1 //=- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -*- C++ -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that performs load / store related peephole 11 // optimizations. This pass should be run after register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AArch64InstrInfo.h" 16 #include "AArch64Subtarget.h" 17 #include "MCTargetDesc/AArch64AddressingModes.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 using namespace llvm; 33 34 #define DEBUG_TYPE "aarch64-ldst-opt" 35 36 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 37 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 38 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 39 STATISTIC(NumUnscaledPairCreated, 40 "Number of load/store from unscaled generated"); 41 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 42 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 43 44 // The LdStLimit limits how far we search for load/store pairs. 45 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 46 cl::init(20), cl::Hidden); 47 48 // The UpdateLimit limits how far we search for update instructions when we form 49 // pre-/post-index instructions. 50 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 51 cl::Hidden); 52 53 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 54 55 namespace { 56 57 typedef struct LdStPairFlags { 58 // If a matching instruction is found, MergeForward is set to true if the 59 // merge is to remove the first instruction and replace the second with 60 // a pair-wise insn, and false if the reverse is true. 61 bool MergeForward; 62 63 // SExtIdx gives the index of the result of the load pair that must be 64 // extended. The value of SExtIdx assumes that the paired load produces the 65 // value in this order: (I, returned iterator), i.e., -1 means no value has 66 // to be extended, 0 means I, and 1 means the returned iterator. 67 int SExtIdx; 68 69 LdStPairFlags() : MergeForward(false), SExtIdx(-1) {} 70 71 void setMergeForward(bool V = true) { MergeForward = V; } 72 bool getMergeForward() const { return MergeForward; } 73 74 void setSExtIdx(int V) { SExtIdx = V; } 75 int getSExtIdx() const { return SExtIdx; } 76 77 } LdStPairFlags; 78 79 struct AArch64LoadStoreOpt : public MachineFunctionPass { 80 static char ID; 81 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 82 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 83 } 84 85 const AArch64InstrInfo *TII; 86 const TargetRegisterInfo *TRI; 87 const AArch64Subtarget *Subtarget; 88 89 // Track which registers have been modified and used. 90 BitVector ModifiedRegs, UsedRegs; 91 92 // Scan the instructions looking for a load/store that can be combined 93 // with the current instruction into a load/store pair. 94 // Return the matching instruction if one is found, else MBB->end(). 95 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 96 LdStPairFlags &Flags, 97 unsigned Limit, 98 bool FindNarrowMerge); 99 100 // Scan the instructions looking for a store that writes to the address from 101 // which the current load instruction reads. Return true if one is found. 102 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 103 MachineBasicBlock::iterator &StoreI); 104 105 // Merge the two instructions indicated into a wider narrow store instruction. 106 MachineBasicBlock::iterator 107 mergeNarrowZeroStores(MachineBasicBlock::iterator I, 108 MachineBasicBlock::iterator MergeMI, 109 const LdStPairFlags &Flags); 110 111 // Merge the two instructions indicated into a single pair-wise instruction. 112 MachineBasicBlock::iterator 113 mergePairedInsns(MachineBasicBlock::iterator I, 114 MachineBasicBlock::iterator Paired, 115 const LdStPairFlags &Flags); 116 117 // Promote the load that reads directly from the address stored to. 118 MachineBasicBlock::iterator 119 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 120 MachineBasicBlock::iterator StoreI); 121 122 // Scan the instruction list to find a base register update that can 123 // be combined with the current instruction (a load or store) using 124 // pre or post indexed addressing with writeback. Scan forwards. 125 MachineBasicBlock::iterator 126 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 127 int UnscaledOffset, unsigned Limit); 128 129 // Scan the instruction list to find a base register update that can 130 // be combined with the current instruction (a load or store) using 131 // pre or post indexed addressing with writeback. Scan backwards. 132 MachineBasicBlock::iterator 133 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 134 135 // Find an instruction that updates the base register of the ld/st 136 // instruction. 137 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, 138 unsigned BaseReg, int Offset); 139 140 // Merge a pre- or post-index base register update into a ld/st instruction. 141 MachineBasicBlock::iterator 142 mergeUpdateInsn(MachineBasicBlock::iterator I, 143 MachineBasicBlock::iterator Update, bool IsPreIdx); 144 145 // Find and merge zero store instructions. 146 bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI); 147 148 // Find and pair ldr/str instructions. 149 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 150 151 // Find and promote load instructions which read directly from store. 152 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 153 154 bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt); 155 156 bool runOnMachineFunction(MachineFunction &Fn) override; 157 158 MachineFunctionProperties getRequiredProperties() const override { 159 return MachineFunctionProperties().set( 160 MachineFunctionProperties::Property::NoVRegs); 161 } 162 163 StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } 164 }; 165 char AArch64LoadStoreOpt::ID = 0; 166 } // namespace 167 168 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 169 AARCH64_LOAD_STORE_OPT_NAME, false, false) 170 171 static bool isNarrowStore(unsigned Opc) { 172 switch (Opc) { 173 default: 174 return false; 175 case AArch64::STRBBui: 176 case AArch64::STURBBi: 177 case AArch64::STRHHui: 178 case AArch64::STURHHi: 179 return true; 180 } 181 } 182 183 // Scaling factor for unscaled load or store. 184 static int getMemScale(MachineInstr &MI) { 185 switch (MI.getOpcode()) { 186 default: 187 llvm_unreachable("Opcode has unknown scale!"); 188 case AArch64::LDRBBui: 189 case AArch64::LDURBBi: 190 case AArch64::LDRSBWui: 191 case AArch64::LDURSBWi: 192 case AArch64::STRBBui: 193 case AArch64::STURBBi: 194 return 1; 195 case AArch64::LDRHHui: 196 case AArch64::LDURHHi: 197 case AArch64::LDRSHWui: 198 case AArch64::LDURSHWi: 199 case AArch64::STRHHui: 200 case AArch64::STURHHi: 201 return 2; 202 case AArch64::LDRSui: 203 case AArch64::LDURSi: 204 case AArch64::LDRSWui: 205 case AArch64::LDURSWi: 206 case AArch64::LDRWui: 207 case AArch64::LDURWi: 208 case AArch64::STRSui: 209 case AArch64::STURSi: 210 case AArch64::STRWui: 211 case AArch64::STURWi: 212 case AArch64::LDPSi: 213 case AArch64::LDPSWi: 214 case AArch64::LDPWi: 215 case AArch64::STPSi: 216 case AArch64::STPWi: 217 return 4; 218 case AArch64::LDRDui: 219 case AArch64::LDURDi: 220 case AArch64::LDRXui: 221 case AArch64::LDURXi: 222 case AArch64::STRDui: 223 case AArch64::STURDi: 224 case AArch64::STRXui: 225 case AArch64::STURXi: 226 case AArch64::LDPDi: 227 case AArch64::LDPXi: 228 case