1 //=- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -*- C++ -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that performs load / store related peephole 11 // optimizations. This pass should be run after register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AArch64InstrInfo.h" 16 #include "AArch64Subtarget.h" 17 #include "MCTargetDesc/AArch64AddressingModes.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 using namespace llvm; 33 34 #define DEBUG_TYPE "aarch64-ldst-opt" 35 36 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 37 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 38 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 39 STATISTIC(NumUnscaledPairCreated, 40 "Number of load/store from unscaled generated"); 41 STATISTIC(NumNarrowLoadsPromoted, "Number of narrow loads promoted"); 42 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 43 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 44 45 // The LdStLimit limits how far we search for load/store pairs. 46 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 47 cl::init(20), cl::Hidden); 48 49 // The UpdateLimit limits how far we search for update instructions when we form 50 // pre-/post-index instructions. 51 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 52 cl::Hidden); 53 54 namespace llvm { 55 void initializeAArch64LoadStoreOptPass(PassRegistry &); 56 } 57 58 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 59 60 namespace { 61 62 typedef struct LdStPairFlags { 63 // If a matching instruction is found, MergeForward is set to true if the 64 // merge is to remove the first instruction and replace the second with 65 // a pair-wise insn, and false if the reverse is true. 66 bool MergeForward; 67 68 // SExtIdx gives the index of the result of the load pair that must be 69 // extended. The value of SExtIdx assumes that the paired load produces the 70 // value in this order: (I, returned iterator), i.e., -1 means no value has 71 // to be extended, 0 means I, and 1 means the returned iterator. 72 int SExtIdx; 73 74 LdStPairFlags() : MergeForward(false), SExtIdx(-1) {} 75 76 void setMergeForward(bool V = true) { MergeForward = V; } 77 bool getMergeForward() const { return MergeForward; } 78 79 void setSExtIdx(int V) { SExtIdx = V; } 80 int getSExtIdx() const { return SExtIdx; } 81 82 } LdStPairFlags; 83 84 struct AArch64LoadStoreOpt : public MachineFunctionPass { 85 static char ID; 86 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 87 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 88 } 89 90 const AArch64InstrInfo *TII; 91 const TargetRegisterInfo *TRI; 92 const AArch64Subtarget *Subtarget; 93 94 // Track which registers have been modified and used. 95 BitVector ModifiedRegs, UsedRegs; 96 97 // Scan the instructions looking for a load/store that can be combined 98 // with the current instruction into a load/store pair. 99 // Return the matching instruction if one is found, else MBB->end(). 100 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 101 LdStPairFlags &Flags, 102 unsigned Limit, 103 bool FindNarrowMerge); 104 105 // Scan the instructions looking for a store that writes to the address from 106 // which the current load instruction reads. Return true if one is found. 107 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 108 MachineBasicBlock::iterator &StoreI); 109 110 // Merge the two instructions indicated into a wider instruction. 111 MachineBasicBlock::iterator 112 mergeNarrowInsns(MachineBasicBlock::iterator I, 113 MachineBasicBlock::iterator MergeMI, 114 const LdStPairFlags &Flags); 115 116 // Merge the two instructions indicated into a single pair-wise instruction. 117 MachineBasicBlock::iterator 118 mergePairedInsns(MachineBasicBlock::iterator I, 119 MachineBasicBlock::iterator Paired, 120 const LdStPairFlags &Flags); 121 122 // Promote the load that reads directly from the address stored to. 123 MachineBasicBlock::iterator 124 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 125 MachineBasicBlock::iterator StoreI); 126 127 // Scan the instruction list to find a base register update that can 128 // be combined with the current instruction (a load or store) using 129 // pre or post indexed addressing with writeback. Scan forwards. 130 MachineBasicBlock::iterator 131 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 132 int UnscaledOffset, unsigned Limit); 133 134 // Scan the instruction list to find a base register update that can 135 // be combined with the current instruction (a load or store) using 136 // pre or post indexed addressing with writeback. Scan backwards. 137 MachineBasicBlock::iterator 138 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 139 140 // Find an instruction that updates the base register of the ld/st 141 // instruction. 142 bool isMatchingUpdateInsn(MachineInstr *MemMI, MachineInstr *MI, 143 unsigned BaseReg, int Offset); 144 145 // Merge a pre- or post-index base register update into a ld/st instruction. 146 MachineBasicBlock::iterator 147 mergeUpdateInsn(MachineBasicBlock::iterator I, 148 MachineBasicBlock::iterator Update, bool IsPreIdx); 149 150 // Find and merge foldable ldr/str instructions. 151 bool tryToMergeLdStInst(MachineBasicBlock::iterator &MBBI); 152 153 // Find and pair ldr/str instructions. 154 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 155 156 // Find and promote load instructions which read directly from store. 157 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 158 159 // Check if converting two narrow loads into a single wider load with 160 // bitfield extracts could be enabled. 161 bool enableNarrowLdMerge(MachineFunction &Fn); 162 163 bool optimizeBlock(MachineBasicBlock &MBB, bool enableNarrowLdOpt); 164 165 bool runOnMachineFunction(MachineFunction &Fn) override; 166 167 MachineFunctionProperties getRequiredProperties() const override { 168 return MachineFunctionProperties().set( 169 MachineFunctionProperties::Property::AllVRegsAllocated); 170 } 171 172 const char *getPassName() const override { 173 return AARCH64_LOAD_STORE_OPT_NAME; 174 } 175 }; 176 char AArch64LoadStoreOpt::ID = 0; 177 } // namespace 178 179 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 180 AARCH64_LOAD_STORE_OPT_NAME, false, false) 181 182 static unsigned getBitExtrOpcode(MachineInstr *MI) { 183 switch (MI->getOpcode()) { 184 default: 185 llvm_unreachable("Unexpected opcode."); 186 case AArch64::LDRBBui: 187 case AArch64::LDURBBi: 188 case AArch64::LDRHHui: 189 case AArch64::LDURHHi: 190 return AArch64::UBFMWri; 191 case AArch64::LDRSBWui: 192 case AArch64::LDURSBWi: 193 case AArch64::LDRSHWui: 194 case AArch64::LDURSHWi: 195 return AArch64::SBFMWri; 196 } 197 } 198 199 static bool isNarrowStore(unsigned Opc) { 200 switch (Opc) { 201 default: 202 return false; 203 case AArch64::STRBBui: 204 case AArch64::STURBBi: 205 case AArch64::STRHHui: 206 case AArch64::STURHHi: 207 return true; 208 } 209 } 210 211 static bool isNarrowLoad(unsigned Opc) { 212 switch (Opc) { 213 default: 214 return false; 215 case AArch64::LDRHHui: 216 case AArch64::LDURHHi: 217 case AArch64::LDRBBui: 218 case AArch64::LDURBBi: 219 case AArch64::LDRSHWui: 220 case AArch64::LDURSHWi: 221 case AArch64::LDRSBWui: 222 case AArch64::LDURSBWi: 223 return true; 224 } 225 } 226 227 static bool isNarrowLoad(MachineInstr *MI) { 228 return isNarrowLoad(MI->getOpcode()); 229 } 230 231 static bool isNarrowLoadOrStore(unsigned Opc) { 232 return isNarrowLoad(Opc) || isNarrowStore(Opc); 233 } 234 235 // Scaling factor for unscaled load or store. 