1 //===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that performs load / store related peephole 10 // optimizations. This pass should be run after register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AArch64InstrInfo.h" 15 #include "AArch64Subtarget.h" 16 #include "MCTargetDesc/AArch64AddressingModes.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/TargetRegisterInfo.h" 30 #include "llvm/IR/DebugLoc.h" 31 #include "llvm/MC/MCRegisterInfo.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/DebugCounter.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <cassert> 39 #include <cstdint> 40 #include <functional> 41 #include <iterator> 42 #include <limits> 43 44 using namespace llvm; 45 46 #define DEBUG_TYPE "aarch64-ldst-opt" 47 48 STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); 49 STATISTIC(NumPostFolded, "Number of post-index updates folded"); 50 STATISTIC(NumPreFolded, "Number of pre-index updates folded"); 51 STATISTIC(NumUnscaledPairCreated, 52 "Number of load/store from unscaled generated"); 53 STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); 54 STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); 55 56 DEBUG_COUNTER(RegRenamingCounter, DEBUG_TYPE "-reg-renaming", 57 "Controls which pairs are considered for renaming"); 58 59 // The LdStLimit limits how far we search for load/store pairs. 60 static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit", 61 cl::init(20), cl::Hidden); 62 63 // The UpdateLimit limits how far we search for update instructions when we form 64 // pre-/post-index instructions. 65 static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100), 66 cl::Hidden); 67 68 #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" 69 70 namespace { 71 72 using LdStPairFlags = struct LdStPairFlags { 73 // If a matching instruction is found, MergeForward is set to true if the 74 // merge is to remove the first instruction and replace the second with 75 // a pair-wise insn, and false if the reverse is true. 76 bool MergeForward = false; 77 78 // SExtIdx gives the index of the result of the load pair that must be 79 // extended. The value of SExtIdx assumes that the paired load produces the 80 // value in this order: (I, returned iterator), i.e., -1 means no value has 81 // to be extended, 0 means I, and 1 means the returned iterator. 82 int SExtIdx = -1; 83 84 // If not none, RenameReg can be used to rename the result register of the 85 // first store in a pair. Currently this only works when merging stores 86 // forward. 87 Optional<MCPhysReg> RenameReg = None; 88 89 LdStPairFlags() = default; 90 91 void setMergeForward(bool V = true) { MergeForward = V; } 92 bool getMergeForward() const { return MergeForward; } 93 94 void setSExtIdx(int V) { SExtIdx = V; } 95 int getSExtIdx() const { return SExtIdx; } 96 97 void setRenameReg(MCPhysReg R) { RenameReg = R; } 98 void clearRenameReg() { RenameReg = None; } 99 Optional<MCPhysReg> getRenameReg() const { return RenameReg; } 100 }; 101 102 struct AArch64LoadStoreOpt : public MachineFunctionPass { 103 static char ID; 104 105 AArch64LoadStoreOpt() : MachineFunctionPass(ID) { 106 initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); 107 } 108 109 AliasAnalysis *AA; 110 const AArch64InstrInfo *TII; 111 const TargetRegisterInfo *TRI; 112 const AArch64Subtarget *Subtarget; 113 114 // Track which register units have been modified and used. 115 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 116 LiveRegUnits DefinedInBB; 117 118 void getAnalysisUsage(AnalysisUsage &AU) const override { 119 AU.addRequired<AAResultsWrapperPass>(); 120 MachineFunctionPass::getAnalysisUsage(AU); 121 } 122 123 // Scan the instructions looking for a load/store that can be combined 124 // with the current instruction into a load/store pair. 125 // Return the matching instruction if one is found, else MBB->end(). 126 MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, 127 LdStPairFlags &Flags, 128 unsigned Limit, 129 bool FindNarrowMerge); 130 131 // Scan the instructions looking for a store that writes to the address from 132 // which the current load instruction reads. Return true if one is found. 133 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, 134 MachineBasicBlock::iterator &StoreI); 135 136 // Merge the two instructions indicated into a wider narrow store instruction. 137 MachineBasicBlock::iterator 138 mergeNarrowZeroStores(MachineBasicBlock::iterator I, 139 MachineBasicBlock::iterator MergeMI, 140 const LdStPairFlags &Flags); 141 142 // Merge the two instructions indicated into a single pair-wise instruction. 143 MachineBasicBlock::iterator 144 mergePairedInsns(MachineBasicBlock::iterator I, 145 MachineBasicBlock::iterator Paired, 146 const LdStPairFlags &Flags); 147 148 // Promote the load that reads directly from the address stored to. 149 MachineBasicBlock::iterator 150 promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 151 MachineBasicBlock::iterator StoreI); 152 153 // Scan the instruction list to find a base register update that can 154 // be combined with the current instruction (a load or store) using 155 // pre or post indexed addressing with writeback. Scan forwards. 156 MachineBasicBlock::iterator 157 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, 158 int UnscaledOffset, unsigned Limit); 159 160 // Scan the instruction list to find a base register update that can 161 // be combined with the current instruction (a load or store) using 162 // pre or post indexed addressing with writeback. Scan backwards. 163 MachineBasicBlock::iterator 164 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); 165 166 // Find an instruction that updates the base register of the ld/st 167 // instruction. 168 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, 169 unsigned BaseReg, int Offset); 170 171 // Merge a pre- or post-index base register update into a ld/st instruction. 172 MachineBasicBlock::iterator 173 mergeUpdateInsn(MachineBasicBlock::iterator I, 174 MachineBasicBlock::iterator Update, bool IsPreIdx); 175 176 // Find and merge zero store instructions. 177 bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI); 178 179 // Find and pair ldr/str instructions. 180 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); 181 182 // Find and promote load instructions which read directly from store. 183 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); 184 185 // Find and merge a base register updates before or after a ld/st instruction. 186 bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI); 187 188 bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt); 189 190 bool runOnMachineFunction(MachineFunction &Fn) override; 191 192 MachineFunctionProperties getRequiredProperties() const override { 193 return MachineFunctionProperties().set( 194 MachineFunctionProperties::Property::NoVRegs); 195 } 196 197 StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } 198 }; 199 200 char AArch64LoadStoreOpt::ID = 0; 201 202 } // end anonymous namespace 203 204 INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", 205 AARCH64_LOAD_STORE_OPT_NAME, false, false) 206 207 static bool isNarrowStore(unsigned Opc) { 208 switch (Opc) { 209 default: 210 return false; 211 case AArch64::STRBBui: 212 case AArch64::STURBBi: 213 case AArch64::STRHHui: 214 case AArch64::STURHHi: 215 return true; 216 } 217 } 218 219 // These instruction set memory tag and either keep memory contents unchanged or 220 // set it to zero, ignoring the address part of the source register. 221 static bool isTagStore(const MachineInstr &MI) { 222 switch (MI.getOpcode()) { 223 default: 224 return false; 225 case AArch64::STGOffset: 226 case AArch64::STZGOffset: 227 case AArch64::ST2GOffset: 228 case AArch64::STZ2GOffset: 229 return true; 230 } 231 } 232 233 // Scaling factor for unscaled load or store. 234 static int getMemScale(const MachineInstr &MI) { 235 switch (MI.getOpcode()) { 236 default: 237 llvm_unreachable("Opcode has unknown scale!"); 238 case AArch64::LDRBBui: 239 case AArch64::LDURBBi: 240 case AArch64::LDRSBWui: 241 case AArch64::LDURSBWi: 242 case AArch64::STRBBui: 243 case AArch64::STURBBi: 244 return 1; 245 case AArch64::LDRHHui: 246 case AArch64::LDURHHi: 247 case AArch64::LDRSHWui: 248 case AArch64::LDURSHWi: 249 case AArch64::STRHHui: 250 case AArch64::STURHHi: 251 return 2; 252 case AArch64::LDRSui: 253 case AArch64::LDURSi: 254 case AArch64::LDRSWui: 255 case AArch64::LDURSWi: 256 case AArch64::LDRWui: 257 case AArch64::LDURWi: 258 case AArch64::STRSui: 259 case AArch64::STURSi: 260 case AArch64::STRWui: 261 case AArch64::STURWi: 262 case AArch64::LDPSi: 263 case AArch64::LDPSWi: 264 case AArch64::LDPWi: 265 case AArch64::STPSi: 266 case AArch64::STPWi: 267 return 4; 268 case AArch64::LDRDui: 269 case AArch64::LDURDi: 270 case AArch64::LDRXui: 271 case AArch64::LDURXi: 272 case AArch64::STRDui: 273 case AArch64::STURDi: 274 case AArch64::STRXui: 275 case AArch64::STURXi: 276 case AArch64::LDPDi: 277 case AArch64::LDPXi: 278 case AArch64::STPDi: 279 case AArch64::STPXi: 280 return 8; 281 case AArch64::LDRQui: 282 case AArch64::LDURQi: 283 case AArch64::STRQui: 284 case AArch64::STURQi: 285 case AArch64::LDPQi: 286 case AArch64::STPQi: 287 case AArch64::STGOffset: 288 case AArch64::STZGOffset: 289 case AArch64::ST2GOffset: 290 case AArch64::STZ2GOffset: 291 case AArch64::STGPi: 