1 //=- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -*- C++ -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that performs load / store related peephole 11 // optimizations. This pass should be run after register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AArch64InstrInfo.h" 16 #include "AArch64Subtarget.h" 17 #include "MCTargetDesc/AArch64AddressingModes.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 using namespace llvm; 33 34 #define DEBUG_TYPE "aarch64-ldst-opt" 35 36 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 37 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 38 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 39 STATISTIC(NumUnscaledPairCreated, 40 "Number of load/store from unscaled generated"); 41 STATISTIC(NumNarrowLoadsPromoted, "Number of narrow loads promoted"); 42 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 43 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 44 45 // The LdStLimit limits how far we search for load/store pairs. 46 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 47 cl::init(20), cl::Hidden); 48 49 // The UpdateLimit limits how far we search for update instructions when we form 50 // pre-/post-index instructions. 51 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 52 cl::Hidden); 53 54 static cl::opt<bool> EnableNarrowLdMerge("enable-narrow-ld-merge", cl::Hidden, 55 cl::init(false), 56 cl::desc("Enable narrow load merge")); 57 58 namespace llvm { 59 void initializeAArch64LoadStoreOptPass(PassRegistry &); 60 } 61 62 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 63 64 namespace { 65 66 typedef struct LdStPairFlags { 67 // If a matching instruction is found, MergeForward is set to true if the 68 // merge is to remove the first instruction and replace the second with 69 // a pair-wise insn, and false if the reverse is true. 70 bool MergeForward; 71 72 // SExtIdx gives the index of the result of the load pair that must be 73 // extended. The value of SExtIdx assumes that the paired load produces the 74 // value in this order: (I, returned iterator), i.e., -1 means no value has 75 // to be extended, 0 means I, and 1 means the returned iterator. 76 int SExtIdx; 77 78 LdStPairFlags() : MergeForward(false), SExtIdx(-1) {} 79 80 void setMergeForward(bool V = true) { MergeForward = V; } 81 bool getMergeForward() const { return MergeForward; } 82 83 void setSExtIdx(int V) { SExtIdx = V; } 84 int getSExtIdx() const { return SExtIdx; } 85 86 } LdStPairFlags; 87 88 struct AArch64LoadStoreOpt : public MachineFunctionPass { 89 static char ID; 90 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 91 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 92 } 93 94 const AArch64InstrInfo *TII; 95 const TargetRegisterInfo *TRI; 96 const AArch64Subtarget *Subtarget; 97 98 // Track which registers have been modified and used. 99 BitVector ModifiedRegs, UsedRegs; 100 101 // Scan the instructions looking for a load/store that can be combined 102 // with the current instruction into a load/store pair. 103 // Return the matching instruction if one is found, else MBB->end(). 104 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 105 LdStPairFlags &Flags, 106 unsigned Limit, 107 bool FindNarrowMerge); 108 109 // Scan the instructions looking for a store that writes to the address from 110 // which the current load instruction reads. Return true if one is found. 111 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 112 MachineBasicBlock::iterator &StoreI); 113 114 // Merge the two instructions indicated into a wider instruction. 115 MachineBasicBlock::iterator 116 mergeNarrowInsns(MachineBasicBlock::iterator I, 117 MachineBasicBlock::iterator MergeMI, 118 const LdStPairFlags &Flags); 119 120 // Merge the two instructions indicated into a single pair-wise instruction. 121 MachineBasicBlock::iterator 122 mergePairedInsns(MachineBasicBlock::iterator I, 123 MachineBasicBlock::iterator Paired, 124 const LdStPairFlags &Flags); 125 126 // Promote the load that reads directly from the address stored to. 127 MachineBasicBlock::iterator 128 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 129 MachineBasicBlock::iterator StoreI); 130 131 // Scan the instruction list to find a base register update that can 132 // be combined with the current instruction (a load or store) using 133 // pre or post indexed addressing with writeback. Scan forwards. 134 MachineBasicBlock::iterator 135 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 136 int UnscaledOffset, unsigned Limit); 137 138 // Scan the instruction list to find a base register update that can 139 // be combined with the current instruction (a load or store) using 140 // pre or post indexed addressing with writeback. Scan backwards. 141 MachineBasicBlock::iterator 142 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 143 144 // Find an instruction that updates the base register of the ld/st 145 // instruction. 146 bool isMatchingUpdateInsn(MachineInstr *MemMI, MachineInstr *MI, 147 unsigned BaseReg, int Offset); 148 149 // Merge a pre- or post-index base register update into a ld/st instruction. 150 MachineBasicBlock::iterator 151 mergeUpdateInsn(MachineBasicBlock::iterator I, 152 MachineBasicBlock::iterator Update, bool IsPreIdx); 153 154 // Find and merge foldable ldr/str instructions. 155 bool tryToMergeLdStInst(MachineBasicBlock::iterator &MBBI); 156 157 // Find and pair ldr/str instructions. 158 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 159 160 // Find and promote load instructions which read directly from store. 161 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 162 163 // Check if converting two narrow loads into a single wider load with 164 // bitfield extracts could be enabled. 165 bool enableNarrowLdMerge(MachineFunction &Fn); 166 167 bool optimizeBlock(MachineBasicBlock &MBB, bool enableNarrowLdOpt); 168 169 bool runOnMachineFunction(MachineFunction &Fn) override; 170 171 MachineFunctionProperties getRequiredProperties() const override { 172 return MachineFunctionProperties().set( 173 MachineFunctionProperties::Property::AllVRegsAllocated); 174 } 175 176 const char *getPassName() const override { 177 return AARCH64_LOAD_STORE_OPT_NAME; 178 } 179 }; 180 char AArch64LoadStoreOpt::ID = 0; 181 } // namespace 182 183 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 184 AARCH64_LOAD_STORE_OPT_NAME, false, false) 185 186 static unsigned getBitExtrOpcode(MachineInstr *MI) { 187 switch (MI->getOpcode()) { 188 default: 189 llvm_unreachable("Unexpected opcode."); 190 case AArch64::LDRBBui: 191 case AArch64::LDURBBi: 192 case AArch64::LDRHHui: 193 case AArch64::LDURHHi: 194 return AArch64::UBFMWri; 195 case AArch64::LDRSBWui: 196 case AArch64::LDURSBWi: 197 case AArch64::LDRSHWui: 198 case AArch64::LDURSHWi: 199 return AArch64::SBFMWri; 200 } 201 } 202 203 static bool isNarrowStore(unsigned Opc) { 204 switch (Opc) { 205 default: 206 return false; 207 case AArch64::STRBBui: 208 case AArch64::STURBBi: 209 case AArch64::STRHHui: 210 case AArch64::STURHHi: 211 return true; 212 } 213 } 214 215 static bool isNarrowLoad(unsigned Opc) { 216 switch (Opc) { 217 default: 218 return false; 219 case AArch64::LDRHHui: 220 case AArch64::LDURHHi: 221 case AArch64::LDRBBui: 222 case AArch64::LDURBBi: 223 case AArch64::LDRSHWui: 224 case AArch64::LDURSHWi: 225 case AArch64::LDRSBWui: 226 case AArch64::LDURSBWi: 227 return true; 228 } 229 } 230 231 static bool isNarrowLoad(MachineInstr *MI) { 232 return isNarrowLoad(MI->getOpcode()); 233 } 234 235 static bool isNarrowLoadOrStore(unsigned Opc) { 236 return isNarrowLoad(Opc) || isNarrowStore(Opc); 237 } 238 239 // Scaling factor for unscaled load or store. 