236 static int getMemScale(MachineInstr *MI) { 237 switch (MI->getOpcode()) { 238 default: 239 llvm_unreachable("Opcode has unknown scale!"); 240 case AArch64::LDRBBui: 241 case AArch64::LDURBBi: 242 case AArch64::LDRSBWui: 243 case AArch64::LDURSBWi: 244 case AArch64::STRBBui: 245 case AArch64::STURBBi: 246 return 1; 247 case AArch64::LDRHHui: 248 case AArch64::LDURHHi: 249 case AArch64::LDRSHWui: 250 case AArch64::LDURSHWi: 251 case AArch64::STRHHui: 252 case AArch64::STURHHi: 253 return 2; 254 case AArch64::LDRSui: 255 case AArch64::LDURSi: 256 case AArch64::LDRSWui: 257 case AArch64::LDURSWi: 258 case AArch64::LDRWui: 259 case AArch64::LDURWi: 260 case AArch64::STRSui: 261 case AArch64::STURSi: 262 case AArch64::STRWui: 263 case AArch64::STURWi: 264 case AArch64::LDPSi: 265 case AArch64::LDPSWi: 266 case AArch64::LDPWi: 267 case AArch64::STPSi: 268 case AArch64::STPWi: 269 return 4; 270 case AArch64::LDRDui: 271 case AArch64::LDURDi: 272 case AArch64::LDRXui: 273 case AArch64::LDURXi: 274 case AArch64::STRDui: 275 case AArch64::STURDi: 276 case AArch64::STRXui: 277 case AArch64::STURXi: 278 case AArch64::LDPDi: 279 case AArch64::LDPXi: 280 case AArch64::STPDi: 281 case AArch64::STPXi: 282 return 8; 283 case AArch64::LDRQui: 284 case AArch64::LDURQi: 285 case AArch64::STRQui: 286 case AArch64::STURQi: 287 case AArch64::LDPQi: 288 case AArch64::STPQi: 289 return 16; 290 } 291 } 292 293 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 294 bool *IsValidLdStrOpc = nullptr) { 295 if (IsValidLdStrOpc) 296 *IsValidLdStrOpc = true; 297 switch (Opc) { 298 default: 299 if (IsValidLdStrOpc) 300 *IsValidLdStrOpc = false; 301 return UINT_MAX; 302 case AArch64::STRDui: 303 case AArch64::STURDi: 304 case AArch64::STRQui: 305 case AArch64::STURQi: 306 case AArch64::STRBBui: 307 case AArch64::STURBBi: 308 case AArch64::STRHHui: 309 case AArch64::STURHHi: 310 case AArch64::STRWui: 311 case AArch64::STURWi: 312 case AArch64::STRXui: 313 case AArch64::STURXi: 314 case AArch64::LDRDui: 315 case AArch64::LDURDi: 316 case AArch64::LDRQui: 317 case AArch64::LDURQi: 318 case AArch64::LDRWui: 319 case AArch64::LDURWi: 320 case AArch64::LDRXui: 321 case AArch64::LDURXi: 322 case AArch64::STRSui: 323 case AArch64::STURSi: 324 case AArch64::LDRSui: 325 case AArch64::LDURSi: 326 case AArch64::LDRHHui: 327 case AArch64::LDURHHi: 328 case AArch64::LDRBBui: 329 case AArch64::LDURBBi: 330 return Opc; 331 case AArch64::LDRSWui: 332 return AArch64::LDRWui; 333 case AArch64::LDURSWi: 334 return AArch64::LDURWi; 335 case AArch64::LDRSBWui: 336 return AArch64::LDRBBui; 337 case AArch64::LDRSHWui: 338 return AArch64::LDRHHui; 339 case AArch64::LDURSBWi: 340 return AArch64::LDURBBi; 341 case AArch64::LDURSHWi: 342 return AArch64::LDURHHi; 343 } 344 } 345 346 static unsigned getMatchingWideOpcode(unsigned Opc) { 347 switch (Opc) { 348 default: 349 llvm_unreachable("Opcode has no wide equivalent!"); 350 case AArch64::STRBBui: 351 return AArch64::STRHHui; 352 case AArch64::STRHHui: 353 return AArch64::STRWui; 354 case AArch64::STURBBi: 355 return AArch64::STURHHi; 356 case AArch64::STURHHi: 357 return AArch64::STURWi; 358 case AArch64::STURWi: 359 return AArch64::STURXi; 360 case AArch64::STRWui: 361 return AArch64::STRXui; 362 case AArch64::LDRHHui: 363 case AArch64::LDRSHWui: 364 return AArch64::LDRWui; 365 case AArch64::LDURHHi: 366 case AArch64::LDURSHWi: 367 return AArch64::LDURWi; 368 case AArch64::LDRBBui: 369 case AArch64::LDRSBWui: 370 return AArch64::LDRHHui; 371 case AArch64::LDURBBi: 372 case AArch64::LDURSBWi: 373 return AArch64::LDURHHi; 374 } 375 } 376 377 static unsigned getMatchingPairOpcode(unsigned Opc) { 378 switch (Opc) { 379 default: 380 llvm_unreachable("Opcode has no pairwise equivalent!"); 381 case AArch64::STRSui: 382 case AArch64::STURSi: 383 return AArch64::STPSi; 384 case AArch64::STRDui: 385 case AArch64::STURDi: 386 return AArch64::STPDi; 387 case AArch64::STRQui: 388 case AArch64::STURQi: 389 return AArch64::STPQi; 390 case AArch64::STRWui: 391 case AArch64::STURWi: 392 return AArch64::STPWi; 393 case AArch64::STRXui: 394 case AArch64::STURXi: 395 return AArch64::STPXi; 396 case AArch64::LDRSui: 397 case AArch64::LDURSi: 398 return AArch64::LDPSi; 399 case AArch64::LDRDui: 400 case AArch64::LDURDi: 401 return AArch64::LDPDi; 402 case AArch64::LDRQui: 403 case AArch64::LDURQi: 404 return AArch64::LDPQi; 405 case AArch64::LDRWui: 406 case AArch64::LDURWi: 407 return AArch64::LDPWi; 408 case AArch64::LDRXui: 409 case AArch64::LDURXi: 410 return AArch64::LDPXi; 411 case AArch64::LDRSWui: 412 case AArch64::LDURSWi: 413 return AArch64::LDPSWi; 414 } 415 } 416 417 static unsigned isMatchingStore(MachineInstr *LoadInst, 418 MachineInstr *StoreInst) { 419 unsigned LdOpc = LoadInst->getOpcode(); 420 unsigned StOpc = StoreInst->getOpcode(); 421 switch (LdOpc) { 422 default: 423 llvm_unreachable("Unsupported load instruction!"); 424 case AArch64::LDRBBui: 425 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 426 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 427 case AArch64::LDURBBi: 428 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 429 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 430 case AArch64::LDRHHui: 431 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 432 StOpc == AArch64::STRXui; 433 case AArch64::LDURHHi: 434 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 435 StOpc == AArch64::STURXi; 436 case AArch64::LDRWui: 437 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 438 case AArch64::LDURWi: 439 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 440 case AArch64::LDRXui: 441 return StOpc == AArch64::STRXui; 442 case AArch64::LDURXi: 443 return StOpc == AArch64::STURXi; 444 } 445 } 446 447 static unsigned getPreIndexedOpcode(unsigned Opc) { 448 switch (Opc) { 449 default: 450 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 451 case AArch64::STRSui: 452 return AArch64::STRSpre; 453 case AArch64::STRDui: 454 return AArch64::STRDpre; 455 case AArch64::STRQui: 456 return AArch64::STRQpre; 457 case AArch64::STRBBui: 458 return AArch64::STRBBpre; 459 case AArch64::STRHHui: 460 return AArch64::STRHHpre; 461 case AArch64::STRWui: 462 return AArch64::STRWpre; 463 case AArch64::STRXui: 464 return AArch64::STRXpre; 465 case AArch64::LDRSui: 466 return AArch64::LDRSpre; 467 case AArch64::LDRDui: 468 return AArch64::LDRDpre; 469 case AArch64::LDRQui: 470 return AArch64::LDRQpre; 471 case AArch64::LDRBBui: 472 return AArch64::LDRBBpre; 473 case AArch64::LDRHHui: 474 return AArch64::LDRHHpre; 475 case AArch64::LDRWui: 476 return AArch64::LDRWpre; 477 case AArch64::LDRXui: 478 return AArch64::LDRXpre; 479 case AArch64::LDRSWui: 480 return AArch64::LDRSWpre; 481 case AArch64::LDPSi: 482 return AArch64::LDPSpre; 483 case AArch64::LDPSWi: 484 return AArch64::LDPSWpre; 485 case AArch64::LDPDi: 486 return AArch64::LDPDpre; 487 case AArch64::LDPQi: 488 return AArch64::LDPQpre; 489 case AArch64::LDPWi: 490 return AArch64::LDPWpre; 491 case AArch64::LDPXi: 492 return AArch64::LDPXpre; 493 case AArch64::STPSi: 494 return AArch64::STPSpre; 495 case AArch64::STPDi: 496 return AArch64::STPDpre; 497 case AArch64::STPQi: 498 return AArch64::STPQpre; 499 case AArch64::STPWi: 500 return AArch64::STPWpre; 501 case AArch64::STPXi: 502 return AArch64::STPXpre; 503 } 504 } 505 506 static unsigned getPostIndexedOpcode(unsigned Opc) { 507 switch (Opc) { 508 default: 509 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 510 case AArch64::STRSui: 511 return AArch64::STRSpost; 512 case AArch64::STRDui: 513 return AArch64::STRDpost; 514 case AArch64::STRQui: 515 return AArch64::STRQpost; 516 case AArch64::STRBBui: 517 return AArch64::STRBBpost; 518 case AArch64::STRHHui: 519 return AArch64::STRHHpost; 520 case AArch64::STRWui: 521 return AArch64::STRWpost; 522 case AArch64::STRXui: 523 return AArch64::STRXpost; 524 case AArch64::LDRSui: 525 return AArch64::LDRSpost; 526 case AArch64::LDRDui: 527 return AArch64::LDRDpost; 528 case AArch64::LDRQui: 529 return AArch64::LDRQpost; 530 case AArch64::LDRBBui: 531 return AArch64::LDRBBpost; 532 case AArch64::LDRHHui: 533 return AArch64::LDRHHpost; 534 case AArch64::LDRWui: 535 return AArch64::LDRWpost; 536 case AArch64::LDRXui: 537 return AArch64::LDRXpost; 538 case AArch64::LDRSWui: 539 return AArch64::LDRSWpost; 540 case AArch64::LDPSi: 541 return AArch64::LDPSpost; 542 case AArch64::LDPSWi: 543 return AArch64::LDPSWpost; 544 case AArch64::LDPDi: 545 return AArch64::LDPDpost; 546 case AArch64::LDPQi: 547 return AArch64::LDPQpost; 548 case AArch64::LDPWi: 549 return AArch64::LDPWpost; 550 case AArch64::LDPXi: 551 return AArch64::LDPXpost; 552 case AArch64::STPSi: 553 return AArch64::STPSpost; 554 case AArch64::STPDi: 555 return AArch64::STPDpost; 556 case AArch64::STPQi: 557 return AArch64::STPQpost; 558 case AArch64::STPWi: 559 return AArch64::STPWpost; 560 case AArch64::STPXi: 561 