292 return 16; 293 } 294 } 295 296 static unsigned getMatchingNonSExtOpcode(unsigned Opc, 297 bool *IsValidLdStrOpc = nullptr) { 298 if (IsValidLdStrOpc) 299 *IsValidLdStrOpc = true; 300 switch (Opc) { 301 default: 302 if (IsValidLdStrOpc) 303 *IsValidLdStrOpc = false; 304 return std::numeric_limits<unsigned>::max(); 305 case AArch64::STRDui: 306 case AArch64::STURDi: 307 case AArch64::STRQui: 308 case AArch64::STURQi: 309 case AArch64::STRBBui: 310 case AArch64::STURBBi: 311 case AArch64::STRHHui: 312 case AArch64::STURHHi: 313 case AArch64::STRWui: 314 case AArch64::STURWi: 315 case AArch64::STRXui: 316 case AArch64::STURXi: 317 case AArch64::LDRDui: 318 case AArch64::LDURDi: 319 case AArch64::LDRQui: 320 case AArch64::LDURQi: 321 case AArch64::LDRWui: 322 case AArch64::LDURWi: 323 case AArch64::LDRXui: 324 case AArch64::LDURXi: 325 case AArch64::STRSui: 326 case AArch64::STURSi: 327 case AArch64::LDRSui: 328 case AArch64::LDURSi: 329 return Opc; 330 case AArch64::LDRSWui: 331 return AArch64::LDRWui; 332 case AArch64::LDURSWi: 333 return AArch64::LDURWi; 334 } 335 } 336 337 static unsigned getMatchingWideOpcode(unsigned Opc) { 338 switch (Opc) { 339 default: 340 llvm_unreachable("Opcode has no wide equivalent!"); 341 case AArch64::STRBBui: 342 return AArch64::STRHHui; 343 case AArch64::STRHHui: 344 return AArch64::STRWui; 345 case AArch64::STURBBi: 346 return AArch64::STURHHi; 347 case AArch64::STURHHi: 348 return AArch64::STURWi; 349 case AArch64::STURWi: 350 return AArch64::STURXi; 351 case AArch64::STRWui: 352 return AArch64::STRXui; 353 } 354 } 355 356 static unsigned getMatchingPairOpcode(unsigned Opc) { 357 switch (Opc) { 358 default: 359 llvm_unreachable("Opcode has no pairwise equivalent!"); 360 case AArch64::STRSui: 361 case AArch64::STURSi: 362 return AArch64::STPSi; 363 case AArch64::STRDui: 364 case AArch64::STURDi: 365 return AArch64::STPDi; 366 case AArch64::STRQui: 367 case AArch64::STURQi: 368 return AArch64::STPQi; 369 case AArch64::STRWui: 370 case AArch64::STURWi: 371 return AArch64::STPWi; 372 case AArch64::STRXui: 373 case AArch64::STURXi: 374 return AArch64::STPXi; 375 case AArch64::LDRSui: 376 case AArch64::LDURSi: 377 return AArch64::LDPSi; 378 case AArch64::LDRDui: 379 case AArch64::LDURDi: 380 return AArch64::LDPDi; 381 case AArch64::LDRQui: 382 case AArch64::LDURQi: 383 return AArch64::LDPQi; 384 case AArch64::LDRWui: 385 case AArch64::LDURWi: 386 return AArch64::LDPWi; 387 case AArch64::LDRXui: 388 case AArch64::LDURXi: 389 return AArch64::LDPXi; 390 case AArch64::LDRSWui: 391 case AArch64::LDURSWi: 392 return AArch64::LDPSWi; 393 } 394 } 395 396 static unsigned isMatchingStore(MachineInstr &LoadInst, 397 MachineInstr &StoreInst) { 398 unsigned LdOpc = LoadInst.getOpcode(); 399 unsigned StOpc = StoreInst.getOpcode(); 400 switch (LdOpc) { 401 default: 402 llvm_unreachable("Unsupported load instruction!"); 403 case AArch64::LDRBBui: 404 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || 405 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 406 case AArch64::LDURBBi: 407 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || 408 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 409 case AArch64::LDRHHui: 410 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || 411 StOpc == AArch64::STRXui; 412 case AArch64::LDURHHi: 413 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || 414 StOpc == AArch64::STURXi; 415 case AArch64::LDRWui: 416 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; 417 case AArch64::LDURWi: 418 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; 419 case AArch64::LDRXui: 420 return StOpc == AArch64::STRXui; 421 case AArch64::LDURXi: 422 return StOpc == AArch64::STURXi; 423 } 424 } 425 426 static unsigned getPreIndexedOpcode(unsigned Opc) { 427 // FIXME: We don't currently support creating pre-indexed loads/stores when 428 // the load or store is the unscaled version. If we decide to perform such an 429 // optimization in the future the cases for the unscaled loads/stores will 430 // need to be added here. 431 switch (Opc) { 432 default: 433 llvm_unreachable("Opcode has no pre-indexed equivalent!"); 434 case AArch64::STRSui: 435 return AArch64::STRSpre; 436 case AArch64::STRDui: 437 return AArch64::STRDpre; 438 case AArch64::STRQui: 439 return AArch64::STRQpre; 440 case AArch64::STRBBui: 441 return AArch64::STRBBpre; 442 case AArch64::STRHHui: 443 return AArch64::STRHHpre; 444 case AArch64::STRWui: 445 return AArch64::STRWpre; 446 case AArch64::STRXui: 447 return AArch64::STRXpre; 448 case AArch64::LDRSui: 449 return AArch64::LDRSpre; 450 case AArch64::LDRDui: 451 return AArch64::LDRDpre; 452 case AArch64::LDRQui: 453 return AArch64::LDRQpre; 454 case AArch64::LDRBBui: 455 return AArch64::LDRBBpre; 456 case AArch64::LDRHHui: 457 return AArch64::LDRHHpre; 458 case AArch64::LDRWui: 459 return AArch64::LDRWpre; 460 case AArch64::LDRXui: 461 return AArch64::LDRXpre; 462 case AArch64::LDRSWui: 463 return AArch64::LDRSWpre; 464 case AArch64::LDPSi: 465 return AArch64::LDPSpre; 466 case AArch64::LDPSWi: 467 return AArch64::LDPSWpre; 468 case AArch64::LDPDi: 469 return AArch64::LDPDpre; 470 case AArch64::LDPQi: 471 return AArch64::LDPQpre; 472 case AArch64::LDPWi: 473 return AArch64::LDPWpre; 474 case AArch64::LDPXi: 475 return AArch64::LDPXpre; 476 case AArch64::STPSi: 477 return AArch64::STPSpre; 478 case AArch64::STPDi: 479 return AArch64::STPDpre; 480 case AArch64::STPQi: 481 return AArch64::STPQpre; 482 case AArch64::STPWi: 483 return AArch64::STPWpre; 484 case AArch64::STPXi: 485 return AArch64::STPXpre; 486 case AArch64::STGOffset: 487 return AArch64::STGPreIndex; 488 case AArch64::STZGOffset: 489 return AArch64::STZGPreIndex; 490 case AArch64::ST2GOffset: 491 return AArch64::ST2GPreIndex; 492 case AArch64::STZ2GOffset: 493 return AArch64::STZ2GPreIndex; 494 case AArch64::STGPi: 495 return AArch64::STGPpre; 496 } 497 } 498 499 static unsigned getPostIndexedOpcode(unsigned Opc) { 500 switch (Opc) { 501 default: 502 llvm_unreachable("Opcode has no post-indexed wise equivalent!"); 503 case AArch64::STRSui: 504 case AArch64::STURSi: 505 return AArch64::STRSpost; 506 case AArch64::STRDui: 507 case AArch64::STURDi: 508 return AArch64::STRDpost; 509 case AArch64::STRQui: 510 case AArch64::STURQi: 511 return AArch64::STRQpost; 512 case AArch64::STRBBui: 513 return AArch64::STRBBpost; 514 case AArch64::STRHHui: 515 return AArch64::STRHHpost; 516 case AArch64::STRWui: 517 case AArch64::STURWi: 518 return AArch64::STRWpost; 519 case AArch64::STRXui: 520 case AArch64::STURXi: 521 return AArch64::STRXpost; 522 case AArch64::LDRSui: 523 case AArch64::LDURSi: 524 return AArch64::LDRSpost; 525 case AArch64::LDRDui: 526 case AArch64::LDURDi: 527 return AArch64::LDRDpost; 528 case AArch64::LDRQui: 529 case AArch64::LDURQi: 530 return AArch64::LDRQpost; 531 case AArch64::LDRBBui: 532 return AArch64::LDRBBpost; 533 case AArch64::LDRHHui: 534 return AArch64::LDRHHpost; 535 case AArch64::LDRWui: 536 case AArch64::LDURWi: 537 return AArch64::LDRWpost; 538 case AArch64::LDRXui: 539 case AArch64::LDURXi: 540 return AArch64::LDRXpost; 541 case AArch64::LDRSWui: 542 return AArch64::LDRSWpost; 543 case AArch64::LDPSi: 544 return AArch64::LDPSpost; 545 case AArch64::LDPSWi: 546 return AArch64::LDPSWpost; 547 case AArch64::LDPDi: 548 return AArch64::LDPDpost; 549 case AArch64::LDPQi: 550 return AArch64::LDPQpost; 551 case AArch64::LDPWi: 552 return AArch64::LDPWpost; 553 case AArch64::LDPXi: 554 return AArch64::LDPXpost; 555 case AArch64::STPSi: 556 return AArch64::STPSpost; 557 case AArch64::STPDi: 558 return AArch64::STPDpost; 559 case AArch64::STPQi: 560 return AArch64::STPQpost; 561 case AArch64::STPWi: 562 return AArch64::STPWpost; 563 case AArch64::STPXi: 564 return AArch64::STPXpost; 565 case AArch64::STGOffset: 566 return AArch64::STGPostIndex; 567 case AArch64::STZGOffset: 568 return AArch64::STZGPostIndex; 569 case AArch64::ST2GOffset: 570 return AArch64::ST2GPostIndex; 571 case AArch64::STZ2GOffset: 572 return AArch64::STZ2GPostIndex; 573 case AArch64::STGPi: 574 return AArch64::STGPpost; 575 } 576 } 577 578 static bool isPairedLdSt(const MachineInstr &MI) { 579 switch (MI.getOpcode()) { 580 default: 581 return false; 582 case AArch64::LDPSi: 583 case AArch64::LDPSWi: 584 case AArch64::LDPDi: 585 case AArch64::LDPQi: 586 case AArch64::LDPWi: 587 case AArch64::LDPXi: 588 case AArch64::STPSi: 589 case AArch64::STPDi: 590 case AArch64::STPQi: 591 case AArch64::STPWi: 592 case AArch64::STPXi: 593 case AArch64::STGPi: 594 return true; 595 } 596 } 597 598 // Returns the scale and offset range of pre/post indexed variants of MI. 599 static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale, 600 int &MinOffset, int &MaxOffset) { 601 bool IsPaired = isPairedLdSt(MI); 602 bool IsTagStore = isTagStore(MI); 603 // ST*G and all paired ldst have the same scale in pre/post-indexed variants 604 // as in the "unsigned offset" variant. 605 // All other pre/post indexed ldst instructions are unscaled. 606 Scale = (IsTagStore || IsPaired) ? getMemScale(MI) : 1; 607 608 if (IsPaired) { 609 MinOffset = -64; 610 MaxOffset = 63; 611 } else { 612 MinOffset = -256; 613 MaxOffset = 255; 614 } 615 } 616 617 static MachineOperand &getLdStRegOp(MachineInstr &MI, 618 unsigned PairedRegOp = 0) { 619 assert(PairedRegOp < 2 && "Unexpected register operand idx."); 620 unsigned Idx = isPairedLdSt(MI) ? PairedRegOp : 0; 621 return MI.getOperand(Idx); 622 } 623 624 static const MachineOperand &getLdStBaseOp(const MachineInstr &MI) { 625 unsigned Idx = isPairedLdSt(MI) ? 