240 static int getMemScale(MachineInstr *MI) { 241 switch (MI->getOpcode()) { 242 default: 243 llvm_unreachable("Opcode has unknown scale!"); 244 case AArch64::LDRBBui: 245 case AArch64::LDURBBi: 246 case AArch64::LDRSBWui: 247 case AArch64::LDURSBWi: 248 case AArch64::STRBBui: 249 case AArch64::STURBBi: 250 return 1; 251 case AArch64::LDRHHui: 252 case AArch64::LDURHHi: 253 case AArch64::LDRSHWui: 254 case AArch64::LDURSHWi: 255 case AArch64::STRHHui: 256 case AArch64::STURHHi: 257 return 2; 258 case AArch64::LDRSui: 259 case AArch64::LDURSi: 260 case AArch64::LDRSWui: 261 case AArch64::LDURSWi: 262 case AArch64::LDRWui: 263 case AArch64::LDURWi: 264 case AArch64::STRSui: 265 case AArch64::STURSi: 266 case AArch64::STRWui: 267 case AArch64::STURWi: 268 case AArch64::LDPSi: 269 case AArch64::LDPSWi: 270 case AArch64::LDPWi: 271 case AArch64::STPSi: 272 case AArch64::STPWi: 273 return 4; 274 case AArch64::LDRDui: 275 case AArch64::LDURDi: 276 case AArch64::LDRXui: 277 case AArch64::LDURXi: 278 case AArch64::STRDui: 279 case AArch64::STURDi: 280 case AArch64::STRXui: 281 case AArch64::STURXi: 282 case AArch64::LDPDi: 283 case AArch64::LDPXi: 284 case AArch64::STPDi: 285 case AArch64::STPXi: 286 return 8; 287 case AArch64::LDRQui: 288 case AArch64::LDURQi: 289 case AArch64::STRQui: 290 case AArch64::STURQi: 291 case AArch64::LDPQi: 292 case AArch64::STPQi: 293 return 16; 294 } 295 } 296 297 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 298 bool *IsValidLdStrOpc = nullptr) { 299 if (IsValidLdStrOpc) 300 *IsValidLdStrOpc = true; 301 switch (Opc) { 302 default: 303 if (IsValidLdStrOpc) 304 *IsValidLdStrOpc = false; 305 return UINT_MAX; 306 case AArch64::STRDui: 307 case AArch64::STURDi: 308 case AArch64::STRQui: 309 case AArch64::STURQi: 310 case AArch64::STRBBui: 311 case AArch64::STURBBi: 312 case AArch64::STRHHui: 313 case AArch64::STURHHi: 314 case AArch64::STRWui: 315 case AArch64::STURWi: 316 case AArch64::STRXui: 317 case AArch64::STURXi: 318 case AArch64::LDRDui: 319 case AArch64::LDURDi: 320 case AArch64::LDRQui: 321 case AArch64::LDURQi: 322 case AArch64::LDRWui: 323 case AArch64::LDURWi: 324 case AArch64::LDRXui: 325 case AArch64::LDURXi: 326 case AArch64::STRSui: 327 case AArch64::STURSi: 328 case AArch64::LDRSui: 329 case AArch64::LDURSi: 330 case AArch64::LDRHHui: 331 case AArch64::LDURHHi: 332 case AArch64::LDRBBui: 333 case AArch64::LDURBBi: 334 return Opc; 335 case AArch64::LDRSWui: 336 return AArch64::LDRWui; 337 case AArch64::LDURSWi: 338 return AArch64::LDURWi; 339 case AArch64::LDRSBWui: 340 return AArch64::LDRBBui; 341 case AArch64::LDRSHWui: 342 return AArch64::LDRHHui; 343 case AArch64::LDURSBWi: 344 return AArch64::LDURBBi; 345 case AArch64::LDURSHWi: 346 return AArch64::LDURHHi; 347 } 348 } 349 350 static unsigned getMatchingWideOpcode(unsigned Opc) { 351 switch (Opc) { 352 default: 353 llvm_unreachable("Opcode has no wide equivalent!"); 354 case AArch64::STRBBui: 355 return AArch64::STRHHui; 356 case AArch64::STRHHui: 357 return AArch64::STRWui; 358 case AArch64::STURBBi: 359 return AArch64::STURHHi; 360 case AArch64::STURHHi: 361 return AArch64::STURWi; 362 case AArch64::STURWi: 363 return AArch64::STURXi; 364 case AArch64::STRWui: 365 return AArch64::STRXui; 366 case AArch64::LDRHHui: 367 case AArch64::LDRSHWui: 368 return AArch64::LDRWui; 369 case AArch64::LDURHHi: 370 case AArch64::LDURSHWi: 371 return AArch64::LDURWi; 372 case AArch64::LDRBBui: 373 case AArch64::LDRSBWui: 374 return AArch64::LDRHHui; 375 case AArch64::LDURBBi: 376 case AArch64::LDURSBWi: 377 return AArch64::LDURHHi; 378 } 379 } 380 381 static unsigned getMatchingPairOpcode(unsigned Opc) { 382 switch (Opc) { 383 default: 384 llvm_unreachable("Opcode has no pairwise equivalent!"); 385 case AArch64::STRSui: 386 case AArch64::STURSi: 387 return AArch64::STPSi; 388 case AArch64::STRDui: 389 case AArch64::STURDi: 390 return AArch64::STPDi; 391 case AArch64::STRQui: 392 case AArch64::STURQi: 393 return AArch64::STPQi; 394 case AArch64::STRWui: 395 case AArch64::STURWi: 396 return AArch64::STPWi; 397 case AArch64::STRXui: 398 case AArch64::STURXi: 399 return AArch64::STPXi; 400 case AArch64::LDRSui: 401 case AArch64::LDURSi: 402 return AArch64::LDPSi; 403 case AArch64::LDRDui: 404 case AArch64::LDURDi: 405 return AArch64::LDPDi; 406 case AArch64::LDRQui: 407 case AArch64::LDURQi: 408 return AArch64::LDPQi; 409 case AArch64::LDRWui: 410 case AArch64::LDURWi: 411 return AArch64::LDPWi; 412 case AArch64::LDRXui: 413 case AArch64::LDURXi: 414 return AArch64::LDPXi; 415 case AArch64::LDRSWui: 416 case AArch64::LDURSWi: 417 return AArch64::LDPSWi; 418 } 419 } 420 421 static unsigned isMatchingStore(MachineInstr *LoadInst, 422 MachineInstr *StoreInst) { 423 unsigned LdOpc = LoadInst->getOpcode(); 424 unsigned StOpc = StoreInst->getOpcode(); 425 switch (LdOpc) { 426 default: 427 llvm_unreachable("Unsupported load instruction!"); 428 case AArch64::LDRBBui: 429 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 430 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 431 case AArch64::LDURBBi: 432 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 433 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 434 case AArch64::LDRHHui: 435 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 436 StOpc == AArch64::STRXui; 437 case AArch64::LDURHHi: 438 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 439 StOpc == AArch64::STURXi; 440 case AArch64::LDRWui: 441 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 442 case AArch64::LDURWi: 443 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 444 case AArch64::LDRXui: 445 return StOpc == AArch64::STRXui; 446 case AArch64::LDURXi: 447 return StOpc == AArch64::STURXi; 448 } 449 } 450 451 static unsigned getPreIndexedOpcode(unsigned Opc) { 452 switch (Opc) { 453 default: 454 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 455 case AArch64::STRSui: 456 return AArch64::STRSpre; 457 case AArch64::STRDui: 458 return AArch64::STRDpre; 459 case AArch64::STRQui: 460 return AArch64::STRQpre; 461 case AArch64::STRBBui: 462 return AArch64::STRBBpre; 463 case AArch64::STRHHui: 464 return AArch64::STRHHpre; 465 case AArch64::STRWui: 466 return AArch64::STRWpre; 467 case AArch64::STRXui: 468 return AArch64::STRXpre; 469 case AArch64::LDRSui: 470 return AArch64::LDRSpre; 471 case AArch64::LDRDui: 472 return AArch64::LDRDpre; 473 case AArch64::LDRQui: 474 return AArch64::LDRQpre; 475 case AArch64::LDRBBui: 476 return AArch64::LDRBBpre; 477 case AArch64::LDRHHui: 478 return AArch64::LDRHHpre; 479 case AArch64::LDRWui: 480 return AArch64::LDRWpre; 481 case AArch64::LDRXui: 482 return AArch64::LDRXpre; 483 case AArch64::LDRSWui: 484 return AArch64::LDRSWpre; 485 case AArch64::LDPSi: 486 return AArch64::LDPSpre; 487 case AArch64::LDPSWi: 488 return AArch64::LDPSWpre; 489 case AArch64::LDPDi: 490 return AArch64::LDPDpre; 491 case AArch64::LDPQi: 492 return AArch64::LDPQpre; 493 case AArch64::LDPWi: 494 return AArch64::LDPWpre; 495 case AArch64::LDPXi: 496 return AArch64::LDPXpre; 497 case AArch64::STPSi: 498 return AArch64::STPSpre; 499 case AArch64::STPDi: 500 return AArch64::STPDpre; 501 case AArch64::STPQi: 502 return AArch64::STPQpre; 503 case AArch64::STPWi: 504 return AArch64::STPWpre; 505 case AArch64::STPXi: 506 return AArch64::STPXpre; 507 } 508 } 509 510 static unsigned getPostIndexedOpcode(unsigned Opc) { 511 switch (Opc) { 512 default: 513 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 514 case AArch64::STRSui: 515 return AArch64::STRSpost; 516 case AArch64::STRDui: 517 return AArch64::STRDpost; 518 case AArch64::STRQui: 519 return AArch64::STRQpost; 520 case AArch64::STRBBui: 521 return AArch64::STRBBpost; 522 case AArch64::STRHHui: 523 return AArch64::STRHHpost; 524 case AArch64::STRWui: 525 return AArch64::STRWpost; 526 case AArch64::STRXui: 527 return AArch64::STRXpost; 528 case AArch64::LDRSui: 529 return AArch64::LDRSpost; 530 case AArch64::LDRDui: 531 return AArch64::LDRDpost; 532 case AArch64::LDRQui: 533 return AArch64::LDRQpost; 534 case AArch64::LDRBBui: 535 return AArch64::LDRBBpost; 536 case AArch64::LDRHHui: 537 return AArch64::LDRHHpost; 538 case AArch64::LDRWui: 539 return AArch64::LDRWpost; 540 case AArch64::LDRXui: 541 return AArch64::LDRXpost; 542 case AArch64::LDRSWui: 543 return AArch64::LDRSWpost; 544 case AArch64::LDPSi: 545 return AArch64::LDPSpost; 546 case AArch64::LDPSWi: 547 return AArch64::LDPSWpost; 548 case AArch64::LDPDi: 549 return AArch64::LDPDpost; 550 case AArch64::LDPQi: 551 return AArch64::LDPQpost; 552 case AArch64::LDPWi: 553 return AArch64::LDPWpost; 554 case AArch64::LDPXi: 555 return AArch64::LDPXpost; 556 case AArch64::STPSi: 557 return AArch64::STPSpost; 558 case AArch64::STPDi: 