1 //=- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -*- C++ -*-=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that performs load / store related peephole
11 // optimizations. This pass should be run after register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AArch64InstrInfo.h"
16 #include "AArch64Subtarget.h"
17 #include "MCTargetDesc/AArch64AddressingModes.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "aarch64-ldst-opt"
35 
36 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated");
37 STATISTIC(NumPostFolded, "Number of post-index updates folded");
38 STATISTIC(NumPreFolded, "Number of pre-index updates folded");
39 STATISTIC(NumUnscaledPairCreated,
40           "Number of load/store from unscaled generated");
41 STATISTIC(NumNarrowLoadsPromoted, "Number of narrow loads promoted");
42 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted");
43 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted");
44 
45 // The LdStLimit limits how far we search for load/store pairs.
46 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit",
47                                    cl::init(20), cl::Hidden);
48 
49 // The UpdateLimit limits how far we search for update instructions when we form
50 // pre-/post-index instructions.
51 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100),
52                                      cl::Hidden);
53 
54 static cl::opt<bool> EnableNarrowLdMerge("enable-narrow-ld-merge", cl::Hidden,
55                                          cl::init(false),
56                                          cl::desc("Enable narrow load merge"));
57 
58 namespace llvm {
59 void initializeAArch64LoadStoreOptPass(PassRegistry &);
60 }
61 
62 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass"
63 
64 namespace {
65 
66 typedef struct LdStPairFlags {
67   // If a matching instruction is found, MergeForward is set to true if the
68   // merge is to remove the first instruction and replace the second with
69   // a pair-wise insn, and false if the reverse is true.
70   bool MergeForward;
71 
72   // SExtIdx gives the index of the result of the load pair that must be
73   // extended. The value of SExtIdx assumes that the paired load produces the
74   // value in this order: (I, returned iterator), i.e., -1 means no value has
75   // to be extended, 0 means I, and 1 means the returned iterator.
76   int SExtIdx;
77 
78   LdStPairFlags() : MergeForward(false), SExtIdx(-1) {}
79 
80   void setMergeForward(bool V = true) { MergeForward = V; }
81   bool getMergeForward() const { return MergeForward; }
82 
83   void setSExtIdx(int V) { SExtIdx = V; }
84   int getSExtIdx() const { return SExtIdx; }
85 
86 } LdStPairFlags;
87 
88 struct AArch64LoadStoreOpt : public MachineFunctionPass {
89   static char ID;
90   AArch64LoadStoreOpt() : MachineFunctionPass(ID) {
91     initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry());
92   }
93 
94   const AArch64InstrInfo *TII;
95   const TargetRegisterInfo *TRI;
96   const AArch64Subtarget *Subtarget;
97 
98   // Track which registers have been modified and used.
99   BitVector ModifiedRegs, UsedRegs;
100 
101   // Scan the instructions looking for a load/store that can be combined
102   // with the current instruction into a load/store pair.
103   // Return the matching instruction if one is found, else MBB->end().
104   MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I,
105                                                LdStPairFlags &Flags,
106                                                unsigned Limit,
107                                                bool FindNarrowMerge);
108 
109   // Scan the instructions looking for a store that writes to the address from
110   // which the current load instruction reads. Return true if one is found.
111   bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit,
112                          MachineBasicBlock::iterator &StoreI);
113 
114   // Merge the two instructions indicated into a wider instruction.
115   MachineBasicBlock::iterator
116   mergeNarrowInsns(MachineBasicBlock::iterator I,
117                    MachineBasicBlock::iterator MergeMI,
118                    const LdStPairFlags &Flags);
119 
120   // Merge the two instructions indicated into a single pair-wise instruction.
121   MachineBasicBlock::iterator
122   mergePairedInsns(MachineBasicBlock::iterator I,
123                    MachineBasicBlock::iterator Paired,
124                    const LdStPairFlags &Flags);
125 
126   // Promote the load that reads directly from the address stored to.
127   MachineBasicBlock::iterator
128   promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
129                        MachineBasicBlock::iterator StoreI);
130 
131   // Scan the instruction list to find a base register update that can
132   // be combined with the current instruction (a load or store) using
133   // pre or post indexed addressing with writeback. Scan forwards.
134   MachineBasicBlock::iterator
135   findMatchingUpdateInsnForward(MachineBasicBlock::iterator I,
136                                 int UnscaledOffset, unsigned Limit);
137 
138   // Scan the instruction list to find a base register update that can
139   // be combined with the current instruction (a load or store) using
140   // pre or post indexed addressing with writeback. Scan backwards.
141   MachineBasicBlock::iterator
142   findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit);
143 
144   // Find an instruction that updates the base register of the ld/st
145   // instruction.
146   bool isMatchingUpdateInsn(MachineInstr *MemMI, MachineInstr *MI,
147                             unsigned BaseReg, int Offset);
148 
149   // Merge a pre- or post-index base register update into a ld/st instruction.
150   MachineBasicBlock::iterator
151   mergeUpdateInsn(MachineBasicBlock::iterator I,
152                   MachineBasicBlock::iterator Update, bool IsPreIdx);
153 
154   // Find and merge foldable ldr/str instructions.
155   bool tryToMergeLdStInst(MachineBasicBlock::iterator &MBBI);
156 
157   // Find and pair ldr/str instructions.
158   bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI);
159 
160   // Find and promote load instructions which read directly from store.
161   bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI);
162 
163   // Check if converting two narrow loads into a single wider load with
164   // bitfield extracts could be enabled.
165   bool enableNarrowLdMerge(MachineFunction &Fn);
166 
167   bool optimizeBlock(MachineBasicBlock &MBB, bool enableNarrowLdOpt);
168 
169   bool runOnMachineFunction(MachineFunction &Fn) override;
170 
171   MachineFunctionProperties getRequiredProperties() const override {
172     return MachineFunctionProperties().set(
173         MachineFunctionProperties::Property::AllVRegsAllocated);
174   }
175 
176   const char *getPassName() const override {
177     return AARCH64_LOAD_STORE_OPT_NAME;
178   }
179 };
180 char AArch64LoadStoreOpt::ID = 0;
181 } // namespace
182 
183 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt",
184                 AARCH64_LOAD_STORE_OPT_NAME, false, false)
185 
186 static unsigned getBitExtrOpcode(MachineInstr *MI) {
187   switch (MI->getOpcode()) {
188   default:
189     llvm_unreachable("Unexpected opcode.");
190   case AArch64::LDRBBui:
191   case AArch64::LDURBBi:
192   case AArch64::LDRHHui:
193   case AArch64::LDURHHi:
194     return AArch64::UBFMWri;
195   case AArch64::LDRSBWui:
196   case AArch64::LDURSBWi:
197   case AArch64::LDRSHWui:
198   case AArch64::LDURSHWi:
199     return AArch64::SBFMWri;
200   }
201 }
202 
203 static bool isNarrowStore(unsigned Opc) {
204   switch (Opc) {
205   default:
206     return false;
207   case AArch64::STRBBui:
208   case AArch64::STURBBi:
209   case AArch64::STRHHui:
210   case AArch64::STURHHi:
211     return true;
212   }
213 }
214 
215 static bool isNarrowLoad(unsigned Opc) {
216   switch (Opc) {
217   default:
218     return false;
219   case AArch64::LDRHHui:
220   case AArch64::LDURHHi:
221   case AArch64::LDRBBui:
222   case AArch64::LDURBBi:
223   case AArch64::LDRSHWui:
224   case AArch64::LDURSHWi:
225   case AArch64::LDRSBWui:
226   case AArch64::LDURSBWi:
227     return true;
228   }
229 }
230 
231 static bool isNarrowLoad(MachineInstr *MI) {
232   return isNarrowLoad(MI->getOpcode());
233 }
234 
235 static bool isNarrowLoadOrStore(unsigned Opc) {
236   return isNarrowLoad(Opc) || isNarrowStore(Opc);
237 }
238 
239 // Scaling factor for unscaled load or store.