2 : 1; 626 return MI.getOperand(Idx); 627 } 628 629 static const MachineOperand &getLdStOffsetOp(const MachineInstr &MI) { 630 unsigned Idx = isPairedLdSt(MI) ? 3 : 2; 631 return MI.getOperand(Idx); 632 } 633 634 static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, 635 MachineInstr &StoreInst, 636 const AArch64InstrInfo *TII) { 637 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); 638 int LoadSize = getMemScale(LoadInst); 639 int StoreSize = getMemScale(StoreInst); 640 int UnscaledStOffset = TII->isUnscaledLdSt(StoreInst) 641 ? getLdStOffsetOp(StoreInst).getImm() 642 : getLdStOffsetOp(StoreInst).getImm() * StoreSize; 643 int UnscaledLdOffset = TII->isUnscaledLdSt(LoadInst) 644 ? getLdStOffsetOp(LoadInst).getImm() 645 : getLdStOffsetOp(LoadInst).getImm() * LoadSize; 646 return (UnscaledStOffset <= UnscaledLdOffset) && 647 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); 648 } 649 650 static bool isPromotableZeroStoreInst(MachineInstr &MI) { 651 unsigned Opc = MI.getOpcode(); 652 return (Opc == AArch64::STRWui || Opc == AArch64::STURWi || 653 isNarrowStore(Opc)) && 654 getLdStRegOp(MI).getReg() == AArch64::WZR; 655 } 656 657 static bool isPromotableLoadFromStore(MachineInstr &MI) { 658 switch (MI.getOpcode()) { 659 default: 660 return false; 661 // Scaled instructions. 662 case AArch64::LDRBBui: 663 case AArch64::LDRHHui: 664 case AArch64::LDRWui: 665 case AArch64::LDRXui: 666 // Unscaled instructions. 667 case AArch64::LDURBBi: 668 case AArch64::LDURHHi: 669 case AArch64::LDURWi: 670 case AArch64::LDURXi: 671 return true; 672 } 673 } 674 675 static bool isMergeableLdStUpdate(MachineInstr &MI) { 676 unsigned Opc = MI.getOpcode(); 677 switch (Opc) { 678 default: 679 return false; 680 // Scaled instructions. 681 case AArch64::STRSui: 682 case AArch64::STRDui: 683 case AArch64::STRQui: 684 case AArch64::STRXui: 685 case AArch64::STRWui: 686 case AArch64::STRHHui: 687 case AArch64::STRBBui: 688 case AArch64::LDRSui: 689 case AArch64::LDRDui: 690 case AArch64::LDRQui: 691 case AArch64::LDRXui: 692 case AArch64::LDRWui: 693 case AArch64::LDRHHui: 694 case AArch64::LDRBBui: 695 case AArch64::STGOffset: 696 case AArch64::STZGOffset: 697 case AArch64::ST2GOffset: 698 case AArch64::STZ2GOffset: 699 case AArch64::STGPi: 700 // Unscaled instructions. 701 case AArch64::STURSi: 702 case AArch64::STURDi: 703 case AArch64::STURQi: 704 case AArch64::STURWi: 705 case AArch64::STURXi: 706 case AArch64::LDURSi: 707 case AArch64::LDURDi: 708 case AArch64::LDURQi: 709 case AArch64::LDURWi: 710 case AArch64::LDURXi: 711 // Paired instructions. 712 case AArch64::LDPSi: 713 case AArch64::LDPSWi: 714 case AArch64::LDPDi: 715 case AArch64::LDPQi: 716 case AArch64::LDPWi: 717 case AArch64::LDPXi: 718 case AArch64::STPSi: 719 case AArch64::STPDi: 720 case AArch64::STPQi: 721 case AArch64::STPWi: 722 case AArch64::STPXi: 723 // Make sure this is a reg+imm (as opposed to an address reloc). 724 if (!getLdStOffsetOp(MI).isImm()) 725 return false; 726 727 return true; 728 } 729 } 730 731 MachineBasicBlock::iterator 732 AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I, 733 MachineBasicBlock::iterator MergeMI, 734 const LdStPairFlags &Flags) { 735 assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && 736 "Expected promotable zero stores."); 737 738 MachineBasicBlock::iterator NextI = I; 739 ++NextI; 740 // If NextI is the second of the two instructions to be merged, we need 741 // to skip one further. Either way we merge will invalidate the iterator, 742 // and we don't need to scan the new instruction, as it's a pairwise 743 // instruction, which we're not considering for further action anyway. 744 if (NextI == MergeMI) 745 ++NextI; 746 747 unsigned Opc = I->getOpcode(); 748 bool IsScaled = !TII->isUnscaledLdSt(Opc); 749 int OffsetStride = IsScaled ? 1 : getMemScale(*I); 750 751 bool MergeForward = Flags.getMergeForward(); 752 // Insert our new paired instruction after whichever of the paired 753 // instructions MergeForward indicates. 754 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; 755 // Also based on MergeForward is from where we copy the base register operand 756 // so we get the flags compatible with the input code. 757 const MachineOperand &BaseRegOp = 758 MergeForward ? getLdStBaseOp(*MergeMI) : getLdStBaseOp(*I); 759 760 // Which register is Rt and which is Rt2 depends on the offset order. 761 MachineInstr *RtMI; 762 if (getLdStOffsetOp(*I).getImm() == 763 getLdStOffsetOp(*MergeMI).getImm() + OffsetStride) 764 RtMI = &*MergeMI; 765 else 766 RtMI = &*I; 767 768 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 769 // Change the scaled offset from small to large type. 770 if (IsScaled) { 771 assert(((OffsetImm & 1) == 0) && "Unexpected offset to merge"); 772 OffsetImm /= 2; 773 } 774 775 // Construct the new instruction. 776 DebugLoc DL = I->getDebugLoc(); 777 MachineBasicBlock *MBB = I->getParent(); 778 MachineInstrBuilder MIB; 779 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) 780 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) 781 .add(BaseRegOp) 782 .addImm(OffsetImm) 783 .cloneMergedMemRefs({&*I, &*MergeMI}) 784 .setMIFlags(I->mergeFlagsWith(*MergeMI)); 785 (void)MIB; 786 787 LLVM_DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n "); 788 LLVM_DEBUG(I->print(dbgs())); 789 LLVM_DEBUG(dbgs() << " "); 790 LLVM_DEBUG(MergeMI->print(dbgs())); 791 LLVM_DEBUG(dbgs() << " with instruction:\n "); 792 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 793 LLVM_DEBUG(dbgs() << "\n"); 794 795 // Erase the old instructions. 796 I->eraseFromParent(); 797 MergeMI->eraseFromParent(); 798 return NextI; 799 } 800 801 // Apply Fn to all instructions between MI and the beginning of the block, until 802 // a def for DefReg is reached. Returns true, iff Fn returns true for all 803 // visited instructions. Stop after visiting Limit iterations. 804 static bool forAllMIsUntilDef(MachineInstr &MI, MCPhysReg DefReg, 805 const TargetRegisterInfo *TRI, unsigned Limit, 806 std::function<bool(MachineInstr &, bool)> &Fn) { 807 auto MBB = MI.getParent(); 808 for (MachineBasicBlock::reverse_iterator I = MI.getReverseIterator(), 809 E = MBB->rend(); 810 I != E; I++) { 811 if (!Limit) 812 return false; 813 --Limit; 814 815 bool isDef = any_of(I->operands(), [DefReg, TRI](MachineOperand &MOP) { 816 return MOP.isReg() && MOP.isDef() && !MOP.isDebug() && MOP.getReg() && 817 TRI->regsOverlap(MOP.getReg(), DefReg); 818 }); 819 if (!Fn(*I, isDef)) 820 return false; 821 if (isDef) 822 break; 823 } 824 return true; 825 } 826 827 static void updateDefinedRegisters(MachineInstr &MI, LiveRegUnits &Units, 828 const TargetRegisterInfo *TRI) { 829 830 for (const MachineOperand &MOP : phys_regs_and_masks(MI)) 831 if (MOP.isReg() && MOP.isKill()) 832 Units.removeReg(MOP.getReg()); 833 834 for (const MachineOperand &MOP : phys_regs_and_masks(MI)) 835 if (MOP.isReg() && !MOP.isKill()) 836 Units.addReg(MOP.getReg()); 837 } 838 839 MachineBasicBlock::iterator 840 AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, 841 MachineBasicBlock::iterator Paired, 842 const LdStPairFlags &Flags) { 843 MachineBasicBlock::iterator NextI = I; 844 ++NextI; 845 // If NextI is the second of the two instructions to be merged, we need 846 // to skip one further. Either way we merge will invalidate the iterator, 847 // and we don't need to scan the new instruction, as it's a pairwise 848 // instruction, which we're not considering for further action anyway. 849 if (NextI == Paired) 850 ++NextI; 851 852 int SExtIdx = Flags.getSExtIdx(); 853 unsigned Opc = 854 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); 855 bool IsUnscaled = TII->isUnscaledLdSt(Opc); 856 int OffsetStride = IsUnscaled ? getMemScale(*I) : 1; 857 858 bool MergeForward = Flags.getMergeForward(); 859 860 Optional<MCPhysReg> RenameReg = Flags.getRenameReg(); 861 if (MergeForward && RenameReg) { 862 MCRegister RegToRename = getLdStRegOp(*I).getReg(); 863 DefinedInBB.addReg(*RenameReg); 864 865 // Return the sub/super register for RenameReg, matching the size of 866 // OriginalReg. 867 auto GetMatchingSubReg = [this, 868 RenameReg](MCPhysReg OriginalReg) -> MCPhysReg { 869 for (MCPhysReg SubOrSuper : TRI->sub_and_superregs_inclusive(*RenameReg)) 870 if (TRI->getMinimalPhysRegClass(OriginalReg) == 871 TRI->getMinimalPhysRegClass(SubOrSuper)) 872 return SubOrSuper; 873 llvm_unreachable("Should have found matching sub or super register!"); 874 }; 875 876 std::function<bool(MachineInstr &, bool)> UpdateMIs = 877 [this, RegToRename, GetMatchingSubReg](MachineInstr &MI, bool IsDef) { 878 if (IsDef) { 879 bool SeenDef = false; 880 for (auto &MOP : MI.operands()) { 881 // Rename the first explicit definition and all implicit 882 // definitions matching RegToRename. 