1 //=- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -*- C++ -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that performs load / store related peephole 11 // optimizations. This pass should be run after register allocation. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AArch64InstrInfo.h" 16 #include "AArch64Subtarget.h" 17 #include "MCTargetDesc/AArch64AddressingModes.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/MachineBasicBlock.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Target/TargetMachine.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 using namespace llvm; 33 34 #define DEBUG_TYPE "aarch64-ldst-opt" 35 36 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 37 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 38 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 39 STATISTIC(NumUnscaledPairCreated, 40 "Number of load/store from unscaled generated"); 41 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 42 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 43 44 // The LdStLimit limits how far we search for load/store pairs. 45 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 46 cl::init(20), cl::Hidden); 47 48 // The UpdateLimit limits how far we search for update instructions when we form 49 // pre-/post-index instructions. 50 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 51 cl::Hidden); 52 53 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 54 55 namespace { 56 57 typedef struct LdStPairFlags { 58 // If a matching instruction is found, MergeForward is set to true if the 59 // merge is to remove the first instruction and replace the second with 60 // a pair-wise insn, and false if the reverse is true. 61 bool MergeForward; 62 63 // SExtIdx gives the index of the result of the load pair that must be 64 // extended. The value of SExtIdx assumes that the paired load produces the 65 // value in this order: (I, returned iterator), i.e., -1 means no value has 66 // to be extended, 0 means I, and 1 means the returned iterator. 67 int SExtIdx; 68 69 LdStPairFlags() : MergeForward(false), SExtIdx(-1) {} 70 71 void setMergeForward(bool V = true) { MergeForward = V; } 72 bool getMergeForward() const { return MergeForward; } 73 74 void setSExtIdx(int V) { SExtIdx = V; } 75 int getSExtIdx() const { return SExtIdx; } 76 77 } LdStPairFlags; 78 79 struct AArch64LoadStoreOpt : public MachineFunctionPass { 80 static char ID; 81 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 82 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 83 } 84 85 const AArch64InstrInfo *TII; 86 const TargetRegisterInfo *TRI; 87 const AArch64Subtarget *Subtarget; 88 89 // Track which registers have been modified and used. 90 BitVector ModifiedRegs, UsedRegs; 91 92 // Scan the instructions looking for a load/store that can be combined 93 // with the current instruction into a load/store pair. 94 // Return the matching instruction if one is found, else MBB->end(). 95 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 96 LdStPairFlags &Flags, 97 unsigned Limit, 98 bool FindNarrowMerge); 99 100 // Scan the instructions looking for a store that writes to the address from 101 // which the current load instruction reads. Return true if one is found. 102 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 103 MachineBasicBlock::iterator &StoreI); 104 105 // Merge the two instructions indicated into a wider narrow store instruction. 106 MachineBasicBlock::iterator 107 mergeNarrowZeroStores(MachineBasicBlock::iterator I, 108 MachineBasicBlock::iterator MergeMI, 109 const LdStPairFlags &Flags); 110 111 // Merge the two instructions indicated into a single pair-wise instruction. 112 MachineBasicBlock::iterator 113 mergePairedInsns(MachineBasicBlock::iterator I, 114 MachineBasicBlock::iterator Paired, 115 const LdStPairFlags &Flags); 116 117 // Promote the load that reads directly from the address stored to. 118 MachineBasicBlock::iterator 119 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 120 MachineBasicBlock::iterator StoreI); 121 122 // Scan the instruction list to find a base register update that can 123 // be combined with the current instruction (a load or store) using 124 // pre or post indexed addressing with writeback. Scan forwards. 125 MachineBasicBlock::iterator 126 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 127 int UnscaledOffset, unsigned Limit); 128 129 // Scan the instruction list to find a base register update that can 130 // be combined with the current instruction (a load or store) using 131 // pre or post indexed addressing with writeback. Scan backwards. 132 MachineBasicBlock::iterator 133 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 134 135 // Find an instruction that updates the base register of the ld/st 136 // instruction. 137 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, 138 unsigned BaseReg, int Offset); 139 140 // Merge a pre- or post-index base register update into a ld/st instruction. 141 MachineBasicBlock::iterator 142 mergeUpdateInsn(MachineBasicBlock::iterator I, 143 MachineBasicBlock::iterator Update, bool IsPreIdx); 144 145 // Find and merge zero store instructions. 146 bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI); 147 148 // Find and pair ldr/str instructions. 149 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 150 151 // Find and promote load instructions which read directly from store. 152 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 153 154 bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt); 155 156 bool runOnMachineFunction(MachineFunction &Fn) override; 157 158 MachineFunctionProperties getRequiredProperties() const override { 159 return MachineFunctionProperties().set( 160 MachineFunctionProperties::Property::NoVRegs); 161 } 162 163 StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } 164 }; 165 char AArch64LoadStoreOpt::ID = 0; 166 } // namespace 167 168 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 169 AARCH64_LOAD_STORE_OPT_NAME, false, false) 170 171 static bool isNarrowStore(unsigned Opc) { 172 switch (Opc) { 173 default: 174 return false; 175 case AArch64::STRBBui: 176 case AArch64::STURBBi: 177 case AArch64::STRHHui: 178 case AArch64::STURHHi: 179 return true; 180 } 181 } 182 183 // Scaling factor for unscaled load or store. 184 static int getMemScale(MachineInstr &MI) { 185 switch (MI.getOpcode()) { 186 default: 187 llvm_unreachable("Opcode has unknown scale!"); 188 case AArch64::LDRBBui: 189 case AArch64::LDURBBi: 190 case AArch64::LDRSBWui: 191 case AArch64::LDURSBWi: 192 case AArch64::STRBBui: 193 case AArch64::STURBBi: 194 return 1; 195 case AArch64::LDRHHui: 196 case AArch64::LDURHHi: 197 case AArch64::LDRSHWui: 198 case AArch64::LDURSHWi: 199 case AArch64::STRHHui: 200 case AArch64::STURHHi: 201 return 2; 202 case AArch64::LDRSui: 203 case AArch64::LDURSi: 204 case AArch64::LDRSWui: 205 case AArch64::LDURSWi: 206 case AArch64::LDRWui: 207 case AArch64::LDURWi: 208 case AArch64::STRSui: 209 case AArch64::STURSi: 210 case AArch64::STRWui: 211 case AArch64::STURWi: 212 case AArch64::LDPSi: 213 case AArch64::LDPSWi: 214 case AArch64::LDPWi: 215 case AArch64::STPSi: 216 case AArch64::STPWi: 217 return 4; 218 case AArch64::LDRDui: 219 case AArch64::LDURDi: 220 case AArch64::LDRXui: 221 case AArch64::LDURXi: 222 case AArch64::STRDui: 223 case AArch64::STURDi: 224 case AArch64::STRXui: 225 case AArch64::STURXi: 226 case AArch64::LDPDi: 