBasicBlock::iterator NextI = I;
1358   // Return the instruction following the merged instruction, which is
1359   // the instruction following our unmerged load. Unless that's the add/sub
1360   // instruction we're merging, in which case it's the one after that.
1361   if (++NextI == Update)
1362     ++NextI;
1363 
1364   int Value = Update->getOperand(2).getImm();
1365   assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 &&
1366          "Can't merge 1 << 12 offset into pre-/post-indexed load / store");
1367   if (Update->getOpcode() == AArch64::SUBXri)
1368     Value = -Value;
1369 
1370   unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode())
1371                              : getPostIndexedOpcode(I->getOpcode());
1372   MachineInstrBuilder MIB;
1373   if (!isPairedLdSt(I)) {
1374     // Non-paired instruction.
1375     MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
1376               .addOperand(getLdStRegOp(Update))
1377               .addOperand(getLdStRegOp(I))
1378               .addOperand(getLdStBaseOp(I))
1379               .addImm(Value)
1380               .setMemRefs(I->memoperands_begin(), I->memoperands_end());
1381   } else {
1382     // Paired instruction.
1383     int Scale = getMemScale(I);
1384     MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
1385               .addOperand(getLdStRegOp(Update))
1386               .addOperand(getLdStRegOp(I, 0))
1387               .addOperand(getLdStRegOp(I, 1))
1388               .addOperand(getLdStBaseOp(I))
1389               .addImm(Value / Scale)
1390               .setMemRefs(I->memoperands_begin(), I->memoperands_end());
1391   }
1392   (void)MIB;
1393 
1394   if (IsPreIdx)
1395     DEBUG(dbgs() << "Creating pre-indexed load/store.");
1396   else
1397     DEBUG(dbgs() << "Creating post-indexed load/store.");
1398   DEBUG(dbgs() << "    Replacing instructions:\n    ");
1399   DEBUG(I->print(dbgs()));
1400   DEBUG(dbgs() << "    ");
1401   DEBUG(Update->print(dbgs()));
1402   DEBUG(dbgs() << "  with instruction:\n    ");
1403   DEBUG(((MachineInstr *)MIB)->print(dbgs()));
1404   DEBUG(dbgs() << "\n");
1405 
1406   // Erase the old instructions for the block.
1407   I->eraseFromParent();
1408   Update->eraseFromParent();
1409 
1410   return NextI;
1411 }
1412 
1413 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr *MemMI,
1414                                                MachineInstr *MI,
1415                                                unsigned BaseReg, int Offset) {
1416   switch (MI->getOpcode()) {
1417   default:
1418     break;
1419   case AArch64::SUBXri:
1420     // Negate the offset for a SUB instruction.
1421     Offset *= -1;
1422   // FALLTHROUGH
1423   case AArch64::ADDXri:
1424     // Make sure it's a vanilla immediate operand, not a relocation or
1425     // anything else we can't handle.
1426     if (!MI->getOperand(2).isImm())
1427       break;
1428     // Watch out for 1 << 12 shifted value.
1429     if (AArch64_AM::getShiftValue(MI->getOperand(3).getImm()))
1430       break;
1431 
1432     // The update instruction source and destination register must be the
1433     // same as the load/store base register.
1434     if (MI->getOperand(0).getReg() != BaseReg ||
1435         MI->getOperand(1).getReg() != BaseReg)
1436       break;
1437 
1438     bool IsPairedInsn = isPairedLdSt(MemMI);
1439     int UpdateOffset = MI->getOperand(2).getImm();
1440     // For non-paired load/store instructions, the immediate must fit in a
1441     // signed 9-bit integer.
1442     if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256))
1443       break;
1444 
1445     // For paired load/store instructions, the immediate must be a multiple of
1446     // the scaling factor.  The scaled offset must also fit into a signed 7-bit
1447     // integer.
1448     if (IsPairedInsn) {
1449       int Scale = getMemScale(MemMI);
1450       if (UpdateOffset % Scale != 0)
1451         break;
1452 
1453       int ScaledOffset = UpdateOffset / Scale;
1454       if (ScaledOffset > 64 || ScaledOffset < -64)
1455         break;
1456     }
1457 
1458     // If we have a non-zero Offset, we check that it matches the amount
1459     // we're adding to the register.
1460     if (!Offset || Offset == MI->getOperand(2).getImm())
1461       return true;
1462     break;
1463   }
1464   return false;
1465 }
1466 
1467 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward(
1468     MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) {
1469   MachineBasicBlock::iterator E = I->getParent()->end();
1470   MachineInstr *MemMI = I;
1471   MachineBasicBlock::iterator MBBI = I;
1472 
1473   unsigned BaseReg = getLdStBaseOp(MemMI).getReg();
1474   int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI);
1475 
1476   // Scan forward looking for post-index opportunities.  Updating instructions
1477   // can't be formed if the memory instruction doesn't have the offset we're
1478   // looking for.