883 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 884 (!SeenDef || (MOP.isDef() && MOP.isImplicit())) && 885 TRI->regsOverlap(MOP.getReg(), RegToRename)) { 886 assert((MOP.isImplicit() || 887 (MOP.isRenamable() && !MOP.isEarlyClobber())) && 888 "Need renamable operands"); 889 MOP.setReg(GetMatchingSubReg(MOP.getReg())); 890 SeenDef = true; 891 } 892 } 893 } else { 894 for (auto &MOP : MI.operands()) { 895 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 896 TRI->regsOverlap(MOP.getReg(), RegToRename)) { 897 assert(MOP.isImplicit() || 898 (MOP.isRenamable() && !MOP.isEarlyClobber()) && 899 "Need renamable operands"); 900 MOP.setReg(GetMatchingSubReg(MOP.getReg())); 901 } 902 } 903 } 904 LLVM_DEBUG(dbgs() << "Renamed " << MI << "\n"); 905 return true; 906 }; 907 forAllMIsUntilDef(*I, RegToRename, TRI, LdStLimit, UpdateMIs); 908 909 #if !defined(NDEBUG) 910 // Make sure the register used for renaming is not used between the paired 911 // instructions. That would trash the content before the new paired 912 // instruction. 913 for (auto &MI : 914 iterator_range<MachineInstrBundleIterator<llvm::MachineInstr>>( 915 std::next(I), std::next(Paired))) 916 assert(all_of(MI.operands(), 917 [this, &RenameReg](const MachineOperand &MOP) { 918 return !MOP.isReg() || MOP.isDebug() || !MOP.getReg() || 919 !TRI->regsOverlap(MOP.getReg(), *RenameReg); 920 }) && 921 "Rename register used between paired instruction, trashing the " 922 "content"); 923 #endif 924 } 925 926 // Insert our new paired instruction after whichever of the paired 927 // instructions MergeForward indicates. 928 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; 929 // Also based on MergeForward is from where we copy the base register operand 930 // so we get the flags compatible with the input code. 931 const MachineOperand &BaseRegOp = 932 MergeForward ? getLdStBaseOp(*Paired) : getLdStBaseOp(*I); 933 934 int Offset = getLdStOffsetOp(*I).getImm(); 935 int PairedOffset = getLdStOffsetOp(*Paired).getImm(); 936 bool PairedIsUnscaled = TII->isUnscaledLdSt(Paired->getOpcode()); 937 if (IsUnscaled != PairedIsUnscaled) { 938 // We're trying to pair instructions that differ in how they are scaled. If 939 // I is scaled then scale the offset of Paired accordingly. Otherwise, do 940 // the opposite (i.e., make Paired's offset unscaled). 941 int MemSize = getMemScale(*Paired); 942 if (PairedIsUnscaled) { 943 // If the unscaled offset isn't a multiple of the MemSize, we can't 944 // pair the operations together. 945 assert(!(PairedOffset % getMemScale(*Paired)) && 946 "Offset should be a multiple of the stride!"); 947 PairedOffset /= MemSize; 948 } else { 949 PairedOffset *= MemSize; 950 } 951 } 952 953 // Which register is Rt and which is Rt2 depends on the offset order. 954 MachineInstr *RtMI, *Rt2MI; 955 if (Offset == PairedOffset + OffsetStride) { 956 RtMI = &*Paired; 957 Rt2MI = &*I; 958 // Here we swapped the assumption made for SExtIdx. 959 // I.e., we turn ldp I, Paired into ldp Paired, I. 960 // Update the index accordingly. 961 if (SExtIdx != -1) 962 SExtIdx = (SExtIdx + 1) % 2; 963 } else { 964 RtMI = &*I; 965 Rt2MI = &*Paired; 966 } 967 int OffsetImm = getLdStOffsetOp(*RtMI).getImm(); 968 // Scale the immediate offset, if necessary. 969 if (TII->isUnscaledLdSt(RtMI->getOpcode())) { 970 assert(!(OffsetImm % getMemScale(*RtMI)) && 971 "Unscaled offset cannot be scaled."); 972 OffsetImm /= getMemScale(*RtMI); 973 } 974 975 // Construct the new instruction. 976 MachineInstrBuilder MIB; 977 DebugLoc DL = I->getDebugLoc(); 978 MachineBasicBlock *MBB = I->getParent(); 979 MachineOperand RegOp0 = getLdStRegOp(*RtMI); 980 MachineOperand RegOp1 = getLdStRegOp(*Rt2MI); 981 // Kill flags may become invalid when moving stores for pairing. 982 if (RegOp0.isUse()) { 983 if (!MergeForward) { 984 // Clear kill flags on store if moving upwards. Example: 985 // STRWui %w0, ... 986 // USE %w1 987 // STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards 988 RegOp0.setIsKill(false); 989 RegOp1.setIsKill(false); 990 } else { 991 // Clear kill flags of the first stores register. Example: 992 // STRWui %w1, ... 993 // USE kill %w1 ; need to clear kill flag when moving STRWui downwards 994 // STRW %w0 995 Register Reg = getLdStRegOp(*I).getReg(); 996 for (MachineInstr &MI : make_range(std::next(I), Paired)) 997 MI.clearRegisterKills(Reg, TRI); 998 } 999 } 1000 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingPairOpcode(Opc))) 1001 .add(RegOp0) 1002 .add(RegOp1) 1003 .add(BaseRegOp) 1004 .addImm(OffsetImm) 1005 .cloneMergedMemRefs({&*I, &*Paired}) 1006 .setMIFlags(I->mergeFlagsWith(*Paired)); 1007 1008 (void)MIB; 1009 1010 LLVM_DEBUG( 1011 dbgs() << "Creating pair load/store. Replacing instructions:\n "); 1012 LLVM_DEBUG(I->print(dbgs())); 1013 LLVM_DEBUG(dbgs() << " "); 1014 LLVM_DEBUG(Paired->print(dbgs())); 1015 LLVM_DEBUG(dbgs() << " with instruction:\n "); 1016 if (SExtIdx != -1) { 1017 // Generate the sign extension for the proper result of the ldp. 1018 // I.e., with X1, that would be: 1019 // %w1 = KILL %w1, implicit-def %x1 1020 // %x1 = SBFMXri killed %x1, 0, 31 1021 MachineOperand &DstMO = MIB->getOperand(SExtIdx); 1022 // Right now, DstMO has the extended register, since it comes from an 1023 // extended opcode. 1024 Register DstRegX = DstMO.getReg(); 1025 // Get the W variant of that register. 1026 Register DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); 1027 // Update the result of LDP to use the W instead of the X variant. 1028 DstMO.setReg(DstRegW); 1029 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1030 LLVM_DEBUG(dbgs() << "\n"); 1031 // Make the machine verifier happy by providing a definition for 1032 // the X register. 1033 // Insert this definition right after the generated LDP, i.e., before 1034 // InsertionPoint. 1035 MachineInstrBuilder MIBKill = 1036 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) 1037 .addReg(DstRegW) 1038 .addReg(DstRegX, RegState::Define); 1039 MIBKill->getOperand(2).setImplicit(); 1040 // Create the sign extension. 1041 MachineInstrBuilder MIBSXTW = 1042 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) 1043 .addReg(DstRegX) 1044 .addImm(0) 1045 .addImm(31); 1046 (void)MIBSXTW; 1047 LLVM_DEBUG(dbgs() << " Extend operand:\n "); 1048 LLVM_DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); 1049 } else { 1050 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1051 } 1052 LLVM_DEBUG(dbgs() << "\n"); 1053 1054 if (MergeForward) 1055 for (const MachineOperand &MOP : phys_regs_and_masks(*I)) 1056 if (MOP.isReg() && MOP.isKill()) 1057 DefinedInBB.addReg(MOP.getReg()); 1058 1059 // Erase the old instructions. 1060 I->eraseFromParent(); 1061 Paired->eraseFromParent(); 1062 1063 return NextI; 1064 } 1065 1066 MachineBasicBlock::iterator 1067 AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, 1068 MachineBasicBlock::iterator StoreI) { 1069 MachineBasicBlock::iterator NextI = LoadI; 1070 ++NextI; 1071 1072 int LoadSize = getMemScale(*LoadI); 1073 int StoreSize = getMemScale(*StoreI); 1074 Register LdRt = getLdStRegOp(*LoadI).getReg(); 1075 const MachineOperand &StMO = getLdStRegOp(*StoreI); 1076 Register StRt = getLdStRegOp(*StoreI).getReg(); 1077 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); 1078 1079 assert((IsStoreXReg || 1080 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && 1081 "Unexpected RegClass"); 1082 1083 MachineInstr *BitExtMI; 1084 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { 1085 // Remove the load, if the destination register of the loads is the same 1086 // register for stored value. 1087 if (StRt == LdRt && LoadSize == 8) { 1088 for (MachineInstr &MI : make_range(StoreI->getIterator(), 1089 LoadI->getIterator())) { 1090 if (MI.killsRegister(StRt, TRI)) { 1091 MI.clearRegisterKills(StRt, TRI); 1092 break; 1093 } 1094 } 1095 LLVM_DEBUG(dbgs() << "Remove load instruction:\n "); 1096 LLVM_DEBUG(LoadI->print(dbgs())); 1097 LLVM_DEBUG(dbgs() << "\n"); 1098 LoadI->eraseFromParent(); 1099 return NextI; 1100 } 1101 // Replace the load with a mov if the load and store are in the same size. 1102 BitExtMI = 1103 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1104 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) 1105 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) 1106 .add(StMO) 1107 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 1108 .setMIFlags(LoadI->getFlags()); 1109 } else { 1110 // FIXME: Currently we disable this transformation in big-endian targets as 1111 // performance and correctness are verified only in little-endian. 1112 if (!Subtarget->isLittleEndian()) 1113 return NextI; 1114 bool IsUnscaled = TII->isUnscaledLdSt(*LoadI); 1115 assert(IsUnscaled == TII->isUnscaledLdSt(*StoreI) && 1116 "Unsupported ld/st match"); 1117 assert(LoadSize <= StoreSize && "Invalid load size"); 1118 int UnscaledLdOffset = IsUnscaled 1119 ? getLdStOffsetOp(*LoadI).getImm() 1120 : getLdStOffsetOp(*LoadI).getImm() * LoadSize; 1121 int UnscaledStOffset = IsUnscaled 1122 ? getLdStOffsetOp(*StoreI).getImm() 1123 : getLdStOffsetOp(*StoreI).getImm() * StoreSize; 1124 int Width = LoadSize * 8; 1125 unsigned DestReg = 1126 IsStoreXReg ? Register(TRI->getMatchingSuperReg( 1127 LdRt, AArch64::sub_32, &AArch64::GPR64RegClass)) 1128 : LdRt; 1129 1130 assert((UnscaledLdOffset >= UnscaledStOffset && 1131 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && 1132 "Invalid offset"); 1133 1134 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); 1135 int Imms = Immr + Width - 1; 1136 if (UnscaledLdOffset == UnscaledStOffset) { 1137 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N 1138 | ((Immr) << 6) // immr 1139 | ((Imms) << 0) // imms 1140 ; 1141 1142 BitExtMI = 1143 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1144 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), 1145 DestReg) 1146 .add(StMO) 1147 .addImm(AndMaskEncoded) 1148 .setMIFlags(LoadI->getFlags()); 1149 } else { 1150 BitExtMI = 1151 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), 1152 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), 1153 DestReg) 1154 .add(StMO) 1155 .addImm(Immr) 1156 .addImm(Imms) 1157 .setMIFlags(LoadI->getFlags()); 1158 } 1159 } 1160 1161 // Clear kill flags between store and load. 1162 for (MachineInstr &MI : make_range(StoreI->getIterator(), 1163 BitExtMI->getIterator())) 1164 if (MI.killsRegister(StRt, TRI)) { 1165 MI.clearRegisterKills(StRt, TRI); 1166 break; 1167 } 1168 1169 LLVM_DEBUG(dbgs() << "Promoting load by replacing :\n "); 1170 LLVM_DEBUG(StoreI->print(dbgs())); 1171 LLVM_DEBUG(dbgs() << " "); 1172 LLVM_DEBUG(LoadI->print(dbgs())); 1173 LLVM_DEBUG(dbgs() << " with instructions:\n "); 1174 LLVM_DEBUG(StoreI->print(dbgs())); 1175 LLVM_DEBUG(dbgs() << " "); 1176 LLVM_DEBUG((BitExtMI)->print(dbgs())); 1177 LLVM_DEBUG(dbgs() << "\n"); 1178 1179 // Erase the old instructions. 