240 static int getMemScale(MachineInstr *MI) {
241   switch (MI->getOpcode()) {
242   default:
243     llvm_unreachable("Opcode has unknown scale!");
244   case AArch64::LDRBBui:
245   case AArch64::LDURBBi:
246   case AArch64::LDRSBWui:
247   case AArch64::LDURSBWi:
248   case AArch64::STRBBui:
249   case AArch64::STURBBi:
250     return 1;
251   case AArch64::LDRHHui:
252   case AArch64::LDURHHi:
253   case AArch64::LDRSHWui:
254   case AArch64::LDURSHWi:
255   case AArch64::STRHHui:
256   case AArch64::STURHHi:
257     return 2;
258   case AArch64::LDRSui:
259   case AArch64::LDURSi:
260   case AArch64::LDRSWui:
261   case AArch64::LDURSWi:
262   case AArch64::LDRWui:
263   case AArch64::LDURWi:
264   case AArch64::STRSui:
265   case AArch64::STURSi:
266   case AArch64::STRWui:
267   case AArch64::STURWi:
268   case AArch64::LDPSi:
269   case AArch64::LDPSWi:
270   case AArch64::LDPWi:
271   case AArch64::STPSi:
272   case AArch64::STPWi:
273     return 4;
274   case AArch64::LDRDui:
275   case AArch64::LDURDi:
276   case AArch64::LDRXui:
277   case AArch64::LDURXi:
278   case AArch64::STRDui:
279   case AArch64::STURDi:
280   case AArch64::STRXui:
281   case AArch64::STURXi:
282   case AArch64::LDPDi:
283   case AArch64::LDPXi:
284   case AArch64::STPDi:
285   case AArch64::STPXi:
286     return 8;
287   case AArch64::LDRQui:
288   case AArch64::LDURQi:
289   case AArch64::STRQui:
290   case AArch64::STURQi:
291   case AArch64::LDPQi:
292   case AArch64::STPQi:
293     return 16;
294   }
295 }
296 
297 static unsigned getMatchingNonSExtOpcode(unsigned Opc,
298                                          bool *IsValidLdStrOpc = nullptr) {
299   if (IsValidLdStrOpc)
300     *IsValidLdStrOpc = true;
301   switch (Opc) {
302   default:
303     if (IsValidLdStrOpc)
304       *IsValidLdStrOpc = false;
305     return UINT_MAX;
306   case AArch64::STRDui:
307   case AArch64::STURDi:
308   case AArch64::STRQui:
309   case AArch64::STURQi:
310   case AArch64::STRBBui:
311   case AArch64::STURBBi:
312   case AArch64::STRHHui:
313   case AArch64::STURHHi:
314   case AArch64::STRWui:
315   case AArch64::STURWi:
316   case AArch64::STRXui:
317   case AArch64::STURXi:
318   case AArch64::LDRDui:
319   case AArch64::LDURDi:
320   case AArch64::LDRQui:
321   case AArch64::LDURQi:
322   case AArch64::LDRWui:
323   case AArch64::LDURWi:
324   case AArch64::LDRXui:
325   case AArch64::LDURXi:
326   case AArch64::STRSui:
327   case AArch64::STURSi:
328   case AArch64::LDRSui:
329   case AArch64::LDURSi:
330   case AArch64::LDRHHui:
331   case AArch64::LDURHHi:
332   case AArch64::LDRBBui:
333   case AArch64::LDURBBi:
334     return Opc;
335   case AArch64::LDRSWui:
336     return AArch64::LDRWui;
337   case AArch64::LDURSWi:
338     return AArch64::LDURWi;
339   case AArch64::LDRSBWui:
340     return AArch64::LDRBBui;
341   case AArch64::LDRSHWui:
342     return AArch64::LDRHHui;
343   case AArch64::LDURSBWi:
344     return AArch64::LDURBBi;
345   case AArch64::LDURSHWi:
346     return AArch64::LDURHHi;
347   }
348 }
349 
350 static unsigned getMatchingWideOpcode(unsigned Opc) {
351   switch (Opc) {
352   default:
353     llvm_unreachable("Opcode has no wide equivalent!");
354   case AArch64::STRBBui:
355     return AArch64::STRHHui;
356   case AArch64::STRHHui:
357     return AArch64::STRWui;
358   case AArch64::STURBBi:
359     return AArch64::STURHHi;
360   case AArch64::STURHHi:
361     return AArch64::STURWi;
362   case AArch64::STURWi:
363     return AArch64::STURXi;
364   case AArch64::STRWui:
365     return AArch64::STRXui;
366   case AArch64::LDRHHui:
367   case AArch64::LDRSHWui:
368     return AArch64::LDRWui;
369   case AArch64::LDURHHi:
370   case AArch64::LDURSHWi:
371     return AArch64::LDURWi;
372   case AArch64::LDRBBui:
373   case AArch64::LDRSBWui:
374     return AArch64::LDRHHui;
375   case AArch64::LDURBBi:
376   case AArch64::LDURSBWi:
377     return AArch64::LDURHHi;
378   }
379 }
380 
381 static unsigned getMatchingPairOpcode(unsigned Opc) {
382   switch (Opc) {
383   default:
384     llvm_unreachable("Opcode has no pairwise equivalent!");
385   case AArch64::STRSui:
386   case AArch64::STURSi:
387     return AArch64::STPSi;
388   case AArch64::STRDui:
389   case AArch64::STURDi:
390     return AArch64::STPDi;
391   case AArch64::STRQui:
392   case AArch64::STURQi:
393     return AArch64::STPQi;
394   case AArch64::STRWui:
395   case AArch64::STURWi:
396     return AArch64::STPWi;
397   case AArch64::STRXui:
398   case AArch64::STURXi:
399     return AArch64::STPXi;
400   case AArch64::LDRSui:
401   case AArch64::LDURSi:
402     return AArch64::LDPSi;
403   case AArch64::LDRDui:
404   case AArch64::LDURDi:
405     return AArch64::LDPDi;
406   case AArch64::LDRQui:
407   case AArch64::LDURQi:
408     return AArch64::LDPQi;
409   case AArch64::LDRWui:
410   case AArch64::LDURWi:
411     return AArch64::LDPWi;
412   case AArch64::LDRXui:
413   case AArch64::LDURXi:
414     return AArch64::LDPXi;
415   case AArch64::LDRSWui:
416   case AArch64::LDURSWi:
417     return AArch64::LDPSWi;
418   }
419 }
420 
421 static unsigned isMatchingStore(MachineInstr *LoadInst,
422                                 MachineInstr *StoreInst) {
423   unsigned LdOpc = LoadInst->getOpcode();
424   unsigned StOpc = StoreInst->getOpcode();
425   switch (LdOpc) {
426   default:
427     llvm_unreachable("Unsupported load instruction!");
428   case AArch64::LDRBBui:
429     return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui ||
430            StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
431   case AArch64::LDURBBi:
432     return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi ||
433            StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
434   case AArch64::LDRHHui:
435     return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui ||
436            StOpc == AArch64::STRXui;
437   case AArch64::LDURHHi:
438     return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi ||
439            StOpc == AArch64::STURXi;
440   case AArch64::LDRWui:
441     return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
442   case AArch64::LDURWi:
443     return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
444   case AArch64::LDRXui:
445     return StOpc == AArch64::STRXui;
446   case AArch64::LDURXi:
447     return StOpc == AArch64::STURXi;
448   }
449 }
450 
451 static unsigned getPreIndexedOpcode(unsigned Opc) {
452   switch (Opc) {
453   default:
454     llvm_unreachable("Opcode has no pre-indexed equivalent!");
455   case AArch64::STRSui:
456     return AArch64::STRSpre;
457   case AArch64::STRDui:
458     return AArch64::STRDpre;
459   case AArch64::STRQui:
460     return AArch64::STRQpre;
461   case AArch64::STRBBui:
462     return AArch64::STRBBpre;
463   case AArch64::STRHHui:
464     return AArch64::STRHHpre;
465   case AArch64::STRWui:
466     return AArch64::STRWpre;
467   case AArch64::STRXui:
468     return AArch64::STRXpre;
469   case AArch64::LDRSui:
470     return AArch64::LDRSpre;
471   case AArch64::LDRDui:
472     return AArch64::LDRDpre;
473   case AArch64::LDRQui:
474     return AArch64::LDRQpre;
475   case AArch64::LDRBBui:
476     return AArch64::LDRBBpre;
477   case AArch64::LDRHHui:
478     return AArch64::LDRHHpre;
479   case AArch64::LDRWui:
480     return AArch64::LDRWpre;
481   case AArch64::LDRXui:
482     return AArch64::LDRXpre;
483   case AArch64::LDRSWui:
484     return AArch64::LDRSWpre;
485   case AArch64::LDPSi:
486     return AArch64::LDPSpre;
487   case AArch64::LDPSWi:
488     return AArch64::LDPSWpre;
489   case AArch64::LDPDi:
490     return AArch64::LDPDpre;
491   case AArch64::LDPQi:
492     return AArch64::LDPQpre;
493   case AArch64::LDPWi:
494     return AArch64::LDPWpre;
495   case AArch64::LDPXi:
496     return AArch64::LDPXpre;
497   case AArch64::STPSi:
498     return AArch64::STPSpre;
499   case AArch64::STPDi:
500     return AArch64::STPDpre;
501   case AArch64::STPQi:
502     return AArch64::STPQpre;
503   case AArch64::STPWi:
504     return AArch64::STPWpre;
505   case AArch64::STPXi:
506     return AArch64::STPXpre;
507   }
508 }
509 
510 static unsigned getPostIndexedOpcode(unsigned Opc) {
511   switch (Opc) {
512   default:
513     llvm_unreachable("Opcode has no post-indexed wise equivalent!");
514   case AArch64::STRSui:
515     return AArch64::STRSpost;
516   case AArch64::STRDui:
517     return AArch64::STRDpost;
518   case AArch64::STRQui:
519     return AArch64::STRQpost;
520   case AArch64::STRBBui:
521     return AArch64::STRBBpost;
522   case AArch64::STRHHui:
523     return AArch64::STRHHpost;
524   case AArch64::STRWui:
525     return AArch64::STRWpost;
526   case AArch64::STRXui:
527     return AArch64::STRXpost;
528   case AArch64::LDRSui:
529     return AArch64::LDRSpost;
530   case AArch64::LDRDui:
531     return AArch64::LDRDpost;
532   case AArch64::LDRQui:
533     return AArch64::LDRQpost;
534   case AArch64::LDRBBui:
535     return AArch64::LDRBBpost;
536   case AArch64::LDRHHui:
537     return AArch64::LDRHHpost;
538   case AArch64::LDRWui:
539     return AArch64::LDRWpost;
540   case AArch64::LDRXui:
541     return AArch64::LDRXpost;
542   case AArch64::LDRSWui:
543     return AArch64::LDRSWpost;
544   case AArch64::LDPSi:
545     return AArch64::LDPSpost;
546   case AArch64::LDPSWi:
547     return AArch64::LDPSWpost;
548   case AArch64::LDPDi:
549     return AArch64::LDPDpost;
550   case AArch64::LDPQi:
551     return AArch64::LDPQpost;
552   case AArch64::LDPWi:
553     return AArch64::LDPWpost;
554   case AArch64::LDPXi:
555     return AArch64::LDPXpost;
556   case AArch64::STPSi:
557     return AArch64::STPSpost;
558   case AArch64::STPDi:
559     return AArch64::STPDpost;
560   case AArch64::STPQi:
561     return AArch64::STPQpost;
562   case AArch64::STPWi:
563     return AArch64::STPWpost;
564   case AArch64::STPXi:
565     return AArch64::STPXpost;
566   }
567 }
568 
569 static bool isPairedLdSt(const MachineInstr *MI) {
570   switch (MI->getOpcode()) {
571   default:
572     return false;
573   case AArch64::LDPSi:
574   case AArch64::LDPSWi:
575   case AArch64::LDPDi:
576   case AArch64::LDPQi:
577   case AArch64::LDPWi:
578   case AArch64::LDPXi:
579   case AArch64::STPSi:
580   case AArch64::STPDi:
581   case AArch64::STPQi:
582   case AArch64::STPWi:
583   case AArch64::STPXi:
584     return true;
585   }
586 }
587 
588 static const MachineOperand &getLdStRegOp(const MachineInstr *MI,
589                                           unsigned PairedRegOp = 0) {
590   assert(PairedRegOp < 2 && "Unexpected register operand idx.");
591   unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0;
592   return MI->getOperand(Idx);
593 }
594 
595 static const MachineOperand &getLdStBaseOp(const MachineInstr *MI) {
596   unsigned Idx = isPairedLdSt(MI) ? 2 : 1;
597   return MI->getOperand(Idx);
598 }
599 
600 static const MachineOperand &getLdStOffsetOp(const MachineInstr *MI) {
601   unsigned Idx = isPairedLdSt(MI) ? 3 : 2;
602   return MI->getOperand(Idx);
603 }
604 
605 static bool isLdOffsetInRangeOfSt(MachineInstr *LoadInst,
606                                   MachineInstr *StoreInst,
607                                   const AArch64InstrInfo *TII) {
608   assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st.");
609   int LoadSize = getMemScale(LoadInst);
610   int StoreSize = getMemScale(StoreInst);
611   int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst)
612                              ? getLdStOffsetOp(StoreInst).getImm()
613                              : getLdStOffsetOp(StoreInst).getImm() * StoreSize;
614   int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst)
615                              ? getLdStOffsetOp(LoadInst).getImm()
616                              : getLdStOffsetOp(LoadInst).getImm() * LoadSize;
617   return (UnscaledStOffset <= UnscaledLdOffset) &&
618          (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize));
619 }
620 
621 static bool isPromotableZeroStoreOpcode(unsigned Opc) {
622   return isNarrowStore(Opc) || Opc == AArch64::STRWui || Opc == AArch64::STURWi;
623 }
624 
625 static bool isPromotableZeroStoreOpcode(MachineInstr *MI) {
626   return isPromotableZeroStoreOpcode(MI->getOpcode());
627 }
628 
629 static bool isPromotableZeroStoreInst(MachineInstr *MI) {
630   return (isPromotableZeroStoreOpcode(MI)) &&
631          getLdStRegOp(MI).getReg() == AArch64::WZR;
632 }
633 
634 MachineBasicBlock::iterator
635 AArch64LoadStoreOpt::mergeNarrowInsns(MachineBasicBlock::iterator I,
636                                       MachineBasicBlock::iterator MergeMI,
637                                       const LdStPairFlags &Flags) {
638   MachineBasicBlock::iterator NextI = I;
639   ++NextI;
640   // If NextI is the second of the two instructions to be merged, we need
641   // to skip one further. Either way we merge will invalidate the iterator,
642   // and we don't need to scan the new instruction, as it's a pairwise
643   // instruction, which we're not considering for further action anyway.
644   if (NextI == MergeMI)
645     ++NextI;
646 
647   unsigned Opc = I->getOpcode();
648   bool IsScaled = !TII->isUnscaledLdSt(Opc);
649   int OffsetStride = IsScaled ? 1 : getMemScale(I);
650 
651   bool MergeForward = Flags.getMergeForward();
652   // Insert our new paired instruction after whichever of the paired
653   // instructions MergeForward indicates.
654   MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I;
655   // Also based on MergeForward is from where we copy the base register operand
656   // so we get the flags compatible with the input code.
657   const MachineOperand &BaseRegOp =
658       MergeForward ? getLdStBaseOp(MergeMI) : getLdStBaseOp(I);
659 
660   // Which register is Rt and which is Rt2 depends on the offset order.
661   MachineInstr *RtMI, *Rt2MI;
662   if (getLdStOffsetOp(I).getImm() ==
663       getLdStOffsetOp(MergeMI).getImm() + OffsetStride) {
664     RtMI = MergeMI;
665     Rt2MI = I;
666   } else {
667     RtMI = I;
668     Rt2MI = MergeMI;
669   }
670 
671   int OffsetImm = getLdStOffsetOp(RtMI).getImm();
672   // Change the scaled offset from small to large type.
673   if (IsScaled) {
674     assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge");
675     OffsetImm /= 2;
676   }
677 
678   DebugLoc DL = I->getDebugLoc();
679   MachineBasicBlock *MBB = I->getParent();
680   if (isNarrowLoad(Opc)) {
681     MachineInstr *RtNewDest = MergeForward ? I : MergeMI;
682     // When merging small (< 32 bit) loads for big-endian targets, the order of
683     // the component parts gets swapped.
684     if (!Subtarget->isLittleEndian())
685       std::swap(RtMI, Rt2MI);
686     // Construct the new load instruction.
687     MachineInstr *NewMemMI, *BitExtMI1, *BitExtMI2;
688     NewMemMI =
689         BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc)))
690             .addOperand(getLdStRegOp(RtNewDest))
691             .addOperand(BaseRegOp)
692             .addImm(OffsetImm)
693             .setMemRefs(I->mergeMemRefsWith(*MergeMI));
694     (void)NewMemMI;
695 
696     DEBUG(
697         dbgs()
698         << "Creating the new load and extract. Replacing instructions:\n    ");
699     DEBUG(I->print(dbgs()));
700     DEBUG(dbgs() << "    ");
701     DEBUG(MergeMI->print(dbgs()));
702     DEBUG(dbgs() << "  with instructions:\n    ");
703     DEBUG((NewMemMI)->print(dbgs()));
704 
705     int Width = getMemScale(I) == 1 ? 8 : 16;
706     int LSBLow = 0;
707     int LSBHigh = Width;
708     int ImmsLow = LSBLow + Width - 1;
709     int ImmsHigh = LSBHigh + Width - 1;
710     MachineInstr *ExtDestMI = MergeForward ? MergeMI : I;
711     if ((ExtDestMI == Rt2MI) == Subtarget->isLittleEndian()) {
712       // Create the bitfield extract for high bits.
713       BitExtMI1 =
714           BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(Rt2MI)))
715               .addOperand(getLdStRegOp(Rt2MI))
716               .addReg(getLdStRegOp(RtNewDest).getReg())
717               .addImm(LSBHigh)
718               .addImm(ImmsHigh);
719       // Create the bitfield extract for low bits.
720       if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) {
721         // For unsigned, prefer to use AND for low bits.
722         BitExtMI2 = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::ANDWri))
723                         .addOperand(getLdStRegOp(RtMI))
724                         .addReg(getLdStRegOp(RtNewDest).getReg())
725                         .addImm(ImmsLow);
726       } else {
727         BitExtMI2 =
728             BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(RtMI)))
729                 .addOperand(getLdStRegOp(RtMI))
730                 .addReg(getLdStRegOp(RtNewDest).getReg())
731                 .addImm(LSBLow)
732                 .addImm(ImmsLow);
733       }
734     } else {
735       // Create the bitfield extract for low bits.
736       if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) {
737         // For unsigned, prefer to use AND for low bits.
738         BitExtMI1 = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::ANDWri))
739                         .addOperand(getLdStRegOp(RtMI))
740                         .addReg(getLdStRegOp(RtNewDest).getReg())
741                         .addImm(ImmsLow);
742       } else {
743         BitExtMI1 =
744             BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(RtMI)))
745                 .addOperand(getLdStRegOp(RtMI))
746                 .addReg(getLdStRegOp(RtNewDest).getReg())
747                 .addImm(LSBLow)
748                 .addImm(ImmsLow);
749       }
750 
751       // Create the bitfield extract for high bits.
752       BitExtMI2 =
753           BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(Rt2MI)))
754               .addOperand(getLdStRegOp(Rt2MI))
755               .addReg(getLdStRegOp(RtNewDest).getReg())
756               .addImm(LSBHigh)
757               .addImm(ImmsHigh);
758     }
759     (void)BitExtMI1;
760     (void)BitExtMI2;
761 
762     DEBUG(dbgs() << "    ");
763     DEBUG((BitExtMI1)->print(dbgs()));
764     DEBUG(dbgs() << "    ");
765     DEBUG((BitExtMI2)->print(dbgs()));
766     DEBUG(dbgs() << "\n");
767 
768     // Erase the old instructions.