return AArch64::STPXpost; 562 } 563 } 564 565 static bool isPairedLdSt(const MachineInstr *MI) { 566 switch (MI->getOpcode()) { 567 default: 568 return false; 569 case AArch64::LDPSi: 570 case AArch64::LDPSWi: 571 case AArch64::LDPDi: 572 case AArch64::LDPQi: 573 case AArch64::LDPWi: 574 case AArch64::LDPXi: 575 case AArch64::STPSi: 576 case AArch64::STPDi: 577 case AArch64::STPQi: 578 case AArch64::STPWi: 579 case AArch64::STPXi: 580 return true; 581 } 582 } 583 584 static const MachineOperand &getLdStRegOp(const MachineInstr *MI, 585 unsigned PairedRegOp = 0) { 586 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 587 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 588 return MI->getOperand(Idx); 589 } 590 591 static const MachineOperand &getLdStBaseOp(const MachineInstr *MI) { 592 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 593 return MI->getOperand(Idx); 594 } 595 596 static const MachineOperand &getLdStOffsetOp(const MachineInstr *MI) { 597 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 598 return MI->getOperand(Idx); 599 } 600 601 static bool isLdOffsetInRangeOfSt(MachineInstr *LoadInst, 602 MachineInstr *StoreInst, 603 const AArch64InstrInfo *TII) { 604 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 605 int LoadSize = getMemScale(LoadInst); 606 int StoreSize = getMemScale(StoreInst); 607 int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst) 608 ? getLdStOffsetOp(StoreInst).getImm() 609 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 610 int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst) 611 ? getLdStOffsetOp(LoadInst).getImm() 612 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 613 return (UnscaledStOffset <= UnscaledLdOffset) && 614 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 615 } 616 617 static bool isPromotableZeroStoreOpcode(MachineInstr *MI) { 618 unsigned Opc = MI->getOpcode(); 619 return isNarrowStore(Opc) || Opc == AArch64::STRWui || Opc == AArch64::STURWi; 620 } 621 622 static bool isPromotableZeroStoreInst(MachineInstr *MI) { 623 return (isPromotableZeroStoreOpcode(MI)) && 624 getLdStRegOp(MI).getReg() == AArch64::WZR; 625 } 626 627 MachineBasicBlock::iterator 628 AArch64LoadStoreOpt::mergeNarrowInsns(MachineBasicBlock::iterator I, 629 MachineBasicBlock::iterator MergeMI, 630 const LdStPairFlags &Flags) { 631 MachineBasicBlock::iterator NextI = I; 632 ++NextI; 633 // If NextI is the second of the two instructions to be merged, we need 634 // to skip one further. Either way we merge will invalidate the iterator, 635 // and we don't need to scan the new instruction, as it's a pairwise 636 // instruction, which we're not considering for further action anyway. 637 if (NextI == MergeMI) 638 ++NextI; 639 640 unsigned Opc = I->getOpcode(); 641 bool IsScaled = !TII->isUnscaledLdSt(Opc); 642 int OffsetStride = IsScaled ? 1 : getMemScale(I); 643 644 bool MergeForward = Flags.getMergeForward(); 645 // Insert our new paired instruction after whichever of the paired 646 // instructions MergeForward indicates. 647 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 648 // Also based on MergeForward is from where we copy the base register operand 649 // so we get the flags compatible with the input code. 650 const MachineOperand &BaseRegOp = 651 MergeForward ? getLdStBaseOp(MergeMI) : getLdStBaseOp(I); 652 653 // Which register is Rt and which is Rt2 depends on the offset order. 654 MachineInstr *RtMI, *Rt2MI; 655 if (getLdStOffsetOp(I).getImm() == 656 getLdStOffsetOp(MergeMI).getImm() + OffsetStride) { 657 RtMI = MergeMI; 658 Rt2MI = I; 659 } else { 660 RtMI = I; 661 Rt2MI = MergeMI; 662 } 663 664 int OffsetImm = getLdStOffsetOp(RtMI).getImm(); 665 // Change the scaled offset from small to large type. 666 if (IsScaled) { 667 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 668 OffsetImm /= 2; 669 } 670 671 DebugLoc DL = I->getDebugLoc(); 672 MachineBasicBlock *MBB = I->getParent(); 673 if (isNarrowLoad(Opc)) { 674 MachineInstr *RtNewDest = MergeForward ? I : MergeMI; 675 // When merging small (< 32 bit) loads for big-endian targets, the order of 676 // the component parts gets swapped. 677 if (!Subtarget->isLittleEndian()) 678 std::swap(RtMI, Rt2MI); 679 // Construct the new load instruction. 680 MachineInstr *NewMemMI, *BitExtMI1, *BitExtMI2; 681 NewMemMI = 682 BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 683 .addOperand(getLdStRegOp(RtNewDest)) 684 .addOperand(BaseRegOp) 685 .addImm(OffsetImm) 686 .setMemRefs(I->mergeMemRefsWith(*MergeMI)); 687 (void)NewMemMI; 688 689 DEBUG( 690 dbgs() 691 << "Creating the new load and extract. Replacing instructions:\n "); 692 DEBUG(I->print(dbgs())); 693 DEBUG(dbgs() << " "); 694 DEBUG(MergeMI->print(dbgs())); 695 DEBUG(dbgs() << " with instructions:\n "); 696 DEBUG((NewMemMI)->print(dbgs())); 697 698 int Width = getMemScale(I) == 1 ? 8 : 16; 699 int LSBLow = 0; 700 int LSBHigh = Width; 701 int ImmsLow = LSBLow + Width - 1; 702 int ImmsHigh = LSBHigh + Width - 1; 703 MachineInstr *ExtDestMI = MergeForward ? MergeMI : I; 704 if ((ExtDestMI == Rt2MI) == Subtarget->isLittleEndian()) { 705 // Create the bitfield extract for high bits. 706 BitExtMI1 = 707 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(Rt2MI))) 708 .addOperand(getLdStRegOp(Rt2MI)) 709 .addReg(getLdStRegOp(RtNewDest).getReg()) 710 .addImm(LSBHigh) 711 .addImm(ImmsHigh); 712 // Create the bitfield extract for low bits. 713 if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) { 714 // For unsigned, prefer to use AND for low bits. 715 BitExtMI2 = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::ANDWri)) 716 .addOperand(getLdStRegOp(RtMI)) 717 .addReg(getLdStRegOp(RtNewDest).getReg()) 718 .addImm(ImmsLow); 719 } else { 720 BitExtMI2 = 721 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(RtMI))) 722 .addOperand(getLdStRegOp(RtMI)) 723 .addReg(getLdStRegOp(RtNewDest).getReg()) 724 .addImm(LSBLow) 725 .addImm(ImmsLow); 726 } 727 } else { 728 // Create the bitfield extract for low bits. 729 if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) { 730 // For unsigned, prefer to use AND for low bits. 731 BitExtMI1 = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::ANDWri)) 732 .addOperand(getLdStRegOp(RtMI)) 733 .addReg(getLdStRegOp(RtNewDest).getReg()) 734 .addImm(ImmsLow); 735 } else { 736 BitExtMI1 = 737 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(RtMI))) 738 .addOperand(getLdStRegOp(RtMI)) 739 .addReg(getLdStRegOp(RtNewDest).getReg()) 740 .addImm(LSBLow) 741 .addImm(ImmsLow); 742 } 743 744 // Create the bitfield extract for high bits. 745 BitExtMI2 = 746 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(Rt2MI))) 747 .addOperand(getLdStRegOp(Rt2MI)) 748 .addReg(getLdStRegOp(RtNewDest).getReg()) 749 .addImm(LSBHigh) 750 .addImm(ImmsHigh); 751 } 752 (void)BitExtMI1; 753 (void)BitExtMI2; 754 755 DEBUG(dbgs() << " "); 756 DEBUG((BitExtMI1)->print(dbgs())); 757 DEBUG(dbgs() << " "); 758 DEBUG((BitExtMI2)->print(dbgs())); 759 DEBUG(dbgs() << "\n"); 760 761 // Erase the old instructions. 762 I->eraseFromParent(); 763 MergeMI->eraseFromParent(); 764 return NextI; 765 } 766 assert(isPromotableZeroStoreInst(I) && isPromotableZeroStoreInst(MergeMI) && 767 "Expected promotable zero store"); 768 769 // Construct the new instruction. 770 MachineInstrBuilder MIB; 771 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 772 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 773 .addOperand(BaseRegOp) 774 .addImm(OffsetImm) 775 .setMemRefs(I->mergeMemRefsWith(*MergeMI)); 776 (void)MIB; 777 778 DEBUG(dbgs() << "Creating wider load/store. Replacing instructions:\n "); 779 DEBUG(I->print(dbgs())); 780 DEBUG(dbgs() << " "); 781 DEBUG(MergeMI->print(dbgs())); 782 DEBUG(dbgs() << " with instruction:\n "); 783 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 784 DEBUG(dbgs() << "\n"); 785 786 // Erase the old instructions. 787 I->eraseFromParent(); 788 MergeMI->eraseFromParent(); 789 return NextI; 790 } 791 792 MachineBasicBlock::iterator 793 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 794 MachineBasicBlock::iterator Paired, 795 const LdStPairFlags &Flags) { 796 MachineBasicBlock::iterator NextI = I; 797 ++NextI; 798 // If NextI is the second of the two instructions to be merged, we need 799 // to skip one further. Either way we merge will invalidate the iterator, 800 // and we don't need to scan the new instruction, as it's a pairwise 801 // instruction, which we're not considering for further action anyway. 