227 case AArch64::LDPXi: 228 case AArch64::STPDi: 229 case AArch64::STPXi: 230 return 8; 231 case AArch64::LDRQui: 232 case AArch64::LDURQi: 233 case AArch64::STRQui: 234 case AArch64::STURQi: 235 case AArch64::LDPQi: 236 case AArch64::STPQi: 237 return 16; 238 } 239 } 240 241 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 242 bool *IsValidLdStrOpc = nullptr) { 243 if (IsValidLdStrOpc) 244 *IsValidLdStrOpc = true; 245 switch (Opc) { 246 default: 247 if (IsValidLdStrOpc) 248 *IsValidLdStrOpc = false; 249 return UINT_MAX; 250 case AArch64::STRDui: 251 case AArch64::STURDi: 252 case AArch64::STRQui: 253 case AArch64::STURQi: 254 case AArch64::STRBBui: 255 case AArch64::STURBBi: 256 case AArch64::STRHHui: 257 case AArch64::STURHHi: 258 case AArch64::STRWui: 259 case AArch64::STURWi: 260 case AArch64::STRXui: 261 case AArch64::STURXi: 262 case AArch64::LDRDui: 263 case AArch64::LDURDi: 264 case AArch64::LDRQui: 265 case AArch64::LDURQi: 266 case AArch64::LDRWui: 267 case AArch64::LDURWi: 268 case AArch64::LDRXui: 269 case AArch64::LDURXi: 270 case AArch64::STRSui: 271 case AArch64::STURSi: 272 case AArch64::LDRSui: 273 case AArch64::LDURSi: 274 return Opc; 275 case AArch64::LDRSWui: 276 return AArch64::LDRWui; 277 case AArch64::LDURSWi: 278 return AArch64::LDURWi; 279 } 280 } 281 282 static unsigned getMatchingWideOpcode(unsigned Opc) { 283 switch (Opc) { 284 default: 285 llvm_unreachable("Opcode has no wide equivalent!"); 286 case AArch64::STRBBui: 287 return AArch64::STRHHui; 288 case AArch64::STRHHui: 289 return AArch64::STRWui; 290 case AArch64::STURBBi: 291 return AArch64::STURHHi; 292 case AArch64::STURHHi: 293 return AArch64::STURWi; 294 case AArch64::STURWi: 295 return AArch64::STURXi; 296 case AArch64::STRWui: 297 return AArch64::STRXui; 298 } 299 } 300 301 static unsigned getMatchingPairOpcode(unsigned Opc) { 302 switch (Opc) { 303 default: 304 llvm_unreachable("Opcode has no pairwise equivalent!"); 305 case AArch64::STRSui: 306 case AArch64::STURSi: 307 return AArch64::STPSi; 308 case AArch64::STRDui: 309 case AArch64::STURDi: 310 return AArch64::STPDi; 311 case AArch64::STRQui: 312 case AArch64::STURQi: 313 return AArch64::STPQi; 314 case AArch64::STRWui: 315 case AArch64::STURWi: 316 return AArch64::STPWi; 317 case AArch64::STRXui: 318 case AArch64::STURXi: 319 return AArch64::STPXi; 320 case AArch64::LDRSui: 321 case AArch64::LDURSi: 322 return AArch64::LDPSi; 323 case AArch64::LDRDui: 324 case AArch64::LDURDi: 325 return AArch64::LDPDi; 326 case AArch64::LDRQui: 327 case AArch64::LDURQi: 328 return AArch64::LDPQi; 329 case AArch64::LDRWui: 330 case AArch64::LDURWi: 331 return AArch64::LDPWi; 332 case AArch64::LDRXui: 333 case AArch64::LDURXi: 334 return AArch64::LDPXi; 335 case AArch64::LDRSWui: 336 case AArch64::LDURSWi: 337 return AArch64::LDPSWi; 338 } 339 } 340 341 static unsigned isMatchingStore(MachineInstr &LoadInst, 342 MachineInstr &StoreInst) { 343 unsigned LdOpc = LoadInst.getOpcode(); 344 unsigned StOpc = StoreInst.getOpcode(); 345 switch (LdOpc) { 346 default: 347 llvm_unreachable("Unsupported load instruction!"); 348 case AArch64::LDRBBui: 349 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 350 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 351 case AArch64::LDURBBi: 352 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 353 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 354 case AArch64::LDRHHui: 355 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 356 StOpc == AArch64::STRXui; 357 case AArch64::LDURHHi: 358 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 359 StOpc == AArch64::STURXi; 360 case AArch64::LDRWui: 361 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 362 case AArch64::LDURWi: 363 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 364 case AArch64::LDRXui: 365 return StOpc == AArch64::STRXui; 366 case AArch64::LDURXi: 367 return StOpc == AArch64::STURXi; 368 } 369 } 370 371 static unsigned getPreIndexedOpcode(unsigned Opc) { 372 switch (Opc) { 373 default: 374 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 375 case AArch64::STRSui: 376 return AArch64::STRSpre; 377 case AArch64::STRDui: 378 return AArch64::STRDpre; 379 case AArch64::STRQui: 380 return AArch64::STRQpre; 381 case AArch64::STRBBui: 382 return AArch64::STRBBpre; 383 case AArch64::STRHHui: 384 return AArch64::STRHHpre; 385 case AArch64::STRWui: 386 return AArch64::STRWpre; 387 case AArch64::STRXui: 388 return AArch64::STRXpre; 389 case AArch64::LDRSui: 390 return AArch64::LDRSpre; 391 case AArch64::LDRDui: 392 return AArch64::LDRDpre; 393 case AArch64::LDRQui: 394 return AArch64::LDRQpre; 395 case AArch64::LDRBBui: 396 return AArch64::LDRBBpre; 397 case AArch64::LDRHHui: 398 return AArch64::LDRHHpre; 399 case AArch64::LDRWui: 400 return AArch64::LDRWpre; 401 case AArch64::LDRXui: 402 return AArch64::LDRXpre; 403 case AArch64::LDRSWui: 404 return AArch64::LDRSWpre; 405 case AArch64::LDPSi: 406 return AArch64::LDPSpre; 407 case AArch64::LDPSWi: 408 return AArch64::LDPSWpre; 409 case AArch64::LDPDi: 410 return AArch64::LDPDpre; 411 case AArch64::LDPQi: 412 return AArch64::LDPQpre; 413 case AArch64::LDPWi: 414 return AArch64::LDPWpre; 415 case AArch64::LDPXi: 416 return AArch64::LDPXpre; 417 case AArch64::STPSi: 418 return AArch64::STPSpre; 419 case AArch64::STPDi: 420 return AArch64::STPDpre; 421 case AArch64::STPQi: 422 return AArch64::STPQpre; 423 case AArch64::STPWi: 424 return AArch64::STPWpre; 425 case AArch64::STPXi: 426 return AArch64::STPXpre; 427 } 428 } 429 430 static unsigned getPostIndexedOpcode(unsigned Opc) { 431 switch (Opc) { 432 default: 433 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 434 case AArch64::STRSui: 435 return AArch64::STRSpost; 436 case AArch64::STRDui: 437 return AArch64::STRDpost; 438 case AArch64::STRQui: 439 return AArch64::STRQpost; 440 case AArch64::STRBBui: 441 return AArch64::STRBBpost; 442 case AArch64::STRHHui: 443 return AArch64::STRHHpost; 444 case AArch64::STRWui: 445 return AArch64::STRWpost; 446 case AArch64::STRXui: 447 return AArch64::STRXpost; 448 case AArch64::LDRSui: 449 return AArch64::LDRSpost; 450 case AArch64::LDRDui: 451 return AArch64::LDRDpost; 452 case AArch64::LDRQui: 453 return AArch64::LDRQpost; 454 case AArch64::LDRBBui: 455 return AArch64::LDRBBpost; 456 case AArch64::LDRHHui: 457 return AArch64::LDRHHpost; 458 case AArch64::LDRWui: 459 return AArch64::LDRWpost; 460 case AArch64::LDRXui: 461 return AArch64::LDRXpost; 462 case AArch64::LDRSWui: 463 return AArch64::LDRSWpost; 464 case AArch64::LDPSi: 465 return AArch64::LDPSpost; 466 case AArch64::LDPSWi: 467 return AArch64::LDPSWpost; 468 case AArch64::LDPDi: 469 return AArch64::LDPDpost; 470 case AArch64::LDPQi: 471 return AArch64::LDPQpost; 472 case AArch64::LDPWi: 473 return AArch64::LDPWpost; 474 case AArch64::LDPXi: 475 return AArch64::LDPXpost; 476 case AArch64::STPSi: 477 return AArch64::STPSpost; 478 case AArch64::STPDi: 479 return AArch64::STPDpost; 480 case AArch64::STPQi: 481 return AArch64::STPQpost; 482 case AArch64::STPWi: 483 return AArch64::STPWpost; 484 case AArch64::STPXi: 485 return AArch64::STPXpost; 486 } 487 } 488 489 static bool isPairedLdSt(const MachineInstr &MI) { 490 switch (MI.getOpcode()) { 491 default: 492 return false; 493 case AArch64::LDPSi: 494 case AArch64::LDPSWi: 495 case AArch64::LDPDi: 496 case AArch64::LDPQi: 497 case AArch64::LDPWi: 498 case AArch64::LDPXi: 499 case AArch64::STPSi: 