769     I->eraseFromParent();
770     MergeMI->eraseFromParent();
771     return NextI;
772   }
773   assert(isPromotableZeroStoreInst(I) && isPromotableZeroStoreInst(MergeMI) &&
774          "Expected promotable zero store");
775 
776   // Construct the new instruction.
777   MachineInstrBuilder MIB;
778   MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc)))
779             .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR)
780             .addOperand(BaseRegOp)
781             .addImm(OffsetImm)
782             .setMemRefs(I->mergeMemRefsWith(*MergeMI));
783   (void)MIB;
784 
785   DEBUG(dbgs() << "Creating wider load/store. Replacing instructions:\n    ");
786   DEBUG(I->print(dbgs()));
787   DEBUG(dbgs() << "    ");
788   DEBUG(MergeMI->print(dbgs()));
789   DEBUG(dbgs() << "  with instruction:\n    ");
790   DEBUG(((MachineInstr *)MIB)->print(dbgs()));
791   DEBUG(dbgs() << "\n");
792 
793   // Erase the old instructions.
794   I->eraseFromParent();
795   MergeMI->eraseFromParent();
796   return NextI;
797 }
798 
799 MachineBasicBlock::iterator
800 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I,
801                                       MachineBasicBlock::iterator Paired,
802                                       const LdStPairFlags &Flags) {
803   MachineBasicBlock::iterator NextI = I;
804   ++NextI;
805   // If NextI is the second of the two instructions to be merged, we need
806   // to skip one further. Either way we merge will invalidate the iterator,
807   // and we don't need to scan the new instruction, as it's a pairwise
808   // instruction, which we're not considering for further action anyway.
809   if (NextI == Paired)
810     ++NextI;
811 
812   int SExtIdx = Flags.getSExtIdx();
813   unsigned Opc =
814       SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode());
815   bool IsUnscaled = TII->isUnscaledLdSt(Opc);
816   int OffsetStride = IsUnscaled ? getMemScale(I) : 1;
817 
818   bool MergeForward = Flags.getMergeForward();
819   // Insert our new paired instruction after whichever of the paired
820   // instructions MergeForward indicates.
821   MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I;
822   // Also based on MergeForward is from where we copy the base register operand
823   // so we get the flags compatible with the input code.
824   const MachineOperand &BaseRegOp =
825       MergeForward ? getLdStBaseOp(Paired) : getLdStBaseOp(I);
826 
827   int Offset = getLdStOffsetOp(I).getImm();
828   int PairedOffset = getLdStOffsetOp(Paired).getImm();
829   bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode());
830   if (IsUnscaled != PairedIsUnscaled) {
831     // We're trying to pair instructions that differ in how they are scaled.  If
832     // I is scaled then scale the offset of Paired accordingly.  Otherwise, do
833     // the opposite (i.e., make Paired's offset unscaled).
834     int MemSize = getMemScale(Paired);
835     if (PairedIsUnscaled) {
836       // If the unscaled offset isn't a multiple of the MemSize, we can't
837       // pair the operations together.
838       assert(!(PairedOffset % getMemScale(Paired)) &&
839              "Offset should be a multiple of the stride!");
840       PairedOffset /= MemSize;
841     } else {
842       PairedOffset *= MemSize;
843     }
844   }
845 
846   // Which register is Rt and which is Rt2 depends on the offset order.
847   MachineInstr *RtMI, *Rt2MI;
848   if (Offset == PairedOffset + OffsetStride) {
849     RtMI = Paired;
850     Rt2MI = I;
851     // Here we swapped the assumption made for SExtIdx.
852     // I.e., we turn ldp I, Paired into ldp Paired, I.
853     // Update the index accordingly.
854     if (SExtIdx != -1)
855       SExtIdx = (SExtIdx + 1) % 2;
856   } else {
857     RtMI = I;
858     Rt2MI = Paired;
859   }
860   int OffsetImm = getLdStOffsetOp(RtMI).getImm();
861   // Scale the immediate offset, if necessary.
862   if (TII->isUnscaledLdSt(RtMI->getOpcode())) {
863     assert(!(OffsetImm % getMemScale(RtMI)) &&
864            "Unscaled offset cannot be scaled.");
865     OffsetImm /= getMemScale(RtMI);
866   }
867 
868   // Construct the new instruction.
869   MachineInstrBuilder MIB;
870   DebugLoc DL = I->getDebugLoc();
871   MachineBasicBlock *MBB = I->getParent();
872   MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc)))
873             .addOperand(getLdStRegOp(RtMI))
874             .addOperand(getLdStRegOp(Rt2MI))
875             .addOperand(BaseRegOp)
876             .addImm(OffsetImm)
877             .setMemRefs(I->mergeMemRefsWith(*Paired));
878 
879   (void)MIB;
880 
881   DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n    ");
882   DEBUG(I->print(dbgs()));
883   DEBUG(dbgs() << "    ");
884   DEBUG(Paired->print(dbgs()));
885   DEBUG(dbgs() << "  with instruction:\n    ");
886   if (SExtIdx != -1) {
887     // Generate the sign extension for the proper result of the ldp.
888     // I.e., with X1, that would be:
889     // %W1<def> = KILL %W1, %X1<imp-def>
890     // %X1<def> = SBFMXri %X1<kill>, 0, 31
891     MachineOperand &DstMO = MIB->getOperand(SExtIdx);
892     // Right now, DstMO has the extended register, since it comes from an
893     // extended opcode.
894     unsigned DstRegX = DstMO.getReg();
895     // Get the W variant of that register.
896     unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32);
897     // Update the result of LDP to use the W instead of the X variant.
898     DstMO.setReg(DstRegW);
899     DEBUG(((MachineInstr *)MIB)->print(dbgs()));
900     DEBUG(dbgs() << "\n");
901     // Make the machine verifier happy by providing a definition for
902     // the X register.
903     // Insert this definition right after the generated LDP, i.e., before
904     // InsertionPoint.
905     MachineInstrBuilder MIBKill =
906         BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW)
907             .addReg(DstRegW)
908             .addReg(DstRegX, RegState::Define);
909     MIBKill->getOperand(2).setImplicit();
910     // Create the sign extension.
911     MachineInstrBuilder MIBSXTW =
912         BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX)
913             .addReg(DstRegX)
914             .addImm(0)
915             .addImm(31);
916     (void)MIBSXTW;
917     DEBUG(dbgs() << "  Extend operand:\n    ");
918     DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs()));
919   } else {
920     DEBUG(((MachineInstr *)MIB)->print(dbgs()));
921   }
922   DEBUG(dbgs() << "\n");
923 
924   // Erase the old instructions.
925   I->eraseFromParent();
926   Paired->eraseFromParent();
927 
928   return NextI;
929 }
930 
931 MachineBasicBlock::iterator
932 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
933                                           MachineBasicBlock::iterator StoreI) {
934   MachineBasicBlock::iterator NextI = LoadI;
935   ++NextI;
936 
937   int LoadSize = getMemScale(LoadI);
938   int StoreSize = getMemScale(StoreI);
939   unsigned LdRt = getLdStRegOp(LoadI).getReg();
940   unsigned StRt = getLdStRegOp(StoreI).getReg();
941   bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt);
942 
943   assert((IsStoreXReg ||
944           TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) &&
945          "Unexpected RegClass");
946 
947   MachineInstr *BitExtMI;
948   if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) {
949     // Remove the load, if the destination register of the loads is the same
950     // register for stored value.
951     if (StRt == LdRt && LoadSize == 8) {
952       DEBUG(dbgs() << "Remove load instruction:\n    ");
953       DEBUG(LoadI->print(dbgs()));
954       DEBUG(dbgs() << "\n");
955       LoadI->eraseFromParent();
956       return NextI;
957     }
958     // Replace the load with a mov if the load and store are in the same size.
959     BitExtMI =
960         BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
961                 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt)
962             .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR)
963             .addReg(StRt)
964             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
965   } else {
966     // FIXME: Currently we disable this transformation in big-endian targets as
967     // performance and correctness are verified only in little-endian.