1479   if (MIUnscaledOffset != UnscaledOffset)
1480     return E;
1481 
1482   // If the base register overlaps a destination register, we can't
1483   // merge the update.
1484   bool IsPairedInsn = isPairedLdSt(MemMI);
1485   for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) {
1486     unsigned DestReg = getLdStRegOp(MemMI, i).getReg();
1487     if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
1488       return E;
1489   }
1490 
1491   // Track which registers have been modified and used between the first insn
1492   // (inclusive) and the second insn.
1493   ModifiedRegs.reset();
1494   UsedRegs.reset();
1495   ++MBBI;
1496   for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) {
1497     MachineInstr *MI = MBBI;
1498     // Skip DBG_VALUE instructions.
1499     if (MI->isDebugValue())
1500       continue;
1501 
1502     // Now that we know this is a real instruction, count it.
1503     ++Count;
1504 
1505     // If we found a match, return it.
1506     if (isMatchingUpdateInsn(I, MI, BaseReg, UnscaledOffset))
1507       return MBBI;
1508 
1509     // Update the status of what the instruction clobbered and used.
1510     trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1511 
1512     // Otherwise, if the base register is used or modified, we have no match, so
1513     // return early.
1514     if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg])
1515       return E;
1516   }
1517   return E;
1518 }
1519 
1520 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward(
1521     MachineBasicBlock::iterator I, unsigned Limit) {
1522   MachineBasicBlock::iterator B = I->getParent()->begin();
1523   MachineBasicBlock::iterator E = I->getParent()->end();
1524   MachineInstr *MemMI = I;
1525   MachineBasicBlock::iterator MBBI = I;
1526 
1527   unsigned BaseReg = getLdStBaseOp(MemMI).getReg();
1528   int Offset = getLdStOffsetOp(MemMI).getImm();
1529 
1530   // If the load/store is the first instruction in the block, there's obviously
1531   // not any matching update. Ditto if the memory offset isn't zero.
1532   if (MBBI == B || Offset != 0)
1533     return E;
1534   // If the base register overlaps a destination register, we can't
1535   // merge the update.
1536   bool IsPairedInsn = isPairedLdSt(MemMI);
1537   for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) {
1538     unsigned DestReg = getLdStRegOp(MemMI, i).getReg();
1539     if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
1540       return E;
1541   }
1542 
1543   // Track which registers have been modified and used between the first insn
1544   // (inclusive) and the second insn.
1545   ModifiedRegs.reset();
1546   UsedRegs.reset();
1547   unsigned Count = 0;
1548   do {
1549     --MBBI;
1550     MachineInstr *MI = MBBI;
1551 
1552     // Don't count DBG_VALUE instructions towards the search limit.
1553     if (!MI->isDebugValue())
1554       ++Count;
1555 
1556     // If we found a match, return it.
1557     if (isMatchingUpdateInsn(I, MI, BaseReg, Offset))
1558       return MBBI;
1559 
1560     // Update the status of what the instruction clobbered and used.
1561     trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1562 
1563     // Otherwise, if the base register is used or modified, we have no match, so
1564     // return early.
1565     if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg])
1566       return E;
1567   } while (MBBI != B && Count < Limit);
1568   return E;
1569 }
1570 
1571 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore(
1572     MachineBasicBlock::iterator &MBBI) {
1573   MachineInstr *MI = MBBI;
1574   // If this is a volatile load, don't mess with it.
1575   if (MI->hasOrderedMemoryRef())
1576     return false;
1577 
1578   // Make sure this is a reg+imm.
1579   // FIXME: It is possible to extend it to handle reg+reg cases.
1580   if (!getLdStOffsetOp(MI).isImm())
1581     return false;
1582 
1583   // Look backward up to LdStLimit instructions.
1584   MachineBasicBlock::iterator StoreI;
1585   if (findMatchingStore(MBBI, LdStLimit, StoreI)) {
1586     ++NumLoadsFromStoresPromoted;
1587     // Promote the load. Keeping the iterator straight is a
1588     // pain, so we let the merge routine tell us what the next instruction
1589     // is after it's done mucking about.
1590     MBBI = promoteLoadFromStore(MBBI, StoreI);
1591     return true;
1592   }
1593   return false;
1594 }
1595 
1596 // Find narrow loads that can be converted into a single wider load with
1597 // bitfield extract instructions.  Also merge adjacent zero stores into a wider
1598 // store.