500 case AArch64::STPDi: 501 case AArch64::STPQi: 502 case AArch64::STPWi: 503 case AArch64::STPXi: 504 return true; 505 } 506 } 507 508 static const MachineOperand &getLdStRegOp(const MachineInstr &MI, 509 unsigned PairedRegOp = 0) { 510 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 511 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 512 return MI.getOperand(Idx); 513 } 514 515 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) { 516 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 517 return MI.getOperand(Idx); 518 } 519 520 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) { 521 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 522 return MI.getOperand(Idx); 523 } 524 525 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, 526 MachineInstr &StoreInst, 527 const AArch64InstrInfo *TII) { 528 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 529 int LoadSize = getMemScale(LoadInst); 530 int StoreSize = getMemScale(StoreInst); 531 int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst) 532 ? getLdStOffsetOp(StoreInst).getImm() 533 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 534 int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst) 535 ? getLdStOffsetOp(LoadInst).getImm() 536 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 537 return (UnscaledStOffset <= UnscaledLdOffset) && 538 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 539 } 540 541 static bool isPromotableZeroStoreInst(MachineInstr &MI) { 542 unsigned Opc = MI.getOpcode(); 543 return (Opc == AArch64::STRWui || Opc == AArch64::STURWi || 544 isNarrowStore(Opc)) && 545 getLdStRegOp(MI).getReg() == AArch64::WZR; 546 } 547 548 MachineBasicBlock::iterator 549 AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I, 550 MachineBasicBlock::iterator MergeMI, 551 const LdStPairFlags &Flags) { 552 assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && 553 "Expected promotable zero stores."); 554 555 MachineBasicBlock::iterator NextI = I; 556 ++NextI; 557 // If NextI is the second of the two instructions to be merged, we need 558 // to skip one further. Either way we merge will invalidate the iterator, 559 // and we don't need to scan the new instruction, as it's a pairwise 560 // instruction, which we're not considering for further action anyway. 561 if (NextI == MergeMI) 562 ++NextI; 563 564 unsigned Opc = I->getOpcode(); 565 bool IsScaled = !TII->isUnscaledLdSt(Opc); 566 int OffsetStride = IsScaled ? 1 : getMemScale(*I); 567 568 bool MergeForward = Flags.getMergeForward(); 569 // Insert our new paired instruction after whichever of the paired 570 // instructions MergeForward indicates. 571 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 572 // Also based on MergeForward is from where we copy the base register operand 573 // so we get the flags compatible with the input code. 574 const MachineOperand &BaseRegOp = 575 MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I); 576 577 // Which register is Rt and which is Rt2 depends on the offset order. 578 MachineInstr *RtMI; 579 if (getLdStOffsetOp(*I).getImm() == 580 getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) 581 RtMI = &*MergeMI; 582 else 583 RtMI = &*I; 584 585 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 586 // Change the scaled offset from small to large type. 587 if (IsScaled) { 588 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 589 OffsetImm /= 2; 590 } 591 592 // Construct the new instruction. 593 DebugLoc DL = I->getDebugLoc(); 594 MachineBasicBlock *MBB = I->getParent(); 595 MachineInstrBuilder MIB; 596 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 597 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 598 .add(BaseRegOp) 599 .addImm(OffsetImm) 600 .setMemRefs(I->mergeMemRefsWith(*MergeMI)); 601 (void)MIB; 602 603 DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n "); 604 DEBUG(I->print(dbgs())); 605 DEBUG(dbgs() << " "); 606 DEBUG(MergeMI->print(dbgs())); 607 DEBUG(dbgs() << " with instruction:\n "); 608 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 609 DEBUG(dbgs() << "\n"); 610 611 // Erase the old instructions. 612 I->eraseFromParent(); 613 MergeMI->eraseFromParent(); 614 return NextI; 615 } 616 617 MachineBasicBlock::iterator 618 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 619 MachineBasicBlock::iterator Paired, 620 const LdStPairFlags &Flags) { 621 MachineBasicBlock::iterator NextI = I; 622 ++NextI; 623 // If NextI is the second of the two instructions to be merged, we need 624 // to skip one further. Either way we merge will invalidate the iterator, 625 // and we don't need to scan the new instruction, as it's a pairwise 626 // instruction, which we're not considering for further action anyway. 627 if (NextI == Paired) 628 ++NextI; 629 630 int SExtIdx = Flags.getSExtIdx(); 631 unsigned Opc = 632 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 633 bool IsUnscaled = TII->isUnscaledLdSt(Opc); 634 int OffsetStride = IsUnscaled ? getMemScale(*I) : 1; 635 636 bool MergeForward = Flags.getMergeForward(); 637 // Insert our new paired instruction after whichever of the paired 638 // instructions MergeForward indicates. 639 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 640 // Also based on MergeForward is from where we copy the base register operand 641 // so we get the flags compatible with the input code. 642 const MachineOperand &BaseRegOp = 643 MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I); 644 645 int Offset = getLdStOffsetOp(*I).getImm(); 646 int PairedOffset = getLdStOffsetOp(*Paired).getImm(); 647 bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode()); 648 if (IsUnscaled != PairedIsUnscaled) { 649 // We're trying to pair instructions that differ in how they are scaled. If 650 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 651 // the opposite (i.e., make Paired's offset unscaled). 652 int MemSize = getMemScale(*Paired); 653 if (PairedIsUnscaled) { 654 // If the unscaled offset isn't a multiple of the MemSize, we can't 655 // pair the operations together. 656 assert(!(PairedOffset % getMemScale(*Paired)) && 657 "Offset should be a multiple of the stride!"); 658 PairedOffset /= MemSize; 659 } else { 660 PairedOffset *= MemSize; 661 } 662 } 663 664 // Which register is Rt and which is Rt2 depends on the offset order. 665 MachineInstr *RtMI, *Rt2MI; 666 if (Offset == PairedOffset + OffsetStride) { 667 RtMI = &*Paired; 668 Rt2MI = &*I; 669 // Here we swapped the assumption made for SExtIdx. 670 // I.e., we turn ldp I, Paired into ldp Paired, I. 671 // Update the index accordingly. 672 if (SExtIdx != -1) 673 SExtIdx = (SExtIdx + 1) % 2; 674 } else { 675 RtMI = &*I; 676 Rt2MI = &*Paired; 677 } 678 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 679 // Scale the immediate offset, if necessary. 680 if (TII->isUnscaledLdSt(RtMI->getOpcode())) { 681 assert(!(OffsetImm % getMemScale(*RtMI)) && 682 "Unscaled offset cannot be scaled."); 683 OffsetImm /= getMemScale(*RtMI); 684 } 685 686 // Construct the new instruction. 687 MachineInstrBuilder MIB; 688 DebugLoc DL = I->getDebugLoc(); 689 MachineBasicBlock *MBB = I->getParent(); 690 MachineOperand RegOp0 = getLdStRegOp(*RtMI); 691 MachineOperand RegOp1 = getLdStRegOp(*Rt2MI); 692 // Kill flags may become invalid when moving stores for pairing. 693 if (RegOp0.isUse()) { 694 if (!MergeForward) { 695 // Clear kill flags on store if moving upwards. Example: 696 // STRWui %w0, ... 