968     if (!Subtarget->isLittleEndian())
969       return NextI;
970     bool IsUnscaled = TII->isUnscaledLdSt(LoadI);
971     assert(IsUnscaled == TII->isUnscaledLdSt(StoreI) &&
972            "Unsupported ld/st match");
973     assert(LoadSize <= StoreSize && "Invalid load size");
974     int UnscaledLdOffset = IsUnscaled
975                                ? getLdStOffsetOp(LoadI).getImm()
976                                : getLdStOffsetOp(LoadI).getImm() * LoadSize;
977     int UnscaledStOffset = IsUnscaled
978                                ? getLdStOffsetOp(StoreI).getImm()
979                                : getLdStOffsetOp(StoreI).getImm() * StoreSize;
980     int Width = LoadSize * 8;
981     int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset);
982     int Imms = Immr + Width - 1;
983     unsigned DestReg = IsStoreXReg
984                            ? TRI->getMatchingSuperReg(LdRt, AArch64::sub_32,
985                                                       &AArch64::GPR64RegClass)
986                            : LdRt;
987 
988     assert((UnscaledLdOffset >= UnscaledStOffset &&
989             (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) &&
990            "Invalid offset");
991 
992     Immr = 8 * (UnscaledLdOffset - UnscaledStOffset);
993     Imms = Immr + Width - 1;
994     if (UnscaledLdOffset == UnscaledStOffset) {
995       uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N
996                                 | ((Immr) << 6)               // immr
997                                 | ((Imms) << 0)               // imms
998           ;
999 
1000       BitExtMI =
1001           BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
1002                   TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri),
1003                   DestReg)
1004               .addReg(StRt)
1005               .addImm(AndMaskEncoded);
1006     } else {
1007       BitExtMI =
1008           BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
1009                   TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri),
1010                   DestReg)
1011               .addReg(StRt)
1012               .addImm(Immr)
1013               .addImm(Imms);
1014     }
1015   }
1016   (void)BitExtMI;
1017 
1018   DEBUG(dbgs() << "Promoting load by replacing :\n    ");
1019   DEBUG(StoreI->print(dbgs()));
1020   DEBUG(dbgs() << "    ");
1021   DEBUG(LoadI->print(dbgs()));
1022   DEBUG(dbgs() << "  with instructions:\n    ");
1023   DEBUG(StoreI->print(dbgs()));
1024   DEBUG(dbgs() << "    ");
1025   DEBUG((BitExtMI)->print(dbgs()));
1026   DEBUG(dbgs() << "\n");
1027 
1028   // Erase the old instructions.
1029   LoadI->eraseFromParent();
1030   return NextI;
1031 }
1032 
1033 /// trackRegDefsUses - Remember what registers the specified instruction uses
1034 /// and modifies.
1035 static void trackRegDefsUses(const MachineInstr *MI, BitVector &ModifiedRegs,
1036                              BitVector &UsedRegs,
1037                              const TargetRegisterInfo *TRI) {
1038   for (const MachineOperand &MO : MI->operands()) {
1039     if (MO.isRegMask())
1040       ModifiedRegs.setBitsNotInMask(MO.getRegMask());
1041 
1042     if (!MO.isReg())
1043       continue;
1044     unsigned Reg = MO.getReg();
1045     if (!Reg)
1046       continue;
1047     if (MO.isDef()) {
1048       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1049         ModifiedRegs.set(*AI);
1050     } else {
1051       assert(MO.isUse() && "Reg operand not a def and not a use?!?");
1052       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1053         UsedRegs.set(*AI);
1054     }
1055   }
1056 }
1057 
1058 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) {
1059   // Convert the byte-offset used by unscaled into an "element" offset used
1060   // by the scaled pair load/store instructions.
1061   if (IsUnscaled) {
1062     // If the byte-offset isn't a multiple of the stride, there's no point
1063     // trying to match it.
1064     if (Offset % OffsetStride)
1065       return false;
1066     Offset /= OffsetStride;
1067   }
1068   return Offset <= 63 && Offset >= -64;
1069 }
1070 
1071 // Do alignment, specialized to power of 2 and for signed ints,
1072 // avoiding having to do a C-style cast from uint_64t to int when
1073 // using alignTo from include/llvm/Support/MathExtras.h.
1074 // FIXME: Move this function to include/MathExtras.h?
1075 static int alignTo(int Num, int PowOf2) {
1076   return (Num + PowOf2 - 1) & ~(PowOf2 - 1);
1077 }
1078 
1079 static bool mayAlias(MachineInstr *MIa, MachineInstr *MIb,
1080                      const AArch64InstrInfo *TII) {
1081   // One of the instructions must modify memory.
1082   if (!MIa->mayStore() && !MIb->mayStore())
1083     return false;
1084 
1085   // Both instructions must be memory operations.
1086   if (!MIa->mayLoadOrStore() && !MIb->mayLoadOrStore())
1087     return false;
1088 
1089   return !TII->areMemAccessesTriviallyDisjoint(MIa, MIb);
1090 }
1091 
1092 static bool mayAlias(MachineInstr *MIa,
1093                      SmallVectorImpl<MachineInstr *> &MemInsns,
1094                      const AArch64InstrInfo *TII) {
1095   for (auto &MIb : MemInsns)
1096     if (mayAlias(MIa, MIb, TII))
1097       return true;
1098 
1099   return false;
1100 }
1101 
1102 bool AArch64LoadStoreOpt::findMatchingStore(
1103     MachineBasicBlock::iterator I, unsigned Limit,
1104     MachineBasicBlock::iterator &StoreI) {
1105   MachineBasicBlock::iterator B = I->getParent()->begin();
1106   MachineBasicBlock::iterator MBBI = I;
1107   MachineInstr *LoadMI = I;
1108   unsigned BaseReg = getLdStBaseOp(LoadMI).getReg();
1109 
1110   // If the load is the first instruction in the block, there's obviously
1111   // not any matching store.
1112   if (MBBI == B)
1113     return false;
1114 
1115   // Track which registers have been modified and used between the first insn
1116   // and the second insn.
1117   ModifiedRegs.reset();
1118   UsedRegs.reset();
1119 
1120   unsigned Count = 0;
1121   do {
1122     --MBBI;
1123     MachineInstr *MI = MBBI;
1124 
1125     // Don't count DBG_VALUE instructions towards the search limit.
1126     if (!MI->isDebugValue())
1127       ++Count;
1128 
1129     // If the load instruction reads directly from the address to which the
1130     // store instruction writes and the stored value is not modified, we can
1131     // promote the load. Since we do not handle stores with pre-/post-index,
1132     // it's unnecessary to check if BaseReg is modified by the store itself.
1133     if (MI->mayStore() && isMatchingStore(LoadMI, MI) &&
1134         BaseReg == getLdStBaseOp(MI).getReg() &&
1135         isLdOffsetInRangeOfSt(LoadMI, MI, TII) &&
1136         !ModifiedRegs[getLdStRegOp(MI).getReg()]) {
1137       StoreI = MBBI;
1138       return true;
1139     }
1140 
1141     if (MI->isCall())
1142       return false;
1143 
1144     // Update modified / uses register lists.
1145     trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1146 
1147     // Otherwise, if the base register is modified, we have no match, so
1148     // return early.
1149     if (ModifiedRegs[BaseReg])
1150       return false;
1151 
1152     // If we encounter a store aliased with the load, return early.
1153     if (MI->mayStore() && mayAlias(LoadMI, MI, TII))
1154       return false;
1155   } while (MBBI != B && Count < Limit);
1156   return false;
1157 }
1158 
1159 // Returns true if these two opcodes can be merged or paired.  Otherwise,
1160 // returns false.
1161 static bool canMergeOpc(unsigned OpcA, unsigned OpcB, LdStPairFlags &Flags,
1162                         const AArch64InstrInfo *TII) {
1163   // Opcodes match: nothing more to check.
1164   if (OpcA == OpcB)
1165     return true;
1166 
1167   // Try to match a sign-extended load/store with a zero-extended load/store.
1168   bool IsValidLdStrOpc, PairIsValidLdStrOpc;
1169   unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc);
1170   assert(IsValidLdStrOpc &&
1171          "Given Opc should be a Load or Store with an immediate");
1172   // OpcA will be the first instruction in the pair.
1173   if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) {
1174     Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0);
1175     return true;
1176   }
1177 
1178   // If the second instruction isn't even a load/store, bail out.
1179   if (!PairIsValidLdStrOpc)
1180     return false;
1181 
1182   // FIXME: We don't support merging narrow loads/stores with mixed
1183   // scaled/unscaled offsets.
1184   if (isNarrowLoadOrStore(OpcA) || isNarrowLoadOrStore(OpcB))
1185     return false;
1186 
1187   // Try to match an unscaled load/store with a scaled load/store.
1188   return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) &&
1189          getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB);
1190 
1191   // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair?
1192 }
1193 
1194 /// Scan the instructions looking for a load/store that can be combined with the
1195 /// current instruction into a wider equivalent or a load/store pair.
1196 MachineBasicBlock::iterator
1197 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I,
1198                                       LdStPairFlags &Flags, unsigned Limit,
1199                                       bool FindNarrowMerge) {
1200   MachineBasicBlock::iterator E = I->getParent()->end();
1201   MachineBasicBlock::iterator MBBI = I;
1202   MachineInstr *FirstMI = I;
1203   ++MBBI;
1204 
1205   unsigned Opc = FirstMI->getOpcode();
1206   bool MayLoad = FirstMI->mayLoad();
1207   bool IsUnscaled = TII->isUnscaledLdSt(FirstMI);
1208   unsigned Reg = getLdStRegOp(FirstMI).getReg();
1209   unsigned BaseReg = getLdStBaseOp(FirstMI).getReg();
1210   int Offset = getLdStOffsetOp(FirstMI).getImm();
1211   int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1;
1212   bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI);
1213 
1214   // Track which registers have been modified and used between the first insn
1215   // (inclusive) and the second insn.
1216   ModifiedRegs.reset();
1217   UsedRegs.reset();
1218 
1219   // Remember any instructions that read/write memory between FirstMI and MI.
1220   SmallVector<MachineInstr *, 4> MemInsns;
1221 
1222   for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) {
1223     MachineInstr *MI = MBBI;
1224     // Skip DBG_VALUE instructions. Otherwise debug info can affect the
1225     // optimization by changing how far we scan.