1599 bool AArch64LoadStoreOpt::tryToMergeLdStInst(
1600     MachineBasicBlock::iterator &MBBI) {
1601   assert((isNarrowLoad(MBBI) || isPromotableZeroStoreOpcode(MBBI)) &&
1602          "Expected narrow op.");
1603   MachineInstr *MI = MBBI;
1604   MachineBasicBlock::iterator E = MI->getParent()->end();
1605 
1606   if (!TII->isCandidateToMergeOrPair(MI))
1607     return false;
1608 
1609   // For promotable zero stores, the stored value should be WZR.
1610   if (isPromotableZeroStoreOpcode(MI) &&
1611       getLdStRegOp(MI).getReg() != AArch64::WZR)
1612     return false;
1613 
1614   // Look ahead up to LdStLimit instructions for a mergable instruction.
1615   LdStPairFlags Flags;
1616   MachineBasicBlock::iterator MergeMI =
1617       findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true);
1618   if (MergeMI != E) {
1619     if (isNarrowLoad(MI)) {
1620       ++NumNarrowLoadsPromoted;
1621     } else if (isPromotableZeroStoreInst(MI)) {
1622       ++NumZeroStoresPromoted;
1623     }
1624     // Keeping the iterator straight is a pain, so we let the merge routine tell
1625     // us what the next instruction is after it's done mucking about.
1626     MBBI = mergeNarrowInsns(MBBI, MergeMI, Flags);
1627     return true;
1628   }
1629   return false;
1630 }
1631 
1632 // Find loads and stores that can be merged into a single load or store pair
1633 // instruction.
1634 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) {
1635   MachineInstr *MI = MBBI;
1636   MachineBasicBlock::iterator E = MI->getParent()->end();
1637 
1638   if (!TII->isCandidateToMergeOrPair(MI))
1639     return false;
1640 
1641   // Early exit if the offset is not possible to match. (6 bits of positive
1642   // range, plus allow an extra one in case we find a later insn that matches
1643   // with Offset-1)
1644   bool IsUnscaled = TII->isUnscaledLdSt(MI);
1645   int Offset = getLdStOffsetOp(MI).getImm();
1646   int OffsetStride = IsUnscaled ? getMemScale(MI) : 1;
1647   if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride))
1648     return false;
1649 
1650   // Look ahead up to LdStLimit instructions for a pairable instruction.
1651   LdStPairFlags Flags;
1652   MachineBasicBlock::iterator Paired =
1653       findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false);
1654   if (Paired != E) {
1655     ++NumPairCreated;
1656     if (TII->isUnscaledLdSt(MI))
1657       ++NumUnscaledPairCreated;
1658     // Keeping the iterator straight is a pain, so we let the merge routine tell
1659     // us what the next instruction is after it's done mucking about.
1660     MBBI = mergePairedInsns(MBBI, Paired, Flags);
1661     return true;
1662   }
1663   return false;
1664 }
1665 
1666 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB,
1667                                         bool enableNarrowLdOpt) {
1668   bool Modified = false;
1669   // Four tranformations to do here:
1670   // 1) Find loads that directly read from stores and promote them by
1671   //    replacing with mov instructions. If the store is wider than the load,
1672   //    the load will be replaced with a bitfield extract.
1673   //      e.g.,
1674   //        str w1, [x0, #4]
1675   //        ldrh w2, [x0, #6]
1676   //        ; becomes
1677   //        str w1, [x0, #4]
1678   //        lsr	w2, w1, #16
1679   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
1680        MBBI != E;) {
1681     MachineInstr *MI = MBBI;
1682     switch (MI->getOpcode()) {
1683     default:
1684       // Just move on to the next instruction.
1685       ++MBBI;
1686       break;
1687     // Scaled instructions.
1688     case AArch64::LDRBBui:
1689     case AArch64::LDRHHui:
1690     case AArch64::LDRWui:
1691     case AArch64::LDRXui:
1692     // Unscaled instructions.
1693     case AArch64::LDURBBi:
1694     case AArch64::LDURHHi:
1695     case AArch64::LDURWi:
1696     case AArch64::LDURXi: {
1697       if (tryToPromoteLoadFromStore(MBBI)) {
1698         Modified = true;
1699         break;
1700       }
1701       ++MBBI;
1702       break;
1703     }
1704     }
1705   }
1706   // 2) Find narrow loads that can be converted into a single wider load
1707   //    with bitfield extract instructions.
