1 //===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that performs load / store related peephole 10 // optimizations. This pass should be run after register allocation. 11 // 12 // The pass runs after the PrologEpilogInserter where we emit the CFI 13 // instructions. In order to preserve the correctness of the unwind informaiton, 14 // the pass should not change the order of any two instructions, one of which 15 // has the FrameSetup/FrameDestroy flag or, alternatively, apply an add-hoc fix 16 // to unwind information. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "AArch64InstrInfo.h" 21 #include "AArch64MachineFunctionInfo.h" 22 #include "AArch64Subtarget.h" 23 #include "MCTargetDesc/AArch64AddressingModes.h" 24 #include "llvm/ADT/BitVector.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/iterator_range.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineOperand.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/MC/MCAsmInfo.h" 40 #include "llvm/MC/MCDwarf.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/DebugCounter.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <cassert> 49 #include <cstdint> 50 #include <functional> 51 #include <iterator> 52 #include <limits> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "aarch64-ldst-opt" 57 58 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 59 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 60 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 61 STATISTIC(NumUnscaledPairCreated, 62 "Number of load/store from unscaled generated"); 63 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 64 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 65 66 DEBUG_COUNTER(RegRenamingCounter, DEBUG_TYPE "-reg-renaming", 67 "Controls which pairs are considered for renaming"); 68 69 // The LdStLimit limits how far we search for load/store pairs. 70 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 71 cl::init(20), cl::Hidden); 72 73 // The UpdateLimit limits how far we search for update instructions when we form 74 // pre-/post-index instructions. 75 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 76 cl::Hidden); 77 78 // Enable register renaming to find additional store pairing opportunities. 79 static cl::opt<bool> EnableRenaming("aarch64-load-store-renaming", 80 cl::init(true), cl::Hidden); 81 82 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 83 84 namespace { 85 86 using LdStPairFlags = struct LdStPairFlags { 87 // If a matching instruction is found, MergeForward is set to true if the 88 // merge is to remove the first instruction and replace the second with 89 // a pair-wise insn, and false if the reverse is true. 90 bool MergeForward = false; 91 92 // SExtIdx gives the index of the result of the load pair that must be 93 // extended. The value of SExtIdx assumes that the paired load produces the 94 // value in this order: (I, returned iterator), i.e., -1 means no value has 95 // to be extended, 0 means I, and 1 means the returned iterator. 96 int SExtIdx = -1; 97 98 // If not none, RenameReg can be used to rename the result register of the 99 // first store in a pair. Currently this only works when merging stores 100 // forward. 101 Optional<MCPhysReg> RenameReg = None; 102 103 LdStPairFlags() = default; 104 105 void setMergeForward(bool V = true) { MergeForward = V; } 106 bool getMergeForward() const { return MergeForward; } 107 108 void setSExtIdx(int V) { SExtIdx = V; } 109 int getSExtIdx() const { return SExtIdx; } 110 111 void setRenameReg(MCPhysReg R) { RenameReg = R; } 112 void clearRenameReg() { RenameReg = None; } 113 Optional<MCPhysReg> getRenameReg() const { return RenameReg; } 114 }; 115 116 struct AArch64LoadStoreOpt : public MachineFunctionPass { 117 static char ID; 118 119 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 120 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 121 } 122 123 AliasAnalysis *AA; 124 const AArch64InstrInfo *TII; 125 const TargetRegisterInfo *TRI; 126 const AArch64Subtarget *Subtarget; 127 128 // Track which register units have been modified and used. 129 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 130 LiveRegUnits DefinedInBB; 131 132 void getAnalysisUsage(AnalysisUsage &AU) const override { 133 AU.addRequired<AAResultsWrapperPass>(); 134 MachineFunctionPass::getAnalysisUsage(AU); 135 } 136 137 // Scan the instructions looking for a load/store that can be combined 138 // with the current instruction into a load/store pair. 139 // Return the matching instruction if one is found, else MBB->end(). 140 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 141 LdStPairFlags &Flags, 142 unsigned Limit, 143 bool FindNarrowMerge); 144 145 // Scan the instructions looking for a store that writes to the address from 146 // which the current load instruction reads. Return true if one is found. 147 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 148 MachineBasicBlock::iterator &StoreI); 149 150 // Merge the two instructions indicated into a wider narrow store instruction. 151 MachineBasicBlock::iterator 152 mergeNarrowZeroStores(MachineBasicBlock::iterator I, 153 MachineBasicBlock::iterator MergeMI, 154 const LdStPairFlags &Flags); 155 156 // Merge the two instructions indicated into a single pair-wise instruction. 157 MachineBasicBlock::iterator 158 mergePairedInsns(MachineBasicBlock::iterator I, 159 MachineBasicBlock::iterator Paired, 160 const LdStPairFlags &Flags); 161 162 // Promote the load that reads directly from the address stored to. 163 MachineBasicBlock::iterator 164 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 165 MachineBasicBlock::iterator StoreI); 166 167 // Scan the instruction list to find a base register update that can 168 // be combined with the current instruction (a load or store) using 169 // pre or post indexed addressing with writeback. Scan forwards. 170 MachineBasicBlock::iterator 171 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 172 int UnscaledOffset, unsigned Limit); 173 174 // Scan the instruction list to find a base register update that can 175 // be combined with the current instruction (a load or store) using 176 // pre or post indexed addressing with writeback. Scan backwards. 177 MachineBasicBlock::iterator 178 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 179 180 // Find an instruction that updates the base register of the ld/st 181 // instruction. 182 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, 183 unsigned BaseReg, int Offset); 184 185 // Merge a pre- or post-index base register update into a ld/st instruction. 186 MachineBasicBlock::iterator 187 mergeUpdateInsn(MachineBasicBlock::iterator I, 188 MachineBasicBlock::iterator Update, bool IsPreIdx); 189 190 // Find and merge zero store instructions. 191 bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI); 192 193 // Find and pair ldr/str instructions. 194 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 195 196 // Find and promote load instructions which read directly from store. 197 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 198 199 // Find and merge a base register updates before or after a ld/st instruction. 200 bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI); 201 202 bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt); 203 204 bool runOnMachineFunction(MachineFunction &Fn) override; 205 206 MachineFunctionProperties getRequiredProperties() const override { 207 return MachineFunctionProperties().set( 208 MachineFunctionProperties::Property::NoVRegs); 209 } 210 211 StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } 212 }; 213 214 char AArch64LoadStoreOpt::ID = 0; 215 216 } // end anonymous namespace 217 218 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 219 AARCH64_LOAD_STORE_OPT_NAME, false, false) 220 221 static bool isNarrowStore(unsigned Opc) { 222 switch (Opc) { 223 default: 224 return false; 225 case AArch64::STRBBui: 226 case AArch64::STURBBi: 227 case AArch64::STRHHui: 228 case AArch64::STURHHi: 229 return true; 230 } 231 } 232 233 // These instruction set memory tag and either keep memory contents unchanged or 234 // set it to zero, ignoring the address part of the source register. 235 static bool isTagStore(const MachineInstr &MI) { 236 switch (MI.getOpcode()) { 237 default: 238 return false; 239 case AArch64::STGOffset: 240 case AArch64::STZGOffset: 241 case AArch64::ST2GOffset: 242 case AArch64::STZ2GOffset: 243 return true; 244 } 245 } 246 247 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 248 bool *IsValidLdStrOpc = nullptr) { 249 if (IsValidLdStrOpc) 250 *IsValidLdStrOpc = true; 251 switch (Opc) { 252 default: 253 if (IsValidLdStrOpc) 254 *IsValidLdStrOpc = false; 255 return std::numeric_limits<unsigned>::max(); 256 case AArch64::STRDui: 257 case AArch64::STURDi: 258 case AArch64::STRDpre: 259 case AArch64::STRQui: 260 case AArch64::STURQi: 261 case AArch64::STRQpre: 262 case AArch64::STRBBui: 263 case AArch64::STURBBi: 264 case AArch64::STRHHui: 265 case AArch64::STURHHi: 266 case AArch64::STRWui: 267 case AArch64::STRWpre: 268 case AArch64::STURWi: 269 case AArch64::STRXui: 270 case AArch64::STRXpre: 271 case AArch64::STURXi: 272 case AArch64::LDRDui: 273 case AArch64::LDURDi: 274 case AArch64::LDRDpre: 275 case AArch64::LDRQui: 276 case AArch64::LDURQi: 277 case AArch64::LDRQpre: 278 case AArch64::LDRWui: 279 case AArch64::LDURWi: 280 case AArch64::LDRWpre: 281 case AArch64::LDRXui: 282 case AArch64::LDURXi: 283 case AArch64::LDRXpre: 284 case AArch64::STRSui: 285 case AArch64::STURSi: 286 case AArch64::STRSpre: 287 case AArch64::LDRSui: 288 case AArch64::LDURSi: 289 case AArch64::LDRSpre: 290 return Opc; 291 case AArch64::LDRSWui: 292 return AArch64::LDRWui; 293 case AArch64::LDURSWi: 294 return AArch64::LDURWi; 295 } 296 } 297 298 static unsigned getMatchingWideOpcode(unsigned Opc) { 299 switch (Opc) { 300 default: 301 llvm_unreachable("Opcode has no wide equivalent!"); 302 case AArch64::STRBBui: 303 return AArch64::STRHHui; 304 case AArch64::STRHHui: 305 return AArch64::STRWui; 306 case AArch64::STURBBi: 307 return AArch64::STURHHi; 308 case AArch64::STURHHi: 309 return AArch64::STURWi; 310 case AArch64::STURWi: 311 return AArch64::STURXi; 312 case AArch64::STRWui: 313 return AArch64::STRXui; 314 } 315 } 316 317 static unsigned getMatchingPairOpcode(unsigned Opc) { 318 switch (Opc) { 319 default: 320 llvm_unreachable("Opcode has no pairwise equivalent!"); 