AArch64::STPDi: 229 case AArch64::STPXi: 230 return 8; 231 case AArch64::LDRQui: 232 case AArch64::LDURQi: 233 case AArch64::STRQui: 234 case AArch64::STURQi: 235 case AArch64::LDPQi: 236 case AArch64::STPQi: 237 return 16; 238 } 239 } 240 241 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 242 bool *IsValidLdStrOpc = nullptr) { 243 if (IsValidLdStrOpc) 244 *IsValidLdStrOpc = true; 245 switch (Opc) { 246 default: 247 if (IsValidLdStrOpc) 248 *IsValidLdStrOpc = false; 249 return UINT_MAX; 250 case AArch64::STRDui: 251 case AArch64::STURDi: 252 case AArch64::STRQui: 253 case AArch64::STURQi: 254 case AArch64::STRBBui: 255 case AArch64::STURBBi: 256 case AArch64::STRHHui: 257 case AArch64::STURHHi: 258 case AArch64::STRWui: 259 case AArch64::STURWi: 260 case AArch64::STRXui: 261 case AArch64::STURXi: 262 case AArch64::LDRDui: 263 case AArch64::LDURDi: 264 case AArch64::LDRQui: 265 case AArch64::LDURQi: 266 case AArch64::LDRWui: 267 case AArch64::LDURWi: 268 case AArch64::LDRXui: 269 case AArch64::LDURXi: 270 case AArch64::STRSui: 271 case AArch64::STURSi: 272 case AArch64::LDRSui: 273 case AArch64::LDURSi: 274 return Opc; 275 case AArch64::LDRSWui: 276 return AArch64::LDRWui; 277 case AArch64::LDURSWi: 278 return AArch64::LDURWi; 279 } 280 } 281 282 static unsigned getMatchingWideOpcode(unsigned Opc) { 283 switch (Opc) { 284 default: 285 llvm_unreachable("Opcode has no wide equivalent!"); 286 case AArch64::STRBBui: 287 return AArch64::STRHHui; 288 case AArch64::STRHHui: 289 return AArch64::STRWui; 290 case AArch64::STURBBi: 291 return AArch64::STURHHi; 292 case AArch64::STURHHi: 293 return AArch64::STURWi; 294 case AArch64::STURWi: 295 return AArch64::STURXi; 296 case AArch64::STRWui: 297 return AArch64::STRXui; 298 } 299 } 300 301 static unsigned getMatchingPairOpcode(unsigned Opc) { 302 switch (Opc) { 303 default: 304 llvm_unreachable("Opcode has no pairwise equivalent!"); 305 case AArch64::STRSui: 306 case AArch64::STURSi: 307 return AArch64::STPSi; 308 case AArch64::STRDui: 309 case AArch64::STURDi: 310 return AArch64::STPDi; 311 case AArch64::STRQui: 312 case AArch64::STURQi: 313 return AArch64::STPQi; 314 case AArch64::STRWui: 315 case AArch64::STURWi: 316 return AArch64::STPWi; 317 case AArch64::STRXui: 318 case AArch64::STURXi: 319 return AArch64::STPXi; 320 case AArch64::LDRSui: 321 case AArch64::LDURSi: 322 return AArch64::LDPSi; 323 case AArch64::LDRDui: 324 case AArch64::LDURDi: 325 return AArch64::LDPDi; 326 case AArch64::LDRQui: 327 case AArch64::LDURQi: 328 return AArch64::LDPQi; 329 case AArch64::LDRWui: 330 case AArch64::LDURWi: 331 return AArch64::LDPWi; 332 case AArch64::LDRXui: 333 case AArch64::LDURXi: 334 return AArch64::LDPXi; 335 case AArch64::LDRSWui: 336 case AArch64::LDURSWi: 337 return AArch64::LDPSWi; 338 } 339 } 340 341 static unsigned isMatchingStore(MachineInstr &LoadInst, 342 MachineInstr &StoreInst) { 343 unsigned LdOpc = LoadInst.getOpcode(); 344 unsigned StOpc = StoreInst.getOpcode(); 345 switch (LdOpc) { 346 default: 347 llvm_unreachable("Unsupported load instruction!"); 348 case AArch64::LDRBBui: 349 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 350 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 351 case AArch64::LDURBBi: 352 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 353 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 354 case AArch64::LDRHHui: 355 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 356 StOpc == AArch64::STRXui; 357 case AArch64::LDURHHi: 358 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 359 StOpc == AArch64::STURXi; 360 case AArch64::LDRWui: 361 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 362 case AArch64::LDURWi: 363 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 364 case AArch64::LDRXui: 365 return StOpc == AArch64::STRXui; 366 case AArch64::LDURXi: 367 return StOpc == AArch64::STURXi; 368 } 369 } 370 371 static unsigned getPreIndexedOpcode(unsigned Opc) { 372 switch (Opc) { 373 default: 374 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 375 case AArch64::STRSui: 376 return AArch64::STRSpre; 377 case AArch64::STRDui: 378 return AArch64::STRDpre; 379 case AArch64::STRQui: 380 return AArch64::STRQpre; 381 case AArch64::STRBBui: 382 return AArch64::STRBBpre; 383 case AArch64::STRHHui: 384 return AArch64::STRHHpre; 385 case AArch64::STRWui: 386 return AArch64::STRWpre; 387 case AArch64::STRXui: 388 return AArch64::STRXpre; 389 case AArch64::LDRSui: 390 return AArch64::LDRSpre; 391 case AArch64::LDRDui: 392 return AArch64::LDRDpre; 393 case AArch64::LDRQui: 394 return AArch64::LDRQpre; 395 case AArch64::LDRBBui: 396 return AArch64::LDRBBpre; 397 case AArch64::LDRHHui: 398 return AArch64::LDRHHpre; 399 case AArch64::LDRWui: 400 return AArch64::LDRWpre; 401 case AArch64::LDRXui: 402 return AArch64::LDRXpre; 403 case AArch64::LDRSWui: 404 return AArch64::LDRSWpre; 405 case AArch64::LDPSi: 406 return AArch64::LDPSpre; 407 case AArch64::LDPSWi: 408 return AArch64::LDPSWpre; 409 case AArch64::LDPDi: 410 return AArch64::LDPDpre; 411 case AArch64::LDPQi: 412 return AArch64::LDPQpre; 413 case AArch64::LDPWi: 414 return AArch64::LDPWpre; 415 case AArch64::LDPXi: 416 return AArch64::LDPXpre; 417 case AArch64::STPSi: 418 return AArch64::STPSpre; 419 case AArch64::STPDi: 420 return AArch64::STPDpre; 421 case AArch64::STPQi: 422 return AArch64::STPQpre; 423 case AArch64::STPWi: 424 return AArch64::STPWpre; 425 case AArch64::STPXi: 426 return AArch64::STPXpre; 427 } 428 } 429 430 static unsigned getPostIndexedOpcode(unsigned Opc) { 431 switch (Opc) { 432 default: 433 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 434 case AArch64::STRSui: 435 return AArch64::STRSpost; 436 case AArch64::STRDui: 437 return AArch64::STRDpost; 438 case AArch64::STRQui: 439 return AArch64::STRQpost; 440 case AArch64::STRBBui: 441 return AArch64::STRBBpost; 442 case AArch64::STRHHui: 443 return AArch64::STRHHpost; 444 case AArch64::STRWui: 445 return AArch64::STRWpost; 446 case AArch64::STRXui: 447 return AArch64::STRXpost; 448 case AArch64::LDRSui: 449 return AArch64::LDRSpost; 450 case AArch64::LDRDui: 451 return AArch64::LDRDpost; 452 case AArch64::LDRQui: 453 return AArch64::LDRQpost; 454 case AArch64::LDRBBui: 455 return AArch64::LDRBBpost; 456 case AArch64::LDRHHui: 457 return AArch64::LDRHHpost; 458 case AArch64::LDRWui: 459 return AArch64::LDRWpost; 460 case AArch64::LDRXui: 461 return AArch64::LDRXpost; 462 case AArch64::LDRSWui: 463 return AArch64::LDRSWpost; 464 case AArch64::LDPSi: 465 return AArch64::LDPSpost; 466 case AArch64::LDPSWi: 467 return AArch64::LDPSWpost; 468 case AArch64::LDPDi: 469 return AArch64::LDPDpost; 470 case AArch64::LDPQi: 471 return AArch64::LDPQpost; 472 case AArch64::LDPWi: 473 return AArch64::LDPWpost; 474 case AArch64::LDPXi: 475 return AArch64::LDPXpost; 476 case AArch64::STPSi: 477 return AArch64::STPSpost; 478 case AArch64::STPDi: 479 return AArch64::STPDpost; 480 case AArch64::STPQi: 481 return AArch64::STPQpost; 482 case AArch64::STPWi: 483 return AArch64::STPWpost; 484 case AArch64::STPXi: 485 return AArch64::STPXpost; 486 } 487 } 488 489 static bool isPairedLdSt(const MachineInstr &MI) { 490 switch (MI.getOpcode()) { 491 default: 492 return false; 493 case AArch64::LDPSi: 494 case AArch64::LDPSWi: 495 case AArch64::LDPDi: 496 case AArch64::LDPQi: 497 case