1708   //      e.g.,
1709   //        ldrh w0, [x2]
1710   //        ldrh w1, [x2, #2]
1711   //        ; becomes
1712   //        ldr w0, [x2]
1713   //        ubfx w1, w0, #16, #16
1714   //        and w0, w0, #ffff
1715   //
1716   //    Also merge adjacent zero stores into a wider store.
1717   //      e.g.,
1718   //        strh wzr, [x0]
1719   //        strh wzr, [x0, #2]
1720   //        ; becomes
1721   //        str wzr, [x0]
1722   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
1723        enableNarrowLdOpt && MBBI != E;) {
1724     MachineInstr *MI = MBBI;
1725     switch (MI->getOpcode()) {
1726     default:
1727       // Just move on to the next instruction.
1728       ++MBBI;
1729       break;
1730     // Scaled instructions.
1731     case AArch64::LDRBBui:
1732     case AArch64::LDRHHui:
1733     case AArch64::LDRSBWui:
1734     case AArch64::LDRSHWui:
1735     case AArch64::STRBBui:
1736     case AArch64::STRHHui:
1737     case AArch64::STRWui:
1738     // Unscaled instructions.
1739     case AArch64::LDURBBi:
1740     case AArch64::LDURHHi:
1741     case AArch64::LDURSBWi:
1742     case AArch64::LDURSHWi:
1743     case AArch64::STURBBi:
1744     case AArch64::STURHHi:
1745     case AArch64::STURWi: {
1746       if (tryToMergeLdStInst(MBBI)) {
1747         Modified = true;
1748         break;
1749       }
1750       ++MBBI;
1751       break;
1752     }
1753     }
1754   }
1755   // 3) Find loads and stores that can be merged into a single load or store
1756   //    pair instruction.
1757   //      e.g.,
1758   //        ldr x0, [x2]
1759   //        ldr x1, [x2, #8]
1760   //        ; becomes
1761   //        ldp x0, x1, [x2]
1762   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
1763        MBBI != E;) {
1764     MachineInstr *MI = MBBI;
1765     switch (MI->getOpcode()) {
1766     default:
1767       // Just move on to the next instruction.
1768       ++MBBI;
1769       break;
1770     // Scaled instructions.
1771     case AArch64::STRSui:
1772     case AArch64::STRDui:
1773     case AArch64::STRQui:
1774     case AArch64::STRXui:
1775     case AArch64::STRWui:
1776     case AArch64::LDRSui:
1777     case AArch64::LDRDui:
1778     case AArch64::LDRQui:
1779     case AArch64::LDRXui:
1780     case AArch64::LDRWui:
1781     case AArch64::LDRSWui:
1782     // Unscaled instructions.
1783     case AArch64::STURSi:
1784     case AArch64::STURDi:
1785     case AArch64::STURQi:
1786     case AArch64::STURWi:
1787     case AArch64::STURXi:
1788     case AArch64::LDURSi:
1789     case AArch64::LDURDi:
1790     case AArch64::LDURQi:
1791     case AArch64::LDURWi:
1792     case AArch64::LDURXi:
1793     case AArch64::LDURSWi: {
1794       if (tryToPairLdStInst(MBBI)) {
1795         Modified = true;
1796         break;
1797       }
1798       ++MBBI;
1799       break;
1800     }
1801     }
1802   }
1803   // 4) Find base register updates that can be merged into the load or store
1804   //    as a base-reg writeback.
1805   //      e.g.,
1806   //        ldr x0, [x2]
1807   //        add x2, x2, #4
1808   //        ; becomes
1809   //        ldr x0, [x2], #4
1810   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
1811        MBBI != E;) {
1812     MachineInstr *MI = MBBI;
1813     // Do update merging. It's simpler to keep this separate from the above
1814     // switchs, though not strictly necessary.
1815     unsigned Opc = MI->getOpcode();
1816     switch (Opc) {
1817     default:
1818       // Just move on to the next instruction.
1819       ++MBBI;
1820       break;
1821     // Scaled instructions.
1822     case AArch64::STRSui:
1823     case AArch64::STRDui:
1824     case AArch64::STRQui:
1825     case AArch64::STRXui:
1826     case AArch64::STRWui:
1827     case AArch64::STRHHui:
1828     case AArch64::STRBBui:
1829     case AArch64::LDRSui:
1830     case AArch64::LDRDui:
1831     case AArch64::LDRQui:
1832     case AArch64::LDRXui:
1833     case AArch64::LDRWui:
1834     case AArch64::LDRHHui:
1835     case AArch64::LDRBBui:
1836     // Unscaled instructions.