802 if (NextI == Paired) 803 ++NextI; 804 805 int SExtIdx = Flags.getSExtIdx(); 806 unsigned Opc = 807 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 808 bool IsUnscaled = TII->isUnscaledLdSt(Opc); 809 int OffsetStride = IsUnscaled ? getMemScale(I) : 1; 810 811 bool MergeForward = Flags.getMergeForward(); 812 // Insert our new paired instruction after whichever of the paired 813 // instructions MergeForward indicates. 814 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 815 // Also based on MergeForward is from where we copy the base register operand 816 // so we get the flags compatible with the input code. 817 const MachineOperand &BaseRegOp = 818 MergeForward ? getLdStBaseOp(Paired) : getLdStBaseOp(I); 819 820 int Offset = getLdStOffsetOp(I).getImm(); 821 int PairedOffset = getLdStOffsetOp(Paired).getImm(); 822 bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode()); 823 if (IsUnscaled != PairedIsUnscaled) { 824 // We're trying to pair instructions that differ in how they are scaled. If 825 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 826 // the opposite (i.e., make Paired's offset unscaled). 827 int MemSize = getMemScale(Paired); 828 if (PairedIsUnscaled) { 829 // If the unscaled offset isn't a multiple of the MemSize, we can't 830 // pair the operations together. 831 assert(!(PairedOffset % getMemScale(Paired)) && 832 "Offset should be a multiple of the stride!"); 833 PairedOffset /= MemSize; 834 } else { 835 PairedOffset *= MemSize; 836 } 837 } 838 839 // Which register is Rt and which is Rt2 depends on the offset order. 840 MachineInstr *RtMI, *Rt2MI; 841 if (Offset == PairedOffset + OffsetStride) { 842 RtMI = Paired; 843 Rt2MI = I; 844 // Here we swapped the assumption made for SExtIdx. 845 // I.e., we turn ldp I, Paired into ldp Paired, I. 846 // Update the index accordingly. 847 if (SExtIdx != -1) 848 SExtIdx = (SExtIdx + 1) % 2; 849 } else { 850 RtMI = I; 851 Rt2MI = Paired; 852 } 853 int OffsetImm = getLdStOffsetOp(RtMI).getImm(); 854 // Scale the immediate offset, if necessary. 855 if (TII->isUnscaledLdSt(RtMI->getOpcode())) { 856 assert(!(OffsetImm % getMemScale(RtMI)) && 857 "Unscaled offset cannot be scaled."); 858 OffsetImm /= getMemScale(RtMI); 859 } 860 861 // Construct the new instruction. 862 MachineInstrBuilder MIB; 863 DebugLoc DL = I->getDebugLoc(); 864 MachineBasicBlock *MBB = I->getParent(); 865 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc))) 866 .addOperand(getLdStRegOp(RtMI)) 867 .addOperand(getLdStRegOp(Rt2MI)) 868 .addOperand(BaseRegOp) 869 .addImm(OffsetImm) 870 .setMemRefs(I->mergeMemRefsWith(*Paired)); 871 872 (void)MIB; 873 874 DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n "); 875 DEBUG(I->print(dbgs())); 876 DEBUG(dbgs() << " "); 877 DEBUG(Paired->print(dbgs())); 878 DEBUG(dbgs() << " with instruction:\n "); 879 if (SExtIdx != -1) { 880 // Generate the sign extension for the proper result of the ldp. 881 // I.e., with X1, that would be: 882 // %W1<def> = KILL %W1, %X1<imp-def> 883 // %X1<def> = SBFMXri %X1<kill>, 0, 31 884 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 885 // Right now, DstMO has the extended register, since it comes from an 886 // extended opcode. 887 unsigned DstRegX = DstMO.getReg(); 888 // Get the W variant of that register. 889 unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 890 // Update the result of LDP to use the W instead of the X variant. 891 DstMO.setReg(DstRegW); 892 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 893 DEBUG(dbgs() << "\n"); 894 // Make the machine verifier happy by providing a definition for 895 // the X register. 896 // Insert this definition right after the generated LDP, i.e., before 897 // InsertionPoint. 898 MachineInstrBuilder MIBKill = 899 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 900 .addReg(DstRegW) 901 .addReg(DstRegX, RegState::Define); 902 MIBKill->getOperand(2).setImplicit(); 903 // Create the sign extension. 904 MachineInstrBuilder MIBSXTW = 905 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 906 .addReg(DstRegX) 907 .addImm(0) 908 .addImm(31); 909 (void)MIBSXTW; 910 DEBUG(dbgs() << " Extend operand:\n "); 911 DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 912 } else { 913 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 914 } 915 DEBUG(dbgs() << "\n"); 916 917 // Erase the old instructions. 918 I->eraseFromParent(); 919 Paired->eraseFromParent(); 920 921 return NextI; 922 } 923 924 MachineBasicBlock::iterator 925 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 926 MachineBasicBlock::iterator StoreI) { 927 MachineBasicBlock::iterator NextI = LoadI; 928 ++NextI; 929 930 int LoadSize = getMemScale(LoadI); 931 int StoreSize = getMemScale(StoreI); 932 unsigned LdRt = getLdStRegOp(LoadI).getReg(); 933 unsigned StRt = getLdStRegOp(StoreI).getReg(); 934 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 935 936 assert((IsStoreXReg || 937 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 938 "Unexpected RegClass"); 939 940 MachineInstr *BitExtMI; 941 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 942 // Remove the load, if the destination register of the loads is the same 943 // register for stored value. 944 if (StRt == LdRt && LoadSize == 8) { 945 DEBUG(dbgs() << "Remove load instruction:\n "); 946 DEBUG(LoadI->print(dbgs())); 947 DEBUG(dbgs() << "\n"); 948 LoadI->eraseFromParent(); 949 return NextI; 950 } 951 // Replace the load with a mov if the load and store are in the same size. 952 BitExtMI = 953 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 954 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 955 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 956 .addReg(StRt) 957 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); 958 } else { 959 // FIXME: Currently we disable this transformation in big-endian targets as 960 // performance and correctness are verified only in little-endian. 961 if (!Subtarget->isLittleEndian()) 962 return NextI; 963 bool IsUnscaled = TII->isUnscaledLdSt(LoadI); 964 assert(IsUnscaled == TII->isUnscaledLdSt(StoreI) && 965 "Unsupported ld/st match"); 966 assert(LoadSize <= StoreSize && "Invalid load size"); 967 int UnscaledLdOffset = IsUnscaled 968 ? getLdStOffsetOp(LoadI).getImm() 969 : getLdStOffsetOp(LoadI).getImm() * LoadSize; 970 int UnscaledStOffset = IsUnscaled 971 ? getLdStOffsetOp(StoreI).getImm() 972 : getLdStOffsetOp(StoreI).getImm() * StoreSize; 973 int Width = LoadSize * 8; 974 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 975 int Imms = Immr + Width - 1; 976 unsigned DestReg = IsStoreXReg 977 ? TRI->getMatchingSuperReg(LdRt, AArch64::sub_32, 978 &AArch64::GPR64RegClass) 979 : LdRt; 980 981 assert((UnscaledLdOffset >= UnscaledStOffset && 982 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 983 "Invalid offset"); 984 985 Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 986 Imms = Immr + Width - 1; 987 if (UnscaledLdOffset == UnscaledStOffset) { 988 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 989 | ((Immr) << 6) // immr 990 | ((Imms) << 0) // imms 991 ; 992 993 BitExtMI = 994 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 995 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 996 DestReg) 997 .addReg(StRt) 998 .addImm(AndMaskEncoded); 999 } else { 1000 BitExtMI = 1001 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1002 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 1003 DestReg) 1004 .addReg(StRt) 1005 .addImm(Immr) 1006 .addImm(Imms); 1007 } 1008 } 1009 (void)BitExtMI; 1010 1011 DEBUG(dbgs() << "Promoting load by replacing :\n "); 1012 DEBUG(StoreI->print(dbgs())); 1013 DEBUG(dbgs() << " "); 1014 DEBUG(LoadI->print(dbgs())); 1015 DEBUG(dbgs() << " with instructions:\n "); 1016 DEBUG(StoreI->print(dbgs())); 1017 DEBUG(dbgs() << " "); 1018 DEBUG((BitExtMI)->print(dbgs())); 1019 DEBUG(dbgs() << "\n"); 1020 1021 // Erase the old instructions. 