321 case AArch64::STRSui: 322 case AArch64::STURSi: 323 return AArch64::STPSi; 324 case AArch64::STRSpre: 325 return AArch64::STPSpre; 326 case AArch64::STRDui: 327 case AArch64::STURDi: 328 return AArch64::STPDi; 329 case AArch64::STRDpre: 330 return AArch64::STPDpre; 331 case AArch64::STRQui: 332 case AArch64::STURQi: 333 return AArch64::STPQi; 334 case AArch64::STRQpre: 335 return AArch64::STPQpre; 336 case AArch64::STRWui: 337 case AArch64::STURWi: 338 return AArch64::STPWi; 339 case AArch64::STRWpre: 340 return AArch64::STPWpre; 341 case AArch64::STRXui: 342 case AArch64::STURXi: 343 return AArch64::STPXi; 344 case AArch64::STRXpre: 345 return AArch64::STPXpre; 346 case AArch64::LDRSui: 347 case AArch64::LDURSi: 348 return AArch64::LDPSi; 349 case AArch64::LDRSpre: 350 return AArch64::LDPSpre; 351 case AArch64::LDRDui: 352 case AArch64::LDURDi: 353 return AArch64::LDPDi; 354 case AArch64::LDRDpre: 355 return AArch64::LDPDpre; 356 case AArch64::LDRQui: 357 case AArch64::LDURQi: 358 return AArch64::LDPQi; 359 case AArch64::LDRQpre: 360 return AArch64::LDPQpre; 361 case AArch64::LDRWui: 362 case AArch64::LDURWi: 363 return AArch64::LDPWi; 364 case AArch64::LDRWpre: 365 return AArch64::LDPWpre; 366 case AArch64::LDRXui: 367 case AArch64::LDURXi: 368 return AArch64::LDPXi; 369 case AArch64::LDRXpre: 370 return AArch64::LDPXpre; 371 case AArch64::LDRSWui: 372 case AArch64::LDURSWi: 373 return AArch64::LDPSWi; 374 } 375 } 376 377 static unsigned isMatchingStore(MachineInstr &LoadInst, 378 MachineInstr &StoreInst) { 379 unsigned LdOpc = LoadInst.getOpcode(); 380 unsigned StOpc = StoreInst.getOpcode(); 381 switch (LdOpc) { 382 default: 383 llvm_unreachable("Unsupported load instruction!"); 384 case AArch64::LDRBBui: 385 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 386 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 387 case AArch64::LDURBBi: 388 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 389 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 390 case AArch64::LDRHHui: 391 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 392 StOpc == AArch64::STRXui; 393 case AArch64::LDURHHi: 394 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 395 StOpc == AArch64::STURXi; 396 case AArch64::LDRWui: 397 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 398 case AArch64::LDURWi: 399 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 400 case AArch64::LDRXui: 401 return StOpc == AArch64::STRXui; 402 case AArch64::LDURXi: 403 return StOpc == AArch64::STURXi; 404 } 405 } 406 407 static unsigned getPreIndexedOpcode(unsigned Opc) { 408 // FIXME: We don't currently support creating pre-indexed loads/stores when 409 // the load or store is the unscaled version. If we decide to perform such an 410 // optimization in the future the cases for the unscaled loads/stores will 411 // need to be added here. 412 switch (Opc) { 413 default: 414 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 415 case AArch64::STRSui: 416 return AArch64::STRSpre; 417 case AArch64::STRDui: 418 return AArch64::STRDpre; 419 case AArch64::STRQui: 420 return AArch64::STRQpre; 421 case AArch64::STRBBui: 422 return AArch64::STRBBpre; 423 case AArch64::STRHHui: 424 return AArch64::STRHHpre; 425 case AArch64::STRWui: 426 return AArch64::STRWpre; 427 case AArch64::STRXui: 428 return AArch64::STRXpre; 429 case AArch64::LDRSui: 430 return AArch64::LDRSpre; 431 case AArch64::LDRDui: 432 return AArch64::LDRDpre; 433 case AArch64::LDRQui: 434 return AArch64::LDRQpre; 435 case AArch64::LDRBBui: 436 return AArch64::LDRBBpre; 437 case AArch64::LDRHHui: 438 return AArch64::LDRHHpre; 439 case AArch64::LDRWui: 440 return AArch64::LDRWpre; 441 case AArch64::LDRXui: 442 return AArch64::LDRXpre; 443 case AArch64::LDRSWui: 444 return AArch64::LDRSWpre; 445 case AArch64::LDPSi: 446 return AArch64::LDPSpre; 447 case AArch64::LDPSWi: 448 return AArch64::LDPSWpre; 449 case AArch64::LDPDi: 450 return AArch64::LDPDpre; 451 case AArch64::LDPQi: 452 return AArch64::LDPQpre; 453 case AArch64::LDPWi: 454 return AArch64::LDPWpre; 455 case AArch64::LDPXi: 456 return AArch64::LDPXpre; 457 case AArch64::STPSi: 458 return AArch64::STPSpre; 459 case AArch64::STPDi: 460 return AArch64::STPDpre; 461 case AArch64::STPQi: 462 return AArch64::STPQpre; 463 case AArch64::STPWi: 464 return AArch64::STPWpre; 465 case AArch64::STPXi: 466 return AArch64::STPXpre; 467 case AArch64::STGOffset: 468 return AArch64::STGPreIndex; 469 case AArch64::STZGOffset: 470 return AArch64::STZGPreIndex; 471 case AArch64::ST2GOffset: 472 return AArch64::ST2GPreIndex; 473 case AArch64::STZ2GOffset: 474 return AArch64::STZ2GPreIndex; 475 case AArch64::STGPi: 476 return AArch64::STGPpre; 477 } 478 } 479 480 static unsigned getPostIndexedOpcode(unsigned Opc) { 481 switch (Opc) { 482 default: 483 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 484 case AArch64::STRSui: 485 case AArch64::STURSi: 486 return AArch64::STRSpost; 487 case AArch64::STRDui: 488 case AArch64::STURDi: 489 return AArch64::STRDpost; 490 case AArch64::STRQui: 491 case AArch64::STURQi: 492 return AArch64::STRQpost; 493 case AArch64::STRBBui: 494 return AArch64::STRBBpost; 495 case AArch64::STRHHui: 496 return AArch64::STRHHpost; 497 case AArch64::STRWui: 498 case AArch64::STURWi: 499 return AArch64::STRWpost; 500 case AArch64::STRXui: 501 case AArch64::STURXi: 502 return AArch64::STRXpost; 503 case AArch64::LDRSui: 504 case AArch64::LDURSi: 505 return AArch64::LDRSpost; 506 case AArch64::LDRDui: 507 case AArch64::LDURDi: 508 return AArch64::LDRDpost; 509 case AArch64::LDRQui: 510 case AArch64::LDURQi: 511 return AArch64::LDRQpost; 512 case AArch64::LDRBBui: 513 return AArch64::LDRBBpost; 514 case AArch64::LDRHHui: 515 return AArch64::LDRHHpost; 516 case AArch64::LDRWui: 517 case AArch64::LDURWi: 518 return AArch64::LDRWpost; 519 case AArch64::LDRXui: 520 case AArch64::LDURXi: 521 return AArch64::LDRXpost; 522 case AArch64::LDRSWui: 523 return AArch64::LDRSWpost; 524 case AArch64::LDPSi: 525 return AArch64::LDPSpost; 526 case AArch64::LDPSWi: 527 return AArch64::LDPSWpost; 528 case AArch64::LDPDi: 529 return AArch64::LDPDpost; 530 case AArch64::LDPQi: 531 return AArch64::LDPQpost; 532 case AArch64::LDPWi: 533 return AArch64::LDPWpost; 534 case AArch64::LDPXi: 535 return AArch64::LDPXpost; 536 case AArch64::STPSi: 537 return AArch64::STPSpost; 538 case AArch64::STPDi: 539 return AArch64::STPDpost; 540 case AArch64::STPQi: 541 return AArch64::STPQpost; 542 case AArch64::STPWi: 543 return AArch64::STPWpost; 544 case AArch64::STPXi: 545 return AArch64::STPXpost; 546 case AArch64::STGOffset: 547 return AArch64::STGPostIndex; 548 case AArch64::STZGOffset: 549 return AArch64::STZGPostIndex; 550 case AArch64::ST2GOffset: 551 return AArch64::ST2GPostIndex; 552 case AArch64::STZ2GOffset: 553 return AArch64::STZ2GPostIndex; 554 case AArch64::STGPi: 555 return AArch64::STGPpost; 556 } 557 } 558 559 static bool isPairedLdSt(const MachineInstr &MI) { 560 switch (MI.getOpcode()) { 561 default: 562 return false; 563 case AArch64::LDPSi: 564 case AArch64::LDPSWi: 565 case AArch64::LDPDi: 566 case AArch64::LDPQi: 567 case AArch64::LDPWi: 568 case AArch64::LDPXi: 569 case AArch64::STPSi: 570 case AArch64::STPDi: 571 case AArch64::STPQi: 572 case AArch64::STPWi: 573 case AArch64::STPXi: 574 case AArch64::STGPi: 575 return true; 576 } 577 } 578 579 static bool isPreLdStPairCandidate(MachineInstr &FirstMI, MachineInstr &MI) { 580 581 unsigned OpcA = FirstMI.getOpcode(); 582 unsigned OpcB = MI.getOpcode(); 583 584 switch (OpcA) { 585 default: 586 return false; 587 case AArch64::STRSpre: 588 return (OpcB == AArch64::STRSui) || (OpcB == AArch64::STURSi); 589 case AArch64::STRDpre: 590 return (OpcB == AArch64::STRDui) || (OpcB == AArch64::STURDi); 591 case AArch64::STRQpre: 592 return (OpcB == AArch64::STRQui) || (OpcB == AArch64::STURQi); 593 case AArch64::STRWpre: 594 return (OpcB == AArch64::STRWui) || (OpcB == AArch64::STURWi); 595 case AArch64::STRXpre: 596 return (OpcB == AArch64::STRXui) || (OpcB == AArch64::STURXi); 597 case AArch64::LDRSpre: 598 return (OpcB == AArch64::LDRSui) || (OpcB == AArch64::LDURSi); 599 case AArch64::LDRDpre: 600 return (OpcB == AArch64::LDRDui) || (OpcB == AArch64::LDURDi); 601 case AArch64::LDRQpre: 602 return (OpcB == AArch64::LDRQui) || (OpcB == AArch64::LDURQi); 603 case AArch64::LDRWpre: 604 return (OpcB == AArch64::LDRWui) || (OpcB == AArch64::LDURWi); 605 case AArch64::LDRXpre: 606 return (OpcB == AArch64::LDRXui) || (OpcB == AArch64::LDURXi); 607 } 608 } 609 610 // Returns the scale and offset range of pre/post indexed variants of MI. 611 static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale, 612 int &MinOffset, int &MaxOffset) { 613 bool IsPaired = isPairedLdSt(MI); 614 bool IsTagStore = isTagStore(MI); 615 // ST*G and all paired ldst have the same scale in pre/post-indexed variants 616 // as in the "unsigned offset" variant. 617 // All other pre/post indexed ldst instructions are unscaled. 618 Scale = (IsTagStore || IsPaired) ? AArch64InstrInfo::getMemScale(MI) : 1; 619 620 if (IsPaired) { 621 MinOffset = -64; 622 MaxOffset = 63; 623 } else { 624 MinOffset = -256; 625 MaxOffset = 255; 626 } 627 } 628 629 static MachineOperand &getLdStRegOp(MachineInstr &MI, 630 unsigned PairedRegOp = 0) { 631 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 632 bool IsPreLdSt = AArch64InstrInfo::isPreLdSt(MI); 633 if (IsPreLdSt) 634 PairedRegOp += 1; 635 unsigned Idx = isPairedLdSt(MI) || IsPreLdSt ? PairedRegOp : 0; 636 return MI.getOperand(Idx); 637 } 638 639 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) { 640 unsigned Idx = isPairedLdSt(MI) || AArch64InstrInfo::isPreLdSt(MI) ? 2 : 1; 641 return MI.getOperand(Idx); 642 } 643 644 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) { 645 unsigned Idx = isPairedLdSt(MI) || AArch64InstrInfo::isPreLdSt(MI) ? 