1180 LoadI->eraseFromParent(); 1181 return NextI; 1182 } 1183 1184 static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { 1185 // Convert the byte-offset used by unscaled into an "element" offset used 1186 // by the scaled pair load/store instructions. 1187 if (IsUnscaled) { 1188 // If the byte-offset isn't a multiple of the stride, there's no point 1189 // trying to match it. 1190 if (Offset % OffsetStride) 1191 return false; 1192 Offset /= OffsetStride; 1193 } 1194 return Offset <= 63 && Offset >= -64; 1195 } 1196 1197 // Do alignment, specialized to power of 2 and for signed ints, 1198 // avoiding having to do a C-style cast from uint_64t to int when 1199 // using alignTo from include/llvm/Support/MathExtras.h. 1200 // FIXME: Move this function to include/MathExtras.h? 1201 static int alignTo(int Num, int PowOf2) { 1202 return (Num + PowOf2 - 1) & ~(PowOf2 - 1); 1203 } 1204 1205 static bool mayAlias(MachineInstr &MIa, MachineInstr &MIb, 1206 AliasAnalysis *AA) { 1207 // One of the instructions must modify memory. 1208 if (!MIa.mayStore() && !MIb.mayStore()) 1209 return false; 1210 1211 // Both instructions must be memory operations. 1212 if (!MIa.mayLoadOrStore() && !MIb.mayLoadOrStore()) 1213 return false; 1214 1215 return MIa.mayAlias(AA, MIb, /*UseTBAA*/false); 1216 } 1217 1218 static bool mayAlias(MachineInstr &MIa, 1219 SmallVectorImpl<MachineInstr *> &MemInsns, 1220 AliasAnalysis *AA) { 1221 for (MachineInstr *MIb : MemInsns) 1222 if (mayAlias(MIa, *MIb, AA)) 1223 return true; 1224 1225 return false; 1226 } 1227 1228 bool AArch64LoadStoreOpt::findMatchingStore( 1229 MachineBasicBlock::iterator I, unsigned Limit, 1230 MachineBasicBlock::iterator &StoreI) { 1231 MachineBasicBlock::iterator B = I->getParent()->begin(); 1232 MachineBasicBlock::iterator MBBI = I; 1233 MachineInstr &LoadMI = *I; 1234 Register BaseReg = getLdStBaseOp(LoadMI).getReg(); 1235 1236 // If the load is the first instruction in the block, there's obviously 1237 // not any matching store. 1238 if (MBBI == B) 1239 return false; 1240 1241 // Track which register units have been modified and used between the first 1242 // insn and the second insn. 1243 ModifiedRegUnits.clear(); 1244 UsedRegUnits.clear(); 1245 1246 unsigned Count = 0; 1247 do { 1248 --MBBI; 1249 MachineInstr &MI = *MBBI; 1250 1251 // Don't count transient instructions towards the search limit since there 1252 // may be different numbers of them if e.g. debug information is present. 1253 if (!MI.isTransient()) 1254 ++Count; 1255 1256 // If the load instruction reads directly from the address to which the 1257 // store instruction writes and the stored value is not modified, we can 1258 // promote the load. Since we do not handle stores with pre-/post-index, 1259 // it's unnecessary to check if BaseReg is modified by the store itself. 1260 if (MI.mayStore() && isMatchingStore(LoadMI, MI) && 1261 BaseReg == getLdStBaseOp(MI).getReg() && 1262 isLdOffsetInRangeOfSt(LoadMI, MI, TII) && 1263 ModifiedRegUnits.available(getLdStRegOp(MI).getReg())) { 1264 StoreI = MBBI; 1265 return true; 1266 } 1267 1268 if (MI.isCall()) 1269 return false; 1270 1271 // Update modified / uses register units. 1272 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1273 1274 // Otherwise, if the base register is modified, we have no match, so 1275 // return early. 1276 if (!ModifiedRegUnits.available(BaseReg)) 1277 return false; 1278 1279 // If we encounter a store aliased with the load, return early. 1280 if (MI.mayStore() && mayAlias(LoadMI, MI, AA)) 1281 return false; 1282 } while (MBBI != B && Count < Limit); 1283 return false; 1284 } 1285 1286 // Returns true if FirstMI and MI are candidates for merging or pairing. 1287 // Otherwise, returns false. 1288 static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, 1289 LdStPairFlags &Flags, 1290 const AArch64InstrInfo *TII) { 1291 // If this is volatile or if pairing is suppressed, not a candidate. 1292 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) 1293 return false; 1294 1295 // We should have already checked FirstMI for pair suppression and volatility. 1296 assert(!FirstMI.hasOrderedMemoryRef() && 1297 !TII->isLdStPairSuppressed(FirstMI) && 1298 "FirstMI shouldn't get here if either of these checks are true."); 1299 1300 unsigned OpcA = FirstMI.getOpcode(); 1301 unsigned OpcB = MI.getOpcode(); 1302 1303 // Opcodes match: nothing more to check. 1304 if (OpcA == OpcB) 1305 return true; 1306 1307 // Try to match a sign-extended load/store with a zero-extended load/store. 1308 bool IsValidLdStrOpc, PairIsValidLdStrOpc; 1309 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); 1310 assert(IsValidLdStrOpc && 1311 "Given Opc should be a Load or Store with an immediate"); 1312 // OpcA will be the first instruction in the pair. 1313 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { 1314 Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); 1315 return true; 1316 } 1317 1318 // If the second instruction isn't even a mergable/pairable load/store, bail 1319 // out. 1320 if (!PairIsValidLdStrOpc) 1321 return false; 1322 1323 // FIXME: We don't support merging narrow stores with mixed scaled/unscaled 1324 // offsets. 1325 if (isNarrowStore(OpcA) || isNarrowStore(OpcB)) 1326 return false; 1327 1328 // Try to match an unscaled load/store with a scaled load/store. 1329 return TII->isUnscaledLdSt(OpcA) != TII->isUnscaledLdSt(OpcB) && 1330 getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); 1331 1332 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? 1333 } 1334 1335 static bool 1336 canRenameUpToDef(MachineInstr &FirstMI, LiveRegUnits &UsedInBetween, 1337 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1338 const TargetRegisterInfo *TRI) { 1339 if (!FirstMI.mayStore()) 1340 return false; 1341 1342 // Check if we can find an unused register which we can use to rename 1343 // the register used by the first load/store. 1344 auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg()); 1345 MachineFunction &MF = *FirstMI.getParent()->getParent(); 1346 if (!RegClass || !MF.getRegInfo().tracksLiveness()) 1347 return false; 1348 1349 auto RegToRename = getLdStRegOp(FirstMI).getReg(); 1350 // For now, we only rename if the store operand gets killed at the store. 1351 if (!getLdStRegOp(FirstMI).isKill() && 1352 !any_of(FirstMI.operands(), 1353 [TRI, RegToRename](const MachineOperand &MOP) { 1354 return MOP.isReg() && !MOP.isDebug() && MOP.getReg() && 1355 MOP.isImplicit() && MOP.isKill() && 1356 TRI->regsOverlap(RegToRename, MOP.getReg()); 1357 })) { 1358 LLVM_DEBUG(dbgs() << " Operand not killed at " << FirstMI << "\n"); 1359 return false; 1360 } 1361 auto canRenameMOP = [](const MachineOperand &MOP) { 1362 return MOP.isImplicit() || 1363 (MOP.isRenamable() && !MOP.isEarlyClobber() && !MOP.isTied()); 1364 }; 1365 1366 bool FoundDef = false; 1367 1368 // For each instruction between FirstMI and the previous def for RegToRename, 1369 // we 1370 // * check if we can rename RegToRename in this instruction 1371 // * collect the registers used and required register classes for RegToRename. 1372 std::function<bool(MachineInstr &, bool)> CheckMIs = [&](MachineInstr &MI, 1373 bool IsDef) { 1374 LLVM_DEBUG(dbgs() << "Checking " << MI << "\n"); 1375 // Currently we do not try to rename across frame-setup instructions. 1376 if (MI.getFlag(MachineInstr::FrameSetup)) { 1377 LLVM_DEBUG(dbgs() << " Cannot rename framesetup instructions currently (" 1378 << MI << ")\n"); 1379 return false; 1380 } 1381 1382 UsedInBetween.accumulate(MI); 1383 1384 // For a definition, check that we can rename the definition and exit the 1385 // loop. 1386 FoundDef = IsDef; 1387 1388 // For defs, check if we can rename the first def of RegToRename. 