697 // USE %w1 698 // STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards 699 RegOp0.setIsKill(false); 700 RegOp1.setIsKill(false); 701 } else { 702 // Clear kill flags of the first stores register. Example: 703 // STRWui %w1, ... 704 // USE kill %w1 ; need to clear kill flag when moving STRWui downwards 705 // STRW %w0 706 unsigned Reg = getLdStRegOp(*I).getReg(); 707 for (MachineInstr &MI : make_range(std::next(I), Paired)) 708 MI.clearRegisterKills(Reg, TRI); 709 } 710 } 711 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc))) 712 .add(RegOp0) 713 .add(RegOp1) 714 .add(BaseRegOp) 715 .addImm(OffsetImm) 716 .setMemRefs(I->mergeMemRefsWith(*Paired)); 717 718 (void)MIB; 719 720 DEBUG(dbgs() << "Creating pair load/store. Replacing instructions:\n "); 721 DEBUG(I->print(dbgs())); 722 DEBUG(dbgs() << " "); 723 DEBUG(Paired->print(dbgs())); 724 DEBUG(dbgs() << " with instruction:\n "); 725 if (SExtIdx != -1) { 726 // Generate the sign extension for the proper result of the ldp. 727 // I.e., with X1, that would be: 728 // %W1<def> = KILL %W1, %X1<imp-def> 729 // %X1<def> = SBFMXri %X1<kill>, 0, 31 730 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 731 // Right now, DstMO has the extended register, since it comes from an 732 // extended opcode. 733 unsigned DstRegX = DstMO.getReg(); 734 // Get the W variant of that register. 735 unsigned DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 736 // Update the result of LDP to use the W instead of the X variant. 737 DstMO.setReg(DstRegW); 738 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 739 DEBUG(dbgs() << "\n"); 740 // Make the machine verifier happy by providing a definition for 741 // the X register. 742 // Insert this definition right after the generated LDP, i.e., before 743 // InsertionPoint. 744 MachineInstrBuilder MIBKill = 745 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 746 .addReg(DstRegW) 747 .addReg(DstRegX, RegState::Define); 748 MIBKill->getOperand(2).setImplicit(); 749 // Create the sign extension. 750 MachineInstrBuilder MIBSXTW = 751 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 752 .addReg(DstRegX) 753 .addImm(0) 754 .addImm(31); 755 (void)MIBSXTW; 756 DEBUG(dbgs() << " Extend operand:\n "); 757 DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 758 } else { 759 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 760 } 761 DEBUG(dbgs() << "\n"); 762 763 // Erase the old instructions. 764 I->eraseFromParent(); 765 Paired->eraseFromParent(); 766 767 return NextI; 768 } 769 770 MachineBasicBlock::iterator 771 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 772 MachineBasicBlock::iterator StoreI) { 773 MachineBasicBlock::iterator NextI = LoadI; 774 ++NextI; 775 776 int LoadSize = getMemScale(*LoadI); 777 int StoreSize = getMemScale(*StoreI); 778 unsigned LdRt = getLdStRegOp(*LoadI).getReg(); 779 unsigned StRt = getLdStRegOp(*StoreI).getReg(); 780 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 781 782 assert((IsStoreXReg || 783 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 784 "Unexpected RegClass"); 785 786 MachineInstr *BitExtMI; 787 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 788 // Remove the load, if the destination register of the loads is the same 789 // register for stored value. 790 if (StRt == LdRt && LoadSize == 8) { 791 StoreI->clearRegisterKills(StRt, TRI); 792 DEBUG(dbgs() << "Remove load instruction:\n "); 793 DEBUG(LoadI->print(dbgs())); 794 DEBUG(dbgs() << "\n"); 795 LoadI->eraseFromParent(); 796 return NextI; 797 } 798 // Replace the load with a mov if the load and store are in the same size. 799 BitExtMI = 800 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 801 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 802 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 803 .addReg(StRt) 804 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)); 805 } else { 806 // FIXME: Currently we disable this transformation in big-endian targets as 807 // performance and correctness are verified only in little-endian. 808 if (!Subtarget->isLittleEndian()) 809 return NextI; 810 bool IsUnscaled = TII->isUnscaledLdSt(*LoadI); 811 assert(IsUnscaled == TII->isUnscaledLdSt(*StoreI) && 812 "Unsupported ld/st match"); 813 assert(LoadSize <= StoreSize && "Invalid load size"); 814 int UnscaledLdOffset = IsUnscaled 815 ? getLdStOffsetOp(*LoadI).getImm() 816 : getLdStOffsetOp(*LoadI).getImm() * LoadSize; 817 int UnscaledStOffset = IsUnscaled 818 ? getLdStOffsetOp(*StoreI).getImm() 819 : getLdStOffsetOp(*StoreI).getImm() * StoreSize; 820 int Width = LoadSize * 8; 821 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 822 int Imms = Immr + Width - 1; 823 unsigned DestReg = IsStoreXReg 824 ? TRI->getMatchingSuperReg(LdRt, AArch64::sub_32, 825 &AArch64::GPR64RegClass) 826 : LdRt; 827 828 assert((UnscaledLdOffset >= UnscaledStOffset && 829 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 830 "Invalid offset"); 831 832 Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 833 Imms = Immr + Width - 1; 834 if (UnscaledLdOffset == UnscaledStOffset) { 835 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 836 | ((Immr) << 6) // immr 837 | ((Imms) << 0) // imms 838 ; 839 840 BitExtMI = 841 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 842 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 843 DestReg) 844 .addReg(StRt) 845 .addImm(AndMaskEncoded); 846 } else { 847 BitExtMI = 848 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 849 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 850 DestReg) 851 .addReg(StRt) 852 .addImm(Immr) 853 .addImm(Imms); 854 } 855 } 856 StoreI->clearRegisterKills(StRt, TRI); 857 858 (void)BitExtMI; 859 860 DEBUG(dbgs() << "Promoting load by replacing :\n "); 861 DEBUG(StoreI->print(dbgs())); 862 DEBUG(dbgs() << " "); 863 DEBUG(LoadI->print(dbgs())); 864 DEBUG(dbgs() << " with instructions:\n "); 865 DEBUG(StoreI->print(dbgs())); 866 DEBUG(dbgs() << " "); 867 DEBUG((BitExtMI)->print(dbgs())); 868 DEBUG(dbgs() << "\n"); 869 870 // Erase the old instructions. 871 LoadI->eraseFromParent(); 872 return NextI; 873 } 874 875 /// trackRegDefsUses - Remember what registers the specified instruction uses 876 /// and modifies. 877 static void trackRegDefsUses(const MachineInstr &MI, BitVector &ModifiedRegs, 878 BitVector &UsedRegs, 879 const TargetRegisterInfo *TRI) { 880 for (const MachineOperand &MO : MI.operands()) { 881 if (MO.isRegMask()) 882 ModifiedRegs.setBitsNotInMask(MO.getRegMask()); 883 884 if (!MO.isReg()) 885 continue; 886 unsigned Reg = MO.getReg(); 887 if (!Reg) 888 continue; 889 if (MO.isDef()) { 890 // WZR/XZR are not modified even when used as a destination register. 891 if (Reg != AArch64::WZR && Reg != AArch64::XZR) 892 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 893 ModifiedRegs.set(*AI); 894 } else { 895 assert(MO.isUse() && "Reg operand not a def and not a use?!?"); 896 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 897 UsedRegs.set(*AI); 898 } 899 } 900 } 901 902 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 903 // Convert the byte-offset used by unscaled into an "element" offset used 904 // by the scaled pair load/store instructions. 