1837     case AArch64::STURSi:
1838     case AArch64::STURDi:
1839     case AArch64::STURQi:
1840     case AArch64::STURWi:
1841     case AArch64::STURXi:
1842     case AArch64::LDURSi:
1843     case AArch64::LDURDi:
1844     case AArch64::LDURQi:
1845     case AArch64::LDURWi:
1846     case AArch64::LDURXi:
1847     // Paired instructions.
1848     case AArch64::LDPSi:
1849     case AArch64::LDPSWi:
1850     case AArch64::LDPDi:
1851     case AArch64::LDPQi:
1852     case AArch64::LDPWi:
1853     case AArch64::LDPXi:
1854     case AArch64::STPSi:
1855     case AArch64::STPDi:
1856     case AArch64::STPQi:
1857     case AArch64::STPWi:
1858     case AArch64::STPXi: {
1859       // Make sure this is a reg+imm (as opposed to an address reloc).
1860       if (!getLdStOffsetOp(MI).isImm()) {
1861         ++MBBI;
1862         break;
1863       }
1864       // Look forward to try to form a post-index instruction. For example,
1865       // ldr x0, [x20]
1866       // add x20, x20, #32
1867       //   merged into:
1868       // ldr x0, [x20], #32
1869       MachineBasicBlock::iterator Update =
1870           findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit);
1871       if (Update != E) {
1872         // Merge the update into the ld/st.
1873         MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false);
1874         Modified = true;
1875         ++NumPostFolded;
1876         break;
1877       }
1878       // Don't know how to handle pre/post-index versions, so move to the next
1879       // instruction.
1880       if (TII->isUnscaledLdSt(Opc)) {
1881         ++MBBI;
1882         break;
1883       }
1884 
1885       // Look back to try to find a pre-index instruction. For example,
1886       // add x0, x0, #8
1887       // ldr x1, [x0]
1888       //   merged into:
1889       // ldr x1, [x0, #8]!
1890       Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit);
1891       if (Update != E) {
1892         // Merge the update into the ld/st.
1893         MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true);
1894         Modified = true;
1895         ++NumPreFolded;
1896         break;
1897       }
1898       // The immediate in the load/store is scaled by the size of the memory
1899       // operation. The immediate in the add we're looking for,
1900       // however, is not, so adjust here.
1901       int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI);
1902 
1903       // Look forward to try to find a post-index instruction. For example,
1904       // ldr x1, [x0, #64]
1905       // add x0, x0, #64
1906       //   merged into:
1907       // ldr x1, [x0, #64]!
1908       Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit);
1909       if (Update != E) {
1910         // Merge the update into the ld/st.
1911         MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true);
1912         Modified = true;
1913         ++NumPreFolded;
1914         break;
1915       }
1916 
1917       // Nothing found. Just move to the next instruction.
1918       ++MBBI;
1919       break;
1920     }
1921     }
1922   }
1923 
1924   return Modified;
1925 }
1926 
1927 bool AArch64LoadStoreOpt::enableNarrowLdMerge(MachineFunction &Fn) {
1928   bool ProfitableArch = Subtarget->isCortexA57() || Subtarget->isKryo();
1929   // FIXME: The benefit from converting narrow loads into a wider load could be
1930   // microarchitectural as it assumes that a single load with two bitfield
1931   // extracts is cheaper than two narrow loads. Currently, this conversion is
1932   // enabled only in cortex-a57 on which performance benefits were verified.
1933   return ProfitableArch && !Subtarget->requiresStrictAlign();
1934 }
1935 
1936 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
1937   Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget());
1938   TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo());
1939   TRI = Subtarget->getRegisterInfo();
1940 
1941   // Resize the modified and used register bitfield trackers.  We do this once
1942   // per function and then clear the bitfield each time we optimize a load or
1943   // store.
1944   ModifiedRegs.resize(TRI->getNumRegs());
1945   UsedRegs.resize(TRI->getNumRegs());
1946 
1947   bool Modified = false;
1948   bool enableNarrowLdOpt = enableNarrowLdMerge(Fn);
1949   for (auto &MBB : Fn)
1950     Modified |= optimizeBlock(MBB, enableNarrowLdOpt);
1951 
1952   return Modified;
1953 }
1954 
1955 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep
1956 // loads and stores near one another?
1957 
1958 // FIXME: When pairing store instructions it's very possible for this pass to
1959 // hoist a store with a KILL marker above another use (without a KILL marker).
1960 // The resulting IR is invalid, but nothing uses the KILL markers after this
1961 // pass, so it's never caused a problem in practice.
1962 
1963 /// createAArch64LoadStoreOptimizationPass - returns an instance of the
1964 /// load / store optimization pass.
1965 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() {
1966   return new AArch64LoadStoreOpt();
1967 }
1968