1389 if (FoundDef) { 1390 for (auto &MOP : MI.operands()) { 1391 if (!MOP.isReg() || !MOP.isDef() || MOP.isDebug() || !MOP.getReg() || 1392 !TRI->regsOverlap(MOP.getReg(), RegToRename)) 1393 continue; 1394 if (!canRenameMOP(MOP)) { 1395 LLVM_DEBUG(dbgs() 1396 << " Cannot rename " << MOP << " in " << MI << "\n"); 1397 return false; 1398 } 1399 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); 1400 } 1401 return true; 1402 } else { 1403 for (auto &MOP : MI.operands()) { 1404 if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() || 1405 !TRI->regsOverlap(MOP.getReg(), RegToRename)) 1406 continue; 1407 1408 if (!canRenameMOP(MOP)) { 1409 LLVM_DEBUG(dbgs() 1410 << " Cannot rename " << MOP << " in " << MI << "\n"); 1411 return false; 1412 } 1413 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); 1414 } 1415 } 1416 return true; 1417 }; 1418 1419 if (!forAllMIsUntilDef(FirstMI, RegToRename, TRI, LdStLimit, CheckMIs)) 1420 return false; 1421 1422 if (!FoundDef) { 1423 LLVM_DEBUG(dbgs() << " Did not find definition for register in BB\n"); 1424 return false; 1425 } 1426 return true; 1427 } 1428 1429 // Check if we can find a physical register for renaming. This register must: 1430 // * not be defined up to FirstMI (checking DefinedInBB) 1431 // * not used between the MI and the defining instruction of the register to 1432 // rename (checked using UsedInBetween). 1433 // * is available in all used register classes (checked using RequiredClasses). 1434 static Optional<MCPhysReg> tryToFindRegisterToRename( 1435 MachineInstr &FirstMI, MachineInstr &MI, LiveRegUnits &DefinedInBB, 1436 LiveRegUnits &UsedInBetween, 1437 SmallPtrSetImpl<const TargetRegisterClass *> &RequiredClasses, 1438 const TargetRegisterInfo *TRI) { 1439 auto &MF = *FirstMI.getParent()->getParent(); 1440 1441 // Checks if any sub- or super-register of PR is callee saved. 1442 auto AnySubOrSuperRegCalleePreserved = [&MF, TRI](MCPhysReg PR) { 1443 return any_of(TRI->sub_and_superregs_inclusive(PR), 1444 [&MF, TRI](MCPhysReg SubOrSuper) { 1445 return TRI->isCalleeSavedPhysReg(SubOrSuper, MF); 1446 }); 1447 }; 1448 1449 // Check if PR or one of its sub- or super-registers can be used for all 1450 // required register classes. 1451 auto CanBeUsedForAllClasses = [&RequiredClasses, TRI](MCPhysReg PR) { 1452 return all_of(RequiredClasses, [PR, TRI](const TargetRegisterClass *C) { 1453 return any_of(TRI->sub_and_superregs_inclusive(PR), 1454 [C, TRI](MCPhysReg SubOrSuper) { 1455 return C == TRI->getMinimalPhysRegClass(SubOrSuper); 1456 }); 1457 }); 1458 }; 1459 1460 auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg()); 1461 for (const MCPhysReg &PR : *RegClass) { 1462 if (DefinedInBB.available(PR) && UsedInBetween.available(PR) && 1463 !AnySubOrSuperRegCalleePreserved(PR) && CanBeUsedForAllClasses(PR)) { 1464 DefinedInBB.addReg(PR); 1465 LLVM_DEBUG(dbgs() << "Found rename register " << printReg(PR, TRI) 1466 << "\n"); 1467 return {PR}; 1468 } 1469 } 1470 LLVM_DEBUG(dbgs() << "No rename register found from " 1471 << TRI->getRegClassName(RegClass) << "\n"); 1472 return None; 1473 } 1474 1475 /// Scan the instructions looking for a load/store that can be combined with the 1476 /// current instruction into a wider equivalent or a load/store pair. 1477 MachineBasicBlock::iterator 1478 AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, 1479 LdStPairFlags &Flags, unsigned Limit, 1480 bool FindNarrowMerge) { 1481 MachineBasicBlock::iterator E = I->getParent()->end(); 1482 MachineBasicBlock::iterator MBBI = I; 1483 MachineBasicBlock::iterator MBBIWithRenameReg; 1484 MachineInstr &FirstMI = *I; 1485 ++MBBI; 1486 1487 bool MayLoad = FirstMI.mayLoad(); 1488 bool IsUnscaled = TII->isUnscaledLdSt(FirstMI); 1489 Register Reg = getLdStRegOp(FirstMI).getReg(); 1490 Register BaseReg = getLdStBaseOp(FirstMI).getReg(); 1491 int Offset = getLdStOffsetOp(FirstMI).getImm(); 1492 int OffsetStride = IsUnscaled ? getMemScale(FirstMI) : 1; 1493 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); 1494 1495 Optional<bool> MaybeCanRename = None; 1496 SmallPtrSet<const TargetRegisterClass *, 5> RequiredClasses; 1497 LiveRegUnits UsedInBetween; 1498 UsedInBetween.init(*TRI); 1499 1500 Flags.clearRenameReg(); 1501 1502 // Track which register units have been modified and used between the first 1503 // insn (inclusive) and the second insn. 1504 ModifiedRegUnits.clear(); 1505 UsedRegUnits.clear(); 1506 1507 // Remember any instructions that read/write memory between FirstMI and MI. 1508 SmallVector<MachineInstr *, 4> MemInsns; 1509 1510 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1511 MachineInstr &MI = *MBBI; 1512 1513 UsedInBetween.accumulate(MI); 1514 1515 // Don't count transient instructions towards the search limit since there 1516 // may be different numbers of them if e.g. debug information is present. 1517 if (!MI.isTransient()) 1518 ++Count; 1519 1520 Flags.setSExtIdx(-1); 1521 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && 1522 getLdStOffsetOp(MI).isImm()) { 1523 assert(MI.mayLoadOrStore() && "Expected memory operation."); 1524 // If we've found another instruction with the same opcode, check to see 1525 // if the base and offset are compatible with our starting instruction. 1526 // These instructions all have scaled immediate operands, so we just 1527 // check for +1/-1. Make sure to check the new instruction offset is 1528 // actually an immediate and not a symbolic reference destined for 1529 // a relocation. 1530 Register MIBaseReg = getLdStBaseOp(MI).getReg(); 1531 int MIOffset = getLdStOffsetOp(MI).getImm(); 1532 bool MIIsUnscaled = TII->isUnscaledLdSt(MI); 1533 if (IsUnscaled != MIIsUnscaled) { 1534 // We're trying to pair instructions that differ in how they are scaled. 1535 // If FirstMI is scaled then scale the offset of MI accordingly. 1536 // Otherwise, do the opposite (i.e., make MI's offset unscaled). 1537 int MemSize = getMemScale(MI); 1538 if (MIIsUnscaled) { 1539 // If the unscaled offset isn't a multiple of the MemSize, we can't 1540 // pair the operations together: bail and keep looking. 1541 if (MIOffset % MemSize) { 1542 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1543 UsedRegUnits, TRI); 1544 MemInsns.push_back(&MI); 1545 continue; 1546 } 1547 MIOffset /= MemSize; 1548 } else { 1549 MIOffset *= MemSize; 1550 } 1551 } 1552 1553 if (BaseReg == MIBaseReg && ((Offset == MIOffset + OffsetStride) || 1554 (Offset + OffsetStride == MIOffset))) { 1555 int MinOffset = Offset < MIOffset ? Offset : MIOffset; 1556 if (FindNarrowMerge) { 1557 // If the alignment requirements of the scaled wide load/store 1558 // instruction can't express the offset of the scaled narrow input, 1559 // bail and keep looking. For promotable zero stores, allow only when 1560 // the stored value is the same (i.e., WZR). 1561 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || 1562 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { 1563 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1564 UsedRegUnits, TRI); 1565 MemInsns.push_back(&MI); 1566 continue; 1567 } 1568 } else { 1569 // Pairwise instructions have a 7-bit signed offset field. Single 1570 // insns have a 12-bit unsigned offset field. If the resultant 1571 // immediate offset of merging these instructions is out of range for 1572 // a pairwise instruction, bail and keep looking. 1573 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { 1574 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1575 UsedRegUnits, TRI); 1576 MemInsns.push_back(&MI); 1577 continue; 1578 } 1579 // If the alignment requirements of the paired (scaled) instruction 1580 // can't express the offset of the unscaled input, bail and keep 1581 // looking. 1582 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { 1583 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, 1584 UsedRegUnits, TRI); 1585 MemInsns.push_back(&MI); 1586 continue; 1587 } 1588 } 1589 // If the destination register of the loads is the same register, bail 1590 // and keep looking. A load-pair instruction with both destination 1591 // registers the same is UNPREDICTABLE and will result in an exception. 1592 if (MayLoad && Reg == getLdStRegOp(MI).getReg()) { 1593 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 1594 TRI); 1595 MemInsns.push_back(&MI); 1596 continue; 1597 } 1598 1599 // If the Rt of the second instruction was not modified or used between 1600 // the two instructions and none of the instructions between the second 1601 // and first alias with the second, we can combine the second into the 1602 // first. 1603 if (ModifiedRegUnits.available(getLdStRegOp(MI).getReg()) && 1604 !(MI.mayLoad() && 1605 !UsedRegUnits.available(getLdStRegOp(MI).getReg())) && 1606 !mayAlias(MI, MemInsns, AA)) { 1607 1608 Flags.setMergeForward(false); 1609 Flags.clearRenameReg(); 1610 return MBBI; 1611 } 1612 1613 // Likewise, if the Rt of the first instruction is not modified or used 1614 // between the two instructions and none of the instructions between the 1615 // first and the second alias with the first, we can combine the first 1616 // into the second. 1617 if (!(MayLoad && 1618 !UsedRegUnits.available(getLdStRegOp(FirstMI).getReg())) && 1619 !mayAlias(FirstMI, MemInsns, AA)) { 1620 1621 if (ModifiedRegUnits.available(getLdStRegOp(FirstMI).getReg())) { 1622 Flags.setMergeForward(true); 1623 Flags.clearRenameReg(); 1624 return MBBI; 1625 } 1626 1627 if (DebugCounter::shouldExecute(RegRenamingCounter)) { 1628 if (!MaybeCanRename) 1629 MaybeCanRename = {canRenameUpToDef(FirstMI, UsedInBetween, 1630 RequiredClasses, TRI)}; 1631 1632 if (*MaybeCanRename) { 1633 Optional<MCPhysReg> MaybeRenameReg = tryToFindRegisterToRename( 1634 FirstMI, MI, DefinedInBB, UsedInBetween, RequiredClasses, 1635 TRI); 1636 if (MaybeRenameReg) { 1637 Flags.setRenameReg(*MaybeRenameReg); 1638 Flags.setMergeForward(true); 1639 MBBIWithRenameReg = MBBI; 1640 } 1641 } 1642 } 1643 } 1644 // Unable to combine these instructions due to interference in between. 