3 : 2; 646 return MI.getOperand(Idx); 647 } 648 649 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, 650 MachineInstr &StoreInst, 651 const AArch64InstrInfo *TII) { 652 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 653 int LoadSize = TII->getMemScale(LoadInst); 654 int StoreSize = TII->getMemScale(StoreInst); 655 int UnscaledStOffset = TII->hasUnscaledLdStOffset(StoreInst) 656 ? getLdStOffsetOp(StoreInst).getImm() 657 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 658 int UnscaledLdOffset = TII->hasUnscaledLdStOffset(LoadInst) 659 ? getLdStOffsetOp(LoadInst).getImm() 660 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 661 return (UnscaledStOffset <= UnscaledLdOffset) && 662 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 663 } 664 665 static bool isPromotableZeroStoreInst(MachineInstr &MI) { 666 unsigned Opc = MI.getOpcode(); 667 return (Opc == AArch64::STRWui || Opc == AArch64::STURWi || 668 isNarrowStore(Opc)) && 669 getLdStRegOp(MI).getReg() == AArch64::WZR; 670 } 671 672 static bool isPromotableLoadFromStore(MachineInstr &MI) { 673 switch (MI.getOpcode()) { 674 default: 675 return false; 676 // Scaled instructions. 677 case AArch64::LDRBBui: 678 case AArch64::LDRHHui: 679 case AArch64::LDRWui: 680 case AArch64::LDRXui: 681 // Unscaled instructions. 682 case AArch64::LDURBBi: 683 case AArch64::LDURHHi: 684 case AArch64::LDURWi: 685 case AArch64::LDURXi: 686 return true; 687 } 688 } 689 690 static bool isMergeableLdStUpdate(MachineInstr &MI) { 691 unsigned Opc = MI.getOpcode(); 692 switch (Opc) { 693 default: 694 return false; 695 // Scaled instructions. 696 case AArch64::STRSui: 697 case AArch64::STRDui: 698 case AArch64::STRQui: 699 case AArch64::STRXui: 700 case AArch64::STRWui: 701 case AArch64::STRHHui: 702 case AArch64::STRBBui: 703 case AArch64::LDRSui: 704 case AArch64::LDRDui: 705 case AArch64::LDRQui: 706 case AArch64::LDRXui: 707 case AArch64::LDRWui: 708 case AArch64::LDRHHui: 709 case AArch64::LDRBBui: 710 case AArch64::STGOffset: 711 case AArch64::STZGOffset: 712 case AArch64::ST2GOffset: 713 case AArch64::STZ2GOffset: 714 case AArch64::STGPi: 715 // Unscaled instructions. 716 case AArch64::STURSi: 717 case AArch64::STURDi: 718 case AArch64::STURQi: 719 case AArch64::STURWi: 720 case AArch64::STURXi: 721 case AArch64::LDURSi: 722 case AArch64::LDURDi: 723 case AArch64::LDURQi: 724 case AArch64::LDURWi: 725 case AArch64::LDURXi: 726 // Paired instructions. 727 case AArch64::LDPSi: 728 case AArch64::LDPSWi: 729 case AArch64::LDPDi: 730 case AArch64::LDPQi: 731 case AArch64::LDPWi: 732 case AArch64::LDPXi: 733 case AArch64::STPSi: 734 case AArch64::STPDi: 735 case AArch64::STPQi: 736 case AArch64::STPWi: 737 case AArch64::STPXi: 738 // Make sure this is a reg+imm (as opposed to an address reloc). 739 if (!getLdStOffsetOp(MI).isImm()) 740 return false; 741 742 return true; 743 } 744 } 745 746 MachineBasicBlock::iterator 747 AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I, 748 MachineBasicBlock::iterator MergeMI, 749 const LdStPairFlags &Flags) { 750 assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && 751 "Expected promotable zero stores."); 752 753 MachineBasicBlock::iterator E = I->getParent()->end(); 754 MachineBasicBlock::iterator NextI = next_nodbg(I, E); 755 // If NextI is the second of the two instructions to be merged, we need 756 // to skip one further. Either way we merge will invalidate the iterator, 757 // and we don't need to scan the new instruction, as it's a pairwise 758 // instruction, which we're not considering for further action anyway. 759 if (NextI == MergeMI) 760 NextI = next_nodbg(NextI, E); 761 762 unsigned Opc = I->getOpcode(); 763 bool IsScaled = !TII->hasUnscaledLdStOffset(Opc); 764 int OffsetStride = IsScaled ? 1 : TII->getMemScale(*I); 765 766 bool MergeForward = Flags.getMergeForward(); 767 // Insert our new paired instruction after whichever of the paired 768 // instructions MergeForward indicates. 769 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 770 // Also based on MergeForward is from where we copy the base register operand 771 // so we get the flags compatible with the input code. 772 const MachineOperand &BaseRegOp = 773 MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I); 774 775 // Which register is Rt and which is Rt2 depends on the offset order. 776 MachineInstr *RtMI; 777 if (getLdStOffsetOp(*I).getImm() == 778 getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) 779 RtMI = &*MergeMI; 780 else 781 RtMI = &*I; 782 783 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 784 // Change the scaled offset from small to large type. 785 if (IsScaled) { 786 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 787 OffsetImm /= 2; 788 } 789 790 // Construct the new instruction. 791 DebugLoc DL = I->getDebugLoc(); 792 MachineBasicBlock *MBB = I->getParent(); 793 MachineInstrBuilder MIB; 794 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 795 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 796 .add(BaseRegOp) 797 .addImm(OffsetImm) 798 .cloneMergedMemRefs({&*I, &*MergeMI}) 799 .setMIFlags(I->mergeFlagsWith(*MergeMI)); 800 (void)MIB; 801 802 LLVM_DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n "); 803 LLVM_DEBUG(I->print(dbgs())); 804 LLVM_DEBUG(dbgs() << " "); 805 LLVM_DEBUG(MergeMI->print(dbgs())); 806 LLVM_DEBUG(dbgs() << " with instruction:\n "); 807 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 808 LLVM_DEBUG(dbgs() << "\n"); 809 810 // Erase the old instructions. 811 I->eraseFromParent(); 812 MergeMI->eraseFromParent(); 813 return NextI; 814 } 815 816 // Apply Fn to all instructions between MI and the beginning of the block, until 817 // a def for DefReg is reached. Returns true, iff Fn returns true for all 818 // visited instructions. Stop after visiting Limit iterations. 819 static bool forAllMIsUntilDef(MachineInstr &MI, MCPhysReg DefReg, 820 const TargetRegisterInfo *TRI, unsigned Limit, 821 std::function<bool(MachineInstr &, bool)> &Fn) { 822 auto MBB = MI.getParent(); 823 for (MachineInstr &I : 824 instructionsWithoutDebug(MI.getReverseIterator(), MBB->instr_rend())) { 825 if (!Limit) 826 return false; 827 --Limit; 828 829 bool isDef = any_of(I.operands(), [DefReg, TRI](MachineOperand &MOP) { 830 return MOP.isReg() && MOP.isDef() && !MOP.isDebug() && MOP.getReg() && 831 TRI->regsOverlap(MOP.getReg(), DefReg); 832 }); 833 if (!Fn(I, isDef)) 834 return false; 835 if (isDef) 836 break; 837 } 838 return true; 839 } 840 841 static void updateDefinedRegisters(MachineInstr &MI, LiveRegUnits &Units, 842 const TargetRegisterInfo *TRI) { 843 844 for (const MachineOperand &MOP : phys_regs_and_masks(MI)) 845 if (MOP.isReg() && MOP.isKill()) 846 Units.removeReg(MOP.getReg()); 847 848 for (const MachineOperand &MOP : phys_regs_and_masks(MI)) 849 if (MOP.isReg() && !MOP.isKill()) 850 Units.addReg(MOP.getReg()); 851 } 852 853 MachineBasicBlock::iterator 854 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 855 MachineBasicBlock::iterator Paired, 856 const LdStPairFlags &Flags) { 857 MachineBasicBlock::iterator E = I->getParent()->end(); 858 MachineBasicBlock::iterator NextI = next_nodbg(I, E); 859 // If NextI is the second of the two instructions to be merged, we need 860 // to skip one further. Either way we merge will invalidate the iterator, 861 // and we don't need to scan the new instruction, as it's a pairwise 862 // instruction, which we're not considering for further action anyway. 863 if (NextI == Paired) 864 NextI = next_nodbg(NextI, E); 865 866 int SExtIdx = Flags.getSExtIdx(); 867 unsigned Opc = 868 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 869 bool IsUnscaled = TII->hasUnscaledLdStOffset(Opc); 870 int OffsetStride = IsUnscaled ? TII->getMemScale(*I) : 1; 871 872 bool MergeForward = Flags.getMergeForward(); 873 874 Optional<MCPhysReg> RenameReg = Flags.getRenameReg(); 875 if (MergeForward && RenameReg) { 876 MCRegister RegToRename = getLdStRegOp(*I).getReg(); 877 DefinedInBB.addReg(*RenameReg); 878 879 // Return the sub/super register for RenameReg, matching the size of 880 // OriginalReg. 881 auto GetMatchingSubReg = [this, 882 RenameReg](MCPhysReg OriginalReg) -> MCPhysReg { 883 for (MCPhysReg SubOrSuper : TRI->sub_and_superregs_inclusive(*RenameReg)) 884 if (TRI->getMinimalPhysRegClass(OriginalReg) == 885 TRI->getMinimalPhysRegClass(SubOrSuper)) 886 return SubOrSuper; 887 llvm_unreachable("Should have found matching sub or super register!"); 888 }; 889 890 std::function<bool(MachineInstr &, bool)> UpdateMIs = 891 [this, RegToRename, GetMatchingSubReg](MachineInstr &MI, bool IsDef) { 892 if (IsDef) { 893 bool SeenDef = false; 894 for (auto &MOP : MI.operands()) { 895 // Rename the first explicit definition and all implicit 896 // definitions matching RegToRename. 897 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 898 (!SeenDef || (MOP.isDef() && MOP.isImplicit())) && 899 TRI->regsOverlap(MOP.getReg(), RegToRename)) { 900 assert((MOP.isImplicit() || 901 (MOP.isRenamable() && !MOP.isEarlyClobber())) && 902 "Need renamable operands"); 903 MOP.setReg(GetMatchingSubReg(MOP.getReg())); 904 SeenDef = true; 905 } 906 } 907 } else { 908 for (auto &MOP : MI.operands()) { 909 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 910 TRI->regsOverlap(MOP.getReg(), RegToRename)) { 911 assert((MOP.isImplicit() || 912 (MOP.isRenamable() && !MOP.isEarlyClobber())) && 913 "Need renamable operands"); 914 MOP.setReg(GetMatchingSubReg(MOP.getReg())); 915 } 916 } 917 } 918 LLVM_DEBUG(dbgs() << "Renamed " << MI << "\n"); 919 return true; 920 }; 921 forAllMIsUntilDef(*I, RegToRename, TRI, LdStLimit, UpdateMIs); 922 923 #if !defined(NDEBUG) 924 // Make sure the register used for renaming is not used between the paired 925 // instructions. That would trash the content before the new paired 926 // instruction. 927 for (auto &MI : 928 iterator_range<MachineInstrBundleIterator<llvm::MachineInstr>>( 929 std::next(I), std::next(Paired))) 930 assert(all_of(MI.operands(), 931 [this, &RenameReg](const MachineOperand &MOP) { 932 return !MOP.isReg() || MOP.isDebug() || !MOP.getReg() || 933 MOP.isUndef() || 934 !TRI->regsOverlap(MOP.getReg(), *RenameReg); 935 }) && 936 "Rename register used between paired instruction, trashing the " 937 "content"); 938 #endif 939 } 940 941 // Insert our new paired instruction after whichever of the paired 942 // instructions MergeForward indicates. 943 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 944 // Also based on MergeForward is from where we copy the base register operand 945 // so we get the flags compatible with the input code. 946 const MachineOperand &BaseRegOp = 947 MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I); 948 949 int Offset = getLdStOffsetOp(*I).getImm(); 950 int PairedOffset = getLdStOffsetOp(*Paired).getImm(); 951 bool PairedIsUnscaled = TII->hasUnscaledLdStOffset(Paired->getOpcode()); 952 if (IsUnscaled != PairedIsUnscaled) { 953 // We're trying to pair instructions that differ in how they are scaled. If 954 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 955 // the opposite (i.e., make Paired's offset unscaled). 