1226     if (MI->isDebugValue())
1227       continue;
1228 
1229     // Now that we know this is a real instruction, count it.
1230     ++Count;
1231 
1232     Flags.setSExtIdx(-1);
1233     if (canMergeOpc(Opc, MI->getOpcode(), Flags, TII) &&
1234         getLdStOffsetOp(MI).isImm()) {
1235       assert(MI->mayLoadOrStore() && "Expected memory operation.");
1236       // If we've found another instruction with the same opcode, check to see
1237       // if the base and offset are compatible with our starting instruction.
1238       // These instructions all have scaled immediate operands, so we just
1239       // check for +1/-1. Make sure to check the new instruction offset is
1240       // actually an immediate and not a symbolic reference destined for
1241       // a relocation.
1242       //
1243       // Pairwise instructions have a 7-bit signed offset field. Single insns
1244       // have a 12-bit unsigned offset field. To be a valid combine, the
1245       // final offset must be in range.
1246       unsigned MIBaseReg = getLdStBaseOp(MI).getReg();
1247       int MIOffset = getLdStOffsetOp(MI).getImm();
1248       bool MIIsUnscaled = TII->isUnscaledLdSt(MI);
1249       if (IsUnscaled != MIIsUnscaled) {
1250         // We're trying to pair instructions that differ in how they are scaled.
1251         // If FirstMI is scaled then scale the offset of MI accordingly.
1252         // Otherwise, do the opposite (i.e., make MI's offset unscaled).
1253         int MemSize = getMemScale(MI);
1254         if (MIIsUnscaled) {
1255           // If the unscaled offset isn't a multiple of the MemSize, we can't
1256           // pair the operations together: bail and keep looking.
1257           if (MIOffset % MemSize)
1258             continue;
1259           MIOffset /= MemSize;
1260         } else {
1261           MIOffset *= MemSize;
1262         }
1263       }
1264 
1265       if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) ||
1266                                    (Offset + OffsetStride == MIOffset))) {
1267         int MinOffset = Offset < MIOffset ? Offset : MIOffset;
1268         // If this is a volatile load/store that otherwise matched, stop looking
1269         // as something is going on that we don't have enough information to
1270         // safely transform. Similarly, stop if we see a hint to avoid pairs.
1271         if (MI->hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI))
1272           return E;
1273 
1274         if (FindNarrowMerge) {
1275           // If the alignment requirements of the scaled wide load/store
1276           // instruction can't express the offset of the scaled narrow input,
1277           // bail and keep looking. For promotable zero stores, allow only when
1278           // the stored value is the same (i.e., WZR).
1279           if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) ||
1280               (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) {
1281             trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1282             MemInsns.push_back(MI);
1283             continue;
1284           }
1285         } else {
1286           // If the resultant immediate offset of merging these instructions
1287           // is out of range for a pairwise instruction, bail and keep looking.
1288           if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) {
1289             trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1290             MemInsns.push_back(MI);
1291             continue;
1292           }
1293           // If the alignment requirements of the paired (scaled) instruction
1294           // can't express the offset of the unscaled input, bail and keep
1295           // looking.
1296           if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) {
1297             trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1298             MemInsns.push_back(MI);
1299             continue;
1300           }
1301         }
1302         // If the destination register of the loads is the same register, bail
1303         // and keep looking. A load-pair instruction with both destination
1304         // registers the same is UNPREDICTABLE and will result in an exception.
1305         if (MayLoad && Reg == getLdStRegOp(MI).getReg()) {
1306           trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1307           MemInsns.push_back(MI);
1308           continue;
1309         }
1310 
1311         // If the Rt of the second instruction was not modified or used between
1312         // the two instructions and none of the instructions between the second
1313         // and first alias with the second, we can combine the second into the
1314         // first.
1315         if (!ModifiedRegs[getLdStRegOp(MI).getReg()] &&
1316             !(MI->mayLoad() && UsedRegs[getLdStRegOp(MI).getReg()]) &&
1317             !mayAlias(MI, MemInsns, TII)) {
1318           Flags.setMergeForward(false);
1319           return MBBI;
1320         }
1321 
1322         // Likewise, if the Rt of the first instruction is not modified or used
1323         // between the two instructions and none of the instructions between the
1324         // first and the second alias with the first, we can combine the first
1325         // into the second.
1326         if (!ModifiedRegs[getLdStRegOp(FirstMI).getReg()] &&
1327             !(MayLoad && UsedRegs[getLdStRegOp(FirstMI).getReg()]) &&
1328             !mayAlias(FirstMI, MemInsns, TII)) {
1329           Flags.setMergeForward(true);
1330           return MBBI;
1331         }
1332         // Unable to combine these instructions due to interference in between.
1333         // Keep looking.
1334       }
1335     }
1336 
1337     // If the instruction wasn't a matching load or store.  Stop searching if we
1338     // encounter a call instruction that might modify memory.
1339     if (MI->isCall())
1340       return E;
1341 
1342     // Update modified / uses register lists.
1343     trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1344 
1345     // Otherwise, if the base register is modified, we have no match, so
1346     // return early.
1347     if (ModifiedRegs[BaseReg])
1348       return E;
1349 
1350     // Update list of instructions that read/write memory.
1351     if (MI->mayLoadOrStore())
1352       MemInsns.push_back(MI);
1353   }
1354   return E;
1355 }
1356 
1357 MachineBasicBlock::iterator
1358 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I,
1359                                      MachineBasicBlock::iterator Update,
1360                                      bool IsPreIdx) {
1361   assert((Update->getOpcode() == AArch64::ADDXri ||
1362           Update->getOpcode() == AArch64::SUBXri) &&
1363          "Unexpected base register update instruction to merge!");
1364   MachineBasicBlock::iterator NextI = I;
1365   // Return the instruction following the merged instruction, which is
1366   // the instruction following our unmerged load. Unless that's the add/sub
1367   // instruction we're merging, in which case it's the one after that.
1368   if (++NextI == Update)
1369     ++NextI;
1370 
1371   int Value = Update->getOperand(2).getImm();
1372   assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 &&
1373          "Can't merge 1 << 12 offset into pre-/post-indexed load / store");
1374   if (Update->getOpcode() == AArch64::SUBXri)
1375     Value = -Value;
1376 
1377   unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode())
1378                              : getPostIndexedOpcode(I->getOpcode());
1379   MachineInstrBuilder MIB;
1380   if (!isPairedLdSt(I)) {
1381     // Non-paired instruction.
1382     MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
1383               .addOperand(getLdStRegOp(Update))
1384               .addOperand(getLdStRegOp(I))
1385               .addOperand(getLdStBaseOp(I))
1386               .addImm(Value)
1387               .setMemRefs(I->memoperands_begin(), I->memoperands_end());
1388   } else {
1389     // Paired instruction.
1390     int Scale = getMemScale(I);
1391     MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
1392               .addOperand(getLdStRegOp(Update))
1393               .addOperand(getLdStRegOp(I, 0))
1394               .addOperand(getLdStRegOp(I, 1))
1395               .addOperand(getLdStBaseOp(I))
1396               .addImm(Value / Scale)
1397               .setMemRefs(I->memoperands_begin(), I->memoperands_end());
1398   }
1399   (void)MIB;
1400 
1401   if (IsPreIdx)
1402     DEBUG(dbgs() << "Creating pre-indexed load/store.");
1403   else
1404     DEBUG(dbgs() << "Creating post-indexed load/store.");
1405   DEBUG(dbgs() << "    Replacing instructions:\n    ");
1406   DEBUG(I->print(dbgs()));
1407   DEBUG(dbgs() << "    ");
1408   DEBUG(Update->print(dbgs()));
1409   DEBUG(dbgs() << "  with instruction:\n    ");
1410   DEBUG(((MachineInstr *)MIB)->print(dbgs()));
1411   DEBUG(dbgs() << "\n");
1412 
1413   // Erase the old instructions for the block.
1414   I->eraseFromParent();
1415   Update->eraseFromParent();
1416 
1417   return NextI;
1418 }
1419 
1420 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr *MemMI,
1421                                                MachineInstr *MI,
1422                                                unsigned BaseReg, int Offset) {
1423   switch (MI->getOpcode()) {
1424   default:
1425     break;
1426   case AArch64::SUBXri:
1427     // Negate the offset for a SUB instruction.
1428     Offset *= -1;
1429   // FALLTHROUGH
1430   case AArch64::ADDXri:
1431     // Make sure it's a vanilla immediate operand, not a relocation or
1432     // anything else we can't handle.
1433     if (!MI->getOperand(2).isImm())
1434       break;
1435     // Watch out for 1 << 12 shifted value.
1436     if (AArch64_AM::getShiftValue(MI->getOperand(3).getImm()))
1437       break;
1438 
1439     // The update instruction source and destination register must be the
1440     // same as the load/store base register.
1441     if (MI->getOperand(0).getReg() != BaseReg ||
1442         MI->getOperand(1).getReg() != BaseReg)
1443       break;
1444 
1445     bool IsPairedInsn = isPairedLdSt(MemMI);
1446     int UpdateOffset = MI->getOperand(2).getImm();
1447     // For non-paired load/store instructions, the immediate must fit in a
1448     // signed 9-bit integer.