1645 // Keep looking. 1646 } 1647 } 1648 1649 if (Flags.getRenameReg()) 1650 return MBBIWithRenameReg; 1651 1652 // If the instruction wasn't a matching load or store. Stop searching if we 1653 // encounter a call instruction that might modify memory. 1654 if (MI.isCall()) 1655 return E; 1656 1657 // Update modified / uses register units. 1658 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1659 1660 // Otherwise, if the base register is modified, we have no match, so 1661 // return early. 1662 if (!ModifiedRegUnits.available(BaseReg)) 1663 return E; 1664 1665 // Update list of instructions that read/write memory. 1666 if (MI.mayLoadOrStore()) 1667 MemInsns.push_back(&MI); 1668 } 1669 return E; 1670 } 1671 1672 MachineBasicBlock::iterator 1673 AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, 1674 MachineBasicBlock::iterator Update, 1675 bool IsPreIdx) { 1676 assert((Update->getOpcode() == AArch64::ADDXri || 1677 Update->getOpcode() == AArch64::SUBXri) && 1678 "Unexpected base register update instruction to merge!"); 1679 MachineBasicBlock::iterator NextI = I; 1680 // Return the instruction following the merged instruction, which is 1681 // the instruction following our unmerged load. Unless that's the add/sub 1682 // instruction we're merging, in which case it's the one after that. 1683 if (++NextI == Update) 1684 ++NextI; 1685 1686 int Value = Update->getOperand(2).getImm(); 1687 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && 1688 "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); 1689 if (Update->getOpcode() == AArch64::SUBXri) 1690 Value = -Value; 1691 1692 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) 1693 : getPostIndexedOpcode(I->getOpcode()); 1694 MachineInstrBuilder MIB; 1695 int Scale, MinOffset, MaxOffset; 1696 getPrePostIndexedMemOpInfo(*I, Scale, MinOffset, MaxOffset); 1697 if (!isPairedLdSt(*I)) { 1698 // Non-paired instruction. 1699 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1700 .add(getLdStRegOp(*Update)) 1701 .add(getLdStRegOp(*I)) 1702 .add(getLdStBaseOp(*I)) 1703 .addImm(Value / Scale) 1704 .setMemRefs(I->memoperands()) 1705 .setMIFlags(I->mergeFlagsWith(*Update)); 1706 } else { 1707 // Paired instruction. 1708 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) 1709 .add(getLdStRegOp(*Update)) 1710 .add(getLdStRegOp(*I, 0)) 1711 .add(getLdStRegOp(*I, 1)) 1712 .add(getLdStBaseOp(*I)) 1713 .addImm(Value / Scale) 1714 .setMemRefs(I->memoperands()) 1715 .setMIFlags(I->mergeFlagsWith(*Update)); 1716 } 1717 (void)MIB; 1718 1719 if (IsPreIdx) { 1720 ++NumPreFolded; 1721 LLVM_DEBUG(dbgs() << "Creating pre-indexed load/store."); 1722 } else { 1723 ++NumPostFolded; 1724 LLVM_DEBUG(dbgs() << "Creating post-indexed load/store."); 1725 } 1726 LLVM_DEBUG(dbgs() << " Replacing instructions:\n "); 1727 LLVM_DEBUG(I->print(dbgs())); 1728 LLVM_DEBUG(dbgs() << " "); 1729 LLVM_DEBUG(Update->print(dbgs())); 1730 LLVM_DEBUG(dbgs() << " with instruction:\n "); 1731 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); 1732 LLVM_DEBUG(dbgs() << "\n"); 1733 1734 // Erase the old instructions for the block. 1735 I->eraseFromParent(); 1736 Update->eraseFromParent(); 1737 1738 return NextI; 1739 } 1740 1741 bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, 1742 MachineInstr &MI, 1743 unsigned BaseReg, int Offset) { 1744 switch (MI.getOpcode()) { 1745 default: 1746 break; 1747 case AArch64::SUBXri: 1748 case AArch64::ADDXri: 1749 // Make sure it's a vanilla immediate operand, not a relocation or 1750 // anything else we can't handle. 1751 if (!MI.getOperand(2).isImm()) 1752 break; 1753 // Watch out for 1 << 12 shifted value. 1754 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) 1755 break; 1756 1757 // The update instruction source and destination register must be the 1758 // same as the load/store base register. 1759 if (MI.getOperand(0).getReg() != BaseReg || 1760 MI.getOperand(1).getReg() != BaseReg) 1761 break; 1762 1763 int UpdateOffset = MI.getOperand(2).getImm(); 1764 if (MI.getOpcode() == AArch64::SUBXri) 1765 UpdateOffset = -UpdateOffset; 1766 1767 // The immediate must be a multiple of the scaling factor of the pre/post 1768 // indexed instruction. 1769 int Scale, MinOffset, MaxOffset; 1770 getPrePostIndexedMemOpInfo(MemMI, Scale, MinOffset, MaxOffset); 1771 if (UpdateOffset % Scale != 0) 1772 break; 1773 1774 // Scaled offset must fit in the instruction immediate. 1775 int ScaledOffset = UpdateOffset / Scale; 1776 if (ScaledOffset > MaxOffset || ScaledOffset < MinOffset) 1777 break; 1778 1779 // If we have a non-zero Offset, we check that it matches the amount 1780 // we're adding to the register. 1781 if (!Offset || Offset == UpdateOffset) 1782 return true; 1783 break; 1784 } 1785 return false; 1786 } 1787 1788 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( 1789 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { 1790 MachineBasicBlock::iterator E = I->getParent()->end(); 1791 MachineInstr &MemMI = *I; 1792 MachineBasicBlock::iterator MBBI = I; 1793 1794 Register BaseReg = getLdStBaseOp(MemMI).getReg(); 1795 int MIUnscaledOffset = getLdStOffsetOp(MemMI).getImm() * getMemScale(MemMI); 1796 1797 // Scan forward looking for post-index opportunities. Updating instructions 1798 // can't be formed if the memory instruction doesn't have the offset we're 1799 // looking for. 1800 if (MIUnscaledOffset != UnscaledOffset) 1801 return E; 1802 1803 // If the base register overlaps a source/destination register, we can't 1804 // merge the update. This does not apply to tag store instructions which 1805 // ignore the address part of the source register. 1806 // This does not apply to STGPi as well, which does not have unpredictable 1807 // behavior in this case unlike normal stores, and always performs writeback 1808 // after reading the source register value. 1809 if (!isTagStore(MemMI) && MemMI.getOpcode() != AArch64::STGPi) { 1810 bool IsPairedInsn = isPairedLdSt(MemMI); 1811 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1812 Register DestReg = getLdStRegOp(MemMI, i).getReg(); 1813 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1814 return E; 1815 } 1816 } 1817 1818 // Track which register units have been modified and used between the first 1819 // insn (inclusive) and the second insn. 1820 ModifiedRegUnits.clear(); 1821 UsedRegUnits.clear(); 1822 ++MBBI; 1823 for (unsigned Count = 0; MBBI != E && Count < Limit; ++MBBI) { 1824 MachineInstr &MI = *MBBI; 1825 1826 // Don't count transient instructions towards the search limit since there 1827 // may be different numbers of them if e.g. debug information is present. 1828 if (!MI.isTransient()) 1829 ++Count; 1830 1831 // If we found a match, return it. 1832 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) 1833 return MBBI; 1834 1835 // Update the status of what the instruction clobbered and used. 1836 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1837 1838 // Otherwise, if the base register is used or modified, we have no match, so 1839 // return early. 1840 if (!ModifiedRegUnits.available(BaseReg) || 1841 !UsedRegUnits.available(BaseReg)) 1842 return E; 1843 } 1844 return E; 1845 } 1846 1847 MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( 1848 MachineBasicBlock::iterator I, unsigned Limit) { 1849 MachineBasicBlock::iterator B = I->getParent()->begin(); 1850 MachineBasicBlock::iterator E = I->getParent()->end(); 1851 MachineInstr &MemMI = *I; 1852 MachineBasicBlock::iterator MBBI = I; 1853 1854 Register BaseReg = getLdStBaseOp(MemMI).getReg(); 1855 int Offset = getLdStOffsetOp(MemMI).getImm(); 1856 1857 // If the load/store is the first instruction in the block, there's obviously 1858 // not any matching update. Ditto if the memory offset isn't zero. 1859 if (MBBI == B || Offset != 0) 1860 return E; 1861 // If the base register overlaps a destination register, we can't 1862 // merge the update. 1863 if (!isTagStore(MemMI)) { 1864 bool IsPairedInsn = isPairedLdSt(MemMI); 1865 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { 1866 Register DestReg = getLdStRegOp(MemMI, i).getReg(); 1867 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) 1868 return E; 1869 } 1870 } 1871 1872 // Track which register units have been modified and used between the first 1873 // insn (inclusive) and the second insn. 1874 ModifiedRegUnits.clear(); 1875 UsedRegUnits.clear(); 1876 unsigned Count = 0; 1877 do { 1878 --MBBI; 1879 MachineInstr &MI = *MBBI; 1880 1881 // Don't count transient instructions towards the search limit since there 1882 // may be different numbers of them if e.g. debug information is present. 1883 if (!MI.isTransient()) 1884 ++Count; 1885 1886 // If we found a match, return it. 1887 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) 1888 return MBBI; 1889 1890 // Update the status of what the instruction clobbered and used. 1891 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); 1892 1893 // Otherwise, if the base register is used or modified, we have no match, so 1894 // return early. 