905 if (IsUnscaled) { 906 // If the byte-offset isn't a multiple of the stride, there's no point 907 // trying to match it. 908 if (Offset % OffsetStride) 909 return false; 910 Offset /= OffsetStride; 911 } 912 return Offset <= 63 && Offset >= -64; 913 } 914 915 // Do alignment, specialized to power of 2 and for signed ints, 916 // avoiding having to do a C-style cast from uint_64t to int when 917 // using alignTo from include/llvm/Support/MathExtras.h. 918 // FIXME: Move this function to include/MathExtras.h? 919 static int alignTo(int Num, int PowOf2) { 920 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 921 } 922 923 static bool mayAlias(MachineInstr &MIa, MachineInstr &MIb, 924 const AArch64InstrInfo *TII) { 925 // One of the instructions must modify memory. 926 if (!MIa.mayStore() && !MIb.mayStore()) 927 return false; 928 929 // Both instructions must be memory operations. 930 if (!MIa.mayLoadOrStore() && !MIb.mayLoadOrStore()) 931 return false; 932 933 return !TII->areMemAccessesTriviallyDisjoint(MIa, MIb); 934 } 935 936 static bool mayAlias(MachineInstr &MIa, 937 SmallVectorImpl<MachineInstr *> &MemInsns, 938 const AArch64InstrInfo *TII) { 939 for (MachineInstr *MIb : MemInsns) 940 if (mayAlias(MIa, *MIb, TII)) 941 return true; 942 943 return false; 944 } 945 946 bool AArch64LoadStoreOpt::findMatchingStore( 947 MachineBasicBlock::iterator I, unsigned Limit, 948 MachineBasicBlock::iterator &StoreI) { 949 MachineBasicBlock::iterator B = I->getParent()->begin(); 950 MachineBasicBlock::iterator MBBI = I; 951 MachineInstr &LoadMI = *I; 952 unsigned BaseReg = getLdStBaseOp(LoadMI).getReg(); 953 954 // If the load is the first instruction in the block, there's obviously 955 // not any matching store. 956 if (MBBI == B) 957 return false; 958 959 // Track which registers have been modified and used between the first insn 960 // and the second insn. 961 ModifiedRegs.reset(); 962 UsedRegs.reset(); 963 964 unsigned Count = 0; 965 do { 966 --MBBI; 967 MachineInstr &MI = *MBBI; 968 969 // Don't count transient instructions towards the search limit since there 970 // may be different numbers of them if e.g. debug information is present. 971 if (!MI.isTransient()) 972 ++Count; 973 974 // If the load instruction reads directly from the address to which the 975 // store instruction writes and the stored value is not modified, we can 976 // promote the load. Since we do not handle stores with pre-/post-index, 977 // it's unnecessary to check if BaseReg is modified by the store itself. 978 if (MI.mayStore() && isMatchingStore(LoadMI, MI) && 979 BaseReg == getLdStBaseOp(MI).getReg() && 980 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 981 !ModifiedRegs[getLdStRegOp(MI).getReg()]) { 982 StoreI = MBBI; 983 return true; 984 } 985 986 if (MI.isCall()) 987 return false; 988 989 // Update modified / uses register lists. 990 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 991 992 // Otherwise, if the base register is modified, we have no match, so 993 // return early. 994 if (ModifiedRegs[BaseReg]) 995 return false; 996 997 // If we encounter a store aliased with the load, return early. 998 if (MI.mayStore() && mayAlias(LoadMI, MI, TII)) 999 return false; 1000 } while (MBBI != B && Count < Limit); 1001 return false; 1002 } 1003 1004 // Returns true if FirstMI and MI are candidates for merging or pairing. 1005 // Otherwise, returns false. 1006 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, 1007 LdStPairFlags &Flags, 1008 const AArch64InstrInfo *TII) { 1009 // If this is volatile or if pairing is suppressed, not a candidate. 1010 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1011 return false; 1012 1013 // We should have already checked FirstMI for pair suppression and volatility. 1014 assert(!FirstMI.hasOrderedMemoryRef() && 1015 !TII->isLdStPairSuppressed(FirstMI) && 1016 "FirstMI shouldn't get here if either of these checks are true."); 1017 1018 unsigned OpcA = FirstMI.getOpcode(); 1019 unsigned OpcB = MI.getOpcode(); 1020 1021 // Opcodes match: nothing more to check. 1022 if (OpcA == OpcB) 1023 return true; 1024 1025 // Try to match a sign-extended load/store with a zero-extended load/store. 1026 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1027 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1028 assert(IsValidLdStrOpc && 1029 "Given Opc should be a Load or Store with an immediate"); 1030 // OpcA will be the first instruction in the pair. 1031 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1032 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1033 return true; 1034 } 1035 1036 // If the second instruction isn't even a mergable/pairable load/store, bail 1037 // out. 1038 if (!PairIsValidLdStrOpc) 1039 return false; 1040 1041 // FIXME: We don't support merging narrow stores with mixed scaled/unscaled 1042 // offsets. 1043 if (isNarrowStore(OpcA) || isNarrowStore(OpcB)) 1044 return false; 1045 1046 // Try to match an unscaled load/store with a scaled load/store. 1047 return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) && 1048 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1049 1050 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1051 } 1052 1053 /// Scan the instructions looking for a load/store that can be combined with the 1054 /// current instruction into a wider equivalent or a load/store pair. 1055 MachineBasicBlock::iterator 1056 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1057 LdStPairFlags &Flags, unsigned Limit, 1058 bool FindNarrowMerge) { 1059 MachineBasicBlock::iterator E = I->getParent()->end(); 1060 MachineBasicBlock::iterator MBBI = I; 1061 MachineInstr &FirstMI = *I; 1062 ++MBBI; 1063 1064 bool MayLoad = FirstMI.mayLoad(); 1065 bool IsUnscaled = TII->isUnscaledLdSt(FirstMI); 1066 unsigned Reg = getLdStRegOp(FirstMI).getReg(); 1067 unsigned BaseReg = getLdStBaseOp(FirstMI).getReg(); 1068 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1069 int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1; 1070 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1071 1072 // Track which registers have been modified and used between the first insn 1073 // (inclusive) and the second insn. 1074 ModifiedRegs.reset(); 1075 UsedRegs.reset(); 1076 1077 // Remember any instructions that read/write memory between FirstMI and MI. 1078 SmallVector<MachineInstr *, 4> MemInsns; 1079 1080 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1081 MachineInstr &MI = *MBBI; 1082 1083 // Don't count transient instructions towards the search limit since there 1084 // may be different numbers of them if e.g. debug information is present. 1085 if (!MI.isTransient()) 1086 ++Count; 1087 1088 Flags.setSExtIdx(-1); 1089 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && 1090 getLdStOffsetOp(MI).isImm()) { 1091 assert(MI.mayLoadOrStore() && "Expected memory operation."); 1092 // If we've found another instruction with the same opcode, check to see 1093 // if the base and offset are compatible with our starting instruction. 1094 // These instructions all have scaled immediate operands, so we just 1095 // check for +1/-1. Make sure to check the new instruction offset is 1096 // actually an immediate and not a symbolic reference destined for 1097 // a relocation. 1098 unsigned MIBaseReg = getLdStBaseOp(MI).getReg(); 1099 int MIOffset = getLdStOffsetOp(MI).getImm(); 1100 bool MIIsUnscaled = TII->isUnscaledLdSt(MI); 1101 if (IsUnscaled != MIIsUnscaled) { 1102 // We're trying to pair instructions that differ in how they are scaled. 1103 // If FirstMI is scaled then scale the offset of MI accordingly. 