AArch64::LDPWi: 498 case AArch64::LDPXi: 499 case AArch64::STPSi: 500 case AArch64::STPDi: 501 case AArch64::STPQi: 502 case AArch64::STPWi: 503 case AArch64::STPXi: 504 return true; 505 } 506 } 507 508 static const MachineOperand &getLdStRegOp(const MachineInstr &MI, 509 unsigned PairedRegOp = 0) { 510 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 511 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 512 return MI.getOperand(Idx); 513 } 514 515 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) { 516 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 517 return MI.getOperand(Idx); 518 } 519 520 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) { 521 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 522 return MI.getOperand(Idx); 523 } 524 525 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, 526 MachineInstr &StoreInst, 527 const AArch64InstrInfo *TII) { 528 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 529 int LoadSize = getMemScale(LoadInst); 530 int StoreSize = getMemScale(StoreInst); 531 int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst) 532 ? getLdStOffsetOp(StoreInst).getImm() 533 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 534 int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst) 535 ? getLdStOffsetOp(LoadInst).getImm() 536 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 537 return (UnscaledStOffset <= UnscaledLdOffset) && 538 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 539 } 540 541 static bool isPromotableZeroStoreInst(MachineInstr &MI) { 542 unsigned Opc = MI.getOpcode(); 543 return (Opc == AArch64::STRWui || Opc == AArch64::STURWi || 544 isNarrowStore(Opc)) && 545 getLdStRegOp(MI).getReg() == AArch64::WZR; 546 } 547 548 MachineBasicBlock::iterator 549 AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I, 550 MachineBasicBlock::iterator MergeMI, 551 const LdStPairFlags &Flags) { 552 assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && 553 "Expected promotable zero stores."); 554 555 MachineBasicBlock::iterator NextI = I; 556 ++NextI; 557 // If NextI is the second of the two instructions to be merged, we need 558 // to skip one further. Either way we merge will invalidate the iterator, 559 // and we don't need to scan the new instruction, as it's a pairwise 560 // instruction, which we're not considering for further action anyway. 561 if (NextI == MergeMI) 562 ++NextI; 563 564 unsigned Opc = I->getOpcode(); 565 bool IsScaled = !TII->isUnscaledLdSt(Opc); 566 int OffsetStride = IsScaled ? 1 : getMemScale(*I); 567 568 bool MergeForward = Flags.getMergeForward(); 569 // Insert our new paired instruction after whichever of the paired 570 // instructions MergeForward indicates. 571 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 572 // Also based on MergeForward is from where we copy the base register operand 573 // so we get the flags compatible with the input code. 574 const MachineOperand &BaseRegOp = 575 MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I); 576 577 // Which register is Rt and which is Rt2 depends on the offset order. 578 MachineInstr *RtMI; 579 if (getLdStOffsetOp(*I).getImm() == 580 getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) 581 RtMI = &*MergeMI; 582 else 583 RtMI = &*I; 584 585 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 586 // Change the scaled offset from small to large type. 587 if (IsScaled) { 588 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 589 OffsetImm /= 2; 590 } 591 592 // Construct the new instruction. 593 DebugLoc DL = I->getDebugLoc(); 594 MachineBasicBlock *MBB = I->getParent(); 595 MachineInstrBuilder MIB; 596 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 597 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 598 .addOperand(BaseRegOp) 599 .addImm(OffsetImm) 600 .setMemRefs(I->mergeMemRefsWith(*MergeMI)); 601 (void)MIB; 602 603 DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n "); 604 DEBUG(I->print(dbgs())); 605 DEBUG(dbgs() << " "); 606 DEBUG(MergeMI->print(dbgs())); 607 DEBUG(dbgs() << " with instruction:\n "); 608 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 609 DEBUG(dbgs() << "\n"); 610 611 // Erase the old instructions. 612 I->eraseFromParent(); 613 MergeMI->eraseFromParent(); 614 return NextI; 615 } 616 617 MachineBasicBlock::iterator 618 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 619 MachineBasicBlock::iterator Paired, 620 const LdStPairFlags &Flags) { 621 MachineBasicBlock::iterator NextI = I; 622 ++NextI; 623 // If NextI is the second of the two instructions to be merged, we need 624 // to skip one further. Either way we merge will invalidate the iterator, 625 // and we don't need to scan the new instruction, as it's a pairwise 626 // instruction, which we're not considering for further action anyway. 627 if (NextI == Paired) 628 ++NextI; 629 630 int SExtIdx = Flags.getSExtIdx(); 631 unsigned Opc = 632 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 633 bool IsUnscaled = TII->isUnscaledLdSt(Opc); 634 int OffsetStride = IsUnscaled ? getMemScale(*I) : 1; 635 636 bool MergeForward = Flags.getMergeForward(); 637 // Insert our new paired instruction after whichever of the paired 638 // instructions MergeForward indicates. 639 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 640 // Also based on MergeForward is from where we copy the base register operand 641 // so we get the flags compatible with the input code. 642 const MachineOperand &BaseRegOp = 643 MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I); 644 645 int Offset = getLdStOffsetOp(*I).getImm(); 646 int PairedOffset = getLdStOffsetOp(*Paired).getImm(); 647 bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode()); 648 if (IsUnscaled != PairedIsUnscaled) { 649 // We're trying to pair instructions that differ in how they are scaled. If 650 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 651 // the opposite (i.e., make Paired's offset unscaled). 652 int MemSize = getMemScale(*Paired); 653 if (PairedIsUnscaled) { 654 // If the unscaled offset isn't a multiple of the MemSize, we can't 655 // pair the operations together. 656 assert(!(PairedOffset % getMemScale(*Paired)) && 657 "Offset should be a multiple of the stride!"); 658 PairedOffset /= MemSize; 659 } else { 660 PairedOffset *= MemSize; 661 } 662 } 663 664 // Which register is Rt and which is Rt2 depends on the offset order. 665 MachineInstr *RtMI, *Rt2MI; 666 if (Offset == PairedOffset + OffsetStride) { 667 RtMI = &*Paired; 668 Rt2MI = &*I; 669 // Here we swapped the assumption made for SExtIdx. 670 // I.e., we turn ldp I, Paired into ldp Paired, I. 671 // Update the index accordingly. 672 if (SExtIdx != -1) 673 SExtIdx = (SExtIdx + 1) % 2; 674 } else { 675 RtMI = &*I; 676 Rt2MI = &*Paired; 677 } 678 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 679 // Scale the immediate offset, if necessary. 680 if (TII->isUnscaledLdSt(RtMI->getOpcode())) { 681 assert(!(OffsetImm % getMemScale(*RtMI)) && 682 "Unscaled offset cannot be scaled."); 683 OffsetImm /= getMemScale(*RtMI); 684 } 685 686 // Construct the new instruction. 