559 return AArch64::STPDpost; 560 case AArch64::STPQi: 561 return AArch64::STPQpost; 562 case AArch64::STPWi: 563 return AArch64::STPWpost; 564 case AArch64::STPXi: 565 return AArch64::STPXpost; 566 } 567 } 568 569 static bool isPairedLdSt(const MachineInstr *MI) { 570 switch (MI->getOpcode()) { 571 default: 572 return false; 573 case AArch64::LDPSi: 574 case AArch64::LDPSWi: 575 case AArch64::LDPDi: 576 case AArch64::LDPQi: 577 case AArch64::LDPWi: 578 case AArch64::LDPXi: 579 case AArch64::STPSi: 580 case AArch64::STPDi: 581 case AArch64::STPQi: 582 case AArch64::STPWi: 583 case AArch64::STPXi: 584 return true; 585 } 586 } 587 588 static const MachineOperand &getLdStRegOp(const MachineInstr *MI, 589 unsigned PairedRegOp = 0) { 590 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 591 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 592 return MI->getOperand(Idx); 593 } 594 595 static const MachineOperand &getLdStBaseOp(const MachineInstr *MI) { 596 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 597 return MI->getOperand(Idx); 598 } 599 600 static const MachineOperand &getLdStOffsetOp(const MachineInstr *MI) { 601 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 602 return MI->getOperand(Idx); 603 } 604 605 static bool isLdOffsetInRangeOfSt(MachineInstr *LoadInst, 606 MachineInstr *StoreInst, 607 const AArch64InstrInfo *TII) { 608 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 609 int LoadSize = getMemScale(LoadInst); 610 int StoreSize = getMemScale(StoreInst); 611 int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst) 612 ? getLdStOffsetOp(StoreInst).getImm() 613 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 614 int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst) 615 ? getLdStOffsetOp(LoadInst).getImm() 616 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 617 return (UnscaledStOffset <= UnscaledLdOffset) && 618 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 619 } 620 621 static bool isPromotableZeroStoreOpcode(unsigned Opc) { 622 return isNarrowStore(Opc) || Opc == AArch64::STRWui || Opc == AArch64::STURWi; 623 } 624 625 static bool isPromotableZeroStoreOpcode(MachineInstr *MI) { 626 return isPromotableZeroStoreOpcode(MI->getOpcode()); 627 } 628 629 static bool isPromotableZeroStoreInst(MachineInstr *MI) { 630 return (isPromotableZeroStoreOpcode(MI)) && 631 getLdStRegOp(MI).getReg() == AArch64::WZR; 632 } 633 634 MachineBasicBlock::iterator 635 AArch64LoadStoreOpt::mergeNarrowInsns(MachineBasicBlock::iterator I, 636 MachineBasicBlock::iterator MergeMI, 637 const LdStPairFlags &Flags) { 638 MachineBasicBlock::iterator NextI = I; 639 ++NextI; 640 // If NextI is the second of the two instructions to be merged, we need 641 // to skip one further. Either way we merge will invalidate the iterator, 642 // and we don't need to scan the new instruction, as it's a pairwise 643 // instruction, which we're not considering for further action anyway. 644 if (NextI == MergeMI) 645 ++NextI; 646 647 unsigned Opc = I->getOpcode(); 648 bool IsScaled = !TII->isUnscaledLdSt(Opc); 649 int OffsetStride = IsScaled ? 1 : getMemScale(I); 650 651 bool MergeForward = Flags.getMergeForward(); 652 // Insert our new paired instruction after whichever of the paired 653 // instructions MergeForward indicates. 654 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 655 // Also based on MergeForward is from where we copy the base register operand 656 // so we get the flags compatible with the input code. 657 const MachineOperand &BaseRegOp = 658 MergeForward ? getLdStBaseOp(MergeMI) : getLdStBaseOp(I); 659 660 // Which register is Rt and which is Rt2 depends on the offset order. 661 MachineInstr *RtMI, *Rt2MI; 662 if (getLdStOffsetOp(I).getImm() == 663 getLdStOffsetOp(MergeMI).getImm() + OffsetStride) { 664 RtMI = MergeMI; 665 Rt2MI = I; 666 } else { 667 RtMI = I; 668 Rt2MI = MergeMI; 669 } 670 671 int OffsetImm = getLdStOffsetOp(RtMI).getImm(); 672 // Change the scaled offset from small to large type. 673 if (IsScaled) { 674 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 675 OffsetImm /= 2; 676 } 677 678 DebugLoc DL = I->getDebugLoc(); 679 MachineBasicBlock *MBB = I->getParent(); 680 if (isNarrowLoad(Opc)) { 681 MachineInstr *RtNewDest = MergeForward ? I : MergeMI; 682 // When merging small (< 32 bit) loads for big-endian targets, the order of 683 // the component parts gets swapped. 684 if (!Subtarget->isLittleEndian()) 685 std::swap(RtMI, Rt2MI); 686 // Construct the new load instruction. 687 MachineInstr *NewMemMI, *BitExtMI1, *BitExtMI2; 688 NewMemMI = 689 BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 690 .addOperand(getLdStRegOp(RtNewDest)) 691 .addOperand(BaseRegOp) 692 .addImm(OffsetImm) 693 .setMemRefs(I->mergeMemRefsWith(*MergeMI)); 694 (void)NewMemMI; 695 696 DEBUG( 697 dbgs() 698 << "Creating the new load and extract. Replacing instructions:\n "); 699 DEBUG(I->print(dbgs())); 700 DEBUG(dbgs() << " "); 701 DEBUG(MergeMI->print(dbgs())); 702 DEBUG(dbgs() << " with instructions:\n "); 703 DEBUG((NewMemMI)->print(dbgs())); 704 705 int Width = getMemScale(I) == 1 ? 8 : 16; 706 int LSBLow = 0; 707 int LSBHigh = Width; 708 int ImmsLow = LSBLow + Width - 1; 709 int ImmsHigh = LSBHigh + Width - 1; 710 MachineInstr *ExtDestMI = MergeForward ? MergeMI : I; 711 if ((ExtDestMI == Rt2MI) == Subtarget->isLittleEndian()) { 712 // Create the bitfield extract for high bits. 713 BitExtMI1 = 714 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(Rt2MI))) 715 .addOperand(getLdStRegOp(Rt2MI)) 716 .addReg(getLdStRegOp(RtNewDest).getReg()) 717 .addImm(LSBHigh) 718 .addImm(ImmsHigh); 719 // Create the bitfield extract for low bits. 720 if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) { 721 // For unsigned, prefer to use AND for low bits. 722 BitExtMI2 = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::ANDWri)) 723 .addOperand(getLdStRegOp(RtMI)) 724 .addReg(getLdStRegOp(RtNewDest).getReg()) 725 .addImm(ImmsLow); 726 } else { 727 BitExtMI2 = 728 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(RtMI))) 729 .addOperand(getLdStRegOp(RtMI)) 730 .addReg(getLdStRegOp(RtNewDest).getReg()) 731 .addImm(LSBLow) 732 .addImm(ImmsLow); 733 } 734 } else { 735 // Create the bitfield extract for low bits. 736 if (RtMI->getOpcode() == getMatchingNonSExtOpcode(RtMI->getOpcode())) { 737 // For unsigned, prefer to use AND for low bits. 738 BitExtMI1 = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::ANDWri)) 739 .addOperand(getLdStRegOp(RtMI)) 740 .addReg(getLdStRegOp(RtNewDest).getReg()) 741 .addImm(ImmsLow); 742 } else { 743 BitExtMI1 = 744 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(RtMI))) 745 .addOperand(getLdStRegOp(RtMI)) 746 .addReg(getLdStRegOp(RtNewDest).getReg()) 747 .addImm(LSBLow) 748 .addImm(ImmsLow); 749 } 750 751 // Create the bitfield extract for high bits. 752 BitExtMI2 = 753 BuildMI(*MBB, InsertionPoint, DL, TII->get(getBitExtrOpcode(Rt2MI))) 754 .addOperand(getLdStRegOp(Rt2MI)) 755 .addReg(getLdStRegOp(RtNewDest).getReg()) 756 .addImm(LSBHigh) 757 .addImm(ImmsHigh); 758 } 759 (void)BitExtMI1; 760 (void)BitExtMI2; 761 762 DEBUG(dbgs() << " "); 763 DEBUG((BitExtMI1)->print(dbgs())); 764 DEBUG(dbgs() << " "); 765 DEBUG((BitExtMI2)->print(dbgs())); 766 DEBUG(dbgs() << "\n"); 767 768 // Erase the old instructions. 769 I->eraseFromParent(); 770 MergeMI->eraseFromParent(); 771 return NextI; 772 } 773 assert(isPromotableZeroStoreInst(I) && isPromotableZeroStoreInst(MergeMI) && 774 "Expected promotable zero store"); 775 776 // Construct the new instruction. 777 MachineInstrBuilder MIB; 778 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 779 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 780 .addOperand(BaseRegOp) 781 .addImm(OffsetImm) 782 .setMemRefs(I->mergeMemRefsWith(*MergeMI)); 783 (void)MIB; 784 785 DEBUG(dbgs() << "Creating wider load/store. Replacing instructions:\n "); 786 DEBUG(I->print(dbgs())); 787 DEBUG(dbgs() << " "); 788 DEBUG(MergeMI->print(dbgs())); 789 DEBUG(dbgs() << " with instruction:\n "); 790 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 791 DEBUG(dbgs() << "\n"); 792 793 // Erase the old instructions. 