1895 if (!ModifiedRegUnits.available(BaseReg) || 1896 !UsedRegUnits.available(BaseReg)) 1897 return E; 1898 } while (MBBI != B && Count < Limit); 1899 return E; 1900 } 1901 1902 bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( 1903 MachineBasicBlock::iterator &MBBI) { 1904 MachineInstr &MI = *MBBI; 1905 // If this is a volatile load, don't mess with it. 1906 if (MI.hasOrderedMemoryRef()) 1907 return false; 1908 1909 // Make sure this is a reg+imm. 1910 // FIXME: It is possible to extend it to handle reg+reg cases. 1911 if (!getLdStOffsetOp(MI).isImm()) 1912 return false; 1913 1914 // Look backward up to LdStLimit instructions. 1915 MachineBasicBlock::iterator StoreI; 1916 if (findMatchingStore(MBBI, LdStLimit, StoreI)) { 1917 ++NumLoadsFromStoresPromoted; 1918 // Promote the load. Keeping the iterator straight is a 1919 // pain, so we let the merge routine tell us what the next instruction 1920 // is after it's done mucking about. 1921 MBBI = promoteLoadFromStore(MBBI, StoreI); 1922 return true; 1923 } 1924 return false; 1925 } 1926 1927 // Merge adjacent zero stores into a wider store. 1928 bool AArch64LoadStoreOpt::tryToMergeZeroStInst( 1929 MachineBasicBlock::iterator &MBBI) { 1930 assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store."); 1931 MachineInstr &MI = *MBBI; 1932 MachineBasicBlock::iterator E = MI.getParent()->end(); 1933 1934 if (!TII->isCandidateToMergeOrPair(MI)) 1935 return false; 1936 1937 // Look ahead up to LdStLimit instructions for a mergable instruction. 1938 LdStPairFlags Flags; 1939 MachineBasicBlock::iterator MergeMI = 1940 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); 1941 if (MergeMI != E) { 1942 ++NumZeroStoresPromoted; 1943 1944 // Keeping the iterator straight is a pain, so we let the merge routine tell 1945 // us what the next instruction is after it's done mucking about. 1946 MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags); 1947 return true; 1948 } 1949 return false; 1950 } 1951 1952 // Find loads and stores that can be merged into a single load or store pair 1953 // instruction. 1954 bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { 1955 MachineInstr &MI = *MBBI; 1956 MachineBasicBlock::iterator E = MI.getParent()->end(); 1957 1958 if (!TII->isCandidateToMergeOrPair(MI)) 1959 return false; 1960 1961 // Early exit if the offset is not possible to match. (6 bits of positive 1962 // range, plus allow an extra one in case we find a later insn that matches 1963 // with Offset-1) 1964 bool IsUnscaled = TII->isUnscaledLdSt(MI); 1965 int Offset = getLdStOffsetOp(MI).getImm(); 1966 int OffsetStride = IsUnscaled ? getMemScale(MI) : 1; 1967 // Allow one more for offset. 1968 if (Offset > 0) 1969 Offset -= OffsetStride; 1970 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) 1971 return false; 1972 1973 // Look ahead up to LdStLimit instructions for a pairable instruction. 1974 LdStPairFlags Flags; 1975 MachineBasicBlock::iterator Paired = 1976 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); 1977 if (Paired != E) { 1978 ++NumPairCreated; 1979 if (TII->isUnscaledLdSt(MI)) 1980 ++NumUnscaledPairCreated; 1981 // Keeping the iterator straight is a pain, so we let the merge routine tell 1982 // us what the next instruction is after it's done mucking about. 1983 auto Prev = std::prev(MBBI); 1984 MBBI = mergePairedInsns(MBBI, Paired, Flags); 1985 // Collect liveness info for instructions between Prev and the new position 1986 // MBBI. 1987 for (auto I = std::next(Prev); I != MBBI; I++) 1988 updateDefinedRegisters(*I, DefinedInBB, TRI); 1989 1990 return true; 1991 } 1992 return false; 1993 } 1994 1995 bool AArch64LoadStoreOpt::tryToMergeLdStUpdate 1996 (MachineBasicBlock::iterator &MBBI) { 1997 MachineInstr &MI = *MBBI; 1998 MachineBasicBlock::iterator E = MI.getParent()->end(); 1999 MachineBasicBlock::iterator Update; 2000 2001 // Look forward to try to form a post-index instruction. For example, 2002 // ldr x0, [x20] 2003 // add x20, x20, #32 2004 // merged into: 2005 // ldr x0, [x20], #32 2006 Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); 2007 if (Update != E) { 2008 // Merge the update into the ld/st. 2009 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); 2010 return true; 2011 } 2012 2013 // Don't know how to handle unscaled pre/post-index versions below, so bail. 2014 if (TII->isUnscaledLdSt(MI.getOpcode())) 2015 return false; 2016 2017 // Look back to try to find a pre-index instruction. For example, 2018 // add x0, x0, #8 2019 // ldr x1, [x0] 2020 // merged into: 2021 // ldr x1, [x0, #8]! 2022 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); 2023 if (Update != E) { 2024 // Merge the update into the ld/st. 2025 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 2026 return true; 2027 } 2028 2029 // The immediate in the load/store is scaled by the size of the memory 2030 // operation. The immediate in the add we're looking for, 2031 // however, is not, so adjust here. 2032 int UnscaledOffset = getLdStOffsetOp(MI).getImm() * getMemScale(MI); 2033 2034 // Look forward to try to find a pre-index instruction. For example, 2035 // ldr x1, [x0, #64] 2036 // add x0, x0, #64 2037 // merged into: 2038 // ldr x1, [x0, #64]! 2039 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); 2040 if (Update != E) { 2041 // Merge the update into the ld/st. 2042 MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); 2043 return true; 2044 } 2045 2046 return false; 2047 } 2048 2049 bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, 2050 bool EnableNarrowZeroStOpt) { 2051 2052 bool Modified = false; 2053 // Four tranformations to do here: 2054 // 1) Find loads that directly read from stores and promote them by 2055 // replacing with mov instructions. If the store is wider than the load, 2056 // the load will be replaced with a bitfield extract. 2057 // e.g., 2058 // str w1, [x0, #4] 2059 // ldrh w2, [x0, #6] 2060 // ; becomes 2061 // str w1, [x0, #4] 2062 // lsr w2, w1, #16 2063 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2064 MBBI != E;) { 2065 if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI)) 2066 Modified = true; 2067 else 2068 ++MBBI; 2069 } 2070 // 2) Merge adjacent zero stores into a wider store. 2071 // e.g., 2072 // strh wzr, [x0] 2073 // strh wzr, [x0, #2] 2074 // ; becomes 2075 // str wzr, [x0] 2076 // e.g., 2077 // str wzr, [x0] 2078 // str wzr, [x0, #4] 2079 // ; becomes 2080 // str xzr, [x0] 2081 if (EnableNarrowZeroStOpt) 2082 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2083 MBBI != E;) { 2084 if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI)) 2085 Modified = true; 2086 else 2087 ++MBBI; 2088 } 2089 // 3) Find loads and stores that can be merged into a single load or store 2090 // pair instruction. 2091 // e.g., 2092 // ldr x0, [x2] 2093 // ldr x1, [x2, #8] 2094 // ; becomes 2095 // ldp x0, x1, [x2] 2096 2097 if (MBB.getParent()->getRegInfo().tracksLiveness()) { 2098 DefinedInBB.clear(); 2099 DefinedInBB.addLiveIns(MBB); 2100 } 2101 2102 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2103 MBBI != E;) { 2104 // Track currently live registers up to this point, to help with 2105 // searching for a rename register on demand. 2106 updateDefinedRegisters(*MBBI, DefinedInBB, TRI); 2107 if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI)) 2108 Modified = true; 2109 else 2110 ++MBBI; 2111 } 2112 // 4) Find base register updates that can be merged into the load or store 2113 // as a base-reg writeback. 2114 // e.g., 2115 // ldr x0, [x2] 2116 // add x2, x2, #4 2117 // ; becomes 2118 // ldr x0, [x2], #4 2119 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); 2120 MBBI != E;) { 2121 if (isMergeableLdStUpdate(*MBBI) && tryToMergeLdStUpdate(MBBI)) 2122 Modified = true; 2123 else 2124 ++MBBI; 2125 } 2126 2127 return Modified; 2128 } 2129 2130 bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 2131 if (skipFunction(Fn.getFunction())) 2132 return false; 2133 2134 Subtarget = &static_cast<const AArch64Subtarget &>(Fn.getSubtarget()); 2135 TII = static_cast<const AArch64InstrInfo *>(Subtarget->getInstrInfo()); 2136 TRI = Subtarget->getRegisterInfo(); 2137 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2138 2139 // Resize the modified and used register unit trackers. We do this once 2140 // per function and then clear the register units each time we optimize a load 2141 // or store. 2142 ModifiedRegUnits.init(*TRI); 2143 UsedRegUnits.init(*TRI); 2144 DefinedInBB.init(*TRI); 2145 2146 bool Modified = false; 2147 bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign(); 2148 for (auto &MBB : Fn) { 2149 auto M = optimizeBlock(MBB, enableNarrowZeroStOpt); 2150 Modified |= M; 2151 } 2152 2153 return Modified; 2154 } 2155 2156 // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and 2157 // stores near one another? Note: The pre-RA instruction scheduler already has 2158 // hooks to try and schedule pairable loads/stores together to improve pairing 2159 // opportunities. Thus, pre-RA pairing pass may not be worth the effort. 2160 2161 // FIXME: When pairing store instructions it's very possible for this pass to 2162 // hoist a store with a KILL marker above another use (without a KILL marker). 2163 // The resulting IR is invalid, but nothing uses the KILL markers after this 2164 // pass, so it's never caused a problem in practice. 2165 2166 /// createAArch64LoadStoreOptimizationPass - returns an instance of the 2167 /// load / store optimization pass. 2168 FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { 2169 return new AArch64LoadStoreOpt(); 2170 } 2171