687 MachineInstrBuilder MIB; 688 DebugLoc DL = I->getDebugLoc(); 689 MachineBasicBlock *MBB = I->getParent(); 690 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc))) 691 .addOperand(getLdStRegOp(*RtMI)) 692 .addOperand(getLdStRegOp(*Rt2MI)) 693 .addOperand(BaseRegOp) 694 .addImm(OffsetImm) 695 .setMemRefs(I->mergeMemRefsWith(*Paired)); 696 697 (void)MIB; 698 699 DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n "); 700 DEBUG(I->print(dbgs())); 701 DEBUG(dbgs() << " "); 702 DEBUG(Paired->print(dbgs())); 703 DEBUG(dbgs() << " with instruction:\n "); 704 if (SExtIdx != -1) { 705 // Generate the sign extension for the proper result of the ldp. 706 // I.e., with X1, that would be: 707 // %W1<def> = KILL %W1, %X1<imp-def> 708 // %X1<def> = SBFMXri %X1<kill>, 0, 31 709 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 710 // Right now, DstMO has the extended register, since it comes from an 711 // extended opcode. 712 unsigned DstRegX = DstMO.getReg(); 713 // Get the W variant of that register. 714 unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 715 // Update the result of LDP to use the W instead of the X variant. 716 DstMO.setReg(DstRegW); 717 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 718 DEBUG(dbgs() << "\n"); 719 // Make the machine verifier happy by providing a definition for 720 // the X register. 721 // Insert this definition right after the generated LDP, i.e., before 722 // InsertionPoint. 723 MachineInstrBuilder MIBKill = 724 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 725 .addReg(DstRegW) 726 .addReg(DstRegX, RegState::Define); 727 MIBKill->getOperand(2).setImplicit(); 728 // Create the sign extension. 729 MachineInstrBuilder MIBSXTW = 730 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 731 .addReg(DstRegX) 732 .addImm(0) 733 .addImm(31); 734 (void)MIBSXTW; 735 DEBUG(dbgs() << " Extend operand:\n "); 736 DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 737 } else { 738 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 739 } 740 DEBUG(dbgs() << "\n"); 741 742 // Erase the old instructions. 743 I->eraseFromParent(); 744 Paired->eraseFromParent(); 745 746 return NextI; 747 } 748 749 MachineBasicBlock::iterator 750 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 751 MachineBasicBlock::iterator StoreI) { 752 MachineBasicBlock::iterator NextI = LoadI; 753 ++NextI; 754 755 int LoadSize = getMemScale(*LoadI); 756 int StoreSize = getMemScale(*StoreI); 757 unsigned LdRt = getLdStRegOp(*LoadI).getReg(); 758 unsigned StRt = getLdStRegOp(*StoreI).getReg(); 759 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 760 761 assert((IsStoreXReg || 762 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 763 "Unexpected RegClass"); 764 765 MachineInstr *BitExtMI; 766 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 767 // Remove the load, if the destination register of the loads is the same 768 // register for stored value. 769 if (StRt == LdRt && LoadSize == 8) { 770 StoreI->clearRegisterKills(StRt, TRI); 771 DEBUG(dbgs() << "Remove load instruction:\n "); 772 DEBUG(LoadI->print(dbgs())); 773 DEBUG(dbgs() << "\n"); 774 LoadI->eraseFromParent(); 775 return NextI; 776 } 777 // Replace the load with a mov if the load and store are in the same size. 778 BitExtMI = 779 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 780 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 781 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 782 .addReg(StRt) 783 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); 784 } else { 785 // FIXME: Currently we disable this transformation in big-endian targets as 786 // performance and correctness are verified only in little-endian. 787 if (!Subtarget->isLittleEndian()) 788 return NextI; 789 bool IsUnscaled = TII->isUnscaledLdSt(*LoadI); 790 assert(IsUnscaled == TII->isUnscaledLdSt(*StoreI) && 791 "Unsupported ld/st match"); 792 assert(LoadSize <= StoreSize && "Invalid load size"); 793 int UnscaledLdOffset = IsUnscaled 794 ? getLdStOffsetOp(*LoadI).getImm() 795 : getLdStOffsetOp(*LoadI).getImm() * LoadSize; 796 int UnscaledStOffset = IsUnscaled 797 ? getLdStOffsetOp(*StoreI).getImm() 798 : getLdStOffsetOp(*StoreI).getImm() * StoreSize; 799 int Width = LoadSize * 8; 800 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 801 int Imms = Immr + Width - 1; 802 unsigned DestReg = IsStoreXReg 803 ? TRI->getMatchingSuperReg(LdRt, AArch64::sub_32, 804 &AArch64::GPR64RegClass) 805 : LdRt; 806 807 assert((UnscaledLdOffset >= UnscaledStOffset && 808 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 809 "Invalid offset"); 810 811 Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 812 Imms = Immr + Width - 1; 813 if (UnscaledLdOffset == UnscaledStOffset) { 814 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 815 | ((Immr) << 6) // immr 816 | ((Imms) << 0) // imms 817 ; 818 819 BitExtMI = 820 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 821 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 822 DestReg) 823 .addReg(StRt) 824 .addImm(AndMaskEncoded); 825 } else { 826 BitExtMI = 827 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 828 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 829 DestReg) 830 .addReg(StRt) 831 .addImm(Immr) 832 .addImm(Imms); 833 } 834 } 835 StoreI->clearRegisterKills(StRt, TRI); 836 837 (void)BitExtMI; 838 839 DEBUG(dbgs() << "Promoting load by replacing :\n "); 840 DEBUG(StoreI->print(dbgs())); 841 DEBUG(dbgs() << " "); 842 DEBUG(LoadI->print(dbgs())); 843 DEBUG(dbgs() << " with instructions:\n "); 844 DEBUG(StoreI->print(dbgs())); 845 DEBUG(dbgs() << " "); 846 DEBUG((BitExtMI)->print(dbgs())); 847 DEBUG(dbgs() << "\n"); 848 849 // Erase the old instructions. 850 LoadI->eraseFromParent(); 851 return NextI; 852 } 853 854 /// trackRegDefsUses - Remember what registers the specified instruction uses 855 /// and modifies. 856 static void trackRegDefsUses(const MachineInstr &MI, BitVector &ModifiedRegs, 857 BitVector &UsedRegs, 858 const TargetRegisterInfo *TRI) { 859 for (const MachineOperand &MO : MI.operands()) { 860 if (MO.isRegMask()) 861 ModifiedRegs.setBitsNotInMask(MO.getRegMask()); 862 863 if (!MO.isReg()) 864 continue; 865 unsigned Reg = MO.getReg(); 866 if (!Reg) 867 continue; 868 if (MO.isDef()) { 869 // WZR/XZR are not modified even when used as a destination register. 870 if (Reg != AArch64::WZR && Reg != AArch64::XZR) 871 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 872 ModifiedRegs.set(*AI); 873 } else { 874 assert(MO.isUse() && "Reg operand not a def and not a use?!?"); 875 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 876 UsedRegs.set(*AI); 877 } 878 } 879 } 880 881 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 882 // Convert the byte-offset used by unscaled into an "element" offset used 883 // by the scaled pair load/store instructions. 884 if (IsUnscaled) { 885 // If the byte-offset isn't a multiple of the stride, there's no point 886 // trying to match it. 887 if (Offset % OffsetStride) 888 return false; 889 Offset /= OffsetStride; 890 } 891 return Offset <= 63 && Offset >= -64; 892 } 893 894 // Do alignment, specialized to power of 2 and for signed ints, 895 // avoiding having to do a C-style cast from uint_64t to int when 896 // using alignTo from include/llvm/Support/MathExtras.h. 897 // FIXME: Move this function to include/MathExtras.h? 898 static int alignTo(int Num, int PowOf2) { 899 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 900 } 901 902 static bool mayAlias(MachineInstr &MIa, MachineInstr &MIb, 903 const AArch64InstrInfo *TII) { 904 // One of the instructions must modify memory. 