1449     if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256))
1450       break;
1451 
1452     // For paired load/store instructions, the immediate must be a multiple of
1453     // the scaling factor.  The scaled offset must also fit into a signed 7-bit
1454     // integer.
1455     if (IsPairedInsn) {
1456       int Scale = getMemScale(MemMI);
1457       if (UpdateOffset % Scale != 0)
1458         break;
1459 
1460       int ScaledOffset = UpdateOffset / Scale;
1461       if (ScaledOffset > 64 || ScaledOffset < -64)
1462         break;
1463     }
1464 
1465     // If we have a non-zero Offset, we check that it matches the amount
1466     // we're adding to the register.
1467     if (!Offset || Offset == MI->getOperand(2).getImm())
1468       return true;
1469     break;
1470   }
1471   return false;
1472 }
1473 
1474 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward(
1475     MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) {
1476   MachineBasicBlock::iterator E = I->getParent()->end();
1477   MachineInstr *MemMI = I;
1478   MachineBasicBlock::iterator MBBI = I;
1479 
1480   unsigned BaseReg = getLdStBaseOp(MemMI).getReg();
1481   int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI);
1482 
1483   // Scan forward looking for post-index opportunities.  Updating instructions
1484   // can't be formed if the memory instruction doesn't have the offset we're
1485   // looking for.
1486   if (MIUnscaledOffset != UnscaledOffset)
1487     return E;
1488 
1489   // If the base register overlaps a destination register, we can't
1490   // merge the update.
1491   bool IsPairedInsn = isPairedLdSt(MemMI);
1492   for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) {
1493     unsigned DestReg = getLdStRegOp(MemMI, i).getReg();
1494     if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
1495       return E;
1496   }
1497 
1498   // Track which registers have been modified and used between the first insn
1499   // (inclusive) and the second insn.
1500   ModifiedRegs.reset();
1501   UsedRegs.reset();
1502   ++MBBI;
1503   for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) {
1504     MachineInstr *MI = MBBI;
1505     // Skip DBG_VALUE instructions.
1506     if (MI->isDebugValue())
1507       continue;
1508 
1509     // Now that we know this is a real instruction, count it.
1510     ++Count;
1511 
1512     // If we found a match, return it.
1513     if (isMatchingUpdateInsn(I, MI, BaseReg, UnscaledOffset))
1514       return MBBI;
1515 
1516     // Update the status of what the instruction clobbered and used.
1517     trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1518 
1519     // Otherwise, if the base register is used or modified, we have no match, so
1520     // return early.
1521     if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg])
1522       return E;
1523   }
1524   return E;
1525 }
1526 
1527 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward(
1528     MachineBasicBlock::iterator I, unsigned Limit) {
1529   MachineBasicBlock::iterator B = I->getParent()->begin();
1530   MachineBasicBlock::iterator E = I->getParent()->end();
1531   MachineInstr *MemMI = I;
1532   MachineBasicBlock::iterator MBBI = I;
1533 
1534   unsigned BaseReg = getLdStBaseOp(MemMI).getReg();
1535   int Offset = getLdStOffsetOp(MemMI).getImm();
1536 
1537   // If the load/store is the first instruction in the block, there's obviously
1538   // not any matching update. Ditto if the memory offset isn't zero.
1539   if (MBBI == B || Offset != 0)
1540     return E;
1541   // If the base register overlaps a destination register, we can't
1542   // merge the update.
1543   bool IsPairedInsn = isPairedLdSt(MemMI);
1544   for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) {
1545     unsigned DestReg = getLdStRegOp(MemMI, i).getReg();
1546     if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
1547       return E;
1548   }
1549 
1550   // Track which registers have been modified and used between the first insn
1551   // (inclusive) and the second insn.
1552   ModifiedRegs.reset();
1553   UsedRegs.reset();
1554   unsigned Count = 0;
1555   do {
1556     --MBBI;
1557     MachineInstr *MI = MBBI;
1558 
1559     // Don't count DBG_VALUE instructions towards the search limit.
1560     if (!MI->isDebugValue())
1561       ++Count;
1562 
1563     // If we found a match, return it.
1564     if (isMatchingUpdateInsn(I, MI, BaseReg, Offset))
1565       return MBBI;
1566 
1567     // Update the status of what the instruction clobbered and used.
1568     trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI);
1569 
1570     // Otherwise, if the base register is used or modified, we have no match, so
1571     // return early.
1572     if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg])
1573       return E;
1574   } while (MBBI != B && Count < Limit);
1575   return E;
1576 }
1577 
1578 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore(
1579     MachineBasicBlock::iterator &MBBI) {
1580   MachineInstr *MI = MBBI;
1581   // If this is a volatile load, don't mess with it.
1582   if (MI->hasOrderedMemoryRef())
1583     return false;
1584 
1585   // Make sure this is a reg+imm.
1586   // FIXME: It is possible to extend it to handle reg+reg cases.
1587   if (!getLdStOffsetOp(MI).isImm())
1588     return false;
1589 
1590   // Look backward up to LdStLimit instructions.
1591   MachineBasicBlock::iterator StoreI;
1592   if (findMatchingStore(MBBI, LdStLimit, StoreI)) {
1593     ++NumLoadsFromStoresPromoted;
1594     // Promote the load. Keeping the iterator straight is a
1595     // pain, so we let the merge routine tell us what the next instruction
1596     // is after it's done mucking about.
1597     MBBI = promoteLoadFromStore(MBBI, StoreI);
1598     return true;
1599   }
1600   return false;
1601 }
1602 
1603 // Find narrow loads that can be converted into a single wider load with
1604 // bitfield extract instructions.  Also merge adjacent zero stores into a wider
1605 // store.
1606 bool AArch64LoadStoreOpt::tryToMergeLdStInst(
1607     MachineBasicBlock::iterator &MBBI) {
1608   assert((isNarrowLoad(MBBI) || isPromotableZeroStoreOpcode(MBBI)) &&
1609          "Expected narrow op.");
1610   MachineInstr *MI = MBBI;
1611   MachineBasicBlock::iterator E = MI->getParent()->end();
1612 
1613   if (!TII->isCandidateToMergeOrPair(MI))
1614     return false;
1615 
1616   // For promotable zero stores, the stored value should be WZR.
1617   if (isPromotableZeroStoreOpcode(MI) &&
1618       getLdStRegOp(MI).getReg() != AArch64::WZR)
1619     return false;
1620 
1621   // Look ahead up to LdStLimit instructions for a mergable instruction.
1622   LdStPairFlags Flags;
1623   MachineBasicBlock::iterator MergeMI =
1624       findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true);
1625   if (MergeMI != E) {
1626     if (isNarrowLoad(MI)) {
1627       ++NumNarrowLoadsPromoted;
1628     } else if (isPromotableZeroStoreInst(MI)) {
1629       ++NumZeroStoresPromoted;
1630     }
1631     // Keeping the iterator straight is a pain, so we let the merge routine tell
1632     // us what the next instruction is after it's done mucking about.
1633     MBBI = mergeNarrowInsns(MBBI, MergeMI, Flags);
1634     return true;
1635   }
1636   return false;
1637 }
1638 
1639 // Find loads and stores that can be merged into a single load or store pair
1640 // instruction.
1641 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) {
1642   MachineInstr *MI = MBBI;
1643   MachineBasicBlock::iterator E = MI->getParent()->end();
1644 
1645   if (!TII->isCandidateToMergeOrPair(MI))
1646     return false;
1647 
1648   // Early exit if the offset is not possible to match. (6 bits of positive
1649   // range, plus allow an extra one in case we find a later insn that matches
1650   // with Offset-1)
1651   bool IsUnscaled = TII->isUnscaledLdSt(MI);
1652   int Offset = getLdStOffsetOp(MI).getImm();
1653   int OffsetStride = IsUnscaled ? getMemScale(MI) : 1;
1654   if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride))
1655     return false;
1656 
1657   // Look ahead up to LdStLimit instructions for a pairable instruction.
1658   LdStPairFlags Flags;
1659   MachineBasicBlock::iterator Paired =
1660       findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false);
1661   if (Paired != E) {
1662     ++NumPairCreated;
1663     if (TII->isUnscaledLdSt(MI))
1664       ++NumUnscaledPairCreated;
1665     // Keeping the iterator straight is a pain, so we let the merge routine tell
1666     // us what the next instruction is after it's done mucking about.
1667     MBBI = mergePairedInsns(MBBI, Paired, Flags);
1668     return true;
1669   }
1670   return false;
1671 }
1672 
1673 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB,
1674                                         bool enableNarrowLdOpt) {
1675   bool Modified = false;
1676   // Four tranformations to do here:
1677   // 1) Find loads that directly read from stores and promote them by
1678   //    replacing with mov instructions. If the store is wider than the load,
1679   //    the load will be replaced with a bitfield extract.
1680   //      e.g.,
1681   //        str w1, [x0, #4]
1682   //        ldrh w2, [x0, #6]
1683   //        ; becomes
1684   //        str w1, [x0, #4]
1685   //        lsr	w2, w1, #16
1686   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
1687        MBBI != E;) {
1688     MachineInstr *MI = MBBI;
1689     switch (MI->getOpcode()) {
1690     default:
1691       // Just move on to the next instruction.
1692       ++MBBI;
1693       break;
1694     // Scaled instructions.