794 I->eraseFromParent(); 795 MergeMI->eraseFromParent(); 796 return NextI; 797 } 798 799 MachineBasicBlock::iterator 800 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 801 MachineBasicBlock::iterator Paired, 802 const LdStPairFlags &Flags) { 803 MachineBasicBlock::iterator NextI = I; 804 ++NextI; 805 // If NextI is the second of the two instructions to be merged, we need 806 // to skip one further. Either way we merge will invalidate the iterator, 807 // and we don't need to scan the new instruction, as it's a pairwise 808 // instruction, which we're not considering for further action anyway. 809 if (NextI == Paired) 810 ++NextI; 811 812 int SExtIdx = Flags.getSExtIdx(); 813 unsigned Opc = 814 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 815 bool IsUnscaled = TII->isUnscaledLdSt(Opc); 816 int OffsetStride = IsUnscaled ? getMemScale(I) : 1; 817 818 bool MergeForward = Flags.getMergeForward(); 819 // Insert our new paired instruction after whichever of the paired 820 // instructions MergeForward indicates. 821 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 822 // Also based on MergeForward is from where we copy the base register operand 823 // so we get the flags compatible with the input code. 824 const MachineOperand &BaseRegOp = 825 MergeForward ? getLdStBaseOp(Paired) : getLdStBaseOp(I); 826 827 int Offset = getLdStOffsetOp(I).getImm(); 828 int PairedOffset = getLdStOffsetOp(Paired).getImm(); 829 bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode()); 830 if (IsUnscaled != PairedIsUnscaled) { 831 // We're trying to pair instructions that differ in how they are scaled. If 832 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 833 // the opposite (i.e., make Paired's offset unscaled). 834 int MemSize = getMemScale(Paired); 835 if (PairedIsUnscaled) { 836 // If the unscaled offset isn't a multiple of the MemSize, we can't 837 // pair the operations together. 838 assert(!(PairedOffset % getMemScale(Paired)) && 839 "Offset should be a multiple of the stride!"); 840 PairedOffset /= MemSize; 841 } else { 842 PairedOffset *= MemSize; 843 } 844 } 845 846 // Which register is Rt and which is Rt2 depends on the offset order. 847 MachineInstr *RtMI, *Rt2MI; 848 if (Offset == PairedOffset + OffsetStride) { 849 RtMI = Paired; 850 Rt2MI = I; 851 // Here we swapped the assumption made for SExtIdx. 852 // I.e., we turn ldp I, Paired into ldp Paired, I. 853 // Update the index accordingly. 854 if (SExtIdx != -1) 855 SExtIdx = (SExtIdx + 1) % 2; 856 } else { 857 RtMI = I; 858 Rt2MI = Paired; 859 } 860 int OffsetImm = getLdStOffsetOp(RtMI).getImm(); 861 // Scale the immediate offset, if necessary. 862 if (TII->isUnscaledLdSt(RtMI->getOpcode())) { 863 assert(!(OffsetImm % getMemScale(RtMI)) && 864 "Unscaled offset cannot be scaled."); 865 OffsetImm /= getMemScale(RtMI); 866 } 867 868 // Construct the new instruction. 869 MachineInstrBuilder MIB; 870 DebugLoc DL = I->getDebugLoc(); 871 MachineBasicBlock *MBB = I->getParent(); 872 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc))) 873 .addOperand(getLdStRegOp(RtMI)) 874 .addOperand(getLdStRegOp(Rt2MI)) 875 .addOperand(BaseRegOp) 876 .addImm(OffsetImm) 877 .setMemRefs(I->mergeMemRefsWith(*Paired)); 878 879 (void)MIB; 880 881 DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n "); 882 DEBUG(I->print(dbgs())); 883 DEBUG(dbgs() << " "); 884 DEBUG(Paired->print(dbgs())); 885 DEBUG(dbgs() << " with instruction:\n "); 886 if (SExtIdx != -1) { 887 // Generate the sign extension for the proper result of the ldp. 888 // I.e., with X1, that would be: 889 // %W1<def> = KILL %W1, %X1<imp-def> 890 // %X1<def> = SBFMXri %X1<kill>, 0, 31 891 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 892 // Right now, DstMO has the extended register, since it comes from an 893 // extended opcode. 894 unsigned DstRegX = DstMO.getReg(); 895 // Get the W variant of that register. 896 unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 897 // Update the result of LDP to use the W instead of the X variant. 898 DstMO.setReg(DstRegW); 899 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 900 DEBUG(dbgs() << "\n"); 901 // Make the machine verifier happy by providing a definition for 902 // the X register. 903 // Insert this definition right after the generated LDP, i.e., before 904 // InsertionPoint. 905 MachineInstrBuilder MIBKill = 906 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 907 .addReg(DstRegW) 908 .addReg(DstRegX, RegState::Define); 909 MIBKill->getOperand(2).setImplicit(); 910 // Create the sign extension. 911 MachineInstrBuilder MIBSXTW = 912 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 913 .addReg(DstRegX) 914 .addImm(0) 915 .addImm(31); 916 (void)MIBSXTW; 917 DEBUG(dbgs() << " Extend operand:\n "); 918 DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 919 } else { 920 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 921 } 922 DEBUG(dbgs() << "\n"); 923 924 // Erase the old instructions. 925 I->eraseFromParent(); 926 Paired->eraseFromParent(); 927 928 return NextI; 929 } 930 931 MachineBasicBlock::iterator 932 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 933 MachineBasicBlock::iterator StoreI) { 934 MachineBasicBlock::iterator NextI = LoadI; 935 ++NextI; 936 937 int LoadSize = getMemScale(LoadI); 938 int StoreSize = getMemScale(StoreI); 939 unsigned LdRt = getLdStRegOp(LoadI).getReg(); 940 unsigned StRt = getLdStRegOp(StoreI).getReg(); 941 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 942 943 assert((IsStoreXReg || 944 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 945 "Unexpected RegClass"); 946 947 MachineInstr *BitExtMI; 948 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 949 // Remove the load, if the destination register of the loads is the same 950 // register for stored value. 951 if (StRt == LdRt && LoadSize == 8) { 952 DEBUG(dbgs() << "Remove load instruction:\n "); 953 DEBUG(LoadI->print(dbgs())); 954 DEBUG(dbgs() << "\n"); 955 LoadI->eraseFromParent(); 956 return NextI; 957 } 958 // Replace the load with a mov if the load and store are in the same size. 959 BitExtMI = 960 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 961 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 962 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 963 .addReg(StRt) 964 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); 965 } else { 966 // FIXME: Currently we disable this transformation in big-endian targets as 967 // performance and correctness are verified only in little-endian. 968 if (!Subtarget->isLittleEndian()) 969 return NextI; 970 bool IsUnscaled = TII->isUnscaledLdSt(LoadI); 971 assert(IsUnscaled == TII->isUnscaledLdSt(StoreI) && 972 "Unsupported ld/st match"); 973 assert(LoadSize <= StoreSize && "Invalid load size"); 974 int UnscaledLdOffset = IsUnscaled 975 ? getLdStOffsetOp(LoadI).getImm() 976 : getLdStOffsetOp(LoadI).getImm() * LoadSize; 977 int UnscaledStOffset = IsUnscaled 978 ? getLdStOffsetOp(StoreI).getImm() 979 : getLdStOffsetOp(StoreI).getImm() * StoreSize; 980 int Width = LoadSize * 8; 981 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 982 int Imms = Immr + Width - 1; 983 unsigned DestReg = IsStoreXReg 984 ? TRI->getMatchingSuperReg(LdRt, AArch64::sub_32, 985 &AArch64::GPR64RegClass) 986 : LdRt; 987 988 assert((UnscaledLdOffset >= UnscaledStOffset && 989 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 990 "Invalid offset"); 991 992 Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 993 Imms = Immr + Width - 1; 994 if (UnscaledLdOffset == UnscaledStOffset) { 995 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 996 | ((Immr) << 6) // immr 997 | ((Imms) << 0) // imms 998 ; 999 1000 BitExtMI = 1001 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1002 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 1003 DestReg) 1004 .addReg(StRt) 1005 .addImm(AndMaskEncoded); 1006 } else { 1007 BitExtMI = 1008 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1009 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 1010 DestReg) 1011 .addReg(StRt) 1012 .addImm(Immr) 1013 .addImm(Imms); 1014 } 1015 } 1016 (void)BitExtMI; 1017 1018 DEBUG(dbgs() << "Promoting load by replacing :\n "); 1019 DEBUG(StoreI->print(dbgs())); 1020 DEBUG(dbgs() << " "); 1021 DEBUG(LoadI->print(dbgs())); 1022 DEBUG(dbgs() << " with instructions:\n "); 1023 DEBUG(StoreI->print(dbgs())); 1024 DEBUG(dbgs() << " "); 1025 DEBUG((BitExtMI)->print(dbgs())); 1026 DEBUG(dbgs() << "\n"); 1027 1028 // Erase the old instructions. 