905 if (!MIa.mayStore() && !MIb.mayStore()) 906 return false; 907 908 // Both instructions must be memory operations. 909 if (!MIa.mayLoadOrStore() && !MIb.mayLoadOrStore()) 910 return false; 911 912 return !TII->areMemAccessesTriviallyDisjoint(MIa, MIb); 913 } 914 915 static bool mayAlias(MachineInstr &MIa, 916 SmallVectorImpl<MachineInstr *> &MemInsns, 917 const AArch64InstrInfo *TII) { 918 for (MachineInstr *MIb : MemInsns) 919 if (mayAlias(MIa, *MIb, TII)) 920 return true; 921 922 return false; 923 } 924 925 bool AArch64LoadStoreOpt::findMatchingStore( 926 MachineBasicBlock::iterator I, unsigned Limit, 927 MachineBasicBlock::iterator &StoreI) { 928 MachineBasicBlock::iterator B = I->getParent()->begin(); 929 MachineBasicBlock::iterator MBBI = I; 930 MachineInstr &LoadMI = *I; 931 unsigned BaseReg = getLdStBaseOp(LoadMI).getReg(); 932 933 // If the load is the first instruction in the block, there's obviously 934 // not any matching store. 935 if (MBBI == B) 936 return false; 937 938 // Track which registers have been modified and used between the first insn 939 // and the second insn. 940 ModifiedRegs.reset(); 941 UsedRegs.reset(); 942 943 unsigned Count = 0; 944 do { 945 --MBBI; 946 MachineInstr &MI = *MBBI; 947 948 // Don't count transient instructions towards the search limit since there 949 // may be different numbers of them if e.g. debug information is present. 950 if (!MI.isTransient()) 951 ++Count; 952 953 // If the load instruction reads directly from the address to which the 954 // store instruction writes and the stored value is not modified, we can 955 // promote the load. Since we do not handle stores with pre-/post-index, 956 // it's unnecessary to check if BaseReg is modified by the store itself. 957 if (MI.mayStore() && isMatchingStore(LoadMI, MI) && 958 BaseReg == getLdStBaseOp(MI).getReg() && 959 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 960 !ModifiedRegs[getLdStRegOp(MI).getReg()]) { 961 StoreI = MBBI; 962 return true; 963 } 964 965 if (MI.isCall()) 966 return false; 967 968 // Update modified / uses register lists. 969 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 970 971 // Otherwise, if the base register is modified, we have no match, so 972 // return early. 973 if (ModifiedRegs[BaseReg]) 974 return false; 975 976 // If we encounter a store aliased with the load, return early. 977 if (MI.mayStore() && mayAlias(LoadMI, MI, TII)) 978 return false; 979 } while (MBBI != B && Count < Limit); 980 return false; 981 } 982 983 // Returns true if FirstMI and MI are candidates for merging or pairing. 984 // Otherwise, returns false. 985 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, 986 LdStPairFlags &Flags, 987 const AArch64InstrInfo *TII) { 988 // If this is volatile or if pairing is suppressed, not a candidate. 989 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 990 return false; 991 992 // We should have already checked FirstMI for pair suppression and volatility. 993 assert(!FirstMI.hasOrderedMemoryRef() && 994 !TII->isLdStPairSuppressed(FirstMI) && 995 "FirstMI shouldn't get here if either of these checks are true."); 996 997 unsigned OpcA = FirstMI.getOpcode(); 998 unsigned OpcB = MI.getOpcode(); 999 1000 // Opcodes match: nothing more to check. 1001 if (OpcA == OpcB) 1002 return true; 1003 1004 // Try to match a sign-extended load/store with a zero-extended load/store. 1005 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1006 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1007 assert(IsValidLdStrOpc && 1008 "Given Opc should be a Load or Store with an immediate"); 1009 // OpcA will be the first instruction in the pair. 1010 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1011 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1012 return true; 1013 } 1014 1015 // If the second instruction isn't even a mergable/pairable load/store, bail 1016 // out. 1017 if (!PairIsValidLdStrOpc) 1018 return false; 1019 1020 // FIXME: We don't support merging narrow stores with mixed scaled/unscaled 1021 // offsets. 1022 if (isNarrowStore(OpcA) || isNarrowStore(OpcB)) 1023 return false; 1024 1025 // Try to match an unscaled load/store with a scaled load/store. 1026 return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) && 1027 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1028 1029 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1030 } 1031 1032 /// Scan the instructions looking for a load/store that can be combined with the 1033 /// current instruction into a wider equivalent or a load/store pair. 1034 MachineBasicBlock::iterator 1035 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1036 LdStPairFlags &Flags, unsigned Limit, 1037 bool FindNarrowMerge) { 1038 MachineBasicBlock::iterator E = I->getParent()->end(); 1039 MachineBasicBlock::iterator MBBI = I; 1040 MachineInstr &FirstMI = *I; 1041 ++MBBI; 1042 1043 bool MayLoad = FirstMI.mayLoad(); 1044 bool IsUnscaled = TII->isUnscaledLdSt(FirstMI); 1045 unsigned Reg = getLdStRegOp(FirstMI).getReg(); 1046 unsigned BaseReg = getLdStBaseOp(FirstMI).getReg(); 1047 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1048 int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1; 1049 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1050 1051 // Track which registers have been modified and used between the first insn 1052 // (inclusive) and the second insn. 1053 ModifiedRegs.reset(); 1054 UsedRegs.reset(); 1055 1056 // Remember any instructions that read/write memory between FirstMI and MI. 1057 SmallVector<MachineInstr *, 4> MemInsns; 1058 1059 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1060 MachineInstr &MI = *MBBI; 1061 1062 // Don't count transient instructions towards the search limit since there 1063 // may be different numbers of them if e.g. debug information is present. 1064 if (!MI.isTransient()) 1065 ++Count; 1066 1067 Flags.setSExtIdx(-1); 1068 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && 1069 getLdStOffsetOp(MI).isImm()) { 1070 assert(MI.mayLoadOrStore() && "Expected memory operation."); 1071 // If we've found another instruction with the same opcode, check to see 1072 // if the base and offset are compatible with our starting instruction. 1073 // These instructions all have scaled immediate operands, so we just 1074 // check for +1/-1. Make sure to check the new instruction offset is 1075 // actually an immediate and not a symbolic reference destined for 1076 // a relocation. 1077 unsigned MIBaseReg = getLdStBaseOp(MI).getReg(); 1078 int MIOffset = getLdStOffsetOp(MI).getImm(); 1079 bool MIIsUnscaled = TII->isUnscaledLdSt(MI); 1080 if (IsUnscaled != MIIsUnscaled) { 1081 // We're trying to pair instructions that differ in how they are scaled. 1082 // If FirstMI is scaled then scale the offset of MI accordingly. 1083 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1084 int MemSize = getMemScale(MI); 1085 if (MIIsUnscaled) { 1086 // If the unscaled offset isn't a multiple of the MemSize, we can't 1087 // pair the operations together: bail and keep looking. 