1104 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1105 int MemSize = getMemScale(MI); 1106 if (MIIsUnscaled) { 1107 // If the unscaled offset isn't a multiple of the MemSize, we can't 1108 // pair the operations together: bail and keep looking. 1109 if (MIOffset % MemSize) { 1110 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1111 MemInsns.push_back(&MI); 1112 continue; 1113 } 1114 MIOffset /= MemSize; 1115 } else { 1116 MIOffset *= MemSize; 1117 } 1118 } 1119 1120 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1121 (Offset + OffsetStride == MIOffset))) { 1122 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1123 if (FindNarrowMerge) { 1124 // If the alignment requirements of the scaled wide load/store 1125 // instruction can't express the offset of the scaled narrow input, 1126 // bail and keep looking. For promotable zero stores, allow only when 1127 // the stored value is the same (i.e., WZR). 1128 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1129 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1130 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1131 MemInsns.push_back(&MI); 1132 continue; 1133 } 1134 } else { 1135 // Pairwise instructions have a 7-bit signed offset field. Single 1136 // insns have a 12-bit unsigned offset field. If the resultant 1137 // immediate offset of merging these instructions is out of range for 1138 // a pairwise instruction, bail and keep looking. 1139 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1140 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1141 MemInsns.push_back(&MI); 1142 continue; 1143 } 1144 // If the alignment requirements of the paired (scaled) instruction 1145 // can't express the offset of the unscaled input, bail and keep 1146 // looking. 1147 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1148 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1149 MemInsns.push_back(&MI); 1150 continue; 1151 } 1152 } 1153 // If the destination register of the loads is the same register, bail 1154 // and keep looking. A load-pair instruction with both destination 1155 // registers the same is UNPREDICTABLE and will result in an exception. 1156 if (MayLoad && Reg == getLdStRegOp(MI).getReg()) { 1157 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1158 MemInsns.push_back(&MI); 1159 continue; 1160 } 1161 1162 // If the Rt of the second instruction was not modified or used between 1163 // the two instructions and none of the instructions between the second 1164 // and first alias with the second, we can combine the second into the 1165 // first. 1166 if (!ModifiedRegs[getLdStRegOp(MI).getReg()] && 1167 !(MI.mayLoad() && UsedRegs[getLdStRegOp(MI).getReg()]) && 1168 !mayAlias(MI, MemInsns, TII)) { 1169 Flags.setMergeForward(false); 1170 return MBBI; 1171 } 1172 1173 // Likewise, if the Rt of the first instruction is not modified or used 1174 // between the two instructions and none of the instructions between the 1175 // first and the second alias with the first, we can combine the first 1176 // into the second. 1177 if (!ModifiedRegs[getLdStRegOp(FirstMI).getReg()] && 1178 !(MayLoad && UsedRegs[getLdStRegOp(FirstMI).getReg()]) && 1179 !mayAlias(FirstMI, MemInsns, TII)) { 1180 Flags.setMergeForward(true); 1181 return MBBI; 1182 } 1183 // Unable to combine these instructions due to interference in between. 1184 // Keep looking. 1185 } 1186 } 1187 1188 // If the instruction wasn't a matching load or store. Stop searching if we 1189 // encounter a call instruction that might modify memory. 1190 if (MI.isCall()) 1191 return E; 1192 1193 // Update modified / uses register lists. 1194 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1195 1196 // Otherwise, if the base register is modified, we have no match, so 1197 // return early. 1198 if (ModifiedRegs[BaseReg]) 1199 return E; 1200 1201 // Update list of instructions that read/write memory. 1202 if (MI.mayLoadOrStore()) 1203 MemInsns.push_back(&MI); 1204 } 1205 return E; 1206 } 1207 1208 MachineBasicBlock::iterator 1209 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1210 MachineBasicBlock::iterator Update, 1211 bool IsPreIdx) { 1212 assert((Update->getOpcode() == AArch64::ADDXri || 1213 Update->getOpcode() == AArch64::SUBXri) && 1214 "Unexpected base register update instruction to merge!"); 1215 MachineBasicBlock::iterator NextI = I; 1216 // Return the instruction following the merged instruction, which is 1217 // the instruction following our unmerged load. Unless that's the add/sub 1218 // instruction we're merging, in which case it's the one after that. 1219 if (++NextI == Update) 1220 ++NextI; 1221 1222 int Value = Update->getOperand(2).getImm(); 1223 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1224 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1225 if (Update->getOpcode() == AArch64::SUBXri) 1226 Value = -Value; 1227 1228 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1229 : getPostIndexedOpcode(I->getOpcode()); 1230 MachineInstrBuilder MIB; 1231 if (!isPairedLdSt(*I)) { 1232 // Non-paired instruction. 1233 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1234 .add(getLdStRegOp(*Update)) 1235 .add(getLdStRegOp(*I)) 1236 .add(getLdStBaseOp(*I)) 1237 .addImm(Value) 1238 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1239 } else { 1240 // Paired instruction. 1241 int Scale = getMemScale(*I); 1242 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1243 .add(getLdStRegOp(*Update)) 1244 .add(getLdStRegOp(*I, 0)) 1245 .add(getLdStRegOp(*I, 1)) 1246 .add(getLdStBaseOp(*I)) 1247 .addImm(Value / Scale) 1248 .setMemRefs(I->memoperands_begin(), I->memoperands_end()); 1249 } 1250 (void)MIB; 1251 1252 if (IsPreIdx) 1253 DEBUG(dbgs() << "Creating pre-indexed load/store."); 1254 else 1255 DEBUG(dbgs() << "Creating post-indexed load/store."); 1256 DEBUG(dbgs() << " Replacing instructions:\n "); 1257 DEBUG(I->print(dbgs())); 1258 DEBUG(dbgs() << " "); 1259 DEBUG(Update->print(dbgs())); 1260 DEBUG(dbgs() << " with instruction:\n "); 1261 DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1262 DEBUG(dbgs() << "\n"); 1263 1264 // Erase the old instructions for the block. 1265 I->eraseFromParent(); 1266 Update->eraseFromParent(); 1267 1268 return NextI; 1269 } 1270 1271 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, 1272 MachineInstr &MI, 1273 unsigned BaseReg, int Offset) { 1274 switch (MI.getOpcode()) { 1275 default: 1276 break; 1277 case AArch64::SUBXri: 1278 case AArch64::ADDXri: 1279 // Make sure it's a vanilla immediate operand, not a relocation or 1280 // anything else we can't handle. 1281 if (!MI.getOperand(2).isImm()) 1282 break; 1283 // Watch out for 1 << 12 shifted value. 1284 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) 1285 break; 1286 1287 // The update instruction source and destination register must be the 1288 // same as the load/store base register. 1289 if (MI.getOperand(0).getReg() != BaseReg || 1290 MI.getOperand(1).getReg() != BaseReg) 1291 break; 1292 1293 bool IsPairedInsn = isPairedLdSt(MemMI); 1294 int UpdateOffset = MI.getOperand(2).getImm(); 1295 if (MI.getOpcode() == AArch64::SUBXri) 1296 UpdateOffset = -UpdateOffset; 1297 1298 // For non-paired load/store instructions, the immediate must fit in a 1299 // signed 9-bit integer. 1300 if (!IsPairedInsn && (UpdateOffset > 255 || UpdateOffset < -256)) 1301 break; 1302 1303 // For paired load/store instructions, the immediate must be a multiple of 1304 // the scaling factor. The scaled offset must also fit into a signed 7-bit 1305 // integer. 