1029 LoadI->eraseFromParent(); 1030 return NextI; 1031 } 1032 1033 /// trackRegDefsUses - Remember what registers the specified instruction uses 1034 /// and modifies. 1035 static void trackRegDefsUses(const MachineInstr *MI, BitVector &ModifiedRegs, 1036 BitVector &UsedRegs, 1037 const TargetRegisterInfo *TRI) { 1038 for (const MachineOperand &MO : MI->operands()) { 1039 if (MO.isRegMask()) 1040 ModifiedRegs.setBitsNotInMask(MO.getRegMask()); 1041 1042 if (!MO.isReg()) 1043 continue; 1044 unsigned Reg = MO.getReg(); 1045 if (!Reg) 1046 continue; 1047 if (MO.isDef()) { 1048 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1049 ModifiedRegs.set(*AI); 1050 } else { 1051 assert(MO.isUse() && "Reg operand not a def and not a use?!?"); 1052 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 1053 UsedRegs.set(*AI); 1054 } 1055 } 1056 } 1057 1058 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 1059 // Convert the byte-offset used by unscaled into an "element" offset used 1060 // by the scaled pair load/store instructions. 1061 if (IsUnscaled) { 1062 // If the byte-offset isn't a multiple of the stride, there's no point 1063 // trying to match it. 1064 if (Offset % OffsetStride) 1065 return false; 1066 Offset /= OffsetStride; 1067 } 1068 return Offset <= 63 && Offset >= -64; 1069 } 1070 1071 // Do alignment, specialized to power of 2 and for signed ints, 1072 // avoiding having to do a C-style cast from uint_64t to int when 1073 // using alignTo from include/llvm/Support/MathExtras.h. 1074 // FIXME: Move this function to include/MathExtras.h? 1075 static int alignTo(int Num, int PowOf2) { 1076 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 1077 } 1078 1079 static bool mayAlias(MachineInstr *MIa, MachineInstr *MIb, 1080 const AArch64InstrInfo *TII) { 1081 // One of the instructions must modify memory. 1082 if (!MIa->mayStore() && !MIb->mayStore()) 1083 return false; 1084 1085 // Both instructions must be memory operations. 1086 if (!MIa->mayLoadOrStore() && !MIb->mayLoadOrStore()) 1087 return false; 1088 1089 return !TII->areMemAccessesTriviallyDisjoint(MIa, MIb); 1090 } 1091 1092 static bool mayAlias(MachineInstr *MIa, 1093 SmallVectorImpl<MachineInstr *> &MemInsns, 1094 const AArch64InstrInfo *TII) { 1095 for (auto &MIb : MemInsns) 1096 if (mayAlias(MIa, MIb, TII)) 1097 return true; 1098 1099 return false; 1100 } 1101 1102 bool AArch64LoadStoreOpt::findMatchingStore( 1103 MachineBasicBlock::iterator I, unsigned Limit, 1104 MachineBasicBlock::iterator &StoreI) { 1105 MachineBasicBlock::iterator B = I->getParent()->begin(); 1106 MachineBasicBlock::iterator MBBI = I; 1107 MachineInstr *LoadMI = I; 1108 unsigned BaseReg = getLdStBaseOp(LoadMI).getReg(); 1109 1110 // If the load is the first instruction in the block, there's obviously 1111 // not any matching store. 1112 if (MBBI == B) 1113 return false; 1114 1115 // Track which registers have been modified and used between the first insn 1116 // and the second insn. 1117 ModifiedRegs.reset(); 1118 UsedRegs.reset(); 1119 1120 unsigned Count = 0; 1121 do { 1122 --MBBI; 1123 MachineInstr *MI = MBBI; 1124 1125 // Don't count DBG_VALUE instructions towards the search limit. 1126 if (!MI->isDebugValue()) 1127 ++Count; 1128 1129 // If the load instruction reads directly from the address to which the 1130 // store instruction writes and the stored value is not modified, we can 1131 // promote the load. Since we do not handle stores with pre-/post-index, 1132 // it's unnecessary to check if BaseReg is modified by the store itself. 1133 if (MI->mayStore() && isMatchingStore(LoadMI, MI) && 1134 BaseReg == getLdStBaseOp(MI).getReg() && 1135 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1136 !ModifiedRegs[getLdStRegOp(MI).getReg()]) { 1137 StoreI = MBBI; 1138 return true; 1139 } 1140 1141 if (MI->isCall()) 1142 return false; 1143 1144 // Update modified / uses register lists. 1145 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1146 1147 // Otherwise, if the base register is modified, we have no match, so 1148 // return early. 1149 if (ModifiedRegs[BaseReg]) 1150 return false; 1151 1152 // If we encounter a store aliased with the load, return early. 1153 if (MI->mayStore() && mayAlias(LoadMI, MI, TII)) 1154 return false; 1155 } while (MBBI != B && Count < Limit); 1156 return false; 1157 } 1158 1159 // Returns true if these two opcodes can be merged or paired. Otherwise, 1160 // returns false. 1161 static bool canMergeOpc(unsigned OpcA, unsigned OpcB, LdStPairFlags &Flags, 1162 const AArch64InstrInfo *TII) { 1163 // Opcodes match: nothing more to check. 1164 if (OpcA == OpcB) 1165 return true; 1166 1167 // Try to match a sign-extended load/store with a zero-extended load/store. 1168 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1169 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1170 assert(IsValidLdStrOpc && 1171 "Given Opc should be a Load or Store with an immediate"); 1172 // OpcA will be the first instruction in the pair. 1173 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1174 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1175 return true; 1176 } 1177 1178 // If the second instruction isn't even a load/store, bail out. 1179 if (!PairIsValidLdStrOpc) 1180 return false; 1181 1182 // FIXME: We don't support merging narrow loads/stores with mixed 1183 // scaled/unscaled offsets. 1184 if (isNarrowLoadOrStore(OpcA) || isNarrowLoadOrStore(OpcB)) 1185 return false; 1186 1187 // Try to match an unscaled load/store with a scaled load/store. 1188 return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) && 1189 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1190 1191 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1192 } 1193 1194 /// Scan the instructions looking for a load/store that can be combined with the 1195 /// current instruction into a wider equivalent or a load/store pair. 1196 MachineBasicBlock::iterator 1197 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1198 LdStPairFlags &Flags, unsigned Limit, 1199 bool FindNarrowMerge) { 1200 MachineBasicBlock::iterator E = I->getParent()->end(); 1201 MachineBasicBlock::iterator MBBI = I; 1202 MachineInstr *FirstMI = I; 1203 ++MBBI; 1204 1205 unsigned Opc = FirstMI->getOpcode(); 1206 bool MayLoad = FirstMI->mayLoad(); 1207 bool IsUnscaled = TII->isUnscaledLdSt(FirstMI); 1208 unsigned Reg = getLdStRegOp(FirstMI).getReg(); 1209 unsigned BaseReg = getLdStBaseOp(FirstMI).getReg(); 1210 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1211 int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1; 1212 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1213 1214 // Track which registers have been modified and used between the first insn 1215 // (inclusive) and the second insn. 1216 ModifiedRegs.reset(); 1217 UsedRegs.reset(); 1218 1219 // Remember any instructions that read/write memory between FirstMI and MI. 1220 SmallVector<MachineInstr *, 4> MemInsns; 1221 1222 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1223 MachineInstr *MI = MBBI; 1224 // Skip DBG_VALUE instructions. Otherwise debug info can affect the 1225 // optimization by changing how far we scan. 1226 if (MI->isDebugValue()) 1227 continue; 1228 1229 // Now that we know this is a real instruction, count it. 1230 ++Count; 1231 1232 Flags.setSExtIdx(-1); 1233 if (canMergeOpc(Opc, MI->getOpcode(), Flags, TII) && 1234 getLdStOffsetOp(MI).isImm()) { 1235 assert(MI->mayLoadOrStore() && "Expected memory operation."); 1236 // If we've found another instruction with the same opcode, check to see 1237 // if the base and offset are compatible with our starting instruction. 1238 // These instructions all have scaled immediate operands, so we just 1239 // check for +1/-1. Make sure to check the new instruction offset is 1240 // actually an immediate and not a symbolic reference destined for 1241 // a relocation. 