1088 if (MIOffset % MemSize) { 1089 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1090 MemInsns.push_back(&MI); 1091 continue; 1092 } 1093 MIOffset /= MemSize; 1094 } else { 1095 MIOffset *= MemSize; 1096 } 1097 } 1098 1099 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1100 (Offset + OffsetStride == MIOffset))) { 1101 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1102 if (FindNarrowMerge) { 1103 // If the alignment requirements of the scaled wide load/store 1104 // instruction can't express the offset of the scaled narrow input, 1105 // bail and keep looking. For promotable zero stores, allow only when 1106 // the stored value is the same (i.e., WZR). 1107 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1108 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1109 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1110 MemInsns.push_back(&MI); 1111 continue; 1112 } 1113 } else { 1114 // Pairwise instructions have a 7-bit signed offset field. Single 1115 // insns have a 12-bit unsigned offset field. If the resultant 1116 // immediate offset of merging these instructions is out of range for 1117 // a pairwise instruction, bail and keep looking. 1118 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1119 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1120 MemInsns.push_back(&MI); 1121 continue; 1122 } 1123 // If the alignment requirements of the paired (scaled) instruction 1124 // can't express the offset of the unscaled input, bail and keep 1125 // looking. 1126 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1127 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1128 MemInsns.push_back(&MI); 1129 continue; 1130 } 1131 } 1132 // If the destination register of the loads is the same register, bail 1133 // and keep looking. A load-pair instruction with both destination 1134 // registers the same is UNPREDICTABLE and will result in an exception. 1135 if (MayLoad && Reg == getLdStRegOp(MI).getReg()) { 1136 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1137 MemInsns.push_back(&MI); 1138 continue; 1139 } 1140 1141 // If the Rt of the second instruction was not modified or used between 1142 // the two instructions and none of the instructions between the second 1143 // and first alias with the second, we can combine the second into the 1144 // first. 1145 if (!ModifiedRegs[getLdStRegOp(MI).getReg()] && 1146 !(MI.mayLoad() && UsedRegs[getLdStRegOp(MI).getReg()]) && 1147 !mayAlias(MI, MemInsns, TII)) { 1148 Flags.setMergeForward(false); 1149 return MBBI; 1150 } 1151 1152 // Likewise, if the Rt of the first instruction is not modified or used 1153 // between the two instructions and none of the instructions between the 1154 // first and the second alias with the first, we can combine the first 1155 // into the second. 1156 if (!ModifiedRegs[getLdStRegOp(FirstMI).getReg()] && 1157 !(MayLoad && UsedRegs[getLdStRegOp(FirstMI).getReg()]) && 1158 !mayAlias(FirstMI, MemInsns, TII)) { 1159 Flags.setMergeForward(true); 1160 return MBBI; 1161 } 1162 // Unable to combine these instructions due to interference in between. 1163 // Keep looking. 1164 } 1165 } 1166 1167 // If the instruction wasn't a matching load or store. Stop searching if we 1168 // encounter a call instruction that might modify memory. 1169 if (MI.isCall()) 1170 return E; 1171 1172 // Update modified / uses register lists. 1173 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1174 1175 // Otherwise, if the base register is modified, we have no match, so 1176 // return early. 1177 if (ModifiedRegs[BaseReg]) 1178 return E; 1179 1180 // Update list of instructions that read/write memory. 1181 if (MI.mayLoadOrStore()) 1182 MemInsns.push_back(&MI); 1183 } 1184 return E; 1185 } 1186 1187 MachineBasicBlock::iterator 1188 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1189 MachineBasicBlock::iterator Update, 1190 bool IsPreIdx) { 1191 assert((Update->getOpcode() == AArch64::ADDXri || 1192 Update->getOpcode() == AArch64::SUBXri) && 1193 "Unexpected base register update instruction to merge!"); 1194 MachineBasicBlock::iterator NextI = I; 1195 // Return the instruction following the merged instruction, which is 1196 // the instruction following our unmerged load. Unless that's the add/sub 1197 // instruction we're merging, in which case it's the one after that. 1198 if (++NextI == Update) 1199 ++NextI; 1200 1201 int Value = Update->getOperand(2).getImm(); 1202 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1203 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1204 if (Update->getOpcode() == AArch64::SUBXri) 1205 Value = -Value; 1206 1207 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1208 : getPostIndexedOpcode(I->getOpcode()); 1209 MachineInstrBuilder MIB; 1210 if (!isPairedLdSt(*I)) { 1211 // Non-paired instruction. 1212 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1213 .addOperand(getLdStRegOp(*Update)) 1214 .addOperand(getLdStRegOp(*I)) 1215 .addOperand(getLdStBaseOp(*I)) 1216 .addImm(Value) 1217 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1218 } else { 1219 // Paired instruction. 1220 int Scale = getMemScale(*I); 1221 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1222 .addOperand(getLdStRegOp(*Update)) 1223 .addOperand(getLdStRegOp(*I, 0)) 1224 .addOperand(getLdStRegOp(*I, 1)) 1225 .addOperand(getLdStBaseOp(*I)) 1226 .addImm(Value / Scale) 1227 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1228 } 1229 (void)MIB; 1230 1231 if (IsPreIdx) 1232 DEBUG(dbgs() << "Creating pre-indexed load/store."); 1233 else 1234 DEBUG(dbgs() << "Creating post-indexed load/store."); 1235 DEBUG(dbgs() << " Replacing instructions:\n "); 1236 DEBUG(I->print(dbgs())); 1237 DEBUG(dbgs() << " "); 1238 DEBUG(Update->print(dbgs())); 1239 DEBUG(dbgs() << " with instruction:\n "); 1240 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1241 DEBUG(dbgs() << "\n"); 1242 1243 // Erase the old instructions for the block. 1244 I->eraseFromParent(); 1245 Update->eraseFromParent(); 1246 1247 return NextI; 1248 } 1249 1250 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, 1251 MachineInstr &MI, 1252 unsigned BaseReg, int Offset) { 1253 switch (MI.getOpcode()) { 1254 default: 1255 break; 1256 case AArch64::SUBXri: 1257 case AArch64::ADDXri: 1258 // Make sure it's a vanilla immediate operand, not a relocation or 1259 // anything else we can't handle. 1260 if (!MI.getOperand(2).isImm()) 1261 break; 1262 // Watch out for 1 << 12 shifted value. 1263 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) 1264 break; 1265 1266 // The update instruction source and destination register must be the 1267 // same as the load/store base register. 1268 if (MI.getOperand(0).getReg() != BaseReg || 1269 MI.getOperand(1).getReg() != BaseReg) 1270 break; 1271 1272 bool IsPairedInsn = isPairedLdSt(MemMI); 1273 int UpdateOffset = MI.getOperand(2).getImm(); 1274 if (MI.getOpcode() == AArch64::SUBXri) 1275 UpdateOffset = -UpdateOffset; 1276 1277 // For non-paired load/store instructions, the immediate must fit in a 1278 // signed 9-bit integer. 1279 if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256)) 1280 break; 1281 1282 // For paired load/store instructions, the immediate must be a multiple of 1283 // the scaling factor. The scaled offset must also fit into a signed 7-bit 1284 // integer. 1285 if (IsPairedInsn) { 1286 int Scale = getMemScale(MemMI); 1287 if (UpdateOffset % Scale != 0) 1288 break; 1289 1290 int ScaledOffset = UpdateOffset / Scale; 1291 if (ScaledOffset > 63 || ScaledOffset < -64) 1292 break; 1293 } 1294 1295 // If we have a non-zero Offset, we check that it matches the amount 1296 // we're adding to the register. 