956 int MemSize = TII->getMemScale(*Paired); 957 if (PairedIsUnscaled) { 958 // If the unscaled offset isn't a multiple of the MemSize, we can't 959 // pair the operations together. 960 assert(!(PairedOffset % TII->getMemScale(*Paired)) && 961 "Offset should be a multiple of the stride!"); 962 PairedOffset /= MemSize; 963 } else { 964 PairedOffset *= MemSize; 965 } 966 } 967 968 // Which register is Rt and which is Rt2 depends on the offset order. 969 // However, for pre load/stores the Rt should be the one of the pre 970 // load/store. 971 MachineInstr *RtMI, *Rt2MI; 972 if (Offset == PairedOffset + OffsetStride && 973 !AArch64InstrInfo::isPreLdSt(*I)) { 974 RtMI = &*Paired; 975 Rt2MI = &*I; 976 // Here we swapped the assumption made for SExtIdx. 977 // I.e., we turn ldp I, Paired into ldp Paired, I. 978 // Update the index accordingly. 979 if (SExtIdx != -1) 980 SExtIdx = (SExtIdx + 1) % 2; 981 } else { 982 RtMI = &*I; 983 Rt2MI = &*Paired; 984 } 985 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 986 // Scale the immediate offset, if necessary. 987 if (TII->hasUnscaledLdStOffset(RtMI->getOpcode())) { 988 assert(!(OffsetImm % TII->getMemScale(*RtMI)) && 989 "Unscaled offset cannot be scaled."); 990 OffsetImm /= TII->getMemScale(*RtMI); 991 } 992 993 // Construct the new instruction. 994 MachineInstrBuilder MIB; 995 DebugLoc DL = I->getDebugLoc(); 996 MachineBasicBlock *MBB = I->getParent(); 997 MachineOperand RegOp0 = getLdStRegOp(*RtMI); 998 MachineOperand RegOp1 = getLdStRegOp(*Rt2MI); 999 // Kill flags may become invalid when moving stores for pairing. 1000 if (RegOp0.isUse()) { 1001 if (!MergeForward) { 1002 // Clear kill flags on store if moving upwards. Example: 1003 // STRWui %w0, ... 1004 // USE %w1 1005 // STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards 1006 RegOp0.setIsKill(false); 1007 RegOp1.setIsKill(false); 1008 } else { 1009 // Clear kill flags of the first stores register. Example: 1010 // STRWui %w1, ... 1011 // USE kill %w1 ; need to clear kill flag when moving STRWui downwards 1012 // STRW %w0 1013 Register Reg = getLdStRegOp(*I).getReg(); 1014 for (MachineInstr &MI : make_range(std::next(I), Paired)) 1015 MI.clearRegisterKills(Reg, TRI); 1016 } 1017 } 1018 1019 unsigned int MatchPairOpcode = getMatchingPairOpcode(Opc); 1020 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(MatchPairOpcode)); 1021 1022 // Adds the pre-index operand for pre-indexed ld/st pairs. 1023 if (AArch64InstrInfo::isPreLdSt(*RtMI)) 1024 MIB.addReg(BaseRegOp.getReg(), RegState::Define); 1025 1026 MIB.add(RegOp0) 1027 .add(RegOp1) 1028 .add(BaseRegOp) 1029 .addImm(OffsetImm) 1030 .cloneMergedMemRefs({&*I, &*Paired}) 1031 .setMIFlags(I->mergeFlagsWith(*Paired)); 1032 1033 (void)MIB; 1034 1035 LLVM_DEBUG( 1036 dbgs() << "Creating pair load/store. Replacing instructions:\n "); 1037 LLVM_DEBUG(I->print(dbgs())); 1038 LLVM_DEBUG(dbgs() << " "); 1039 LLVM_DEBUG(Paired->print(dbgs())); 1040 LLVM_DEBUG(dbgs() << " with instruction:\n "); 1041 if (SExtIdx != -1) { 1042 // Generate the sign extension for the proper result of the ldp. 1043 // I.e., with X1, that would be: 1044 // %w1 = KILL %w1, implicit-def %x1 1045 // %x1 = SBFMXri killed %x1, 0, 31 1046 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 1047 // Right now, DstMO has the extended register, since it comes from an 1048 // extended opcode. 1049 Register DstRegX = DstMO.getReg(); 1050 // Get the W variant of that register. 1051 Register DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 1052 // Update the result of LDP to use the W instead of the X variant. 1053 DstMO.setReg(DstRegW); 1054 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1055 LLVM_DEBUG(dbgs() << "\n"); 1056 // Make the machine verifier happy by providing a definition for 1057 // the X register. 1058 // Insert this definition right after the generated LDP, i.e., before 1059 // InsertionPoint. 1060 MachineInstrBuilder MIBKill = 1061 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 1062 .addReg(DstRegW) 1063 .addReg(DstRegX, RegState::Define); 1064 MIBKill->getOperand(2).setImplicit(); 1065 // Create the sign extension. 1066 MachineInstrBuilder MIBSXTW = 1067 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 1068 .addReg(DstRegX) 1069 .addImm(0) 1070 .addImm(31); 1071 (void)MIBSXTW; 1072 LLVM_DEBUG(dbgs() << " Extend operand:\n "); 1073 LLVM_DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 1074 } else { 1075 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1076 } 1077 LLVM_DEBUG(dbgs() << "\n"); 1078 1079 if (MergeForward) 1080 for (const MachineOperand &MOP : phys_regs_and_masks(*I)) 1081 if (MOP.isReg() && MOP.isKill()) 1082 DefinedInBB.addReg(MOP.getReg()); 1083 1084 // Erase the old instructions. 1085 I->eraseFromParent(); 1086 Paired->eraseFromParent(); 1087 1088 return NextI; 1089 } 1090 1091 MachineBasicBlock::iterator 1092 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 1093 MachineBasicBlock::iterator StoreI) { 1094 MachineBasicBlock::iterator NextI = 1095 next_nodbg(LoadI, LoadI->getParent()->end()); 1096 1097 int LoadSize = TII->getMemScale(*LoadI); 1098 int StoreSize = TII->getMemScale(*StoreI); 1099 Register LdRt = getLdStRegOp(*LoadI).getReg(); 1100 const MachineOperand &StMO = getLdStRegOp(*StoreI); 1101 Register StRt = getLdStRegOp(*StoreI).getReg(); 1102 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 1103 1104 assert((IsStoreXReg || 1105 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 1106 "Unexpected RegClass"); 1107 1108 MachineInstr *BitExtMI; 1109 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 1110 // Remove the load, if the destination register of the loads is the same 1111 // register for stored value. 1112 if (StRt == LdRt && LoadSize == 8) { 1113 for (MachineInstr &MI : make_range(StoreI->getIterator(), 1114 LoadI->getIterator())) { 1115 if (MI.killsRegister(StRt, TRI)) { 1116 MI.clearRegisterKills(StRt, TRI); 1117 break; 1118 } 1119 } 1120 LLVM_DEBUG(dbgs() << "Remove load instruction:\n "); 1121 LLVM_DEBUG(LoadI->print(dbgs())); 1122 LLVM_DEBUG(dbgs() << "\n"); 1123 LoadI->eraseFromParent(); 1124 return NextI; 1125 } 1126 // Replace the load with a mov if the load and store are in the same size. 1127 BitExtMI = 1128 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1129 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 1130 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 1131 .add(StMO) 1132 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 1133 .setMIFlags(LoadI->getFlags()); 1134 } else { 1135 // FIXME: Currently we disable this transformation in big-endian targets as 1136 // performance and correctness are verified only in little-endian. 1137 if (!Subtarget->isLittleEndian()) 1138 return NextI; 1139 bool IsUnscaled = TII->hasUnscaledLdStOffset(*LoadI); 1140 assert(IsUnscaled == TII->hasUnscaledLdStOffset(*StoreI) && 1141 "Unsupported ld/st match"); 1142 assert(LoadSize <= StoreSize && "Invalid load size"); 1143 int UnscaledLdOffset = IsUnscaled 1144 ? getLdStOffsetOp(*LoadI).getImm() 1145 : getLdStOffsetOp(*LoadI).getImm() * LoadSize; 1146 int UnscaledStOffset = IsUnscaled 1147 ? getLdStOffsetOp(*StoreI).getImm() 1148 : getLdStOffsetOp(*StoreI).getImm() * StoreSize; 1149 int Width = LoadSize * 8; 1150 Register DestReg = 1151 IsStoreXReg ? Register(TRI->getMatchingSuperReg( 1152 LdRt, AArch64::sub_32, &AArch64::GPR64RegClass)) 1153 : LdRt; 1154 1155 assert((UnscaledLdOffset >= UnscaledStOffset && 1156 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 1157 "Invalid offset"); 1158 1159 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 1160 int Imms = Immr + Width - 1; 1161 if (UnscaledLdOffset == UnscaledStOffset) { 1162 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 1163 | ((Immr) << 6) // immr 1164 | ((Imms) << 0) // imms 1165 ; 1166 1167 BitExtMI = 1168 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1169 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 1170 DestReg) 1171 .add(StMO) 1172 .addImm(AndMaskEncoded) 1173 .setMIFlags(LoadI->getFlags()); 1174 } else { 1175 BitExtMI = 1176 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1177 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 1178 DestReg) 1179 .add(StMO) 1180 .addImm(Immr) 1181 .addImm(Imms) 1182 .setMIFlags(LoadI->getFlags()); 1183 } 1184 } 1185 1186 // Clear kill flags between store and load. 1187 for (MachineInstr &MI : make_range(StoreI->getIterator(), 1188 BitExtMI->getIterator())) 1189 if (MI.killsRegister(StRt, TRI)) { 1190 MI.clearRegisterKills(StRt, TRI); 1191 break; 1192 } 1193 1194 LLVM_DEBUG(dbgs() << "Promoting load by replacing :\n "); 1195 LLVM_DEBUG(StoreI->print(dbgs())); 1196 LLVM_DEBUG(dbgs() << " "); 1197 LLVM_DEBUG(LoadI->print(dbgs())); 1198 LLVM_DEBUG(dbgs() << " with instructions:\n "); 1199 LLVM_DEBUG(StoreI->print(dbgs())); 1200 LLVM_DEBUG(dbgs() << " "); 1201 LLVM_DEBUG((BitExtMI)->print(dbgs())); 1202 LLVM_DEBUG(dbgs() << "\n"); 1203 1204 // Erase the old instructions. 1205 LoadI->eraseFromParent(); 1206 return NextI; 1207 } 1208 1209 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 1210 // Convert the byte-offset used by unscaled into an "element" offset used 1211 // by the scaled pair load/store instructions. 1212 if (IsUnscaled) { 1213 // If the byte-offset isn't a multiple of the stride, there's no point 1214 // trying to match it. 1215 if (Offset % OffsetStride) 1216 return false; 1217 Offset /= OffsetStride; 1218 } 1219 return Offset <= 63 && Offset >= -64; 1220 } 1221 1222 // Do alignment, specialized to power of 2 and for signed ints, 1223 // avoiding having to do a C-style cast from uint_64t to int when 1224 // using alignTo from include/llvm/Support/MathExtras.h. 1225 // FIXME: Move this function to include/MathExtras.h? 1226 static int alignTo(int Num, int PowOf2) { 1227 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 1228 } 1229 1230 static bool mayAlias(MachineInstr &MIa, 1231 SmallVectorImpl<MachineInstr *> &MemInsns, 1232 AliasAnalysis *AA) { 1233 for (MachineInstr *MIb : MemInsns) 1234 if (MIa.mayAlias(AA, *MIb, /*UseTBAA*/ false)) 1235 return true; 1236 1237 return false; 1238 } 1239 1240 bool AArch64LoadStoreOpt::findMatchingStore( 1241 MachineBasicBlock::iterator I, unsigned Limit, 1242 MachineBasicBlock::iterator &StoreI) { 1243 MachineBasicBlock::iterator B = I->getParent()->begin(); 1244 MachineBasicBlock::iterator MBBI = I; 1245 MachineInstr &LoadMI = *I; 1246 Register BaseReg = getLdStBaseOp(LoadMI).getReg(); 1247 1248 // If the load is the first instruction in the block, there's obviously 1249 // not any matching store. 