1242 // 1243 // Pairwise instructions have a 7-bit signed offset field. Single insns 1244 // have a 12-bit unsigned offset field. To be a valid combine, the 1245 // final offset must be in range. 1246 unsigned MIBaseReg = getLdStBaseOp(MI).getReg(); 1247 int MIOffset = getLdStOffsetOp(MI).getImm(); 1248 bool MIIsUnscaled = TII->isUnscaledLdSt(MI); 1249 if (IsUnscaled != MIIsUnscaled) { 1250 // We're trying to pair instructions that differ in how they are scaled. 1251 // If FirstMI is scaled then scale the offset of MI accordingly. 1252 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1253 int MemSize = getMemScale(MI); 1254 if (MIIsUnscaled) { 1255 // If the unscaled offset isn't a multiple of the MemSize, we can't 1256 // pair the operations together: bail and keep looking. 1257 if (MIOffset % MemSize) 1258 continue; 1259 MIOffset /= MemSize; 1260 } else { 1261 MIOffset *= MemSize; 1262 } 1263 } 1264 1265 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1266 (Offset + OffsetStride == MIOffset))) { 1267 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1268 // If this is a volatile load/store that otherwise matched, stop looking 1269 // as something is going on that we don't have enough information to 1270 // safely transform. Similarly, stop if we see a hint to avoid pairs. 1271 if (MI->hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1272 return E; 1273 1274 if (FindNarrowMerge) { 1275 // If the alignment requirements of the scaled wide load/store 1276 // instruction can't express the offset of the scaled narrow input, 1277 // bail and keep looking. For promotable zero stores, allow only when 1278 // the stored value is the same (i.e., WZR). 1279 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1280 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1281 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1282 MemInsns.push_back(MI); 1283 continue; 1284 } 1285 } else { 1286 // If the resultant immediate offset of merging these instructions 1287 // is out of range for a pairwise instruction, bail and keep looking. 1288 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1289 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1290 MemInsns.push_back(MI); 1291 continue; 1292 } 1293 // If the alignment requirements of the paired (scaled) instruction 1294 // can't express the offset of the unscaled input, bail and keep 1295 // looking. 1296 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1297 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1298 MemInsns.push_back(MI); 1299 continue; 1300 } 1301 } 1302 // If the destination register of the loads is the same register, bail 1303 // and keep looking. A load-pair instruction with both destination 1304 // registers the same is UNPREDICTABLE and will result in an exception. 1305 if (MayLoad && Reg == getLdStRegOp(MI).getReg()) { 1306 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1307 MemInsns.push_back(MI); 1308 continue; 1309 } 1310 1311 // If the Rt of the second instruction was not modified or used between 1312 // the two instructions and none of the instructions between the second 1313 // and first alias with the second, we can combine the second into the 1314 // first. 1315 if (!ModifiedRegs[getLdStRegOp(MI).getReg()] && 1316 !(MI->mayLoad() && UsedRegs[getLdStRegOp(MI).getReg()]) && 1317 !mayAlias(MI, MemInsns, TII)) { 1318 Flags.setMergeForward(false); 1319 return MBBI; 1320 } 1321 1322 // Likewise, if the Rt of the first instruction is not modified or used 1323 // between the two instructions and none of the instructions between the 1324 // first and the second alias with the first, we can combine the first 1325 // into the second. 1326 if (!ModifiedRegs[getLdStRegOp(FirstMI).getReg()] && 1327 !(MayLoad && UsedRegs[getLdStRegOp(FirstMI).getReg()]) && 1328 !mayAlias(FirstMI, MemInsns, TII)) { 1329 Flags.setMergeForward(true); 1330 return MBBI; 1331 } 1332 // Unable to combine these instructions due to interference in between. 1333 // Keep looking. 1334 } 1335 } 1336 1337 // If the instruction wasn't a matching load or store. Stop searching if we 1338 // encounter a call instruction that might modify memory. 1339 if (MI->isCall()) 1340 return E; 1341 1342 // Update modified / uses register lists. 1343 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1344 1345 // Otherwise, if the base register is modified, we have no match, so 1346 // return early. 1347 if (ModifiedRegs[BaseReg]) 1348 return E; 1349 1350 // Update list of instructions that read/write memory. 1351 if (MI->mayLoadOrStore()) 1352 MemInsns.push_back(MI); 1353 } 1354 return E; 1355 } 1356 1357 MachineBasicBlock::iterator 1358 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1359 MachineBasicBlock::iterator Update, 1360 bool IsPreIdx) { 1361 assert((Update->getOpcode() == AArch64::ADDXri || 1362 Update->getOpcode() == AArch64::SUBXri) && 1363 "Unexpected base register update instruction to merge!"); 1364 MachineBasicBlock::iterator NextI = I; 1365 // Return the instruction following the merged instruction, which is 1366 // the instruction following our unmerged load. Unless that's the add/sub 1367 // instruction we're merging, in which case it's the one after that. 1368 if (++NextI == Update) 1369 ++NextI; 1370 1371 int Value = Update->getOperand(2).getImm(); 1372 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1373 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1374 if (Update->getOpcode() == AArch64::SUBXri) 1375 Value = -Value; 1376 1377 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1378 : getPostIndexedOpcode(I->getOpcode()); 1379 MachineInstrBuilder MIB; 1380 if (!isPairedLdSt(I)) { 1381 // Non-paired instruction. 1382 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1383 .addOperand(getLdStRegOp(Update)) 1384 .addOperand(getLdStRegOp(I)) 1385 .addOperand(getLdStBaseOp(I)) 1386 .addImm(Value) 1387 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1388 } else { 1389 // Paired instruction. 1390 int Scale = getMemScale(I); 1391 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1392 .addOperand(getLdStRegOp(Update)) 1393 .addOperand(getLdStRegOp(I, 0)) 1394 .addOperand(getLdStRegOp(I, 1)) 1395 .addOperand(getLdStBaseOp(I)) 1396 .addImm(Value / Scale) 1397 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1398 } 1399 (void)MIB; 1400 1401 if (IsPreIdx) 1402 DEBUG(dbgs() << "Creating pre-indexed load/store."); 1403 else 1404 DEBUG(dbgs() << "Creating post-indexed load/store."); 1405 DEBUG(dbgs() << " Replacing instructions:\n "); 1406 DEBUG(I->print(dbgs())); 1407 DEBUG(dbgs() << " "); 1408 DEBUG(Update->print(dbgs())); 1409 DEBUG(dbgs() << " with instruction:\n "); 1410 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1411 DEBUG(dbgs() << "\n"); 1412 1413 // Erase the old instructions for the block. 1414 I->eraseFromParent(); 1415 Update->eraseFromParent(); 1416 1417 return NextI; 1418 } 1419 1420 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr *MemMI, 1421 MachineInstr *MI, 1422 unsigned BaseReg, int Offset) { 1423 switch (MI->getOpcode()) { 1424 default: 1425 break; 1426 case AArch64::SUBXri: 1427 // Negate the offset for a SUB instruction. 1428 Offset *= -1; 1429 // FALLTHROUGH 1430 case AArch64::ADDXri: 1431 // Make sure it's a vanilla immediate operand, not a relocation or 1432 // anything else we can't handle. 1433 if (!MI->getOperand(2).isImm()) 1434 break; 1435 // Watch out for 1 << 12 shifted value. 1436 if (AArch64_AM::getShiftValue(MI->getOperand(3).getImm())) 1437 break; 1438 1439 // The update instruction source and destination register must be the 1440 // same as the load/store base register. 1441 if (MI->getOperand(0).getReg() != BaseReg || 1442 MI->getOperand(1).getReg() != BaseReg) 1443 break; 1444 1445 bool IsPairedInsn = isPairedLdSt(MemMI); 1446 int UpdateOffset = MI->getOperand(2).getImm(); 1447 // For non-paired load/store instructions, the immediate must fit in a 1448 // signed 9-bit integer. 1449 if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256)) 1450 break; 1451 1452 // For paired load/store instructions, the immediate must be a multiple of 1453 // the scaling factor. The scaled offset must also fit into a signed 7-bit 1454 // integer. 