1695     case AArch64::LDRBBui:
1696     case AArch64::LDRHHui:
1697     case AArch64::LDRWui:
1698     case AArch64::LDRXui:
1699     // Unscaled instructions.
1700     case AArch64::LDURBBi:
1701     case AArch64::LDURHHi:
1702     case AArch64::LDURWi:
1703     case AArch64::LDURXi: {
1704       if (tryToPromoteLoadFromStore(MBBI)) {
1705         Modified = true;
1706         break;
1707       }
1708       ++MBBI;
1709       break;
1710     }
1711     }
1712   }
1713   // 2) Find narrow loads that can be converted into a single wider load
1714   //    with bitfield extract instructions.
1715   //      e.g.,
1716   //        ldrh w0, [x2]
1717   //        ldrh w1, [x2, #2]
1718   //        ; becomes
1719   //        ldr w0, [x2]
1720   //        ubfx w1, w0, #16, #16
1721   //        and w0, w0, #ffff
1722   //
1723   //    Also merge adjacent zero stores into a wider store.
1724   //      e.g.,
1725   //        strh wzr, [x0]
1726   //        strh wzr, [x0, #2]
1727   //        ; becomes
1728   //        str wzr, [x0]
1729   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
1730        enableNarrowLdOpt && MBBI != E;) {
1731     MachineInstr *MI = MBBI;
1732     unsigned Opc = MI->getOpcode();
1733     if (isPromotableZeroStoreOpcode(Opc) ||
1734         (EnableNarrowLdMerge && isNarrowLoad(Opc))) {
1735       if (tryToMergeLdStInst(MBBI)) {
1736         Modified = true;
1737       } else
1738         ++MBBI;
1739     } else
1740       ++MBBI;
1741   }
1742 
1743   // 3) Find loads and stores that can be merged into a single load or store
1744   //    pair instruction.
1745   //      e.g.,
1746   //        ldr x0, [x2]
1747   //        ldr x1, [x2, #8]
1748   //        ; becomes
1749   //        ldp x0, x1, [x2]
1750   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
1751        MBBI != E;) {
1752     MachineInstr *MI = MBBI;
1753     switch (MI->getOpcode()) {
1754     default:
1755       // Just move on to the next instruction.
1756       ++MBBI;
1757       break;
1758     // Scaled instructions.
1759     case AArch64::STRSui:
1760     case AArch64::STRDui:
1761     case AArch64::STRQui:
1762     case AArch64::STRXui:
1763     case AArch64::STRWui:
1764     case AArch64::LDRSui:
1765     case AArch64::LDRDui:
1766     case AArch64::LDRQui:
1767     case AArch64::LDRXui:
1768     case AArch64::LDRWui:
1769     case AArch64::LDRSWui:
1770     // Unscaled instructions.
1771     case AArch64::STURSi:
1772     case AArch64::STURDi:
1773     case AArch64::STURQi:
1774     case AArch64::STURWi:
1775     case AArch64::STURXi:
1776     case AArch64::LDURSi:
1777     case AArch64::LDURDi:
1778     case AArch64::LDURQi:
1779     case AArch64::LDURWi:
1780     case AArch64::LDURXi:
1781     case AArch64::LDURSWi: {
1782       if (tryToPairLdStInst(MBBI)) {
1783         Modified = true;
1784         break;
1785       }
1786       ++MBBI;
1787       break;
1788     }
1789     }
1790   }
1791   // 4) Find base register updates that can be merged into the load or store
1792   //    as a base-reg writeback.
1793   //      e.g.,
1794   //        ldr x0, [x2]
1795   //        add x2, x2, #4
1796   //        ; becomes
1797   //        ldr x0, [x2], #4
1798   for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
1799        MBBI != E;) {
1800     MachineInstr *MI = MBBI;
1801     // Do update merging. It's simpler to keep this separate from the above
1802     // switchs, though not strictly necessary.
1803     unsigned Opc = MI->getOpcode();
1804     switch (Opc) {
1805     default:
1806       // Just move on to the next instruction.
1807       ++MBBI;
1808       break;
1809     // Scaled instructions.
1810     case AArch64::STRSui:
1811     case AArch64::STRDui:
1812     case AArch64::STRQui:
1813     case AArch64::STRXui:
1814     case AArch64::STRWui:
1815     case AArch64::STRHHui:
1816     case AArch64::STRBBui:
1817     case AArch64::LDRSui:
1818     case AArch64::LDRDui:
1819     case AArch64::LDRQui:
1820     case AArch64::LDRXui:
1821     case AArch64::LDRWui:
1822     case AArch64::LDRHHui:
1823     case AArch64::LDRBBui:
1824     // Unscaled instructions.
1825     case AArch64::STURSi:
1826     case AArch64::STURDi:
1827     case AArch64::STURQi:
1828     case AArch64::STURWi:
1829     case AArch64::STURXi:
1830     case AArch64::LDURSi:
1831     case AArch64::LDURDi:
1832     case AArch64::LDURQi:
1833     case AArch64::LDURWi:
1834     case AArch64::LDURXi:
1835     // Paired instructions.
1836     case AArch64::LDPSi:
1837     case AArch64::LDPSWi:
1838     case AArch64::LDPDi:
1839     case AArch64::LDPQi:
1840     case AArch64::LDPWi:
1841     case AArch64::LDPXi:
1842     case AArch64::STPSi:
1843     case AArch64::STPDi:
1844     case AArch64::STPQi:
1845     case AArch64::STPWi:
1846     case AArch64::STPXi: {
1847       // Make sure this is a reg+imm (as opposed to an address reloc).
1848       if (!getLdStOffsetOp(MI).isImm()) {
1849         ++MBBI;
1850         break;
1851       }
1852       // Look forward to try to form a post-index instruction. For example,
1853       // ldr x0, [x20]
1854       // add x20, x20, #32
1855       //   merged into:
1856       // ldr x0, [x20], #32
1857       MachineBasicBlock::iterator Update =
1858           findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit);
1859       if (Update != E) {
1860         // Merge the update into the ld/st.
1861         MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false);
1862         Modified = true;
1863         ++NumPostFolded;
1864         break;
1865       }
1866       // Don't know how to handle pre/post-index versions, so move to the next
1867       // instruction.
1868       if (TII->isUnscaledLdSt(Opc)) {
1869         ++MBBI;
1870         break;
1871       }
1872 
1873       // Look back to try to find a pre-index instruction. For example,
1874       // add x0, x0, #8
1875       // ldr x1, [x0]
1876       //   merged into:
1877       // ldr x1, [x0, #8]!
1878       Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit);
1879       if (Update != E) {
1880         // Merge the update into the ld/st.
1881         MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true);
1882         Modified = true;
1883         ++NumPreFolded;
1884         break;
1885       }
1886       // The immediate in the load/store is scaled by the size of the memory
1887       // operation. The immediate in the add we're looking for,
1888       // however, is not, so adjust here.
1889       int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI);
1890 
1891       // Look forward to try to find a post-index instruction. For example,
1892       // ldr x1, [x0, #64]
1893       // add x0, x0, #64
1894       //   merged into:
1895       // ldr x1, [x0, #64]!
1896       Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit);
1897       if (Update != E) {
1898         // Merge the update into the ld/st.
1899         MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true);
1900         Modified = true;
1901         ++NumPreFolded;
1902         break;
1903       }
1904 
1905       // Nothing found. Just move to the next instruction.
1906       ++MBBI;
1907       break;
1908     }
1909     }
1910   }
1911 
1912   return Modified;
1913 }
1914 
1915 bool AArch64LoadStoreOpt::enableNarrowLdMerge(MachineFunction &Fn) {
1916   bool ProfitableArch = Subtarget->isCortexA57() || Subtarget->isKryo();
1917   // FIXME: The benefit from converting narrow loads into a wider load could be
1918   // microarchitectural as it assumes that a single load with two bitfield
1919   // extracts is cheaper than two narrow loads. Currently, this conversion is
1920   // enabled only in cortex-a57 on which performance benefits were verified.
1921   return ProfitableArch && !Subtarget->requiresStrictAlign();
1922 }
1923 
1924 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
1925   if (skipFunction(*Fn.getFunction()))
1926     return false;
1927 
1928   Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget());
1929   TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo());
1930   TRI = Subtarget->getRegisterInfo();
1931 
1932   // Resize the modified and used register bitfield trackers.  We do this once
1933   // per function and then clear the bitfield each time we optimize a load or
1934   // store.
1935   ModifiedRegs.resize(TRI->getNumRegs());
1936   UsedRegs.resize(TRI->getNumRegs());
1937 
1938   bool Modified = false;
1939   bool enableNarrowLdOpt = enableNarrowLdMerge(Fn);
1940   for (auto &MBB : Fn)
1941     Modified |= optimizeBlock(MBB, enableNarrowLdOpt);
1942 
1943   return Modified;
1944 }
1945 
1946 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep
1947 // loads and stores near one another?
1948 
1949 // FIXME: When pairing store instructions it's very possible for this pass to
1950 // hoist a store with a KILL marker above another use (without a KILL marker).
1951 // The resulting IR is invalid, but nothing uses the KILL markers after this
1952 // pass, so it's never caused a problem in practice.
1953 
1954 /// createAArch64LoadStoreOptimizationPass - returns an instance of the
1955 /// load / store optimization pass.
1956 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() {
1957   return new AArch64LoadStoreOpt();
1958 }
1959