1250 if (MBBI == B) 1251 return false; 1252 1253 // Track which register units have been modified and used between the first 1254 // insn and the second insn. 1255 ModifiedRegUnits.clear(); 1256 UsedRegUnits.clear(); 1257 1258 unsigned Count = 0; 1259 do { 1260 MBBI = prev_nodbg(MBBI, B); 1261 MachineInstr &MI = *MBBI; 1262 1263 // Don't count transient instructions towards the search limit since there 1264 // may be different numbers of them if e.g. debug information is present. 1265 if (!MI.isTransient()) 1266 ++Count; 1267 1268 // If the load instruction reads directly from the address to which the 1269 // store instruction writes and the stored value is not modified, we can 1270 // promote the load. Since we do not handle stores with pre-/post-index, 1271 // it's unnecessary to check if BaseReg is modified by the store itself. 1272 // Also we can't handle stores without an immediate offset operand, 1273 // while the operand might be the address for a global variable. 1274 if (MI.mayStore() && isMatchingStore(LoadMI, MI) && 1275 BaseReg == getLdStBaseOp(MI).getReg() && getLdStOffsetOp(MI).isImm() && 1276 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1277 ModifiedRegUnits.available(getLdStRegOp(MI).getReg())) { 1278 StoreI = MBBI; 1279 return true; 1280 } 1281 1282 if (MI.isCall()) 1283 return false; 1284 1285 // Update modified / uses register units. 1286 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1287 1288 // Otherwise, if the base register is modified, we have no match, so 1289 // return early. 1290 if (!ModifiedRegUnits.available(BaseReg)) 1291 return false; 1292 1293 // If we encounter a store aliased with the load, return early. 1294 if (MI.mayStore() && LoadMI.mayAlias(AA, MI, /*UseTBAA*/ false)) 1295 return false; 1296 } while (MBBI != B && Count < Limit); 1297 return false; 1298 } 1299 1300 // Returns true if FirstMI and MI are candidates for merging or pairing. 1301 // Otherwise, returns false. 1302 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, 1303 LdStPairFlags &Flags, 1304 const AArch64InstrInfo *TII) { 1305 // If this is volatile or if pairing is suppressed, not a candidate. 1306 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1307 return false; 1308 1309 // We should have already checked FirstMI for pair suppression and volatility. 1310 assert(!FirstMI.hasOrderedMemoryRef() && 1311 !TII->isLdStPairSuppressed(FirstMI) && 1312 "FirstMI shouldn't get here if either of these checks are true."); 1313 1314 unsigned OpcA = FirstMI.getOpcode(); 1315 unsigned OpcB = MI.getOpcode(); 1316 1317 // Opcodes match: If the opcodes are pre ld/st there is nothing more to check. 1318 if (OpcA == OpcB) 1319 return !AArch64InstrInfo::isPreLdSt(FirstMI); 1320 1321 // Try to match a sign-extended load/store with a zero-extended load/store. 1322 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1323 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1324 assert(IsValidLdStrOpc && 1325 "Given Opc should be a Load or Store with an immediate"); 1326 // OpcA will be the first instruction in the pair. 1327 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1328 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1329 return true; 1330 } 1331 1332 // If the second instruction isn't even a mergable/pairable load/store, bail 1333 // out. 1334 if (!PairIsValidLdStrOpc) 1335 return false; 1336 1337 // FIXME: We don't support merging narrow stores with mixed scaled/unscaled 1338 // offsets. 1339 if (isNarrowStore(OpcA) || isNarrowStore(OpcB)) 1340 return false; 1341 1342 // The STR<S,D,Q,W,X>pre - STR<S,D,Q,W,X>ui and 1343 // LDR<S,D,Q,W,X>pre-LDR<S,D,Q,W,X>ui 1344 // are candidate pairs that can be merged. 1345 if (isPreLdStPairCandidate(FirstMI, MI)) 1346 return true; 1347 1348 // Try to match an unscaled load/store with a scaled load/store. 1349 return TII->hasUnscaledLdStOffset(OpcA) != TII->hasUnscaledLdStOffset(OpcB) && 1350 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1351 1352 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1353 } 1354 1355 static bool 1356 canRenameUpToDef(MachineInstr &FirstMI, LiveRegUnits &UsedInBetween, 1357 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1358 const TargetRegisterInfo *TRI) { 1359 if (!FirstMI.mayStore()) 1360 return false; 1361 1362 // Check if we can find an unused register which we can use to rename 1363 // the register used by the first load/store. 1364 auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg()); 1365 MachineFunction &MF = *FirstMI.getParent()->getParent(); 1366 if (!RegClass || !MF.getRegInfo().tracksLiveness()) 1367 return false; 1368 1369 auto RegToRename = getLdStRegOp(FirstMI).getReg(); 1370 // For now, we only rename if the store operand gets killed at the store. 1371 if (!getLdStRegOp(FirstMI).isKill() && 1372 !any_of(FirstMI.operands(), 1373 [TRI, RegToRename](const MachineOperand &MOP) { 1374 return MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 1375 MOP.isImplicit() && MOP.isKill() && 1376 TRI->regsOverlap(RegToRename, MOP.getReg()); 1377 })) { 1378 LLVM_DEBUG(dbgs() << " Operand not killed at " << FirstMI << "\n"); 1379 return false; 1380 } 1381 auto canRenameMOP = [TRI](const MachineOperand &MOP) { 1382 if (MOP.isReg()) { 1383 auto *RegClass = TRI->getMinimalPhysRegClass(MOP.getReg()); 1384 // Renaming registers with multiple disjunct sub-registers (e.g. the 1385 // result of a LD3) means that all sub-registers are renamed, potentially 1386 // impacting other instructions we did not check. Bail out. 1387 // Note that this relies on the structure of the AArch64 register file. In 1388 // particular, a subregister cannot be written without overwriting the 1389 // whole register. 1390 if (RegClass->HasDisjunctSubRegs) { 1391 LLVM_DEBUG( 1392 dbgs() 1393 << " Cannot rename operands with multiple disjunct subregisters (" 1394 << MOP << ")\n"); 1395 return false; 1396 } 1397 } 1398 return MOP.isImplicit() || 1399 (MOP.isRenamable() && !MOP.isEarlyClobber() && !MOP.isTied()); 1400 }; 1401 1402 bool FoundDef = false; 1403 1404 // For each instruction between FirstMI and the previous def for RegToRename, 1405 // we 1406 // * check if we can rename RegToRename in this instruction 1407 // * collect the registers used and required register classes for RegToRename. 1408 std::function<bool(MachineInstr &, bool)> CheckMIs = [&](MachineInstr &MI, 1409 bool IsDef) { 1410 LLVM_DEBUG(dbgs() << "Checking " << MI << "\n"); 1411 // Currently we do not try to rename across frame-setup instructions. 1412 if (MI.getFlag(MachineInstr::FrameSetup)) { 1413 LLVM_DEBUG(dbgs() << " Cannot rename framesetup instructions currently (" 1414 << MI << ")\n"); 1415 return false; 1416 } 1417 1418 UsedInBetween.accumulate(MI); 1419 1420 // For a definition, check that we can rename the definition and exit the 1421 // loop. 1422 FoundDef = IsDef; 1423 1424 // For defs, check if we can rename the first def of RegToRename. 1425 if (FoundDef) { 1426 // For some pseudo instructions, we might not generate code in the end 1427 // (e.g. KILL) and we would end up without a correct def for the rename 1428 // register. 1429 // TODO: This might be overly conservative and we could handle those cases 1430 // in multiple ways: 1431 // 1. Insert an extra copy, to materialize the def. 1432 // 2. Skip pseudo-defs until we find an non-pseudo def. 1433 if (MI.isPseudo()) { 1434 LLVM_DEBUG(dbgs() << " Cannot rename pseudo instruction " << MI 1435 << "\n"); 1436 return false; 1437 } 1438 1439 for (auto &MOP : MI.operands()) { 1440 if (!MOP.isReg() || !MOP.isDef() || MOP.isDebug() || !MOP.getReg() || 1441 !TRI->regsOverlap(MOP.getReg(), RegToRename)) 1442 continue; 1443 if (!canRenameMOP(MOP)) { 1444 LLVM_DEBUG(dbgs() 1445 << " Cannot rename " << MOP << " in " << MI << "\n"); 1446 return false; 1447 } 1448 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); 1449 } 1450 return true; 1451 } else { 1452 for (auto &MOP : MI.operands()) { 1453 if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() || 1454 !TRI->regsOverlap(MOP.getReg(), RegToRename)) 1455 continue; 1456 1457 if (!canRenameMOP(MOP)) { 1458 LLVM_DEBUG(dbgs() 1459 << " Cannot rename " << MOP << " in " << MI << "\n"); 1460 return false; 1461 } 1462 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); 1463 } 1464 } 1465 return true; 1466 }; 1467 1468 if (!forAllMIsUntilDef(FirstMI, RegToRename, TRI, LdStLimit, CheckMIs)) 1469 return false; 1470 1471 if (!FoundDef) { 1472 LLVM_DEBUG(dbgs() << " Did not find definition for register in BB\n"); 1473 return false; 1474 } 1475 return true; 1476 } 1477 1478 // Check if we can find a physical register for renaming \p Reg. This register 1479 // must: 1480 // * not be defined already in \p DefinedInBB; DefinedInBB must contain all 1481 // defined registers up to the point where the renamed register will be used, 1482 // * not used in \p UsedInBetween; UsedInBetween must contain all accessed 1483 // registers in the range the rename register will be used, 1484 // * is available in all used register classes (checked using RequiredClasses). 1485 static Optional<MCPhysReg> tryToFindRegisterToRename( 1486 const MachineFunction &MF, Register Reg, LiveRegUnits &DefinedInBB, 1487 LiveRegUnits &UsedInBetween, 1488 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1489 const TargetRegisterInfo *TRI) { 1490 const MachineRegisterInfo &RegInfo = MF.getRegInfo(); 1491 1492 // Checks if any sub- or super-register of PR is callee saved. 1493 auto AnySubOrSuperRegCalleePreserved = [&MF, TRI](MCPhysReg PR) { 1494 return any_of(TRI->sub_and_superregs_inclusive(PR), 1495 [&MF, TRI](MCPhysReg SubOrSuper) { 1496 return TRI->isCalleeSavedPhysReg(SubOrSuper, MF); 1497 }); 1498 }; 1499 1500 // Check if PR or one of its sub- or super-registers can be used for all 1501 // required register classes. 