1297 if (!Offset || Offset == UpdateOffset) 1298 return true; 1299 break; 1300 } 1301 return false; 1302 } 1303 1304 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1305 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1306 MachineBasicBlock::iterator E = I->getParent()->end(); 1307 MachineInstr &MemMI = *I; 1308 MachineBasicBlock::iterator MBBI = I; 1309 1310 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1311 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI); 1312 1313 // Scan forward looking for post-index opportunities. Updating instructions 1314 // can't be formed if the memory instruction doesn't have the offset we're 1315 // looking for. 1316 if (MIUnscaledOffset != UnscaledOffset) 1317 return E; 1318 1319 // If the base register overlaps a destination register, we can't 1320 // merge the update. 1321 bool IsPairedInsn = isPairedLdSt(MemMI); 1322 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1323 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1324 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1325 return E; 1326 } 1327 1328 // Track which registers have been modified and used between the first insn 1329 // (inclusive) and the second insn. 1330 ModifiedRegs.reset(); 1331 UsedRegs.reset(); 1332 ++MBBI; 1333 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1334 MachineInstr &MI = *MBBI; 1335 1336 // Don't count transient instructions towards the search limit since there 1337 // may be different numbers of them if e.g. debug information is present. 1338 if (!MI.isTransient()) 1339 ++Count; 1340 1341 // If we found a match, return it. 1342 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) 1343 return MBBI; 1344 1345 // Update the status of what the instruction clobbered and used. 1346 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1347 1348 // Otherwise, if the base register is used or modified, we have no match, so 1349 // return early. 1350 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1351 return E; 1352 } 1353 return E; 1354 } 1355 1356 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1357 MachineBasicBlock::iterator I, unsigned Limit) { 1358 MachineBasicBlock::iterator B = I->getParent()->begin(); 1359 MachineBasicBlock::iterator E = I->getParent()->end(); 1360 MachineInstr &MemMI = *I; 1361 MachineBasicBlock::iterator MBBI = I; 1362 1363 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1364 int Offset = getLdStOffsetOp(MemMI).getImm(); 1365 1366 // If the load/store is the first instruction in the block, there's obviously 1367 // not any matching update. Ditto if the memory offset isn't zero. 1368 if (MBBI == B || Offset != 0) 1369 return E; 1370 // If the base register overlaps a destination register, we can't 1371 // merge the update. 1372 bool IsPairedInsn = isPairedLdSt(MemMI); 1373 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1374 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1375 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1376 return E; 1377 } 1378 1379 // Track which registers have been modified and used between the first insn 1380 // (inclusive) and the second insn. 1381 ModifiedRegs.reset(); 1382 UsedRegs.reset(); 1383 unsigned Count = 0; 1384 do { 1385 --MBBI; 1386 MachineInstr &MI = *MBBI; 1387 1388 // Don't count transient instructions towards the search limit since there 1389 // may be different numbers of them if e.g. debug information is present. 1390 if (!MI.isTransient()) 1391 ++Count; 1392 1393 // If we found a match, return it. 1394 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) 1395 return MBBI; 1396 1397 // Update the status of what the instruction clobbered and used. 1398 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1399 1400 // Otherwise, if the base register is used or modified, we have no match, so 1401 // return early. 1402 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1403 return E; 1404 } while (MBBI != B && Count < Limit); 1405 return E; 1406 } 1407 1408 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1409 MachineBasicBlock::iterator &MBBI) { 1410 MachineInstr &MI = *MBBI; 1411 // If this is a volatile load, don't mess with it. 1412 if (MI.hasOrderedMemoryRef()) 1413 return false; 1414 1415 // Make sure this is a reg+imm. 1416 // FIXME: It is possible to extend it to handle reg+reg cases. 1417 if (!getLdStOffsetOp(MI).isImm()) 1418 return false; 1419 1420 // Look backward up to LdStLimit instructions. 1421 MachineBasicBlock::iterator StoreI; 1422 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 1423 ++NumLoadsFromStoresPromoted; 1424 // Promote the load. Keeping the iterator straight is a 1425 // pain, so we let the merge routine tell us what the next instruction 1426 // is after it's done mucking about. 1427 MBBI = promoteLoadFromStore(MBBI, StoreI); 1428 return true; 1429 } 1430 return false; 1431 } 1432 1433 // Merge adjacent zero stores into a wider store. 1434 bool AArch64LoadStoreOpt::tryToMergeZeroStInst( 1435 MachineBasicBlock::iterator &MBBI) { 1436 assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store."); 1437 MachineInstr &MI = *MBBI; 1438 MachineBasicBlock::iterator E = MI.getParent()->end(); 1439 1440 if (!TII->isCandidateToMergeOrPair(MI)) 1441 return false; 1442 1443 // Look ahead up to LdStLimit instructions for a mergable instruction. 1444 LdStPairFlags Flags; 1445 MachineBasicBlock::iterator MergeMI = 1446 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 1447 if (MergeMI != E) { 1448 ++NumZeroStoresPromoted; 1449 1450 // Keeping the iterator straight is a pain, so we let the merge routine tell 1451 // us what the next instruction is after it's done mucking about. 1452 MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags); 1453 return true; 1454 } 1455 return false; 1456 } 1457 1458 // Find loads and stores that can be merged into a single load or store pair 1459 // instruction. 1460 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 1461 MachineInstr &MI = *MBBI; 1462 MachineBasicBlock::iterator E = MI.getParent()->end(); 1463 1464 if (!TII->isCandidateToMergeOrPair(MI)) 1465 return false; 1466 1467 // Early exit if the offset is not possible to match. (6 bits of positive 1468 // range, plus allow an extra one in case we find a later insn that matches 1469 // with Offset-1) 1470 bool IsUnscaled = TII->isUnscaledLdSt(MI); 1471 int Offset = getLdStOffsetOp(MI).getImm(); 1472 int OffsetStride = IsUnscaled ? getMemScale(MI) : 1; 1473 // Allow one more for offset. 1474 if (Offset > 0) 1475 Offset -= OffsetStride; 1476 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1477 return false; 1478 1479 // Look ahead up to LdStLimit instructions for a pairable instruction. 1480 LdStPairFlags Flags; 1481 MachineBasicBlock::iterator Paired = 1482 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 1483 if (Paired != E) { 1484 ++NumPairCreated; 1485 if (TII->isUnscaledLdSt(MI)) 1486 ++NumUnscaledPairCreated; 1487 // Keeping the iterator straight is a pain, so we let the merge routine tell 1488 // us what the next instruction is after it's done mucking about. 