1306 if (IsPairedInsn) { 1307 int Scale = getMemScale(MemMI); 1308 if (UpdateOffset % Scale != 0) 1309 break; 1310 1311 int ScaledOffset = UpdateOffset / Scale; 1312 if (ScaledOffset > 63 || ScaledOffset < -64) 1313 break; 1314 } 1315 1316 // If we have a non-zero Offset, we check that it matches the amount 1317 // we're adding to the register. 1318 if (!Offset || Offset == UpdateOffset) 1319 return true; 1320 break; 1321 } 1322 return false; 1323 } 1324 1325 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1326 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1327 MachineBasicBlock::iterator E = I->getParent()->end(); 1328 MachineInstr &MemMI = *I; 1329 MachineBasicBlock::iterator MBBI = I; 1330 1331 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1332 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI); 1333 1334 // Scan forward looking for post-index opportunities. Updating instructions 1335 // can't be formed if the memory instruction doesn't have the offset we're 1336 // looking for. 1337 if (MIUnscaledOffset != UnscaledOffset) 1338 return E; 1339 1340 // If the base register overlaps a destination register, we can't 1341 // merge the update. 1342 bool IsPairedInsn = isPairedLdSt(MemMI); 1343 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1344 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1345 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1346 return E; 1347 } 1348 1349 // Track which registers have been modified and used between the first insn 1350 // (inclusive) and the second insn. 1351 ModifiedRegs.reset(); 1352 UsedRegs.reset(); 1353 ++MBBI; 1354 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1355 MachineInstr &MI = *MBBI; 1356 1357 // Don't count transient instructions towards the search limit since there 1358 // may be different numbers of them if e.g. debug information is present. 1359 if (!MI.isTransient()) 1360 ++Count; 1361 1362 // If we found a match, return it. 1363 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) 1364 return MBBI; 1365 1366 // Update the status of what the instruction clobbered and used. 1367 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1368 1369 // Otherwise, if the base register is used or modified, we have no match, so 1370 // return early. 1371 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1372 return E; 1373 } 1374 return E; 1375 } 1376 1377 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1378 MachineBasicBlock::iterator I, unsigned Limit) { 1379 MachineBasicBlock::iterator B = I->getParent()->begin(); 1380 MachineBasicBlock::iterator E = I->getParent()->end(); 1381 MachineInstr &MemMI = *I; 1382 MachineBasicBlock::iterator MBBI = I; 1383 1384 unsigned BaseReg = getLdStBaseOp(MemMI).getReg(); 1385 int Offset = getLdStOffsetOp(MemMI).getImm(); 1386 1387 // If the load/store is the first instruction in the block, there's obviously 1388 // not any matching update. Ditto if the memory offset isn't zero. 1389 if (MBBI == B || Offset != 0) 1390 return E; 1391 // If the base register overlaps a destination register, we can't 1392 // merge the update. 1393 bool IsPairedInsn = isPairedLdSt(MemMI); 1394 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1395 unsigned DestReg = getLdStRegOp(MemMI, i).getReg(); 1396 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1397 return E; 1398 } 1399 1400 // Track which registers have been modified and used between the first insn 1401 // (inclusive) and the second insn. 1402 ModifiedRegs.reset(); 1403 UsedRegs.reset(); 1404 unsigned Count = 0; 1405 do { 1406 --MBBI; 1407 MachineInstr &MI = *MBBI; 1408 1409 // Don't count transient instructions towards the search limit since there 1410 // may be different numbers of them if e.g. debug information is present. 1411 if (!MI.isTransient()) 1412 ++Count; 1413 1414 // If we found a match, return it. 1415 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) 1416 return MBBI; 1417 1418 // Update the status of what the instruction clobbered and used. 1419 trackRegDefsUses(MI, ModifiedRegs, UsedRegs, TRI); 1420 1421 // Otherwise, if the base register is used or modified, we have no match, so 1422 // return early. 1423 if (ModifiedRegs[BaseReg] || UsedRegs[BaseReg]) 1424 return E; 1425 } while (MBBI != B && Count < Limit); 1426 return E; 1427 } 1428 1429 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1430 MachineBasicBlock::iterator &MBBI) { 1431 MachineInstr &MI = *MBBI; 1432 // If this is a volatile load, don't mess with it. 1433 if (MI.hasOrderedMemoryRef()) 1434 return false; 1435 1436 // Make sure this is a reg+imm. 1437 // FIXME: It is possible to extend it to handle reg+reg cases. 1438 if (!getLdStOffsetOp(MI).isImm()) 1439 return false; 1440 1441 // Look backward up to LdStLimit instructions. 1442 MachineBasicBlock::iterator StoreI; 1443 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 1444 ++NumLoadsFromStoresPromoted; 1445 // Promote the load. Keeping the iterator straight is a 1446 // pain, so we let the merge routine tell us what the next instruction 1447 // is after it's done mucking about. 1448 MBBI = promoteLoadFromStore(MBBI, StoreI); 1449 return true; 1450 } 1451 return false; 1452 } 1453 1454 // Merge adjacent zero stores into a wider store. 1455 bool AArch64LoadStoreOpt::tryToMergeZeroStInst( 1456 MachineBasicBlock::iterator &MBBI) { 1457 assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store."); 1458 MachineInstr &MI = *MBBI; 1459 MachineBasicBlock::iterator E = MI.getParent()->end(); 1460 1461 if (!TII->isCandidateToMergeOrPair(MI)) 1462 return false; 1463 1464 // Look ahead up to LdStLimit instructions for a mergable instruction. 1465 LdStPairFlags Flags; 1466 MachineBasicBlock::iterator MergeMI = 1467 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 1468 if (MergeMI != E) { 1469 ++NumZeroStoresPromoted; 1470 1471 // Keeping the iterator straight is a pain, so we let the merge routine tell 1472 // us what the next instruction is after it's done mucking about. 1473 MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags); 1474 return true; 1475 } 1476 return false; 1477 } 1478 1479 // Find loads and stores that can be merged into a single load or store pair 1480 // instruction. 1481 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 1482 MachineInstr &MI = *MBBI; 1483 MachineBasicBlock::iterator E = MI.getParent()->end(); 1484 1485 if (!TII->isCandidateToMergeOrPair(MI)) 1486 return false; 1487 1488 // Early exit if the offset is not possible to match. (6 bits of positive 1489 // range, plus allow an extra one in case we find a later insn that matches 1490 // with Offset-1) 1491 bool IsUnscaled = TII->isUnscaledLdSt(MI); 1492 int Offset = getLdStOffsetOp(MI).getImm(); 1493 int OffsetStride = IsUnscaled ? getMemScale(MI) : 1; 1494 // Allow one more for offset. 1495 if (Offset > 0) 1496 Offset -= OffsetStride; 1497 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1498 return false; 1499 1500 // Look ahead up to LdStLimit instructions for a pairable instruction. 1501 LdStPairFlags Flags; 1502 MachineBasicBlock::iterator Paired = 1503 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 1504 if (Paired != E) { 1505 ++NumPairCreated; 1506 if (TII->isUnscaledLdSt(MI)) 1507 ++NumUnscaledPairCreated; 1508 // Keeping the iterator straight is a pain, so we let the merge routine tell 1509 // us what the next instruction is after it's done mucking about. 