1502 auto CanBeUsedForAllClasses = [&RequiredClasses, TRI](MCPhysReg PR) { 1503 return all_of(RequiredClasses, [PR, TRI](const TargetRegisterClass *C) { 1504 return any_of(TRI->sub_and_superregs_inclusive(PR), 1505 [C, TRI](MCPhysReg SubOrSuper) { 1506 return C == TRI->getMinimalPhysRegClass(SubOrSuper); 1507 }); 1508 }); 1509 }; 1510 1511 auto *RegClass = TRI->getMinimalPhysRegClass(Reg); 1512 for (const MCPhysReg &PR : *RegClass) { 1513 if (DefinedInBB.available(PR) && UsedInBetween.available(PR) && 1514 !RegInfo.isReserved(PR) && !AnySubOrSuperRegCalleePreserved(PR) && 1515 CanBeUsedForAllClasses(PR)) { 1516 DefinedInBB.addReg(PR); 1517 LLVM_DEBUG(dbgs() << "Found rename register " << printReg(PR, TRI) 1518 << "\n"); 1519 return {PR}; 1520 } 1521 } 1522 LLVM_DEBUG(dbgs() << "No rename register found from " 1523 << TRI->getRegClassName(RegClass) << "\n"); 1524 return None; 1525 } 1526 1527 /// Scan the instructions looking for a load/store that can be combined with the 1528 /// current instruction into a wider equivalent or a load/store pair. 1529 MachineBasicBlock::iterator 1530 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1531 LdStPairFlags &Flags, unsigned Limit, 1532 bool FindNarrowMerge) { 1533 MachineBasicBlock::iterator E = I->getParent()->end(); 1534 MachineBasicBlock::iterator MBBI = I; 1535 MachineBasicBlock::iterator MBBIWithRenameReg; 1536 MachineInstr &FirstMI = *I; 1537 MBBI = next_nodbg(MBBI, E); 1538 1539 bool MayLoad = FirstMI.mayLoad(); 1540 bool IsUnscaled = TII->hasUnscaledLdStOffset(FirstMI); 1541 Register Reg = getLdStRegOp(FirstMI).getReg(); 1542 Register BaseReg = getLdStBaseOp(FirstMI).getReg(); 1543 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1544 int OffsetStride = IsUnscaled ? TII->getMemScale(FirstMI) : 1; 1545 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1546 1547 Optional<bool> MaybeCanRename = None; 1548 if (!EnableRenaming) 1549 MaybeCanRename = {false}; 1550 1551 SmallPtrSet<const TargetRegisterClass *, 5> RequiredClasses; 1552 LiveRegUnits UsedInBetween; 1553 UsedInBetween.init(*TRI); 1554 1555 Flags.clearRenameReg(); 1556 1557 // Track which register units have been modified and used between the first 1558 // insn (inclusive) and the second insn. 1559 ModifiedRegUnits.clear(); 1560 UsedRegUnits.clear(); 1561 1562 // Remember any instructions that read/write memory between FirstMI and MI. 1563 SmallVector<MachineInstr *, 4> MemInsns; 1564 1565 for (unsigned Count = 0; MBBI != E && Count < Limit; 1566 MBBI = next_nodbg(MBBI, E)) { 1567 MachineInstr &MI = *MBBI; 1568 1569 UsedInBetween.accumulate(MI); 1570 1571 // Don't count transient instructions towards the search limit since there 1572 // may be different numbers of them if e.g. debug information is present. 1573 if (!MI.isTransient()) 1574 ++Count; 1575 1576 Flags.setSExtIdx(-1); 1577 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && 1578 getLdStOffsetOp(MI).isImm()) { 1579 assert(MI.mayLoadOrStore() && "Expected memory operation."); 1580 // If we've found another instruction with the same opcode, check to see 1581 // if the base and offset are compatible with our starting instruction. 1582 // These instructions all have scaled immediate operands, so we just 1583 // check for +1/-1. Make sure to check the new instruction offset is 1584 // actually an immediate and not a symbolic reference destined for 1585 // a relocation. 1586 Register MIBaseReg = getLdStBaseOp(MI).getReg(); 1587 int MIOffset = getLdStOffsetOp(MI).getImm(); 1588 bool MIIsUnscaled = TII->hasUnscaledLdStOffset(MI); 1589 if (IsUnscaled != MIIsUnscaled) { 1590 // We're trying to pair instructions that differ in how they are scaled. 1591 // If FirstMI is scaled then scale the offset of MI accordingly. 1592 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1593 int MemSize = TII->getMemScale(MI); 1594 if (MIIsUnscaled) { 1595 // If the unscaled offset isn't a multiple of the MemSize, we can't 1596 // pair the operations together: bail and keep looking. 1597 if (MIOffset % MemSize) { 1598 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1599 UsedRegUnits, TRI); 1600 MemInsns.push_back(&MI); 1601 continue; 1602 } 1603 MIOffset /= MemSize; 1604 } else { 1605 MIOffset *= MemSize; 1606 } 1607 } 1608 1609 bool IsPreLdSt = isPreLdStPairCandidate(FirstMI, MI); 1610 1611 if (BaseReg == MIBaseReg) { 1612 // If the offset of the second ld/st is not equal to the size of the 1613 // destination register it can’t be paired with a pre-index ld/st 1614 // pair. Additionally if the base reg is used or modified the operations 1615 // can't be paired: bail and keep looking. 1616 if (IsPreLdSt) { 1617 bool IsOutOfBounds = MIOffset != TII->getMemScale(MI); 1618 bool IsBaseRegUsed = 1619 !UsedRegUnits.available(getLdStBaseOp(MI).getReg()); 1620 bool IsBaseRegModified = 1621 !ModifiedRegUnits.available(getLdStBaseOp(MI).getReg()); 1622 // If the stored value and the address of the second instruction is 1623 // the same, it needs to be using the updated register and therefore 1624 // it must not be folded. 1625 bool IsMIRegTheSame = TRI->regsOverlap(getLdStRegOp(MI).getReg(), 1626 getLdStBaseOp(MI).getReg()); 1627 if (IsOutOfBounds || IsBaseRegUsed || IsBaseRegModified || 1628 IsMIRegTheSame) { 1629 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1630 UsedRegUnits, TRI); 1631 MemInsns.push_back(&MI); 1632 continue; 1633 } 1634 } else { 1635 if ((Offset != MIOffset + OffsetStride) && 1636 (Offset + OffsetStride != MIOffset)) { 1637 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1638 UsedRegUnits, TRI); 1639 MemInsns.push_back(&MI); 1640 continue; 1641 } 1642 } 1643 1644 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1645 if (FindNarrowMerge) { 1646 // If the alignment requirements of the scaled wide load/store 1647 // instruction can't express the offset of the scaled narrow input, 1648 // bail and keep looking. For promotable zero stores, allow only when 1649 // the stored value is the same (i.e., WZR). 1650 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1651 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1652 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1653 UsedRegUnits, TRI); 1654 MemInsns.push_back(&MI); 1655 continue; 1656 } 1657 } else { 1658 // Pairwise instructions have a 7-bit signed offset field. Single 1659 // insns have a 12-bit unsigned offset field. If the resultant 1660 // immediate offset of merging these instructions is out of range for 1661 // a pairwise instruction, bail and keep looking. 1662 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1663 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1664 UsedRegUnits, TRI); 1665 MemInsns.push_back(&MI); 1666 continue; 1667 } 1668 // If the alignment requirements of the paired (scaled) instruction 1669 // can't express the offset of the unscaled input, bail and keep 1670 // looking. 1671 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1672 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1673 UsedRegUnits, TRI); 1674 MemInsns.push_back(&MI); 1675 continue; 1676 } 1677 } 1678 // If the destination register of one load is the same register or a 1679 // sub/super register of the other load, bail and keep looking. A 1680 // load-pair instruction with both destination registers the same is 1681 // UNPREDICTABLE and will result in an exception. 1682 if (MayLoad && 1683 TRI->isSuperOrSubRegisterEq(Reg, getLdStRegOp(MI).getReg())) { 1684 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1685 TRI); 1686 MemInsns.push_back(&MI); 1687 continue; 1688 } 1689 1690 // If the BaseReg has been modified, then we cannot do the optimization. 1691 // For example, in the following pattern 1692 // ldr x1 [x2] 1693 // ldr x2 [x3] 1694 // ldr x4 [x2, #8], 1695 // the first and third ldr cannot be converted to ldp x1, x4, [x2] 1696 if (!ModifiedRegUnits.available(BaseReg)) 1697 return E; 1698 1699 // If the Rt of the second instruction was not modified or used between 1700 // the two instructions and none of the instructions between the second 1701 // and first alias with the second, we can combine the second into the 1702 // first. 1703 if (ModifiedRegUnits.available(getLdStRegOp(MI).getReg()) && 1704 !(MI.mayLoad() && 1705 !UsedRegUnits.available(getLdStRegOp(MI).getReg())) && 1706 !mayAlias(MI, MemInsns, AA)) { 1707 1708 Flags.setMergeForward(false); 1709 Flags.clearRenameReg(); 1710 return MBBI; 1711 } 1712 1713 // Likewise, if the Rt of the first instruction is not modified or used 1714 // between the two instructions and none of the instructions between the 1715 // first and the second alias with the first, we can combine the first 1716 // into the second. 1717 if (!(MayLoad && 1718 !UsedRegUnits.available(getLdStRegOp(FirstMI).getReg())) && 1719 !mayAlias(FirstMI, MemInsns, AA)) { 1720 1721 if (ModifiedRegUnits.available(getLdStRegOp(FirstMI).getReg())) { 1722 Flags.setMergeForward(true); 1723 Flags.clearRenameReg(); 1724 return MBBI; 1725 } 1726 1727 if (DebugCounter::shouldExecute(RegRenamingCounter)) { 1728 if (!MaybeCanRename) 1729 MaybeCanRename = {canRenameUpToDef(FirstMI, UsedInBetween, 1730 RequiredClasses, TRI)}; 1731 1732 if (*MaybeCanRename) { 1733 Optional<MCPhysReg> MaybeRenameReg = tryToFindRegisterToRename( 1734 *FirstMI.getParent()->getParent(), Reg, DefinedInBB, 1735 UsedInBetween, RequiredClasses, TRI); 1736 if (MaybeRenameReg) { 1737 Flags.setRenameReg(*MaybeRenameReg); 1738 Flags.setMergeForward(true); 1739 MBBIWithRenameReg = MBBI; 1740 } 1741 } 1742 } 1743 } 1744 // Unable to combine these instructions due to interference in between. 1745 // Keep looking. 1746 } 1747 } 1748 1749 if (Flags.getRenameReg()) 1750 return MBBIWithRenameReg; 1751 1752 // If the instruction wasn't a matching load or store. Stop searching if we 1753 // encounter a call instruction that might modify memory. 1754 if (MI.isCall()) 1755 return E; 1756 1757 // Update modified / uses register units. 1758 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1759 1760 // Otherwise, if the base register is modified, we have no match, so 1761 // return early. 1762 if (!ModifiedRegUnits.available(BaseReg)) 1763 return E; 1764 1765 // Update list of instructions that read/write memory. 1766 if (MI.mayLoadOrStore()) 1767 MemInsns.push_back(&MI); 1768 } 1769 return E; 1770 } 1771 1772 static MachineBasicBlock::iterator 1773 maybeMoveCFI(MachineInstr &MI, MachineBasicBlock::iterator MaybeCFI) { 1774 auto End = MI.getParent()->end(); 1775 if (MaybeCFI == End || 1776 MaybeCFI->getOpcode() != TargetOpcode::CFI_INSTRUCTION || 1777 !