1022 LoadI->eraseFromParent(); 1023 return NextI; 1024 } 1025 1026 /// trackRegDefsUses - Remember what registers the specified instruction uses 1027 /// and modifies. 1028 static void trackRegDefsUses(const MachineInstr *MI, BitVector &ModifiedRegs, 1029 BitVector &UsedRegs, 1030 const TargetRegisterInfo *TRI) { 1031 for (const MachineOperand &MO : MI->operands()) { 1032 if (MO.isRegMask()) 1033 ModifiedRegs.setBitsNotInMask(MO.getRegMask()); 1034 1035 if (!MO.isReg()) 1036 continue; 1037 unsigned Reg = MO.getReg(); 1038 if (!Reg) 1039 continue; 1040 if (MO.isDef()) { 1041 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1042 ModifiedRegs.set(*AI); 1043 } else { 1044 assert(MO.isUse() && "Reg operand not a def and not a use?!?"); 1045 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1046 UsedRegs.set(*AI); 1047 } 1048 } 1049 } 1050 1051 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 1052 // Convert the byte-offset used by unscaled into an "element" offset used 1053 // by the scaled pair load/store instructions. 1054 if (IsUnscaled) { 1055 // If the byte-offset isn't a multiple of the stride, there's no point 1056 // trying to match it. 1057 if (Offset % OffsetStride) 1058 return false; 1059 Offset /= OffsetStride; 1060 } 1061 return Offset <= 63 && Offset >= -64; 1062 } 1063 1064 // Do alignment, specialized to power of 2 and for signed ints, 1065 // avoiding having to do a C-style cast from uint_64t to int when 1066 // using alignTo from include/llvm/Support/MathExtras.h. 1067 // FIXME: Move this function to include/MathExtras.h? 1068 static int alignTo(int Num, int PowOf2) { 1069 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 1070 } 1071 1072 static bool mayAlias(MachineInstr *MIa, MachineInstr *MIb, 1073 const AArch64InstrInfo *TII) { 1074 // One of the instructions must modify memory. 1075 if (!MIa->mayStore() && !MIb->mayStore()) 1076 return false; 1077 1078 // Both instructions must be memory operations. 1079 if (!MIa->mayLoadOrStore() && !MIb->mayLoadOrStore()) 1080 return false; 1081 1082 return !TII->areMemAccessesTriviallyDisjoint(MIa, MIb); 1083 } 1084 1085 static bool mayAlias(MachineInstr *MIa, 1086 SmallVectorImpl<MachineInstr *> &MemInsns, 1087 const AArch64InstrInfo *TII) { 1088 for (auto &MIb : MemInsns) 1089 if (mayAlias(MIa, MIb, TII)) 1090 return true; 1091 1092 return false; 1093 } 1094 1095 bool AArch64LoadStoreOpt::findMatchingStore( 1096 MachineBasicBlock::iterator I, unsigned Limit, 1097 MachineBasicBlock::iterator &StoreI) { 1098 MachineBasicBlock::iterator B = I->getParent()->begin(); 1099 MachineBasicBlock::iterator MBBI = I; 1100 MachineInstr *LoadMI = I; 1101 unsigned BaseReg = getLdStBaseOp(LoadMI).getReg(); 1102 1103 // If the load is the first instruction in the block, there's obviously 1104 // not any matching store. 1105 if (MBBI == B) 1106 return false; 1107 1108 // Track which registers have been modified and used between the first insn 1109 // and the second insn. 1110 ModifiedRegs.reset(); 1111 UsedRegs.reset(); 1112 1113 unsigned Count = 0; 1114 do { 1115 --MBBI; 1116 MachineInstr *MI = MBBI; 1117 1118 // Don't count DBG_VALUE instructions towards the search limit. 1119 if (!MI->isDebugValue()) 1120 ++Count; 1121 1122 // If the load instruction reads directly from the address to which the 1123 // store instruction writes and the stored value is not modified, we can 1124 // promote the load. Since we do not handle stores with pre-/post-index, 1125 // it's unnecessary to check if BaseReg is modified by the store itself. 1126 if (MI->mayStore() && isMatchingStore(LoadMI, MI) && 1127 BaseReg == getLdStBaseOp(MI).getReg() && 1128 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1129 !ModifiedRegs[getLdStRegOp(MI).getReg()]) { 1130 StoreI = MBBI; 1131 return true; 1132 } 1133 1134 if (MI->isCall()) 1135 return false; 1136 1137 // Update modified / uses register lists. 1138 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1139 1140 // Otherwise, if the base register is modified, we have no match, so 1141 // return early. 1142 if (ModifiedRegs[BaseReg]) 1143 return false; 1144 1145 // If we encounter a store aliased with the load, return early. 1146 if (MI->mayStore() && mayAlias(LoadMI, MI, TII)) 1147 return false; 1148 } while (MBBI != B && Count < Limit); 1149 return false; 1150 } 1151 1152 // Returns true if these two opcodes can be merged or paired. Otherwise, 1153 // returns false. 1154 static bool canMergeOpc(unsigned OpcA, unsigned OpcB, LdStPairFlags &Flags, 1155 const AArch64InstrInfo *TII) { 1156 // Opcodes match: nothing more to check. 1157 if (OpcA == OpcB) 1158 return true; 1159 1160 // Try to match a sign-extended load/store with a zero-extended load/store. 1161 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1162 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1163 assert(IsValidLdStrOpc && 1164 "Given Opc should be a Load or Store with an immediate"); 1165 // OpcA will be the first instruction in the pair. 1166 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1167 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1168 return true; 1169 } 1170 1171 // If the second instruction isn't even a load/store, bail out. 1172 if (!PairIsValidLdStrOpc) 1173 return false; 1174 1175 // FIXME: We don't support merging narrow loads/stores with mixed 1176 // scaled/unscaled offsets. 1177 if (isNarrowLoadOrStore(OpcA) || isNarrowLoadOrStore(OpcB)) 1178 return false; 1179 1180 // Try to match an unscaled load/store with a scaled load/store. 1181 return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) && 1182 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1183 1184 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1185 } 1186 1187 /// Scan the instructions looking for a load/store that can be combined with the 1188 /// current instruction into a wider equivalent or a load/store pair. 1189 MachineBasicBlock::iterator 1190 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1191 LdStPairFlags &Flags, unsigned Limit, 1192 bool FindNarrowMerge) { 1193 MachineBasicBlock::iterator E = I->getParent()->end(); 1194 MachineBasicBlock::iterator MBBI = I; 1195 MachineInstr *FirstMI = I; 1196 ++MBBI; 1197 1198 unsigned Opc = FirstMI->getOpcode(); 1199 bool MayLoad = FirstMI->mayLoad(); 1200 bool IsUnscaled = TII->isUnscaledLdSt(FirstMI); 1201 unsigned Reg = getLdStRegOp(FirstMI).getReg(); 1202 unsigned BaseReg = getLdStBaseOp(FirstMI).getReg(); 1203 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1204 int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1; 1205 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1206 1207 // Track which registers have been modified and used between the first insn 1208 // (inclusive) and the second insn. 1209 ModifiedRegs.reset(); 1210 UsedRegs.reset(); 1211 1212 // Remember any instructions that read/write memory between FirstMI and MI. 1213 SmallVector<MachineInstr *, 4> MemInsns; 1214 1215 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1216 MachineInstr *MI = MBBI; 1217 // Skip DBG_VALUE instructions. Otherwise debug info can affect the 1218 // optimization by changing how far we scan. 1219 if (MI->isDebugValue()) 1220 continue; 1221 1222 // Now that we know this is a real instruction, count it. 1223 ++Count; 1224 1225 Flags.setSExtIdx(-1); 1226 if (canMergeOpc(Opc, MI->getOpcode(), Flags, TII) && 1227 getLdStOffsetOp(MI).isImm()) { 1228 assert(MI->mayLoadOrStore() && "Expected memory operation."); 1229 // If we've found another instruction with the same opcode, check to see 1230 // if the base and offset are compatible with our starting instruction. 1231 // These instructions all have scaled immediate operands, so we just 1232 // check for +1/-1. Make sure to check the new instruction offset is 1233 // actually an immediate and not a symbolic reference destined for 1234 // a relocation. 1235 // 1236 // Pairwise instructions have a 7-bit signed offset field. Single insns 1237 // have a 12-bit unsigned offset field. To be a valid combine, the 1238 // final offset must be in range. 1239 unsigned MIBaseReg = getLdStBaseOp(MI).getReg(); 1240 int MIOffset = getLdStOffsetOp(MI).getImm(); 1241 bool MIIsUnscaled = TII->isUnscaledLdSt(MI); 1242 if (IsUnscaled != MIIsUnscaled) { 1243 // We're trying to pair instructions that differ in how they are scaled. 