1455 if (IsPairedInsn) { 1456 int Scale = getMemScale(MemMI); 1457 if (UpdateOffset % Scale != 0) 1458 break; 1459 1460 int ScaledOffset = UpdateOffset / Scale; 1461 if (ScaledOffset > 64 || ScaledOffset < -64) 1462 break; 1463 } 1464 1465 // If we have a non-zero Offset, we check that it matches the amount 1466 // we're adding to the register. 1467 if (!Offset || Offset == MI->getOperand(2).getImm()) 1468 return true; 1469 break; 1470 } 1471 return false; 1472 } 1473 1474 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1475 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1476 MachineBasicBlock::iterator E = I->getParent()->end(); 1477 MachineInstr *MemMI = I; 1478 MachineBasicBlock::iterator MBBI = I; 1479 1480 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1481 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI); 1482 1483 // Scan forward looking for post-index opportunities. Updating instructions 1484 // can't be formed if the memory instruction doesn't have the offset we're 1485 // looking for. 1486 if (MIUnscaledOffset != UnscaledOffset) 1487 return E; 1488 1489 // If the base register overlaps a destination register, we can't 1490 // merge the update. 1491 bool IsPairedInsn = isPairedLdSt(MemMI); 1492 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1493 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1494 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1495 return E; 1496 } 1497 1498 // Track which registers have been modified and used between the first insn 1499 // (inclusive) and the second insn. 1500 ModifiedRegs.reset(); 1501 UsedRegs.reset(); 1502 ++MBBI; 1503 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1504 MachineInstr *MI = MBBI; 1505 // Skip DBG_VALUE instructions. 1506 if (MI->isDebugValue()) 1507 continue; 1508 1509 // Now that we know this is a real instruction, count it. 1510 ++Count; 1511 1512 // If we found a match, return it. 1513 if (isMatchingUpdateInsn(I, MI, BaseReg, UnscaledOffset)) 1514 return MBBI; 1515 1516 // Update the status of what the instruction clobbered and used. 1517 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1518 1519 // Otherwise, if the base register is used or modified, we have no match, so 1520 // return early. 1521 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1522 return E; 1523 } 1524 return E; 1525 } 1526 1527 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1528 MachineBasicBlock::iterator I, unsigned Limit) { 1529 MachineBasicBlock::iterator B = I->getParent()->begin(); 1530 MachineBasicBlock::iterator E = I->getParent()->end(); 1531 MachineInstr *MemMI = I; 1532 MachineBasicBlock::iterator MBBI = I; 1533 1534 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1535 int Offset = getLdStOffsetOp(MemMI).getImm(); 1536 1537 // If the load/store is the first instruction in the block, there's obviously 1538 // not any matching update. Ditto if the memory offset isn't zero. 1539 if (MBBI == B || Offset != 0) 1540 return E; 1541 // If the base register overlaps a destination register, we can't 1542 // merge the update. 1543 bool IsPairedInsn = isPairedLdSt(MemMI); 1544 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1545 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1546 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1547 return E; 1548 } 1549 1550 // Track which registers have been modified and used between the first insn 1551 // (inclusive) and the second insn. 1552 ModifiedRegs.reset(); 1553 UsedRegs.reset(); 1554 unsigned Count = 0; 1555 do { 1556 --MBBI; 1557 MachineInstr *MI = MBBI; 1558 1559 // Don't count DBG_VALUE instructions towards the search limit. 1560 if (!MI->isDebugValue()) 1561 ++Count; 1562 1563 // If we found a match, return it. 1564 if (isMatchingUpdateInsn(I, MI, BaseReg, Offset)) 1565 return MBBI; 1566 1567 // Update the status of what the instruction clobbered and used. 1568 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1569 1570 // Otherwise, if the base register is used or modified, we have no match, so 1571 // return early. 1572 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1573 return E; 1574 } while (MBBI != B && Count < Limit); 1575 return E; 1576 } 1577 1578 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1579 MachineBasicBlock::iterator &MBBI) { 1580 MachineInstr *MI = MBBI; 1581 // If this is a volatile load, don't mess with it. 1582 if (MI->hasOrderedMemoryRef()) 1583 return false; 1584 1585 // Make sure this is a reg+imm. 1586 // FIXME: It is possible to extend it to handle reg+reg cases. 1587 if (!getLdStOffsetOp(MI).isImm()) 1588 return false; 1589 1590 // Look backward up to LdStLimit instructions. 1591 MachineBasicBlock::iterator StoreI; 1592 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 1593 ++NumLoadsFromStoresPromoted; 1594 // Promote the load. Keeping the iterator straight is a 1595 // pain, so we let the merge routine tell us what the next instruction 1596 // is after it's done mucking about. 1597 MBBI = promoteLoadFromStore(MBBI, StoreI); 1598 return true; 1599 } 1600 return false; 1601 } 1602 1603 // Find narrow loads that can be converted into a single wider load with 1604 // bitfield extract instructions. Also merge adjacent zero stores into a wider 1605 // store. 1606 bool AArch64LoadStoreOpt::tryToMergeLdStInst( 1607 MachineBasicBlock::iterator &MBBI) { 1608 assert((isNarrowLoad(MBBI) || isPromotableZeroStoreOpcode(MBBI)) && 1609 "Expected narrow op."); 1610 MachineInstr *MI = MBBI; 1611 MachineBasicBlock::iterator E = MI->getParent()->end(); 1612 1613 if (!TII->isCandidateToMergeOrPair(MI)) 1614 return false; 1615 1616 // For promotable zero stores, the stored value should be WZR. 1617 if (isPromotableZeroStoreOpcode(MI) && 1618 getLdStRegOp(MI).getReg() != AArch64::WZR) 1619 return false; 1620 1621 // Look ahead up to LdStLimit instructions for a mergable instruction. 1622 LdStPairFlags Flags; 1623 MachineBasicBlock::iterator MergeMI = 1624 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 1625 if (MergeMI != E) { 1626 if (isNarrowLoad(MI)) { 1627 ++NumNarrowLoadsPromoted; 1628 } else if (isPromotableZeroStoreInst(MI)) { 1629 ++NumZeroStoresPromoted; 1630 } 1631 // Keeping the iterator straight is a pain, so we let the merge routine tell 1632 // us what the next instruction is after it's done mucking about. 1633 MBBI = mergeNarrowInsns(MBBI, MergeMI, Flags); 1634 return true; 1635 } 1636 return false; 1637 } 1638 1639 // Find loads and stores that can be merged into a single load or store pair 1640 // instruction. 1641 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 1642 MachineInstr *MI = MBBI; 1643 MachineBasicBlock::iterator E = MI->getParent()->end(); 1644 1645 if (!TII->isCandidateToMergeOrPair(MI)) 1646 return false; 1647 1648 // Early exit if the offset is not possible to match. (6 bits of positive 1649 // range, plus allow an extra one in case we find a later insn that matches 1650 // with Offset-1) 1651 bool IsUnscaled = TII->isUnscaledLdSt(MI); 1652 int Offset = getLdStOffsetOp(MI).getImm(); 1653 int OffsetStride = IsUnscaled ? getMemScale(MI) : 1; 1654 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1655 return false; 1656 1657 // Look ahead up to LdStLimit instructions for a pairable instruction. 1658 LdStPairFlags Flags; 1659 MachineBasicBlock::iterator Paired = 1660 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 1661 if (Paired != E) { 1662 ++NumPairCreated; 1663 if (TII->isUnscaledLdSt(MI)) 1664 ++NumUnscaledPairCreated; 1665 // Keeping the iterator straight is a pain, so we let the merge routine tell 1666 // us what the next instruction is after it's done mucking about. 1667 MBBI = mergePairedInsns(MBBI, Paired, Flags); 1668 return true; 1669 } 1670 return false; 1671 } 1672 1673 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 1674 bool enableNarrowLdOpt) { 1675 bool Modified = false; 1676 // Four tranformations to do here: 1677 // 1) Find loads that directly read from stores and promote them by 1678 // replacing with mov instructions. If the store is wider than the load, 1679 // the load will be replaced with a bitfield extract. 