(MI.getFlag(MachineInstr::FrameSetup) || 1778 MI.getFlag(MachineInstr::FrameDestroy)) || 1779 getLdStBaseOp(MI).getReg() != AArch64::SP) 1780 return End; 1781 1782 const MachineFunction &MF = *MI.getParent()->getParent(); 1783 unsigned CFIIndex = MaybeCFI->getOperand(0).getCFIIndex(); 1784 const MCCFIInstruction &CFI = MF.getFrameInstructions()[CFIIndex]; 1785 switch (CFI.getOperation()) { 1786 case MCCFIInstruction::OpDefCfa: 1787 case MCCFIInstruction::OpDefCfaOffset: 1788 return MaybeCFI; 1789 default: 1790 return End; 1791 } 1792 } 1793 1794 MachineBasicBlock::iterator 1795 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1796 MachineBasicBlock::iterator Update, 1797 bool IsPreIdx) { 1798 assert((Update->getOpcode() == AArch64::ADDXri || 1799 Update->getOpcode() == AArch64::SUBXri) && 1800 "Unexpected base register update instruction to merge!"); 1801 MachineBasicBlock::iterator E = I->getParent()->end(); 1802 MachineBasicBlock::iterator NextI = next_nodbg(I, E); 1803 1804 // If updating the SP and the following instruction is CFA offset related CFI 1805 // instruction move it after the merged instruction. 1806 MachineBasicBlock::iterator CFI = 1807 IsPreIdx ? maybeMoveCFI(*Update, next_nodbg(Update, E)) : E; 1808 1809 // Return the instruction following the merged instruction, which is 1810 // the instruction following our unmerged load. Unless that's the add/sub 1811 // instruction we're merging, in which case it's the one after that. 1812 if (NextI == Update) 1813 NextI = next_nodbg(NextI, E); 1814 1815 int Value = Update->getOperand(2).getImm(); 1816 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1817 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1818 if (Update->getOpcode() == AArch64::SUBXri) 1819 Value = -Value; 1820 1821 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1822 : getPostIndexedOpcode(I->getOpcode()); 1823 MachineInstrBuilder MIB; 1824 int Scale, MinOffset, MaxOffset; 1825 getPrePostIndexedMemOpInfo(*I, Scale, MinOffset, MaxOffset); 1826 if (!isPairedLdSt(*I)) { 1827 // Non-paired instruction. 1828 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1829 .add(getLdStRegOp(*Update)) 1830 .add(getLdStRegOp(*I)) 1831 .add(getLdStBaseOp(*I)) 1832 .addImm(Value / Scale) 1833 .setMemRefs(I->memoperands()) 1834 .setMIFlags(I->mergeFlagsWith(*Update)); 1835 } else { 1836 // Paired instruction. 1837 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1838 .add(getLdStRegOp(*Update)) 1839 .add(getLdStRegOp(*I, 0)) 1840 .add(getLdStRegOp(*I, 1)) 1841 .add(getLdStBaseOp(*I)) 1842 .addImm(Value / Scale) 1843 .setMemRefs(I->memoperands()) 1844 .setMIFlags(I->mergeFlagsWith(*Update)); 1845 } 1846 if (CFI != E) { 1847 MachineBasicBlock *MBB = I->getParent(); 1848 MBB->splice(std::next(MIB.getInstr()->getIterator()), MBB, CFI); 1849 } 1850 1851 if (IsPreIdx) { 1852 ++NumPreFolded; 1853 LLVM_DEBUG(dbgs() << "Creating pre-indexed load/store."); 1854 } else { 1855 ++NumPostFolded; 1856 LLVM_DEBUG(dbgs() << "Creating post-indexed load/store."); 1857 } 1858 LLVM_DEBUG(dbgs() << " Replacing instructions:\n "); 1859 LLVM_DEBUG(I->print(dbgs())); 1860 LLVM_DEBUG(dbgs() << " "); 1861 LLVM_DEBUG(Update->print(dbgs())); 1862 LLVM_DEBUG(dbgs() << " with instruction:\n "); 1863 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1864 LLVM_DEBUG(dbgs() << "\n"); 1865 1866 // Erase the old instructions for the block. 1867 I->eraseFromParent(); 1868 Update->eraseFromParent(); 1869 1870 return NextI; 1871 } 1872 1873 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, 1874 MachineInstr &MI, 1875 unsigned BaseReg, int Offset) { 1876 switch (MI.getOpcode()) { 1877 default: 1878 break; 1879 case AArch64::SUBXri: 1880 case AArch64::ADDXri: 1881 // Make sure it's a vanilla immediate operand, not a relocation or 1882 // anything else we can't handle. 1883 if (!MI.getOperand(2).isImm()) 1884 break; 1885 // Watch out for 1 << 12 shifted value. 1886 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) 1887 break; 1888 1889 // The update instruction source and destination register must be the 1890 // same as the load/store base register. 1891 if (MI.getOperand(0).getReg() != BaseReg || 1892 MI.getOperand(1).getReg() != BaseReg) 1893 break; 1894 1895 int UpdateOffset = MI.getOperand(2).getImm(); 1896 if (MI.getOpcode() == AArch64::SUBXri) 1897 UpdateOffset = -UpdateOffset; 1898 1899 // The immediate must be a multiple of the scaling factor of the pre/post 1900 // indexed instruction. 1901 int Scale, MinOffset, MaxOffset; 1902 getPrePostIndexedMemOpInfo(MemMI, Scale, MinOffset, MaxOffset); 1903 if (UpdateOffset % Scale != 0) 1904 break; 1905 1906 // Scaled offset must fit in the instruction immediate. 1907 int ScaledOffset = UpdateOffset / Scale; 1908 if (ScaledOffset > MaxOffset || ScaledOffset < MinOffset) 1909 break; 1910 1911 // If we have a non-zero Offset, we check that it matches the amount 1912 // we're adding to the register. 1913 if (!Offset || Offset == UpdateOffset) 1914 return true; 1915 break; 1916 } 1917 return false; 1918 } 1919 1920 static bool needsWinCFI(const MachineFunction *MF) { 1921 return MF->getTarget().getMCAsmInfo()->usesWindowsCFI() && 1922 MF->getFunction().needsUnwindTableEntry(); 1923 } 1924 1925 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1926 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1927 MachineBasicBlock::iterator E = I->getParent()->end(); 1928 MachineInstr &MemMI = *I; 1929 MachineBasicBlock::iterator MBBI = I; 1930 1931 Register BaseReg = getLdStBaseOp(MemMI).getReg(); 1932 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * TII->getMemScale(MemMI); 1933 1934 // Scan forward looking for post-index opportunities. Updating instructions 1935 // can't be formed if the memory instruction doesn't have the offset we're 1936 // looking for. 1937 if (MIUnscaledOffset != UnscaledOffset) 1938 return E; 1939 1940 // If the base register overlaps a source/destination register, we can't 1941 // merge the update. This does not apply to tag store instructions which 1942 // ignore the address part of the source register. 1943 // This does not apply to STGPi as well, which does not have unpredictable 1944 // behavior in this case unlike normal stores, and always performs writeback 1945 // after reading the source register value. 1946 if (!isTagStore(MemMI) && MemMI.getOpcode() != AArch64::STGPi) { 1947 bool IsPairedInsn = isPairedLdSt(MemMI); 1948 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1949 Register DestReg = getLdStRegOp(MemMI, i).getReg(); 1950 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1951 return E; 1952 } 1953 } 1954 1955 // Track which register units have been modified and used between the first 1956 // insn (inclusive) and the second insn. 1957 ModifiedRegUnits.clear(); 1958 UsedRegUnits.clear(); 1959 MBBI = next_nodbg(MBBI, E); 1960 1961 // We can't post-increment the stack pointer if any instruction between 1962 // the memory access (I) and the increment (MBBI) can access the memory 1963 // region defined by [SP, MBBI]. 1964 const bool BaseRegSP = BaseReg == AArch64::SP; 1965 if (BaseRegSP && needsWinCFI(I->getMF())) { 1966 // FIXME: For now, we always block the optimization over SP in windows 1967 // targets as it requires to adjust the unwind/debug info, messing up 1968 // the unwind info can actually cause a miscompile. 1969 return E; 1970 } 1971 1972 for (unsigned Count = 0; MBBI != E && Count < Limit; 1973 MBBI = next_nodbg(MBBI, E)) { 1974 MachineInstr &MI = *MBBI; 1975 1976 // Don't count transient instructions towards the search limit since there 1977 // may be different numbers of them if e.g. debug information is present. 1978 if (!MI.isTransient()) 1979 ++Count; 1980 1981 // If we found a match, return it. 1982 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) 1983 return MBBI; 1984 1985 // Update the status of what the instruction clobbered and used. 1986 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1987 1988 // Otherwise, if the base register is used or modified, we have no match, so 1989 // return early. 1990 // If we are optimizing SP, do not allow instructions that may load or store 1991 // in between the load and the optimized value update. 1992 if (!ModifiedRegUnits.available(BaseReg) || 1993 !UsedRegUnits.available(BaseReg) || 1994 (BaseRegSP && MBBI->mayLoadOrStore())) 1995 return E; 1996 } 1997 return E; 1998 } 1999 2000 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 2001 MachineBasicBlock::iterator I, unsigned Limit) { 2002 MachineBasicBlock::iterator B = I->getParent()->begin(); 2003 MachineBasicBlock::iterator E = I->getParent()->end(); 2004 MachineInstr &MemMI = *I; 2005 MachineBasicBlock::iterator MBBI = I; 2006 MachineFunction &MF = *MemMI.getMF(); 2007 2008 Register BaseReg = getLdStBaseOp(MemMI).getReg(); 2009 int Offset = getLdStOffsetOp(MemMI).getImm(); 2010 2011 // If the load/store is the first instruction in the block, there's obviously 2012 // not any matching update. Ditto if the memory offset isn't zero. 2013 if (MBBI == B || Offset != 0) 2014 return E; 2015 // If the base register overlaps a destination register, we can't 2016 // merge the update. 2017 if (!isTagStore(MemMI)) { 2018 bool IsPairedInsn = isPairedLdSt(MemMI); 2019 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 2020 Register DestReg = getLdStRegOp(MemMI, i).getReg(); 2021 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 2022 return E; 2023 } 2024 } 2025 2026 const bool BaseRegSP = BaseReg == AArch64::SP; 2027 if (BaseRegSP && needsWinCFI(I->getMF())) { 2028 // FIXME: For now, we always block the optimization over SP in windows 2029 // targets as it requires to adjust the unwind/debug info, messing up 2030 // the unwind info can actually cause a miscompile. 2031 return E; 2032 } 2033 2034 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2035 unsigned RedZoneSize = 2036 Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction()); 2037 2038 // Track which register units have been modified and used between the first 2039 // insn (inclusive) and the second insn. 2040 ModifiedRegUnits.clear(); 2041 UsedRegUnits.clear(); 2042 unsigned Count = 0; 2043 bool MemAcessBeforeSPPreInc = false; 2044 do { 2045 MBBI = prev_nodbg(MBBI, B); 2046 MachineInstr &MI = *MBBI; 2047 2048 // Don't count transient instructions towards the search limit since there 2049 // may be different numbers of them if e.g. debug information is present. 