1244 // If FirstMI is scaled then scale the offset of MI accordingly. 1245 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1246 int MemSize = getMemScale(MI); 1247 if (MIIsUnscaled) { 1248 // If the unscaled offset isn't a multiple of the MemSize, we can't 1249 // pair the operations together: bail and keep looking. 1250 if (MIOffset % MemSize) 1251 continue; 1252 MIOffset /= MemSize; 1253 } else { 1254 MIOffset *= MemSize; 1255 } 1256 } 1257 1258 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1259 (Offset + OffsetStride == MIOffset))) { 1260 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1261 // If this is a volatile load/store that otherwise matched, stop looking 1262 // as something is going on that we don't have enough information to 1263 // safely transform. Similarly, stop if we see a hint to avoid pairs. 1264 if (MI->hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1265 return E; 1266 1267 if (FindNarrowMerge) { 1268 // If the alignment requirements of the scaled wide load/store 1269 // instruction can't express the offset of the scaled narrow input, 1270 // bail and keep looking. For promotable zero stores, allow only when 1271 // the stored value is the same (i.e., WZR). 1272 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1273 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1274 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1275 MemInsns.push_back(MI); 1276 continue; 1277 } 1278 } else { 1279 // If the resultant immediate offset of merging these instructions 1280 // is out of range for a pairwise instruction, bail and keep looking. 1281 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1282 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1283 MemInsns.push_back(MI); 1284 continue; 1285 } 1286 // If the alignment requirements of the paired (scaled) instruction 1287 // can't express the offset of the unscaled input, bail and keep 1288 // looking. 1289 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1290 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1291 MemInsns.push_back(MI); 1292 continue; 1293 } 1294 } 1295 // If the destination register of the loads is the same register, bail 1296 // and keep looking. A load-pair instruction with both destination 1297 // registers the same is UNPREDICTABLE and will result in an exception. 1298 if (MayLoad && Reg == getLdStRegOp(MI).getReg()) { 1299 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1300 MemInsns.push_back(MI); 1301 continue; 1302 } 1303 1304 // If the Rt of the second instruction was not modified or used between 1305 // the two instructions and none of the instructions between the second 1306 // and first alias with the second, we can combine the second into the 1307 // first. 1308 if (!ModifiedRegs[getLdStRegOp(MI).getReg()] && 1309 !(MI->mayLoad() && UsedRegs[getLdStRegOp(MI).getReg()]) && 1310 !mayAlias(MI, MemInsns, TII)) { 1311 Flags.setMergeForward(false); 1312 return MBBI; 1313 } 1314 1315 // Likewise, if the Rt of the first instruction is not modified or used 1316 // between the two instructions and none of the instructions between the 1317 // first and the second alias with the first, we can combine the first 1318 // into the second. 1319 if (!ModifiedRegs[getLdStRegOp(FirstMI).getReg()] && 1320 !(MayLoad && UsedRegs[getLdStRegOp(FirstMI).getReg()]) && 1321 !mayAlias(FirstMI, MemInsns, TII)) { 1322 Flags.setMergeForward(true); 1323 return MBBI; 1324 } 1325 // Unable to combine these instructions due to interference in between. 1326 // Keep looking. 1327 } 1328 } 1329 1330 // If the instruction wasn't a matching load or store. Stop searching if we 1331 // encounter a call instruction that might modify memory. 1332 if (MI->isCall()) 1333 return E; 1334 1335 // Update modified / uses register lists. 1336 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1337 1338 // Otherwise, if the base register is modified, we have no match, so 1339 // return early. 1340 if (ModifiedRegs[BaseReg]) 1341 return E; 1342 1343 // Update list of instructions that read/write memory. 1344 if (MI->mayLoadOrStore()) 1345 MemInsns.push_back(MI); 1346 } 1347 return E; 1348 } 1349 1350 MachineBasicBlock::iterator 1351 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1352 MachineBasicBlock::iterator Update, 1353 bool IsPreIdx) { 1354 assert((Update->getOpcode() == AArch64::ADDXri || 1355 Update->getOpcode() == AArch64::SUBXri) && 1356 "Unexpected base register update instruction to merge!"); 1357 MachineBasicBlock::iterator NextI = I; 1358 // Return the instruction following the merged instruction, which is 1359 // the instruction following our unmerged load. Unless that's the add/sub 1360 // instruction we're merging, in which case it's the one after that. 1361 if (++NextI == Update) 1362 ++NextI; 1363 1364 int Value = Update->getOperand(2).getImm(); 1365 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1366 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1367 if (Update->getOpcode() == AArch64::SUBXri) 1368 Value = -Value; 1369 1370 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1371 : getPostIndexedOpcode(I->getOpcode()); 1372 MachineInstrBuilder MIB; 1373 if (!isPairedLdSt(I)) { 1374 // Non-paired instruction. 1375 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1376 .addOperand(getLdStRegOp(Update)) 1377 .addOperand(getLdStRegOp(I)) 1378 .addOperand(getLdStBaseOp(I)) 1379 .addImm(Value) 1380 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1381 } else { 1382 // Paired instruction. 1383 int Scale = getMemScale(I); 1384 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1385 .addOperand(getLdStRegOp(Update)) 1386 .addOperand(getLdStRegOp(I, 0)) 1387 .addOperand(getLdStRegOp(I, 1)) 1388 .addOperand(getLdStBaseOp(I)) 1389 .addImm(Value / Scale) 1390 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1391 } 1392 (void)MIB; 1393 1394 if (IsPreIdx) 1395 DEBUG(dbgs() << "Creating pre-indexed load/store."); 1396 else 1397 DEBUG(dbgs() << "Creating post-indexed load/store."); 1398 DEBUG(dbgs() << " Replacing instructions:\n "); 1399 DEBUG(I->print(dbgs())); 1400 DEBUG(dbgs() << " "); 1401 DEBUG(Update->print(dbgs())); 1402 DEBUG(dbgs() << " with instruction:\n "); 1403 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1404 DEBUG(dbgs() << "\n"); 1405 1406 // Erase the old instructions for the block. 1407 I->eraseFromParent(); 1408 Update->eraseFromParent(); 1409 1410 return NextI; 1411 } 1412 1413 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr *MemMI, 1414 MachineInstr *MI, 1415 unsigned BaseReg, int Offset) { 1416 switch (MI->getOpcode()) { 1417 default: 1418 break; 1419 case AArch64::SUBXri: 1420 // Negate the offset for a SUB instruction. 1421 Offset *= -1; 1422 // FALLTHROUGH 1423 case AArch64::ADDXri: 1424 // Make sure it's a vanilla immediate operand, not a relocation or 1425 // anything else we can't handle. 1426 if (!MI->getOperand(2).isImm()) 1427 break; 1428 // Watch out for 1 << 12 shifted value. 1429 if (AArch64_AM::getShiftValue(MI->getOperand(3).getImm())) 1430 break; 1431 1432 // The update instruction source and destination register must be the 1433 // same as the load/store base register. 1434 if (MI->getOperand(0).getReg() != BaseReg || 1435 MI->getOperand(1).getReg() != BaseReg) 1436 break; 1437 1438 bool IsPairedInsn = isPairedLdSt(MemMI); 1439 int UpdateOffset = MI->getOperand(2).getImm(); 1440 // For non-paired load/store instructions, the immediate must fit in a 1441 // signed 9-bit integer. 1442 if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256)) 1443 break; 1444 1445 // For paired load/store instructions, the immediate must be a multiple of 1446 // the scaling factor. The scaled offset must also fit into a signed 7-bit 1447 // integer. 1448 if (IsPairedInsn) { 1449 int Scale = getMemScale(MemMI); 1450 if (UpdateOffset % Scale != 0) 1451 break; 1452 1453 int ScaledOffset = UpdateOffset / Scale; 1454 if (ScaledOffset > 64 || ScaledOffset < -64) 1455 break; 1456 } 1457 1458 // If we have a non-zero Offset, we check that it matches the amount 1459 // we're adding to the register. 