1489 MBBI = mergePairedInsns(MBBI, Paired, Flags); 1490 return true; 1491 } 1492 return false; 1493 } 1494 1495 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 1496 bool EnableNarrowZeroStOpt) { 1497 bool Modified = false; 1498 // Four tranformations to do here: 1499 // 1) Find loads that directly read from stores and promote them by 1500 // replacing with mov instructions. If the store is wider than the load, 1501 // the load will be replaced with a bitfield extract. 1502 // e.g., 1503 // str w1, [x0, #4] 1504 // ldrh w2, [x0, #6] 1505 // ; becomes 1506 // str w1, [x0, #4] 1507 // lsr w2, w1, #16 1508 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1509 MBBI != E;) { 1510 MachineInstr &MI = *MBBI; 1511 switch (MI.getOpcode()) { 1512 default: 1513 // Just move on to the next instruction. 1514 ++MBBI; 1515 break; 1516 // Scaled instructions. 1517 case AArch64::LDRBBui: 1518 case AArch64::LDRHHui: 1519 case AArch64::LDRWui: 1520 case AArch64::LDRXui: 1521 // Unscaled instructions. 1522 case AArch64::LDURBBi: 1523 case AArch64::LDURHHi: 1524 case AArch64::LDURWi: 1525 case AArch64::LDURXi: { 1526 if (tryToPromoteLoadFromStore(MBBI)) { 1527 Modified = true; 1528 break; 1529 } 1530 ++MBBI; 1531 break; 1532 } 1533 } 1534 } 1535 // 2) Merge adjacent zero stores into a wider store. 1536 // e.g., 1537 // strh wzr, [x0] 1538 // strh wzr, [x0, #2] 1539 // ; becomes 1540 // str wzr, [x0] 1541 // e.g., 1542 // str wzr, [x0] 1543 // str wzr, [x0, #4] 1544 // ; becomes 1545 // str xzr, [x0] 1546 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1547 EnableNarrowZeroStOpt && MBBI != E;) { 1548 if (isPromotableZeroStoreInst(*MBBI)) { 1549 if (tryToMergeZeroStInst(MBBI)) { 1550 Modified = true; 1551 } else 1552 ++MBBI; 1553 } else 1554 ++MBBI; 1555 } 1556 1557 // 3) Find loads and stores that can be merged into a single load or store 1558 // pair instruction. 1559 // e.g., 1560 // ldr x0, [x2] 1561 // ldr x1, [x2, #8] 1562 // ; becomes 1563 // ldp x0, x1, [x2] 1564 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1565 MBBI != E;) { 1566 if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI)) 1567 Modified = true; 1568 else 1569 ++MBBI; 1570 } 1571 // 4) Find base register updates that can be merged into the load or store 1572 // as a base-reg writeback. 1573 // e.g., 1574 // ldr x0, [x2] 1575 // add x2, x2, #4 1576 // ; becomes 1577 // ldr x0, [x2], #4 1578 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1579 MBBI != E;) { 1580 MachineInstr &MI = *MBBI; 1581 // Do update merging. It's simpler to keep this separate from the above 1582 // switchs, though not strictly necessary. 1583 unsigned Opc = MI.getOpcode(); 1584 switch (Opc) { 1585 default: 1586 // Just move on to the next instruction. 1587 ++MBBI; 1588 break; 1589 // Scaled instructions. 1590 case AArch64::STRSui: 1591 case AArch64::STRDui: 1592 case AArch64::STRQui: 1593 case AArch64::STRXui: 1594 case AArch64::STRWui: 1595 case AArch64::STRHHui: 1596 case AArch64::STRBBui: 1597 case AArch64::LDRSui: 1598 case AArch64::LDRDui: 1599 case AArch64::LDRQui: 1600 case AArch64::LDRXui: 1601 case AArch64::LDRWui: 1602 case AArch64::LDRHHui: 1603 case AArch64::LDRBBui: 1604 // Unscaled instructions. 1605 case AArch64::STURSi: 1606 case AArch64::STURDi: 1607 case AArch64::STURQi: 1608 case AArch64::STURWi: 1609 case AArch64::STURXi: 1610 case AArch64::LDURSi: 1611 case AArch64::LDURDi: 1612 case AArch64::LDURQi: 1613 case AArch64::LDURWi: 1614 case AArch64::LDURXi: 1615 // Paired instructions. 1616 case AArch64::LDPSi: 1617 case AArch64::LDPSWi: 1618 case AArch64::LDPDi: 1619 case AArch64::LDPQi: 1620 case AArch64::LDPWi: 1621 case AArch64::LDPXi: 1622 case AArch64::STPSi: 1623 case AArch64::STPDi: 1624 case AArch64::STPQi: 1625 case AArch64::STPWi: 1626 case AArch64::STPXi: { 1627 // Make sure this is a reg+imm (as opposed to an address reloc). 1628 if (!getLdStOffsetOp(MI).isImm()) { 1629 ++MBBI; 1630 break; 1631 } 1632 // Look forward to try to form a post-index instruction. For example, 1633 // ldr x0, [x20] 1634 // add x20, x20, #32 1635 // merged into: 1636 // ldr x0, [x20], #32 1637 MachineBasicBlock::iterator Update = 1638 findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 1639 if (Update != E) { 1640 // Merge the update into the ld/st. 1641 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 1642 Modified = true; 1643 ++NumPostFolded; 1644 break; 1645 } 1646 // Don't know how to handle pre/post-index versions, so move to the next 1647 // instruction. 1648 if (TII->isUnscaledLdSt(Opc)) { 1649 ++MBBI; 1650 break; 1651 } 1652 1653 // Look back to try to find a pre-index instruction. For example, 1654 // add x0, x0, #8 1655 // ldr x1, [x0] 1656 // merged into: 1657 // ldr x1, [x0, #8]! 1658 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 1659 if (Update != E) { 1660 // Merge the update into the ld/st. 1661 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1662 Modified = true; 1663 ++NumPreFolded; 1664 break; 1665 } 1666 // The immediate in the load/store is scaled by the size of the memory 1667 // operation. The immediate in the add we're looking for, 1668 // however, is not, so adjust here. 1669 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI); 1670 1671 // Look forward to try to find a post-index instruction. For example, 1672 // ldr x1, [x0, #64] 1673 // add x0, x0, #64 1674 // merged into: 1675 // ldr x1, [x0, #64]! 1676 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 1677 if (Update != E) { 1678 // Merge the update into the ld/st. 1679 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1680 Modified = true; 1681 ++NumPreFolded; 1682 break; 1683 } 1684 1685 // Nothing found. Just move to the next instruction. 1686 ++MBBI; 1687 break; 1688 } 1689 } 1690 } 1691 1692 return Modified; 1693 } 1694 1695 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 1696 if (skipFunction(*Fn.getFunction())) 1697 return false; 1698 1699 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 1700 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 1701 TRI = Subtarget->getRegisterInfo(); 1702 1703 // Resize the modified and used register bitfield trackers. We do this once 1704 // per function and then clear the bitfield each time we optimize a load or 1705 // store. 1706 ModifiedRegs.resize(TRI->getNumRegs()); 1707 UsedRegs.resize(TRI->getNumRegs()); 1708 1709 bool Modified = false; 1710 bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign(); 1711 for (auto &MBB : Fn) 1712 Modified |= optimizeBlock(MBB, enableNarrowZeroStOpt); 1713 1714 return Modified; 1715 } 1716 1717 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and 1718 // stores near one another? Note: The pre-RA instruction scheduler already has 1719 // hooks to try and schedule pairable loads/stores together to improve pairing 1720 // opportunities. Thus, pre-RA pairing pass may not be worth the effort. 1721 1722 // FIXME: When pairing store instructions it's very possible for this pass to 1723 // hoist a store with a KILL marker above another use (without a KILL marker). 1724 // The resulting IR is invalid, but nothing uses the KILL markers after this 1725 // pass, so it's never caused a problem in practice. 1726 1727 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 1728 /// load / store optimization pass. 1729 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 1730 return new AArch64LoadStoreOpt(); 1731 } 1732