1680 // e.g., 1681 // str w1, [x0, #4] 1682 // ldrh w2, [x0, #6] 1683 // ; becomes 1684 // str w1, [x0, #4] 1685 // lsr w2, w1, #16 1686 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1687 MBBI != E;) { 1688 MachineInstr *MI = MBBI; 1689 switch (MI->getOpcode()) { 1690 default: 1691 // Just move on to the next instruction. 1692 ++MBBI; 1693 break; 1694 // Scaled instructions. 1695 case AArch64::LDRBBui: 1696 case AArch64::LDRHHui: 1697 case AArch64::LDRWui: 1698 case AArch64::LDRXui: 1699 // Unscaled instructions. 1700 case AArch64::LDURBBi: 1701 case AArch64::LDURHHi: 1702 case AArch64::LDURWi: 1703 case AArch64::LDURXi: { 1704 if (tryToPromoteLoadFromStore(MBBI)) { 1705 Modified = true; 1706 break; 1707 } 1708 ++MBBI; 1709 break; 1710 } 1711 } 1712 } 1713 // 2) Find narrow loads that can be converted into a single wider load 1714 // with bitfield extract instructions. 1715 // e.g., 1716 // ldrh w0, [x2] 1717 // ldrh w1, [x2, #2] 1718 // ; becomes 1719 // ldr w0, [x2] 1720 // ubfx w1, w0, #16, #16 1721 // and w0, w0, #ffff 1722 // 1723 // Also merge adjacent zero stores into a wider store. 1724 // e.g., 1725 // strh wzr, [x0] 1726 // strh wzr, [x0, #2] 1727 // ; becomes 1728 // str wzr, [x0] 1729 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1730 enableNarrowLdOpt && MBBI != E;) { 1731 MachineInstr *MI = MBBI; 1732 unsigned Opc = MI->getOpcode(); 1733 if (isPromotableZeroStoreOpcode(Opc) || 1734 (EnableNarrowLdMerge && isNarrowLoad(Opc))) { 1735 if (tryToMergeLdStInst(MBBI)) { 1736 Modified = true; 1737 } else 1738 ++MBBI; 1739 } else 1740 ++MBBI; 1741 } 1742 1743 // 3) Find loads and stores that can be merged into a single load or store 1744 // pair instruction. 1745 // e.g., 1746 // ldr x0, [x2] 1747 // ldr x1, [x2, #8] 1748 // ; becomes 1749 // ldp x0, x1, [x2] 1750 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1751 MBBI != E;) { 1752 MachineInstr *MI = MBBI; 1753 switch (MI->getOpcode()) { 1754 default: 1755 // Just move on to the next instruction. 1756 ++MBBI; 1757 break; 1758 // Scaled instructions. 1759 case AArch64::STRSui: 1760 case AArch64::STRDui: 1761 case AArch64::STRQui: 1762 case AArch64::STRXui: 1763 case AArch64::STRWui: 1764 case AArch64::LDRSui: 1765 case AArch64::LDRDui: 1766 case AArch64::LDRQui: 1767 case AArch64::LDRXui: 1768 case AArch64::LDRWui: 1769 case AArch64::LDRSWui: 1770 // Unscaled instructions. 1771 case AArch64::STURSi: 1772 case AArch64::STURDi: 1773 case AArch64::STURQi: 1774 case AArch64::STURWi: 1775 case AArch64::STURXi: 1776 case AArch64::LDURSi: 1777 case AArch64::LDURDi: 1778 case AArch64::LDURQi: 1779 case AArch64::LDURWi: 1780 case AArch64::LDURXi: 1781 case AArch64::LDURSWi: { 1782 if (tryToPairLdStInst(MBBI)) { 1783 Modified = true; 1784 break; 1785 } 1786 ++MBBI; 1787 break; 1788 } 1789 } 1790 } 1791 // 4) Find base register updates that can be merged into the load or store 1792 // as a base-reg writeback. 1793 // e.g., 1794 // ldr x0, [x2] 1795 // add x2, x2, #4 1796 // ; becomes 1797 // ldr x0, [x2], #4 1798 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1799 MBBI != E;) { 1800 MachineInstr *MI = MBBI; 1801 // Do update merging. It's simpler to keep this separate from the above 1802 // switchs, though not strictly necessary. 1803 unsigned Opc = MI->getOpcode(); 1804 switch (Opc) { 1805 default: 1806 // Just move on to the next instruction. 1807 ++MBBI; 1808 break; 1809 // Scaled instructions. 1810 case AArch64::STRSui: 1811 case AArch64::STRDui: 1812 case AArch64::STRQui: 1813 case AArch64::STRXui: 1814 case AArch64::STRWui: 1815 case AArch64::STRHHui: 1816 case AArch64::STRBBui: 1817 case AArch64::LDRSui: 1818 case AArch64::LDRDui: 1819 case AArch64::LDRQui: 1820 case AArch64::LDRXui: 1821 case AArch64::LDRWui: 1822 case AArch64::LDRHHui: 1823 case AArch64::LDRBBui: 1824 // Unscaled instructions. 1825 case AArch64::STURSi: 1826 case AArch64::STURDi: 1827 case AArch64::STURQi: 1828 case AArch64::STURWi: 1829 case AArch64::STURXi: 1830 case AArch64::LDURSi: 1831 case AArch64::LDURDi: 1832 case AArch64::LDURQi: 1833 case AArch64::LDURWi: 1834 case AArch64::LDURXi: 1835 // Paired instructions. 1836 case AArch64::LDPSi: 1837 case AArch64::LDPSWi: 1838 case AArch64::LDPDi: 1839 case AArch64::LDPQi: 1840 case AArch64::LDPWi: 1841 case AArch64::LDPXi: 1842 case AArch64::STPSi: 1843 case AArch64::STPDi: 1844 case AArch64::STPQi: 1845 case AArch64::STPWi: 1846 case AArch64::STPXi: { 1847 // Make sure this is a reg+imm (as opposed to an address reloc). 1848 if (!getLdStOffsetOp(MI).isImm()) { 1849 ++MBBI; 1850 break; 1851 } 1852 // Look forward to try to form a post-index instruction. For example, 1853 // ldr x0, [x20] 1854 // add x20, x20, #32 1855 // merged into: 1856 // ldr x0, [x20], #32 1857 MachineBasicBlock::iterator Update = 1858 findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 1859 if (Update != E) { 1860 // Merge the update into the ld/st. 1861 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 1862 Modified = true; 1863 ++NumPostFolded; 1864 break; 1865 } 1866 // Don't know how to handle pre/post-index versions, so move to the next 1867 // instruction. 1868 if (TII->isUnscaledLdSt(Opc)) { 1869 ++MBBI; 1870 break; 1871 } 1872 1873 // Look back to try to find a pre-index instruction. For example, 1874 // add x0, x0, #8 1875 // ldr x1, [x0] 1876 // merged into: 1877 // ldr x1, [x0, #8]! 1878 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 1879 if (Update != E) { 1880 // Merge the update into the ld/st. 1881 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1882 Modified = true; 1883 ++NumPreFolded; 1884 break; 1885 } 1886 // The immediate in the load/store is scaled by the size of the memory 1887 // operation. The immediate in the add we're looking for, 1888 // however, is not, so adjust here. 1889 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI); 1890 1891 // Look forward to try to find a post-index instruction. For example, 1892 // ldr x1, [x0, #64] 1893 // add x0, x0, #64 1894 // merged into: 1895 // ldr x1, [x0, #64]! 1896 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 1897 if (Update != E) { 1898 // Merge the update into the ld/st. 1899 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1900 Modified = true; 1901 ++NumPreFolded; 1902 break; 1903 } 1904 1905 // Nothing found. Just move to the next instruction. 1906 ++MBBI; 1907 break; 1908 } 1909 } 1910 } 1911 1912 return Modified; 1913 } 1914 1915 bool AArch64LoadStoreOpt::enableNarrowLdMerge(MachineFunction &Fn) { 1916 bool ProfitableArch = Subtarget->isCortexA57() || Subtarget->isKryo(); 1917 // FIXME: The benefit from converting narrow loads into a wider load could be 1918 // microarchitectural as it assumes that a single load with two bitfield 1919 // extracts is cheaper than two narrow loads. Currently, this conversion is 1920 // enabled only in cortex-a57 on which performance benefits were verified. 1921 return ProfitableArch && !Subtarget->requiresStrictAlign(); 1922 } 1923 1924 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 1925 if (skipFunction(*Fn.getFunction())) 1926 return false; 1927 1928 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 1929 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 1930 TRI = Subtarget->getRegisterInfo(); 1931 1932 // Resize the modified and used register bitfield trackers. We do this once 1933 // per function and then clear the bitfield each time we optimize a load or 1934 // store. 1935 ModifiedRegs.resize(TRI->getNumRegs()); 1936 UsedRegs.resize(TRI->getNumRegs()); 1937 1938 bool Modified = false; 1939 bool enableNarrowLdOpt = enableNarrowLdMerge(Fn); 1940 for (auto &MBB : Fn) 1941 Modified |= optimizeBlock(MBB, enableNarrowLdOpt); 1942 1943 return Modified; 1944 } 1945 1946 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep 1947 // loads and stores near one another? 1948 1949 // FIXME: When pairing store instructions it's very possible for this pass to 1950 // hoist a store with a KILL marker above another use (without a KILL marker). 1951 // The resulting IR is invalid, but nothing uses the KILL markers after this 1952 // pass, so it's never caused a problem in practice. 1953 1954 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 1955 /// load / store optimization pass. 1956 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 1957 return new AArch64LoadStoreOpt(); 1958 } 1959