1510 MBBI = mergePairedInsns(MBBI, Paired, Flags); 1511 return true; 1512 } 1513 return false; 1514 } 1515 1516 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 1517 bool EnableNarrowZeroStOpt) { 1518 bool Modified = false; 1519 // Four tranformations to do here: 1520 // 1) Find loads that directly read from stores and promote them by 1521 // replacing with mov instructions. If the store is wider than the load, 1522 // the load will be replaced with a bitfield extract. 1523 // e.g., 1524 // str w1, [x0, #4] 1525 // ldrh w2, [x0, #6] 1526 // ; becomes 1527 // str w1, [x0, #4] 1528 // lsr w2, w1, #16 1529 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1530 MBBI != E;) { 1531 MachineInstr &MI = *MBBI; 1532 switch (MI.getOpcode()) { 1533 default: 1534 // Just move on to the next instruction. 1535 ++MBBI; 1536 break; 1537 // Scaled instructions. 1538 case AArch64::LDRBBui: 1539 case AArch64::LDRHHui: 1540 case AArch64::LDRWui: 1541 case AArch64::LDRXui: 1542 // Unscaled instructions. 1543 case AArch64::LDURBBi: 1544 case AArch64::LDURHHi: 1545 case AArch64::LDURWi: 1546 case AArch64::LDURXi: { 1547 if (tryToPromoteLoadFromStore(MBBI)) { 1548 Modified = true; 1549 break; 1550 } 1551 ++MBBI; 1552 break; 1553 } 1554 } 1555 } 1556 // 2) Merge adjacent zero stores into a wider store. 1557 // e.g., 1558 // strh wzr, [x0] 1559 // strh wzr, [x0, #2] 1560 // ; becomes 1561 // str wzr, [x0] 1562 // e.g., 1563 // str wzr, [x0] 1564 // str wzr, [x0, #4] 1565 // ; becomes 1566 // str xzr, [x0] 1567 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1568 EnableNarrowZeroStOpt && MBBI != E;) { 1569 if (isPromotableZeroStoreInst(*MBBI)) { 1570 if (tryToMergeZeroStInst(MBBI)) { 1571 Modified = true; 1572 } else 1573 ++MBBI; 1574 } else 1575 ++MBBI; 1576 } 1577 1578 // 3) Find loads and stores that can be merged into a single load or store 1579 // pair instruction. 1580 // e.g., 1581 // ldr x0, [x2] 1582 // ldr x1, [x2, #8] 1583 // ; becomes 1584 // ldp x0, x1, [x2] 1585 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1586 MBBI != E;) { 1587 if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI)) 1588 Modified = true; 1589 else 1590 ++MBBI; 1591 } 1592 // 4) Find base register updates that can be merged into the load or store 1593 // as a base-reg writeback. 1594 // e.g., 1595 // ldr x0, [x2] 1596 // add x2, x2, #4 1597 // ; becomes 1598 // ldr x0, [x2], #4 1599 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 1600 MBBI != E;) { 1601 MachineInstr &MI = *MBBI; 1602 // Do update merging. It's simpler to keep this separate from the above 1603 // switchs, though not strictly necessary. 1604 unsigned Opc = MI.getOpcode(); 1605 switch (Opc) { 1606 default: 1607 // Just move on to the next instruction. 1608 ++MBBI; 1609 break; 1610 // Scaled instructions. 1611 case AArch64::STRSui: 1612 case AArch64::STRDui: 1613 case AArch64::STRQui: 1614 case AArch64::STRXui: 1615 case AArch64::STRWui: 1616 case AArch64::STRHHui: 1617 case AArch64::STRBBui: 1618 case AArch64::LDRSui: 1619 case AArch64::LDRDui: 1620 case AArch64::LDRQui: 1621 case AArch64::LDRXui: 1622 case AArch64::LDRWui: 1623 case AArch64::LDRHHui: 1624 case AArch64::LDRBBui: 1625 // Unscaled instructions. 1626 case AArch64::STURSi: 1627 case AArch64::STURDi: 1628 case AArch64::STURQi: 1629 case AArch64::STURWi: 1630 case AArch64::STURXi: 1631 case AArch64::LDURSi: 1632 case AArch64::LDURDi: 1633 case AArch64::LDURQi: 1634 case AArch64::LDURWi: 1635 case AArch64::LDURXi: 1636 // Paired instructions. 1637 case AArch64::LDPSi: 1638 case AArch64::LDPSWi: 1639 case AArch64::LDPDi: 1640 case AArch64::LDPQi: 1641 case AArch64::LDPWi: 1642 case AArch64::LDPXi: 1643 case AArch64::STPSi: 1644 case AArch64::STPDi: 1645 case AArch64::STPQi: 1646 case AArch64::STPWi: 1647 case AArch64::STPXi: { 1648 // Make sure this is a reg+imm (as opposed to an address reloc). 1649 if (!getLdStOffsetOp(MI).isImm()) { 1650 ++MBBI; 1651 break; 1652 } 1653 // Look forward to try to form a post-index instruction. For example, 1654 // ldr x0, [x20] 1655 // add x20, x20, #32 1656 // merged into: 1657 // ldr x0, [x20], #32 1658 MachineBasicBlock::iterator Update = 1659 findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 1660 if (Update != E) { 1661 // Merge the update into the ld/st. 1662 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 1663 Modified = true; 1664 ++NumPostFolded; 1665 break; 1666 } 1667 // Don't know how to handle pre/post-index versions, so move to the next 1668 // instruction. 1669 if (TII->isUnscaledLdSt(Opc)) { 1670 ++MBBI; 1671 break; 1672 } 1673 1674 // Look back to try to find a pre-index instruction. For example, 1675 // add x0, x0, #8 1676 // ldr x1, [x0] 1677 // merged into: 1678 // ldr x1, [x0, #8]! 1679 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 1680 if (Update != E) { 1681 // Merge the update into the ld/st. 1682 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1683 Modified = true; 1684 ++NumPreFolded; 1685 break; 1686 } 1687 // The immediate in the load/store is scaled by the size of the memory 1688 // operation. The immediate in the add we're looking for, 1689 // however, is not, so adjust here. 1690 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI); 1691 1692 // Look forward to try to find a post-index instruction. For example, 1693 // ldr x1, [x0, #64] 1694 // add x0, x0, #64 1695 // merged into: 1696 // ldr x1, [x0, #64]! 1697 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 1698 if (Update != E) { 1699 // Merge the update into the ld/st. 1700 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 1701 Modified = true; 1702 ++NumPreFolded; 1703 break; 1704 } 1705 1706 // Nothing found. Just move to the next instruction. 1707 ++MBBI; 1708 break; 1709 } 1710 } 1711 } 1712 1713 return Modified; 1714 } 1715 1716 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 1717 if (skipFunction(*Fn.getFunction())) 1718 return false; 1719 1720 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 1721 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 1722 TRI = Subtarget->getRegisterInfo(); 1723 1724 // Resize the modified and used register bitfield trackers. We do this once 1725 // per function and then clear the bitfield each time we optimize a load or 1726 // store. 1727 ModifiedRegs.resize(TRI->getNumRegs()); 1728 UsedRegs.resize(TRI->getNumRegs()); 1729 1730 bool Modified = false; 1731 bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign(); 1732 for (auto &MBB : Fn) 1733 Modified |= optimizeBlock(MBB, enableNarrowZeroStOpt); 1734 1735 return Modified; 1736 } 1737 1738 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and 1739 // stores near one another? Note: The pre-RA instruction scheduler already has 1740 // hooks to try and schedule pairable loads/stores together to improve pairing 1741 // opportunities. Thus, pre-RA pairing pass may not be worth the effort. 1742 1743 // FIXME: When pairing store instructions it's very possible for this pass to 1744 // hoist a store with a KILL marker above another use (without a KILL marker). 1745 // The resulting IR is invalid, but nothing uses the KILL markers after this 1746 // pass, so it's never caused a problem in practice. 1747 1748 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 1749 /// load / store optimization pass. 1750 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 1751 return new AArch64LoadStoreOpt(); 1752 } 1753