2050 if (!MI.isTransient()) 2051 ++Count; 2052 2053 // If we found a match, return it. 2054 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) { 2055 // Check that the update value is within our red zone limit (which may be 2056 // zero). 2057 if (MemAcessBeforeSPPreInc && MBBI->getOperand(2).getImm() > RedZoneSize) 2058 return E; 2059 return MBBI; 2060 } 2061 2062 // Update the status of what the instruction clobbered and used. 2063 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 2064 2065 // Otherwise, if the base register is used or modified, we have no match, so 2066 // return early. 2067 if (!ModifiedRegUnits.available(BaseReg) || 2068 !UsedRegUnits.available(BaseReg)) 2069 return E; 2070 // Keep track if we have a memory access before an SP pre-increment, in this 2071 // case we need to validate later that the update amount respects the red 2072 // zone. 2073 if (BaseRegSP && MBBI->mayLoadOrStore()) 2074 MemAcessBeforeSPPreInc = true; 2075 } while (MBBI != B && Count < Limit); 2076 return E; 2077 } 2078 2079 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 2080 MachineBasicBlock::iterator &MBBI) { 2081 MachineInstr &MI = *MBBI; 2082 // If this is a volatile load, don't mess with it. 2083 if (MI.hasOrderedMemoryRef()) 2084 return false; 2085 2086 // Make sure this is a reg+imm. 2087 // FIXME: It is possible to extend it to handle reg+reg cases. 2088 if (!getLdStOffsetOp(MI).isImm()) 2089 return false; 2090 2091 // Look backward up to LdStLimit instructions. 2092 MachineBasicBlock::iterator StoreI; 2093 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 2094 ++NumLoadsFromStoresPromoted; 2095 // Promote the load. Keeping the iterator straight is a 2096 // pain, so we let the merge routine tell us what the next instruction 2097 // is after it's done mucking about. 2098 MBBI = promoteLoadFromStore(MBBI, StoreI); 2099 return true; 2100 } 2101 return false; 2102 } 2103 2104 // Merge adjacent zero stores into a wider store. 2105 bool AArch64LoadStoreOpt::tryToMergeZeroStInst( 2106 MachineBasicBlock::iterator &MBBI) { 2107 assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store."); 2108 MachineInstr &MI = *MBBI; 2109 MachineBasicBlock::iterator E = MI.getParent()->end(); 2110 2111 if (!TII->isCandidateToMergeOrPair(MI)) 2112 return false; 2113 2114 // Look ahead up to LdStLimit instructions for a mergable instruction. 2115 LdStPairFlags Flags; 2116 MachineBasicBlock::iterator MergeMI = 2117 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 2118 if (MergeMI != E) { 2119 ++NumZeroStoresPromoted; 2120 2121 // Keeping the iterator straight is a pain, so we let the merge routine tell 2122 // us what the next instruction is after it's done mucking about. 2123 MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags); 2124 return true; 2125 } 2126 return false; 2127 } 2128 2129 // Find loads and stores that can be merged into a single load or store pair 2130 // instruction. 2131 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 2132 MachineInstr &MI = *MBBI; 2133 MachineBasicBlock::iterator E = MI.getParent()->end(); 2134 2135 if (!TII->isCandidateToMergeOrPair(MI)) 2136 return false; 2137 2138 // Early exit if the offset is not possible to match. (6 bits of positive 2139 // range, plus allow an extra one in case we find a later insn that matches 2140 // with Offset-1) 2141 bool IsUnscaled = TII->hasUnscaledLdStOffset(MI); 2142 int Offset = getLdStOffsetOp(MI).getImm(); 2143 int OffsetStride = IsUnscaled ? TII->getMemScale(MI) : 1; 2144 // Allow one more for offset. 2145 if (Offset > 0) 2146 Offset -= OffsetStride; 2147 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 2148 return false; 2149 2150 // Look ahead up to LdStLimit instructions for a pairable instruction. 2151 LdStPairFlags Flags; 2152 MachineBasicBlock::iterator Paired = 2153 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 2154 if (Paired != E) { 2155 ++NumPairCreated; 2156 if (TII->hasUnscaledLdStOffset(MI)) 2157 ++NumUnscaledPairCreated; 2158 // Keeping the iterator straight is a pain, so we let the merge routine tell 2159 // us what the next instruction is after it's done mucking about. 2160 auto Prev = std::prev(MBBI); 2161 MBBI = mergePairedInsns(MBBI, Paired, Flags); 2162 // Collect liveness info for instructions between Prev and the new position 2163 // MBBI. 2164 for (auto I = std::next(Prev); I != MBBI; I++) 2165 updateDefinedRegisters(*I, DefinedInBB, TRI); 2166 2167 return true; 2168 } 2169 return false; 2170 } 2171 2172 bool AArch64LoadStoreOpt::tryToMergeLdStUpdate 2173 (MachineBasicBlock::iterator &MBBI) { 2174 MachineInstr &MI = *MBBI; 2175 MachineBasicBlock::iterator E = MI.getParent()->end(); 2176 MachineBasicBlock::iterator Update; 2177 2178 // Look forward to try to form a post-index instruction. For example, 2179 // ldr x0, [x20] 2180 // add x20, x20, #32 2181 // merged into: 2182 // ldr x0, [x20], #32 2183 Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 2184 if (Update != E) { 2185 // Merge the update into the ld/st. 2186 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 2187 return true; 2188 } 2189 2190 // Don't know how to handle unscaled pre/post-index versions below, so bail. 2191 if (TII->hasUnscaledLdStOffset(MI.getOpcode())) 2192 return false; 2193 2194 // Look back to try to find a pre-index instruction. For example, 2195 // add x0, x0, #8 2196 // ldr x1, [x0] 2197 // merged into: 2198 // ldr x1, [x0, #8]! 2199 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 2200 if (Update != E) { 2201 // Merge the update into the ld/st. 2202 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 2203 return true; 2204 } 2205 2206 // The immediate in the load/store is scaled by the size of the memory 2207 // operation. The immediate in the add we're looking for, 2208 // however, is not, so adjust here. 2209 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * TII->getMemScale(MI); 2210 2211 // Look forward to try to find a pre-index instruction. For example, 2212 // ldr x1, [x0, #64] 2213 // add x0, x0, #64 2214 // merged into: 2215 // ldr x1, [x0, #64]! 2216 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 2217 if (Update != E) { 2218 // Merge the update into the ld/st. 2219 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 2220 return true; 2221 } 2222 2223 return false; 2224 } 2225 2226 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 2227 bool EnableNarrowZeroStOpt) { 2228 2229 bool Modified = false; 2230 // Four tranformations to do here: 2231 // 1) Find loads that directly read from stores and promote them by 2232 // replacing with mov instructions. If the store is wider than the load, 2233 // the load will be replaced with a bitfield extract. 2234 // e.g., 2235 // str w1, [x0, #4] 2236 // ldrh w2, [x0, #6] 2237 // ; becomes 2238 // str w1, [x0, #4] 2239 // lsr w2, w1, #16 2240 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2241 MBBI != E;) { 2242 if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI)) 2243 Modified = true; 2244 else 2245 ++MBBI; 2246 } 2247 // 2) Merge adjacent zero stores into a wider store. 2248 // e.g., 2249 // strh wzr, [x0] 2250 // strh wzr, [x0, #2] 2251 // ; becomes 2252 // str wzr, [x0] 2253 // e.g., 2254 // str wzr, [x0] 2255 // str wzr, [x0, #4] 2256 // ; becomes 2257 // str xzr, [x0] 2258 if (EnableNarrowZeroStOpt) 2259 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2260 MBBI != E;) { 2261 if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI)) 2262 Modified = true; 2263 else 2264 ++MBBI; 2265 } 2266 // 3) Find loads and stores that can be merged into a single load or store 2267 // pair instruction. 2268 // e.g., 2269 // ldr x0, [x2] 2270 // ldr x1, [x2, #8] 2271 // ; becomes 2272 // ldp x0, x1, [x2] 2273 2274 if (MBB.getParent()->getRegInfo().tracksLiveness()) { 2275 DefinedInBB.clear(); 2276 DefinedInBB.addLiveIns(MBB); 2277 } 2278 2279 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2280 MBBI != E;) { 2281 // Track currently live registers up to this point, to help with 2282 // searching for a rename register on demand. 2283 updateDefinedRegisters(*MBBI, DefinedInBB, TRI); 2284 if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI)) 2285 Modified = true; 2286 else 2287 ++MBBI; 2288 } 2289 // 4) Find base register updates that can be merged into the load or store 2290 // as a base-reg writeback. 2291 // e.g., 2292 // ldr x0, [x2] 2293 // add x2, x2, #4 2294 // ; becomes 2295 // ldr x0, [x2], #4 2296 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2297 MBBI != E;) { 2298 if (isMergeableLdStUpdate(*MBBI) && tryToMergeLdStUpdate(MBBI)) 2299 Modified = true; 2300 else 2301 ++MBBI; 2302 } 2303 2304 return Modified; 2305 } 2306 2307 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 2308 if (skipFunction(Fn.getFunction())) 2309 return false; 2310 2311 Subtarget = &Fn.getSubtarget<AArch64Subtarget>(); 2312 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 2313 TRI = Subtarget->getRegisterInfo(); 2314 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2315 2316 // Resize the modified and used register unit trackers. We do this once 2317 // per function and then clear the register units each time we optimize a load 2318 // or store. 2319 ModifiedRegUnits.init(*TRI); 2320 UsedRegUnits.init(*TRI); 2321 DefinedInBB.init(*TRI); 2322 2323 bool Modified = false; 2324 bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign(); 2325 for (auto &MBB : Fn) { 2326 auto M = optimizeBlock(MBB, enableNarrowZeroStOpt); 2327 Modified |= M; 2328 } 2329 2330 return Modified; 2331 } 2332 2333 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and 2334 // stores near one another? Note: The pre-RA instruction scheduler already has 2335 // hooks to try and schedule pairable loads/stores together to improve pairing 2336 // opportunities. Thus, pre-RA pairing pass may not be worth the effort. 2337 2338 // FIXME: When pairing store instructions it's very possible for this pass to 2339 // hoist a store with a KILL marker above another use (without a KILL marker). 2340 // The resulting IR is invalid, but nothing uses the KILL markers after this 2341 // pass, so it's never caused a problem in practice. 2342 2343 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 2344 /// load / store optimization pass. 2345 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 2346 return new AArch64LoadStoreOpt(); 2347 } 2348