1460 if (!Offset || Offset == MI->getOperand(2).getImm()) 1461 return true; 1462 break; 1463 } 1464 return false; 1465 } 1466 1467 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1468 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1469 MachineBasicBlock::iterator E = I->getParent()->end(); 1470 MachineInstr *MemMI = I; 1471 MachineBasicBlock::iterator MBBI = I; 1472 1473 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1474 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI); 1475 1476 // Scan forward looking for post-index opportunities. Updating instructions 1477 // can't be formed if the memory instruction doesn't have the offset we're 1478 // looking for. 1479 if (MIUnscaledOffset != UnscaledOffset) 1480 return E; 1481 1482 // If the base register overlaps a destination register, we can't 1483 // merge the update. 1484 bool IsPairedInsn = isPairedLdSt(MemMI); 1485 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1486 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1487 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1488 return E; 1489 } 1490 1491 // Track which registers have been modified and used between the first insn 1492 // (inclusive) and the second insn. 1493 ModifiedRegs.reset(); 1494 UsedRegs.reset(); 1495 ++MBBI; 1496 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1497 MachineInstr *MI = MBBI; 1498 // Skip DBG_VALUE instructions. 1499 if (MI->isDebugValue()) 1500 continue; 1501 1502 // Now that we know this is a real instruction, count it. 1503 ++Count; 1504 1505 // If we found a match, return it. 1506 if (isMatchingUpdateInsn(I, MI, BaseReg, UnscaledOffset)) 1507 return MBBI; 1508 1509 // Update the status of what the instruction clobbered and used. 1510 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1511 1512 // Otherwise, if the base register is used or modified, we have no match, so 1513 // return early. 1514 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1515 return E; 1516 } 1517 return E; 1518 } 1519 1520 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1521 MachineBasicBlock::iterator I, unsigned Limit) { 1522 MachineBasicBlock::iterator B = I->getParent()->begin(); 1523 MachineBasicBlock::iterator E = I->getParent()->end(); 1524 MachineInstr *MemMI = I; 1525 MachineBasicBlock::iterator MBBI = I; 1526 1527 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1528 int Offset = getLdStOffsetOp(MemMI).getImm(); 1529 1530 // If the load/store is the first instruction in the block, there's obviously 1531 // not any matching update. Ditto if the memory offset isn't zero. 1532 if (MBBI == B || Offset != 0) 1533 return E; 1534 // If the base register overlaps a destination register, we can't 1535 // merge the update. 1536 bool IsPairedInsn = isPairedLdSt(MemMI); 1537 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1538 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1539 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1540 return E; 1541 } 1542 1543 // Track which registers have been modified and used between the first insn 1544 // (inclusive) and the second insn. 1545 ModifiedRegs.reset(); 1546 UsedRegs.reset(); 1547 unsigned Count = 0; 1548 do { 1549 --MBBI; 1550 MachineInstr *MI = MBBI; 1551 1552 // Don't count DBG_VALUE instructions towards the search limit. 1553 if (!MI->isDebugValue()) 1554 ++Count; 1555 1556 // If we found a match, return it. 1557 if (isMatchingUpdateInsn(I, MI, BaseReg, Offset)) 1558 return MBBI; 1559 1560 // Update the status of what the instruction clobbered and used. 1561 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1562 1563 // Otherwise, if the base register is used or modified, we have no match, so 1564 // return early. 1565 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1566 return E; 1567 } while (MBBI != B && Count < Limit); 1568 return E; 1569 } 1570 1571 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1572 MachineBasicBlock::iterator &MBBI) { 1573 MachineInstr *MI = MBBI; 1574 // If this is a volatile load, don't mess with it. 1575 if (MI->hasOrderedMemoryRef()) 1576 return false; 1577 1578 // Make sure this is a reg+imm. 1579 // FIXME: It is possible to extend it to handle reg+reg cases. 1580 if (!getLdStOffsetOp(MI).isImm()) 1581 return false; 1582 1583 // Look backward up to LdStLimit instructions. 1584 MachineBasicBlock::iterator StoreI; 1585 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 1586 ++NumLoadsFromStoresPromoted; 1587 // Promote the load. Keeping the iterator straight is a 1588 // pain, so we let the merge routine tell us what the next instruction 1589 // is after it's done mucking about. 1590 MBBI = promoteLoadFromStore(MBBI, StoreI); 1591 return true; 1592 } 1593 return false; 1594 } 1595 1596 // Find narrow loads that can be converted into a single wider load with 1597 // bitfield extract instructions. Also merge adjacent zero stores into a wider 1598 // store. 1599 bool AArch64LoadStoreOpt::tryToMergeLdStInst( 1600 MachineBasicBlock::iterator &MBBI) { 1601 assert((isNarrowLoad(MBBI) || isPromotableZeroStoreOpcode(MBBI)) && 1602 "Expected narrow op."); 1603 MachineInstr *MI = MBBI; 1604 MachineBasicBlock::iterator E = MI->getParent()->end(); 1605 1606 if (!TII->isCandidateToMergeOrPair(MI)) 1607 return false; 1608 1609 // For promotable zero stores, the stored value should be WZR. 1610 if (isPromotableZeroStoreOpcode(MI) && 1611 getLdStRegOp(MI).getReg() != AArch64::WZR) 1612 return false; 1613 1614 // Look ahead up to LdStLimit instructions for a mergable instruction. 1615 LdStPairFlags Flags; 1616 MachineBasicBlock::iterator MergeMI = 1617 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 1618 if (MergeMI != E) { 1619 if (isNarrowLoad(MI)) { 1620 ++NumNarrowLoadsPromoted; 1621 } else if (isPromotableZeroStoreInst(MI)) { 1622 ++NumZeroStoresPromoted; 1623 } 1624 // Keeping the iterator straight is a pain, so we let the merge routine tell 1625 // us what the next instruction is after it's done mucking about. 1626 MBBI = mergeNarrowInsns(MBBI, MergeMI, Flags); 1627 return true; 1628 } 1629 return false; 1630 } 1631 1632 // Find loads and stores that can be merged into a single load or store pair 1633 // instruction. 1634 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 1635 MachineInstr *MI = MBBI; 1636 MachineBasicBlock::iterator E = MI->getParent()->end(); 1637 1638 if (!TII->isCandidateToMergeOrPair(MI)) 1639 return false; 1640 1641 // Early exit if the offset is not possible to match. (6 bits of positive 1642 // range, plus allow an extra one in case we find a later insn that matches 1643 // with Offset-1) 1644 bool IsUnscaled = TII->isUnscaledLdSt(MI); 1645 int Offset = getLdStOffsetOp(MI).getImm(); 1646 int OffsetStride = IsUnscaled ? getMemScale(MI) : 1; 1647 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1648 return false; 1649 1650 // Look ahead up to LdStLimit instructions for a pairable instruction. 1651 LdStPairFlags Flags; 1652 MachineBasicBlock::iterator Paired = 1653 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 1654 if (Paired != E) { 1655 ++NumPairCreated; 1656 if (TII->isUnscaledLdSt(MI)) 1657 ++NumUnscaledPairCreated; 1658 // Keeping the iterator straight is a pain, so we let the merge routine tell 1659 // us what the next instruction is after it's done mucking about. 1660 MBBI = mergePairedInsns(MBBI, Paired, Flags); 1661 return true; 1662 } 1663 return false; 1664 } 1665 1666 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 1667 bool enableNarrowLdOpt) { 1668 bool Modified = false; 1669 // Four tranformations to do here: 1670 // 1) Find loads that directly read from stores and promote them by 1671 // replacing with mov instructions. If the store is wider than the load, 1672 // the load will be replaced with a bitfield extract. 1673 // e.g., 1674 // str w1, [x0, #4] 1675 // ldrh w2, [x0, #6] 1676 // ; becomes 1677 // str w1, [x0, #4] 1678 // lsr w2, w1, #16 1679 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1680 MBBI != E;) { 1681 MachineInstr *MI = MBBI; 1682 switch (MI->getOpcode()) { 1683 default: 1684 // Just move on to the next instruction. 1685 ++MBBI; 1686 break; 1687 // Scaled instructions. 1688 case AArch64::LDRBBui: 1689 case AArch64::LDRHHui: 1690 case AArch64::LDRWui: 1691 case AArch64::LDRXui: 1692 // Unscaled instructions. 1693 case AArch64::LDURBBi: 1694 case AArch64::LDURHHi: 1695 case AArch64::LDURWi: 1696 case AArch64::LDURXi: { 1697 if (tryToPromoteLoadFromStore(MBBI)) { 1698 Modified = true; 1699 break; 1700 } 1701 ++MBBI; 1702 break; 1703 } 1704 } 1705 } 1706 // 2) Find narrow loads that can be converted into a single wider load 1707 // with bitfield extract instructions. 1708 // e.g., 1709 // ldrh w0, [x2] 1710 // ldrh w1, [x2, #2] 1711 // ; becomes 1712 // ldr w0, [x2] 1713 // ubfx w1, w0, #16, #16 1714 // and w0, w0, #ffff 1715 // 1716 // Also merge adjacent zero stores into a wider store. 1717 // e.g., 1718 // strh wzr, [x0] 1719 // strh wzr, [x0, #2] 1720 // ; becomes 1721 // str wzr, [x0] 1722 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1723 enableNarrowLdOpt && MBBI != E;) { 1724 MachineInstr *MI = MBBI; 1725 switch (MI->getOpcode()) { 1726 default: 1727 // Just move on to the next instruction. 1728 ++MBBI; 1729 break; 1730 // Scaled instructions. 1731 case AArch64::LDRBBui: 1732 case AArch64::LDRHHui: 1733 case AArch64::LDRSBWui: 1734 case AArch64::LDRSHWui: 1735 case AArch64::STRBBui: 1736 case AArch64::STRHHui: 1737 case AArch64::STRWui: 1738 // Unscaled instructions. 1739 case AArch64::LDURBBi: 1740 case AArch64::LDURHHi: 1741 case AArch64::LDURSBWi: 1742 case AArch64::LDURSHWi: 1743 case AArch64::STURBBi: 1744 case AArch64::STURHHi: 1745 case AArch64::STURWi: { 1746 if (tryToMergeLdStInst(MBBI)) { 1747 Modified = true; 1748 break; 1749 } 1750 ++MBBI; 1751 break; 1752 } 1753 } 1754 } 1755 // 3) Find loads and stores that can be merged into a single load or store 1756 // pair instruction. 1757 // e.g., 1758 // ldr x0, [x2] 1759 // ldr x1, [x2, #8] 1760 // ; becomes 1761 // ldp x0, x1, [x2] 1762 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1763 MBBI != E;) { 1764 MachineInstr *MI = MBBI; 1765 switch (MI->getOpcode()) { 1766 default: 1767 // Just move on to the next instruction. 1768 ++MBBI; 1769 break; 1770 // Scaled instructions. 1771 case AArch64::STRSui: 1772 case AArch64::STRDui: 1773 case AArch64::STRQui: 1774 case AArch64::STRXui: 1775 case AArch64::STRWui: 1776 case AArch64::LDRSui: 1777 case AArch64::LDRDui: 1778 case AArch64::LDRQui: 1779 case AArch64::LDRXui: 1780 case AArch64::LDRWui: 1781 case AArch64::LDRSWui: 1782 // Unscaled instructions. 1783 case AArch64::STURSi: 1784 case AArch64::STURDi: 1785 case AArch64::STURQi: 1786 case AArch64::STURWi: 1787 case AArch64::STURXi: 1788 case AArch64::LDURSi: 1789 case AArch64::LDURDi: 1790 case AArch64::LDURQi: 1791 case AArch64::LDURWi: 1792 case AArch64::LDURXi: 1793 case AArch64::LDURSWi: { 1794 if (tryToPairLdStInst(MBBI)) { 1795 Modified = true; 1796 break; 1797 } 1798 ++MBBI; 1799 break; 1800 } 1801 } 1802 } 1803 // 4) Find base register updates that can be merged into the load or store 1804 // as a base-reg writeback. 1805 // e.g., 1806 // ldr x0, [x2] 1807 // add x2, x2, #4 1808 // ; becomes 1809 // ldr x0, [x2], #4 1810 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1811 MBBI != E;) { 1812 MachineInstr *MI = MBBI; 1813 // Do update merging. It's simpler to keep this separate from the above 1814 // switchs, though not strictly necessary. 1815 unsigned Opc = MI->getOpcode(); 1816 switch (Opc) { 1817 default: 1818 // Just move on to the next instruction. 1819 ++MBBI; 1820 break; 1821 // Scaled instructions. 1822 case AArch64::STRSui: 1823 case AArch64::STRDui: 1824 case AArch64::STRQui: 1825 case AArch64::STRXui: 1826 case AArch64::STRWui: 1827 case AArch64::STRHHui: 1828 case AArch64::STRBBui: 1829 case AArch64::LDRSui: 1830 case AArch64::LDRDui: 1831 case AArch64::LDRQui: 1832 case AArch64::LDRXui: 1833 case AArch64::LDRWui: 1834 case AArch64::LDRHHui: 1835 case AArch64::LDRBBui: 1836 // Unscaled instructions. 1837 case AArch64::STURSi: 1838 case AArch64::STURDi: 1839 case AArch64::STURQi: 1840 case AArch64::STURWi: 1841 case AArch64::STURXi: 1842 case AArch64::LDURSi: 1843 case AArch64::LDURDi: 1844 case AArch64::LDURQi: 1845 case AArch64::LDURWi: 1846 case AArch64::LDURXi: 1847 // Paired instructions. 1848 case AArch64::LDPSi: 1849 case AArch64::LDPSWi: 1850 case AArch64::LDPDi: 1851 case AArch64::LDPQi: 1852 case AArch64::LDPWi: 1853 case AArch64::LDPXi: 1854 case AArch64::STPSi: 1855 case AArch64::STPDi: 1856 case AArch64::STPQi: 1857 case AArch64::STPWi: 1858 case AArch64::STPXi: { 1859 // Make sure this is a reg+imm (as opposed to an address reloc). 1860 if (!getLdStOffsetOp(MI).isImm()) { 1861 ++MBBI; 1862 break; 1863 } 1864 // Look forward to try to form a post-index instruction. For example, 1865 // ldr x0, [x20] 1866 // add x20, x20, #32 1867 // merged into: 1868 // ldr x0, [x20], #32 1869 MachineBasicBlock::iterator Update = 1870 findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 1871 if (Update != E) { 1872 // Merge the update into the ld/st. 1873 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 1874 Modified = true; 1875 ++NumPostFolded; 1876 break; 1877 } 1878 // Don't know how to handle pre/post-index versions, so move to the next 1879 // instruction. 1880 if (TII->isUnscaledLdSt(Opc)) { 1881 ++MBBI; 1882 break; 1883 } 1884 1885 // Look back to try to find a pre-index instruction. For example, 1886 // add x0, x0, #8 1887 // ldr x1, [x0] 1888 // merged into: 1889 // ldr x1, [x0, #8]! 1890 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 1891 if (Update != E) { 1892 // Merge the update into the ld/st. 1893 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1894 Modified = true; 1895 ++NumPreFolded; 1896 break; 1897 } 1898 // The immediate in the load/store is scaled by the size of the memory 1899 // operation. The immediate in the add we're looking for, 1900 // however, is not, so adjust here. 1901 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI); 1902 1903 // Look forward to try to find a post-index instruction. For example, 1904 // ldr x1, [x0, #64] 1905 // add x0, x0, #64 1906 // merged into: 1907 // ldr x1, [x0, #64]! 1908 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 1909 if (Update != E) { 1910 // Merge the update into the ld/st. 1911 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1912 Modified = true; 1913 ++NumPreFolded; 1914 break; 1915 } 1916 1917 // Nothing found. Just move to the next instruction. 1918 ++MBBI; 1919 break; 1920 } 1921 } 1922 } 1923 1924 return Modified; 1925 } 1926 1927 bool AArch64LoadStoreOpt::enableNarrowLdMerge(MachineFunction &Fn) { 1928 bool ProfitableArch = Subtarget->isCortexA57() || Subtarget->isKryo(); 1929 // FIXME: The benefit from converting narrow loads into a wider load could be 1930 // microarchitectural as it assumes that a single load with two bitfield 1931 // extracts is cheaper than two narrow loads. Currently, this conversion is 1932 // enabled only in cortex-a57 on which performance benefits were verified. 1933 return ProfitableArch && !Subtarget->requiresStrictAlign(); 1934 } 1935 1936 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 1937 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 1938 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 1939 TRI = Subtarget->getRegisterInfo(); 1940 1941 // Resize the modified and used register bitfield trackers. We do this once 1942 // per function and then clear the bitfield each time we optimize a load or 1943 // store. 1944 ModifiedRegs.resize(TRI->getNumRegs()); 1945 UsedRegs.resize(TRI->getNumRegs()); 1946 1947 bool Modified = false; 1948 bool enableNarrowLdOpt = enableNarrowLdMerge(Fn); 1949 for (auto &MBB : Fn) 1950 Modified |= optimizeBlock(MBB, enableNarrowLdOpt); 1951 1952 return Modified; 1953 } 1954 1955 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep 1956 // loads and stores near one another? 1957 1958 // FIXME: When pairing store instructions it's very possible for this pass to 1959 // hoist a store with a KILL marker above another use (without a KILL marker). 1960 // The resulting IR is invalid, but nothing uses the KILL markers after this 1961 // pass, so it's never caused a problem in practice. 1962 1963 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 1964 /// load / store optimization pass. 1965 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 1966 return new AArch64LoadStoreOpt(); 1967 } 1968